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Abstract

Stroke is the second leading cause of death worldwide and a major cause of disability with increasing

incidence. Investing in rehabilitation options is crucial for a variety of reasons. Considering that the

development of robotic rehabilitation devices could be a solution and that cycling training is an important

method to restore walking ability, a cycling trainer was proposed. This work aims to extend a devel-

oped system by implementing it in a fitter software (LabVIEW), creating an optimized position controller,

implementing a trajectory generation algorithm, and creating a User Graphical Interface (GUI).

A PID control was introduced to the system. A study was conducted to determine the best controller

for the device by comparing, through a series of tests, those discovered using the Autotuning Wizard with

those discovered using Genetic Algorithm optimization. An algorithm for generating a pedal trajectory

from selected points was developed and tested. The implemented GUI was designed with the required

steps for session setup and with useful feedback.

Of the 12 controllers tested, one was selected to be included in the system. From the study con-

ducted, the controllers tuned with a step signal and discovered using GA performed best in the tests.

A circular trajectory and a foot gait trajectory were used to evaluate the trajectory planning algorithm.

The device proved successful in following the circular trajectory but had difficulty following the foot gait

trajectory.

In conclusion, the thesis’ objectives were met, bringing the device one step closer to being used in

gait rehabilitation.

Keywords

Stroke Rehabilitation, Gait Rehabilitation, Robotic Device, PID Control, Trajectory Planning, Graphical

User Interface.
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Resumo

O acidente vascular cerebral é a segunda causa de morte em todo o mundo e das principais causas

de incapacidade com crescente incidência. Investir em opções de reabilitação é crucial por várias

razões. Considerando que o desenvolvimento de sistemas robóticos de reabilitação podem ser uma

solução e que o treino com bicicleta é importante para restaurar a capacidade de locomoção, foi pro-

posto um treinador robótico de ciclismo. Este trabalho tem como objetivo continuar o desenvolvimento

do treinador, implementando o sistema num software mais indicado (LabVIEW), adicionar um contro-

lador de posição otimizado, implementar um algoritmo para geração de trajetórias e desenvolver uma

Interface Gráfica de Utilizador (GUI).

Um controlador PID foi introduzido realizando-se um estudo para determinar o melhor. Por meio de

testes, comparou-se os encontrados usando o Autotuning Wizard com aqueles determinados usando

uma otimização com algoritmo genético (GA). Um algoritmo para gerar a trajetória do pedal a partir de

pontos selecionados foi desenvolvido e testado com uma trajetória circular e uma de marcha do pé. A

GUI foi projetada com os passos necessárias para a configuração de treino e com feedback útil.

A partir do estudo realizado com 12 controladores, percebeu-se que os que foram encontrados

utilizado o sinal de degrau e o GA tiveram melhor desempenho. O dispositivo teve sucesso em seguir a

trajetória circular, mas apresentou dificuldades em seguir a trajetória da marcha do pé.

Concluindo, conseguiu-se atingir os objetivos da tese, colocando este dispositivo um passo mais

próximo de ser utilizado por pacientes na reabilitação da marcha.

Palavras Chave

Reabilitação de AVC, Reabilitação da Passada, Dispositivo Robótico, Controlo PID, Planeamento de

Trajectória, Interface Gráfica.
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Chapter 1

Introduction

1.1 Motivation

Stroke is the second leading cause of death and a primary cause of disability worldwide with an increas-

ing incidence due to the population aging. [19] In the United States of America, from the 795,000 people

suffered with stroke, 26% remain with difficulties when performing activities of daily living and 50% have

reduced mobility. [19] In Europe, the reality is not different, stroke has affected 1.5 million people and

generated 439,000 deaths. [20] This event has deep consequences in people’s lives due to the low rate

of mobility recovery and due to an increased risk of poor outcome within the first year after the incident,

which, naturally, contribute to their quality of life. [21] Numbers suggest that stroke survivors have limited

or no walking capacity after the event, with less than 10% of patients leaving the hospital with capacity

to walk independently outdoors. [22]

Stroke rehabilitation is a complex process that involves multiple health care specialties and ap-

proaches. [23] A human brain recovers from stroke in three main ways: adaptation, regeneration, and

neuroplasticity. The most successful techniques must incorporate at least one of these processes. [23]

For plasticity to fully occur, rehabilitation interventions must be task-specific and goal-oriented rather

than general and nonspecific movements. In addition, the goal-oriented tasks must be challenging and

interesting enough to maintain an individual’s attention and increase effort, the task should allow for

repetition through multiple attempts. [24] It was observed a strong relationship between the beginning

of rehabilitation and the functional outcome. The earlier therapy is initiated, the more effective the treat-

ment. [25] There is good evidence that increased amounts of exercise provide better activities of daily

living and walking outcomes. [23]

When trying to recover the walking capacity, the cycling exercise can be a significant tool as it shares

a similar kinematic pattern with walking as they are both cyclical; required reciprocal flexion and exten-
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sion movements of the lower limb; and demand alternative and coordinated antagonist activation. [26]

Cycling engages reciprocal movement of the limbs as well as requires coordination of corresponding

muscles, can stimulate motor regions in the central nervous system and activates the cerebral cortex

improving balance and motor learning, which is directly connected with the increasing of gait ability. [27]

For these reasons, the cycling exercise can be seen as a solution and might be an alternative to motor

function rehabilitation method. [28]

Post-stroke rehabilitation will increase soon which will cause a stronger pressure on health care

budgets since only 3% to 4% of gross spending on health care in Western countries is spent on stroke.

Stroke has economic consequences too, in 2015, the European Union estimated the overall stroke cost

of 25 billion euros [20] and, by 2010 in the US, the total direct and indirect cost of stroke was 73,7 billion

dollars. [21]

There are ethical and economic reasons to invest in increasing stroke rehabilitation options and

efficacy. [22] Developing novel robotic rehabilitation devices may be a solution to this problem. Rehabil-

itation robots have the main advantage of lightening all labor-intensive phases of physical rehabilitation,

allowing a reduction in the therapist effort as they no longer need to set the paretic limbs or assist trunk

movements. [29] In this way, physiotherapists can concentrate on physical recovery during clinical ther-

apy and to supervise multiple patients during treatments at the same time. [22] Therefore, body weight

support seems to be a valuable advantage that robotic rehabilitation can provide in gait recovery. [7]

Robots bring the possibility of increasing the training intensity, with an increase in duration and number

of training sessions and provide highly repetitive training of complex gait cycles in a safe environment.

One therapist alone would be able to train two or more patients at once, resulting in a significant reduc-

tion in personal costs. [8] [22] Rehabilitation robots could fill a gap when there are not enough skilled

health practitioners to help stroke patients to recover when leaving the hospital or care centers, they

could still keep practicing at home in order to achieve even more successful results. [15] It can also

support the patients to keep cardiovascular fitness and to restore the adequate level of cardiorespiratory

efficiency. [30] [22]

As the cycling exercise has proven to have several health benefits, now the research community

starts to looking towards the creation of robotic cycling ergometers, combining the advantages of re-

habilitation robotics with the advantages of this exercise. But first, these systems must be understood

and further developed in order to not only provide circular motion training but also therapists chosen

trajectories and to allow load training.

With this being said, it is natural to think of rehabilitation robots as an important tool to be developed

in order to help even more stroke survivors to regain their quality life after the event.
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1.2 Scope and Objectives

This thesis aimed to further the development of a cycling trainer device for gait rehabilitation. It was

proposed the implementation of an existing system in the LabVIEW software, proceeding with the de-

bugging process and corrections. A position controller for the system was implemented. An analysis of

several Proportional-Integral-Derivative control (PID) controllers found using the LabVIEW Auto Tuning

Wizard and a Genetic Algorithm with the optimization toolbox from MATLAB was conducted in order to

select the appropriate control strategy. These controllers were tested using a series of tests performed

with different setpoint signals (step, sinusoidal waves and chirp signals), which allowed us to analyse

the system response with each controller and conclude which was best suited to the device.

Afterward, a trajectory planning algorithm was required, keeping in mind one of the system’s unique

features, which enables the user to build arbitrary trajectories for the pedal by selecting points within

the pedal range. With this tool already in place, a set of pre-defined trajectories were suggested and

implemented, and the system’s response to these trajectories was studied. Within the development

of this project, it was also intended to develop a Graphical User Interface (Graphical User Interface

(GUI)), where users could define the simulation’s trajectory and its characteristics, analyze the already

interpolated trajectory, and monitor the system’s response.

1.3 Thesis Outline

The present document is divided into 7 Chapters. Chapter 1 is the introduction, which explains the mo-

tivation for this project along with the scope and objectives. Chapter 2 seeks to provide the reader with

the latest developments in rehabilitation robots, as well as the existing problem of stroke rehabilitation

and regular rehabilitation therapies. In Chapters 3 and 4, the methods are described. The system is out-

lined in Chapter 3, along with its LabVIEW implementation. A study on PID controllers was developed,

in which two strategies were used to find suitable controllers. In Chapter 4, an algorithm is introduced

to allow the system to generate trajectories from data points selected by the user on the software’s

front panel, the procedure and a set of pre-defined trajectories are described. The system’s Graphical

User Interface is presented and its implementation explained, emphasizing new features and providing

instructions about the use of the interface. Through Chapter 5 the found controllers in Chapter 3 were

then thoroughly analyzed and compared. The results of Chapter 4 are presented in Chapter 6 where

the best PID parameters for the system are selected, and the system’s capability to follow two different

trajectories is investigated. Finally, in Chapter 7, the overall project is reviewed, along with the main

conclusions gathered and the future work directions that must be pursued in order to improve. Aside

from the chapters mentioned, this document also contains an appendix that provides complementary

information to help the reader better understand the results and conclusions.
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Chapter 2

Background

2.1 Stroke

Stroke is the name given to a disease affecting the arteries leading to and within the brain, it is an acute

compromise of cerebral perfusion or cerebrovascular accident. It is characterized by sudden onset of

neurological symptoms, such as paralysis or loss of sensation, resulting from destruction of brain tis-

sue. [28] About 85% strokes are ischemic, meaning a vessel supplying blood to the brain is obstructed,

and the rest are hemorrhagic, when a weakened vessel ruptures and bleeds into surrounding brain tis-

sue. [31] [32] [33] While ischemic stroke is the most frequent, hemorrhagic stroke is the most common

cause of death and lost disability-adjusted life years. [22]. Stroke is the second leading cause of death

and a primary cause of disability worldwide with an increasing incidence due to the population aging. [19]

Concerning mobility recovery, a 2008 study showed that 50% of patients with stroke leave the rehabilita-

tion hospital on a wheelchair, less than 15% are able to walk indoor without aids, less than 10% are able

to walk outdoors, and fewer than 5% are able to climb stairs. [22] Of the 795,000 new stroke sufferers in

the United States, 26% remain disabled in basic activities of daily living and 50% have limited mobility

due to hemiparesis. [19]. In Europe, stroke accounts for 1.5 million diagnosed individuals and 438.000

deaths. [20] With respect to Portugal, in 2016, there were 18,659 hospitalizations for ischemic stroke

and 4,785 hospitalizations for hemorrhagic stroke. [21] Regardless of the low rate of regaining mobility,

stroke patients have an increased risk of poor outcome in the first year after the event in relation to other

factors that naturally affect quality of life. These factors include re-hospitalization (33%), recurrent event

(7 to 13%), dementia (7 to 23%), mild cognitive impairment (35 to 47%), depression (30 to 50%), and

fatigue (35% to 92%). [34]

Taken together, these numbers suggest that stroke survivors have limited or no ambulation even after

rehabilitation, so there is a continuing need to improve the effectiveness of gait rehabilitation for stroke
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survivors. [35] There is also an urgent need for approximately 350,000 rehabilitation technicians, with

only less than 20,000 professionals currently working in rehabilitation. [36]

In fact, post-stroke rehabilitation will soon increase, putting more pressure on healthcare budgets.

[20] In the United States, the total direct and indirect costs of stroke in 2010 were $73.7 billion and the

median lifetime cost of ischemic stroke was estimated at $140,048. [21] Furthermore, according to the

Directorate-General of Health in Portugal alone it was consumed 330,5 million euros of pharmacologic

supplies related to brain and cardiovascular diseases . [21]

Having this, it is expected that, for ethical reasons in addition to economic ones, it is imperative to

increase rehabilitation options for stroke rehabilitation and more effectiveness. [22].

2.1.1 Stroke Rehabilitation Techniques

Stroke rehabilitation has been broadly defined as any aspect of stroke care that aims to reduce disability

and promote participation in activities of daily living. Stroke rehabilitation is a process of assisting a

person who has been disabled by a stroke; its objectives are to help survivors return to a normal life

by preventing deterioration of function through its improvement and to achieve the highest possible level

of independence (physical, psychological, social, and financial) within the limits of the persistent stroke

impairments. By regaining and relearning daily living skills through rehabilitation, many stroke survivors

achieve greater independence in Activities of daily living (ADLs) and improved functional capacity. [24]

Stroke rehabilitation is a complex process that involves multiple medical specialties and different

approaches, depending on the nature of the patient’s deficits. A Cochrane review provided good evi-

dence that home-based rehabilitation for stroke patients with mild to moderate deficits is feasible in an

urban setting and that similar or even better clinical outcomes can be achieved for patients treated in

an inpatient and home setting. Research in the past decade has expanded our understanding of the

mechanisms underlying stroke recovery and has led to the development of new treatment modalities

allowing more patients to survive stroke with varying degrees of disability. [24]

The human brain recovers from stroke through three main pathways: Adaptation, regeneration, and

neuroplasticity. [23] Adaptation is the reliance on alternative physical movements or devices to compen-

sate for post-stroke deficits. However, while adaptation is helpful, it may also be harmful to the recovery

process because of learned disuse. [24] Regeneration is the process through which neurons and associ-

ated cells and circuitry grow to replace the damage caused by a stroke. It is not yet regarded a standard

therapeutic practice for stroke recovery since there are still unanswered questions concerning the type

of stem cell to use, how to transport it, the dose, and the long-term safety implications. [24] Neuroplas-

ticity is generally defined as a rewiring in the neural network and it’s considered to be the main stroke

recovery process. Soon after stroke, activation is decreased in cortical areas directly affected by the

stroke that are associated with a change in the localization of certain tasks, as movement or talking. As
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time progresses through the acute and subacute period, these damaged neural networks reconnect in

areas adjacent to the affected area which coincide with clinical recovery. Research studies have demon-

strated that neuroplasticity is driven by several key principles, and can lead to recovery mechanisms

and functional adaptation as it is related to changes in excitatory/inhibitory balance, spatial extent and

activation of cortical maps and structural remodeling. [22] [24]

It is critical to determine the right time to begin rehabilitation because the best results are usually

achieved within the first few months after stroke, although some recovery may occur later but with lim-

ited opportunities to achieve an optimal outcome. In addition, patients with ischemic stroke who were

randomized to very early rehabilitation were much more likely to be alive 6 months after the stroke event

than those who received standard care. These patients spent less time in the hospital and reported sig-

nificantly higher quality of life, independence in ADLs, and improved mental health. [37] Regarding the

best time to start rehabilitation to promote neuroplasticity recovery, it is thought to be within 3 months of

the stroke event. [22] There is no consensus on when to begin rehabilitation after stroke because there

are no specific guidelines for early mobilization, which is one reason why patients undergoing throm-

bolysis have strict blood pressure guidelines imposed on them to reduce the risk of hemorrhage and

there is an hesitation to increase physical activity in these patients for fear of increasing blood pressure.

Nevertheless, the most effective approach to restoring brain functionality after stroke is still completely

unknown, and thus there is an urgent need for further high-quality research to better understand the

body’s rehabilitation mechanisms. [23]

Regarding the amount of rehabilitation that should be performed, there is good evidence that an

increased amount of exercise leads to better outcomes in ADLs and walking, especially when therapy

is performed in the first 6 months after stroke. It was established that increasing the number of therapy

sessions per day from one to two sessions results in better outcomes. [23]

Generally accepted practice at this time includes consulting therapists for initial assessment of pa-

tients within the first 48 hours, using less intensive therapy as determined by rehabilitation teams and

tolerated by patients, and, for those who can tolerate it, increasing the intensity of rehabilitation in the

outpatient setting.

2.1.1.A The cycling exercise

As mentioned previously, considering stroke patients being mostly incapable of walking again after the

event, there is a demand for lower limb rehabilitation methods with the aim of walking recovery. Cycling

shares a similar kinematic pattern with walking as they are both cyclical. [26] Furthermore, this exercise

engages reciprocal movement of the limbs as well as requires coordination of corresponding muscles,

can stimulate motor regions in the central nervous system and activates the cerebral cortex improving

balance and motor learning, which is directly connected with the increasing of gait ability. [27] Consid-
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ering these similarities with walking, cycling leg exercise can be seen as a solution and might be an

alternative motor function rehabilitation method. [28]

Apart from the advantage of being similar to the walking exercise, cycling has more advantages as a

rehabilitation method. [28] [27] It also can improve muscle strength and facilitates muscle control of the

lower limbs, which allows the patient to put more weight on the affected leg when standing, and improves

aerobic capacity, strength, and cardiopulmonary function of patients. [28] Apart from the use as a gait

rehabilitation method, it can be used to minimize the risk of secondary diseases that derive from patient

immobility. [38] Cycling devices can perform a continuous and prolonged session, whereas training

capacity can be adjusted to patient’s health status, physiologic response, and rehabilitation evolution.

[28] Moreover, different intensities of training can be performed just by altering a few parameters (e.g,

workload, speed) in the cycling device without changing how the exercise is performed. These features,

and the ability to exercise while seated, allow cycling to be accessible to patients in different disease

phases (acute, subacute, or chronic). [28]

Different therapies have been used together with cycling leg exercise to improve cycling’s potential as

a rehabilitation method, such as limb-load cycling, functional electrical stimulation (Functional Electrical

Stimulation (FES)) and feedback.

There are 2 main modes of cycling exercise: active and passive. The positive effects of active

cycling in stroke patients have been attributed to active contractions of the lower limbs muscles, although

passive cycling exercise can trigger sensory inputs, which in turn can be beneficial to recovery. Passive

cycling exercise can be used in people with ambulatory dysfunction in the acute rehabilitation phase

who are too weak or medically unstable to do motor active movements to regain motor function. [39]

However, according to the analysis of reviewed studies, it is possible to divide the application of

cycling into 2 types of rehabilitation methods: motor function rehabilitation and aerobic training, which

addresses the preservation of immobility-related secondary diseases as well as the rehabilitation of the

motor functions. [28] Considering that the balance control is not a necessity to do cycling exercise, this

can be safely used as a rehabilitation method in the early postroke phase, when gait training is not yet

possible. [38]

Studies have been made to prove the effectiveness of this exercise, results demonstrated that sta-

tionary cycling trained proved to have a positive effect on dynamic balance as measured by using the

time to get up and go test, which suggests that it is indeed effective to improve locomotor function sim-

ilarly to the effectiveness of treadmill exercise in stroke patients. [40] The results can last, as it was

shown that patients who participated in the cycling exercise programme achieved better balance and

motor abilities immediately after the cycling exercise programme as well as three weeks later compared

with patients who participated in regular exercise training. [41]

Concurrent use of cycling with functional electrical stimulation had a positive effect on balance com-

7



pared with control and, when compared with cycling alone, the effect was higher. [40] When performing

early rehabilitation at the subacute stage post stroke, cycling may improve balance and motor perfor-

mance. Patients who perform cycling exercise for three weeks have a better chance of standing indepen-

dently at the end of the intervention than those who do not. [41] Even as a complementary rehabilitation

exercise to the conventional therapy, stationary cycling exercise led to better balance and gait abilities

than the conventional therapy alone. [27]

Although effectiveness is proven for this exercise, currently, the optimal cycling protocol to maximize

outcomes is not known. [40]

2.1.2 The necessity for robotic rehabilitation

Bearing in mind that stroke is a major problem with several people around the globe who consequently

need to be rehabilitated afterwards, it is understandable that there is a considerable need to develop

novel rehabilitation techniques, in particular, to develop rehabilitation robots.

Beginning with the most mentioned advantage, a rehabilitation robot can lighten all labour-intensive

phases of physical rehabilitation, allowing a reduction in the therapist effort as they no longer need

to set the paretic limbs or assist trunk movements. [29] This helps the physiotherapist to concentrate

on physical recovery during clinical therapy and to supervise multiple patients during treatments at the

same time. [22] Therefore, body weight support seems to be the indispensable condition for facilitating

gait recovery with robotic devices. [35] While robotic gait training with these appliances, patients are

assisted with partial body-weight support, where a robotic device provides physical guidance to move

the patients’ legs into a correct gait pattern. [8]

One of the other greatest benefits of robotic gait training is the possibility of increasing the training

intensity (i.e. the duration and number of training sessions) and highly repetitive training of complex

gait cycles in a safe environment. One therapist alone may execute these demanding therapies and be

able to train two or more patients at once, resulting in a significant reduction in personal costs. [8] [22]

Robotic gait-training devices are well-suited to provide standardized and task-oriented motor training in

order to move the patient’s limbs as effectively as possible. This could be a significant improvement over

the considerable inter-therapist variability that is quantifiable even among highly experienced human

therapists. [42] [22]

When there is a lack of trained and skilled health practitioners for treating stroke, rehabilitation robots

can alleviate this gap. [37]

People with stroke are known to suffer from an extremely poor cardiovascular fitness, with a re-

duction in mobility and a consequent reduction in quality of life. [30] There is also a proven secondary

effect related to the body weight support and to robotic rehabilitation which is the possibility of favouring

the restoration of an adequate level of cardiorespiratory efficiency, reducing energy consumption and
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cardiorespiratory load. [22]

Furthermore, the rehabilitation robot can provide measurable and comparable quantitative assess-

ment of the rehabilitation process using sensors embedded into the system. [8] These robots allow online

and offline instrumented and objective evaluation of several parameters related to patient performance.

This includes, but is not limited to, the evaluation of the patient’s success with a biofeedback. [22] As

patients’ engagement and participation in conventional exercises is considered a key factor to increase

rehabilitation performances and thereby boost plasticity. [22] Robots can incorporate other technologies

(e.g. This fact highlights the role of complex robotic devices, which are capable of demonstrating the

full motion coordination aspects while also enabling to train aspects relating to the simpler movement

components. [8] [43]

With this, is important to emphasize that the use of robots should not replace the neurorehabilitation

therapy performed by a physiotherapist. Robots, like all technological devices, must be used as aids in

the hands of the physiotherapist and never as instruments of recovery per se. [44]

2.2 Robotic devices for lower-limb rehabilitation

The previous section presented the problem of stroke and how it affects people around the world and

introduces the need for the development of new rehabilitation devices, namely rehabilitation robots.

In particular, robotic rehabilitation devices are typically based on the so-called phenomenon of motor

learning, resulting from intensive, repetitive and task-oriented motor activities that require patient’s effort

and attention. [45] This review focuses on lower-limb rehabilitation robotics, and this section aims to

analyze existing devices, limitations of current reality, and future steps.

2.2.1 Existing Devices

Before summarizing the reality of robotic devices that are being developed to help patients to recover

their walking ability, it is important to notice that there are several ways of classification. The most cited

classification of rehabilitation devices was first introduced in 2011 by Iñaki Dı́az et al [1], where it was

defined each class according to the rehabilitation principle of the system, however it is also possible to

classify these devices according to the way they assist the patient.

According to Iñaki Dı́az et al [1], the robotics systems currently developed are grouped as follows:

1. Treadmill gait trainers,

2. Foot-plate-based gait trainers,

3. Overground gait trainers,
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Figure 2.1: Types of lower-limb rehabilitation devices from [1]: (a) treadmill gait trainers, (b) foot-plate-based gait
trainers, (c) overground gait trainers, (d) stationary gait and ankle trainers, and (e) active foot orthoses.
For more information, the reader is referred to [ [1],Figure 1]

4. Stationary gait trainers,

5. Ankle rehabilitation systems, that can be divided into:

• stationary systems;

• active foot orthoses.

The visual representation of these systems is possible to be observed in Figure 2.1 and in the next

sub-chapters each class will be further analyzed.

2.2.1.A Treadmill Gait trainers

Traditionally, the treadmill rehabilitation technique is known as Partial Body-Weight Support Treadmill

Training (PBWSTT) where three therapists assist the patient’s legs and hips while walking on a treadmill

and, at the same time, the patient’s body weight is supported by an overhead harness. This technique

demands an intensive work from the therapists as well as a great number of people to assist only one

patient at the time. Many robotic systems have been developed on a treadmill to automate and improve

this technique as a means to solve these problems. [1]

The treadmill gait approach is a robot device that is connected to the patient’s lower limbs, resorting

to a set of cuffs, that will help them to follow the proper gait pattern on the treadmill. This robot ensures

a precise synchronization between the speed of the patient’s gait and the treadmill. Usually, several

sensors are implemented into the system in order to evaluate the user’ progress and performance and

to ensure the operational safety of the device during training exercises. Typically, the robotic devices
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used in this rehabilitation system are exoskeleton structures, that together with the Body-Weight Sup-

port (BWS) system and a treadmill, represent the most important components or robot-assisted gait

rehabilitation systems. Considering that, BWS systems are often included in the robot family in an un-

suitable manner, the fact that there are intelligent sensors in the system is the key point that allows the

differentiation of robots from electromechanical devices. In its turn, exoskeletons are wearable devices

that operate mechanically and simultaneously on the human body (although with possible interference

with the limb natural movement) and therefore can be classified as assistive devices for human impaired

movement or for human power augmentation, according to their application. [45] By 2011 only 3 sys-

tems where available in the market: the Lokomat (Hocoma AG), the LokoHelp/LokoStation and the

ReoAmbulator. [1] Being, recently, the Lokomat considered the best selling commercial gait rehabilitator

and trainer for clinical patients. [46]

The Lokomat is a robotic system consisting of the strong orthosis gait device of the hip and knee

joint, the BWS and the treadmill with built-in computer-controlled linear actuators. Gait pattern and

guidance force are individually adjustable to the patient’s need to optimize the functional training in the

sagittal, frontal and transverse planes. This system can also evaluate the physiologic stiffness of the

patient’s hip and knee joints and the isometric force exerted, respectively, for hip and knee extension.

[47] [48] [45]

The LokoHelp/LokoStation (Woodway) is a BWS electromechanical device specially developed for

improving gait after brain injury. [1] With this LokoStation, therapists have the ability to conveniently

redistribute the weight due to the off-loading system. Offering static and dynamic support which allows

different body weight distribution according to the gait cycle phase.

The ReoAmbulator (marked in the USA as the ”AutoAmbulator”) is another sophisticated treadmill

device combined with advanced robotics that helps patients to replicate normal walking patterns. The

device consists of a pair of articulated arms hinged outward to the sides of two upright structures that

house the computer control and parts of the body weight unloading mechanism. While the Lokomat

BWS system can adapt to the tension and the position of the cable to reduce the dynamic load of

the patient’s body during the training session, the BWS system used in the AutoAmbulator can only

statically reduce the weight of the patient. Each arm is provided with motor-driven pivotal joints at

the hip and knee and move with four Degrees-Of-Freedom (DOF), two for the extension and flexion

of the knee joint and the hip joint, respectively. The robot arms provide only support in the sagittal

plane. The drive motors are computer controlled so that the position, time and distance are monitored

to provide a smooth, accurate and coordinated gait pattern according to the variable speeds of the

treadmill. Moreover, the ReoAmbulator is equipped with safety interlocks, redundant travel and variable

torque limits and other sensors to ensure patient safety during training. The AutoAmbulator has been

employed for rehabilitation and educational research studies, demonstrating improved balance and gait,
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similarly to conventional/manual physical treatment. [2]

Recently, the device developed by the University of Twente has become one of the most well-known

exoskeleton devices. The Lower Extremity Powered ExoSkeleton (LOPES), is a robotic device de-

signed to evaluate motor skills and assist stroke patients in walking rehabilitation. Unlike traditional

rehabilitation devices as guardians of the leg, LOPES has eight DOF, allowing better movements with

less interference and friction and an adequate task-specific gait training. [3] Notably, three actuated rota-

tional joints and a great number of DOF of the exoskeleton may offer a wide range of possibilities to help

patients during walking, adapt the support to the individual patient and regain the ability to walk. [45]

Apart from these exoskeletons, there is still available the Anklebot, the Active Leg Exoskele-

ton (ALEX) and the Intrisically Compliant Robotic Orthosis (ICRO). The first, also considered as

an ankle rehabilitation system, allows ankle movement in all three DOF. In particular, dorsi-plantar

flexion and inversion-eversion may be performed via linear actuators mounted in parallel, whilst internal-

external rotation is limited at the ankle with the orientation of the foot in the transverse plane. [4] The

ALEX consists of direct current motors at the hip and knee sagittal plane joints [49], which let the pa-

tient’s foot move in predefined trajectories [50], playing a major role in stroke patient rehabilitation by

increasing patients’ gait pattern and walking speeds. [51]. ICRO has two passive DOF (vertical and

lateral translations), actuated hip and knee sagittal plane rotations powered by intrinsically compliant

pneumatic muscle actuators. This device may be also provided with an adaptive impedance control

scheme that allows decreasing the robotic assistance when the subjects increase their voluntary partic-

ipation. [6] [52]

It is worth to say that there is no standard way of categorizing rehabilitation robots, in this way, the

treadmill gait trainers can also be considered as stationary walking systems once it is implemented by

using a fixed structure combined with a moving ground platform and have been developed to automate

traditional therapies. [45]
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Figure 2.2: Representation of the mentioned treadmill gait trainers. a) Lokomat from [2] b)Lokohelp/ LokoStation
from [2] c)Reoambulator from [2] d)LOPES from [3] e)Anklebot from [4] f)ALEX from [5] g)ICRO from [6]
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2.2.1.B Foot-Plate-Based Gait Trainers

This class of rehabilitation robots are characterized by the use of footplates to guide the patient’s feet

and thereby reproduce gait trajectories, these can be seen as an alternative to the treadmill-centred

devices, reported previously. These footplates can apply mechanical force to the distal segments of

the lower-limbs and so allow the reproduction, without friction and interference, of the stance and swing

phases of gait while the patient is on the device. These devices only act on the feet, enabling the thigh

and shank to freely move without the friction, thus leading to higher rates of independent walking than

exoskeleton-based training. [45]

Figure 2.3: Representation of the mentioned foot-plate-based gait trainers, a) GT from [7] and b)G-EO from [8]

In this section, we have the Gait Trainer (GT) system by Reha-Stim which is a mechanized rehabil-

itator designed and built for repeated practice of a ”physiological model of gait” without the necessary

intervention of a therapist. During gait training, the patient is equipped with the harness for BWS and

positioned on two platforms that simulate the path while the device is controlling the patient’s centre of

mass in both vertical and horizontal directions. This robot consists of an automated elliptical bicycle,

equipped with six DOF force sensors located under each footplate and Electromyogram (EMG) sensors

able to perceive the user’s intentions. The feet are supported and bound by two brackets that may be

moved to adjust the gait of the patient. [45]

There is the G-EO system (Reha-technology) which is able to simulate the repetitive training of

relevant situations for locomotion in everyday life such as walking or ascending and descending stairs.

Here, the patient’s feet are fixed to platforms that, with the help of six engines, can move in all directions

(i.e. upwards, downwards, forwards and backwards). [45]

Lokohelp (Woodway) is a device that can be easily placed in the middle of the treadmill, parallel
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to the walking direction and fixed to the front, simulating the gait pattern and imitating the stance and

swing phases. [1] This device can be used in combination with the LokoStation, which allows the BWS,

to perform therapies. Locomotion training with this newly developed system is a feasible tool in severely

affected patients after brain injury, stroke and Spinal Cord Injury (SCI). [53]

2.2.1.C Overground Gait Trainers

These systems consist of robots that servo-follow the patient’s walking motions overground, letting pa-

tients move under their own control in place of moving through predetermined movement patterns. It

is quite clear that by 2011, nearly all programs have been tested by I. Diaz et al [1] have also been

commercialized.

One of those devices is the ReWalk, from ReWalk Robotics, which is an orthosis with electric engines

that commands the hips and knee joints by a computerized system. This is housed in a backpack in

addition to the engines’ battery and carried on one’s shoulders. This exoskeleton is activated by a

sensor, positioned in the anterior upper body and is controlled by the user through leaning of the upper

body or small changes in the centre of gravity. [45]

Hybrid Assistive Leg (HAL) is a user-grounded robotic orthosis developed by the University of

Tsukuba, Japan, together with the Cyberdyne Systems Company, which helps users in their daily life

activities. [45] It has been developed for a wide variety of uses, from recovery to hard work support, and

has been produced in many versions. [1]

The KineAssist (by Kinea Design), is a mobile robotic base that provides partial body-weight support

and postural control on the torso allowing many axes of motion on the trunk and pelvis. It follows the

patient’s gait overground in forward, rotation and sidestepping directions while leaving the user’s legs

accessible so they can receive assistance from therapists. [54]

Ekso (Ekso Bionics) represents a front-runner in robotic exoskeleton technology, thanks to its high

operability, structural strength, lightness and the ergonomics. It is a self-powered exoskeleton and con-

sists of two aluminium frame legs, a battery and a kind of brackets on which different types of load can

be attached and to increase the strength and endurance of the patient. [45] [9]

Recently developed, the Andago (by Hocoma AG) is a system where the patient wears a harness,

connected through ropes to the frame of the device, that supports his body weight. This robotic frame

has two electrically driven wheels and four casters for moving forward, backward, and turning according

to the user’s intention. [8]

There are already a few solutions regarding the using of soft robotics to develop rehabilitation robots.

One example is the Robotic Gait Trainer in Water (RGTW), created in 2008, designed for the develop-

ment of an underwater gait training orthosis consisting of a hip-knee-ankle-foot orthosis with pneumatic

McKibben actuators performing as the actuation system. The angular motion used for the control system
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was determined by a healthy subject when walking underwater to achieve repetitive physiological gait

patterns to improve gait dysfunctions. [2]

Figure 2.4: Some of the currently developed overground gait trainers. a) Rewalk from [1] b)HAL from [1]
c)KineAssist from [1] d)EKSO from [9] e)ANDAGO [8] f)RGTW from

2.2.1.D Stationary Gait Trainers

These systems have the purpose of obtaining efficient muscle strengthening and endurance develop-

ment, as well as joint mobility and movement coordination. [1]

The MotionMaker (by Swortec SA) is a stationary training system which allows to carry out fitness

exercises with the active participation of the paralyzed limbs. The patient’s limbs are connected to the

foot orthosis to activate the natural ground reaction forces. [1] Moreover, the Lambda, is a rehabilitation

fitness robot used for mobilization of lower extremities, providing their movement in the sagittal plane,

including an additional rotation for the ankle mobilization. [10]

Due to the non-standardization of the robotic classes, Calabro, et al (2016) [45] defined the foot-
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plate-based trainers as stationary systems.

Figure 2.5: Stationary Gait Trainers: a) MotionMaker from [1] and b) Lambda from [10]

2.2.1.E Ankle and Knee Rehabilitation Systems

After the stroke event, the patient with neurological impairment can have a reduction or even no muscle

activity in the knee and ankle area leading to the so-called drop foot, where there is the inability of an

individual to lift the foot. Besides, the ankle motion is considered to be a quite complicated process, due

to the presence of complex bone structures. With this, there is the necessity to focus on the approach

to the rehabilitation of the knee and ankle, and so, the stationary systems and the active foot orthoses

were developed. [1]

Stationary Systems are the robotic mechanisms intended to exercise the human ankle/knee motion

without walking. [1] The Rutgers Ankle, was the first of this kind, consisting of a Stewart platform-

type haptic interface with 6 DOF resistive forces applied on the user’s foot according to virtual reality-

based exercises. [11] Also, the Instituto Italiano di Tecnologia has developed a High Performance An-

kle Rehabilitation Robot, which allows plantar/dorsiflexion and inversion/eversion using an improved

performance parallel mechanism that eliminates singularities due to actuation redundancy and greatly

enhances the workspace dexterity. [12] The Active Knee Rehabilitation Orthotic Device (AKROD)

supports the knee joint with variable damping controls to promote the regeneration of the motor recov-

ery and other neurological conditions in patients with knee injury. [13] The Northeastern University

Virtual Ankle and Balance Trainer (NUVABAT) rehabilitation system is a low-cost, lightweight, mecha-

tronic rehabilitation platform for performing ankle exercise in sitting and standing positions as well as

weight shifting and balance testing in standing positions. [14]

Active foot orthoses, on the contrary to stationary systems, are actuated exoskeletons wore by

the user while walking overground or in a treadmill. Two attempts to develop such systems were the

Powered Gait Orthosis (PGO) [15] and the Powered Active Gait Orthosis (PAGO). [16] [1] By 2011,
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the only commercialized system for rehabilitation was the Anklebot (by Interactive Motion Technologies,

Inc), an ankle robot developed at the Massachusetts Institute of Technology to rehabilitate the ankle after

stroke. This system allowed a normal range of motion in all 3 DOF of the foot relative to the shank while

walking. [55]

There are soft-robotics solutions too, is the case of Knee-Ankle-Foot-Orthosis (KAFO) which is

an orthosis powered by artificial pneumatic muscles during human walking [17]. The Robotic Gait

Trainer (RGT) developed in the Human Machine Integration Laboratory at the Arizona State University

is also a soft-robotic solution as a walking device meant to be used on a treadmill. [56] It is naturally

compliant due to the spring in muscle actuators and can achieve a more natural gait by allowing the

patient’s ankle joint to move in eversion, inversion, plantarflexion, and dorsiflexion. By 2013, it was

elaborated a six DOF robotic orthosis which implemented four pneumatic muscle actuators arranged in

two pairs or antagonistic mono-articular muscles at the hip and knee joint angles. This device had the

goal of encouraging patients’ voluntary contribution to the robotic gait training process. [2]

Figure 2.6: Ankle and Knee rehabilitation devices mentioned in this section. a) Rugters ankle [11] b)High Per-
formance ankle rehabilitation robot [12] c) AKROD [13] d)NUVABAT [14] e)PGO [15] f)PAGO [16]
g)KAFO [17] and h) RGT
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2.2.2 Control Strategies

When talking about rehabilitation devices, two aspects had to be taken into consideration: the me-

chanical part of the device and the control system. [57] The main purpose of control strategies is to

engage movement sequences to assist in patient’s gait recovery, physically move the user’s legs in a

normative gait pattern during walking an to establish a strategy similar to the exercises performed by

therapists. [9] [8] The most important issue is hence developing control strategies that entail physical

interaction with the patient’s limbs. [57]

Usually, control strategies can be generally divided into four categories: position tracking control,

force and impedance controls, adaptive control and bio-signals based control. [57]

2.2.2.A Position Control

The position control method is a trajectory-tracking control, intending to drive the lower limbs to gait

on the fixed mode. The gait is formed by a proportional position feedback controller and joint angles

which are suitable for lower limb muscle strength. [58] Being the main purpose of rehabilitation train-

ing to restore the lower limb motor functions to normal levels, is, therefore, required to have a normal

gait pattern as a reference to the control system, as a training goal and as a rehabilitation evaluation

standard. [59] [60] When a patient has hemiplegia or physical disabilities and finding his normal gait

data is difficult, then, a predetermined trajectory obtained from data of healthy gait is often used. [59]

Position controllers are important in the first phases of rehabilitation when ”passive” mode is required to

help the impaired limb achieve continuous and repetitive training. Nevertheless, the primary issue to be

approached in position control is how to generate proper trajectories. [57]

Commonly, the desired trajectory is determined from normative trajectories as pre-recorded trajecto-

ries from unimpaired volunteers or pre-recorded trajectories during therapist-guided assistance. There

are other strategies: one consists in adapting the new trajectory-based in contact forces between the de-

vice and the limb, or including a re-planning (the minimum jerk) desired trajectory at each time from the

actual performance of the participant, or adjusting the replay-timing of the requested trajectory from time

sample to time sample according to the difference between the actual measured state of the participant

and the desired state. [61]

Rehabilitation robots are a dynamic and uncertain system, consequently, it can be hard to achieve

ideal results by using ”model-based” controllers, even though an additional controller can be used to

compensate for modelling errors. [57] The main limitation of the trajectory tracking control is the decrease

in motor learning due to the physically guiding therapy. This guidance changes the dynamics of the

task leading to a difference between the trained task and the target, which not fully obey the motor

learn rationale that training needs to be specific. Additionally, guidance reduces the patient’s physical

effort and the burdens on the patient’s motor system to discover the principles needed to perform the
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task successfully. [62] Marchal-Crespo and Reinkensmeyer [61] have summarised this phenomenon as

”Slacking Hypothesis” which means that a rehabilitation robot could decrease recovery as a decrease

in motor output, effort, energy consumption and/or attention. Which is something to have in mind when

designing a novel robot rehabilitation control, thus, recently, bio-cooperative control was introduced to

control and encourage patient’s participation both physiologically and psychologically. [62]

2.2.2.B Impedance Control

Impedance control is more than a given control law, is a control approach which aims to determine the

dynamic behaviour of the robot. It provides an assistive force when the limb diverged from the desired

gait trajectory, and a restoring force, that is proportional to the deviation. [9] It focuses on allowing

flexibility from the rehabilitation robot, which avoids excessive force between the device and the patient’s

limbs. It is implemented to engage the subject in voluntary work during rehabilitation by encouraging

active participation and allowing patient’s natural variability and comfort, which can address the position

control failures described earlier. [9]

From the approach of implementation, impedance control can be divided into two categories: one is

based on torque and the other is based on position. The former is based on forward-facing impedance

equations, but the explicit expression of impedance equations may not exist in the control structures.

The latter is based on the admittance control, which is the reverse impedance equations. [58]

There is a new challenge regarding impedance parameters, as it can make the robot reveal different

compliance. When there are low impedance levels, there is the increased risk that the patient will move

beyond the physiological range of motion, alternatively, when there are high impedance levels it will force

the patient in a passive state and hardly achieve active training. As impedance parameters should not be

always fixed, to maintain the balance between low and high impedance, adaptive methods are necessary

to guarantee the dynamic performance of robots. [57] On top of impedance control, it is possible to

implement algorithms to adapt the desired values of the robot impedance. So, an impedance controlled

system can be seen as consisting of up to three levels: on top, a level that determines the values of

the desired impedance according to the rehabilitation strategy; in the middle, a level that generates

reference torques (or positions in the admittance control) according to the desired impedance; and on

the bottom, an inner loop in form of force or position controller that acts directly on the actuators. In

addition, this lower level may include compensation components for inertial, velocity and gravitational

effects. [63]

Since humans show movement variability, a deadband is usually introduced into the control schemes

to allow healthy variability without the robot increasing its assistance force. There is a variance of the

impedance controllers, such as the triggered assistance, which allows the patient to attempt a movement

without any guidance from the device, but initiates some form of impedance-based assistance after the
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performance reaches a determined threshold. The contrasting approach exists, where the triggering

assistance is provided when the patient is below a threshold for a fixed time. If the patient can not finish

the task, then the robot will assist the participant to finish the task at a constant speed until the position

error is below a threshold. [61]

There are some limitations that should be considered when using impedance control. First, there

is the problem of low impedance levels increasing the risk of the subject and robot start walking out of

phase and the necessity of the impedance level to match the patient’s capabilities and progress, which

can vary broadly throughout the rehabilitation process. Different algorithms have been proposed to

avoid the coordination problem, where the reference pattern of the robotic controller can be accelerated

or decelerated according to the difference between the robot’s and patient’s gait. [64]

2.2.2.C Hybrid Control

In hybrid position/force control, the interaction between human subject and device plays an important

role. Devices with this control allow the patient to experience different mobility patterns, helping his

nervous system to learn trajectories and allow passive and active exercises, that can help strengthen

patient’s muscles and enhance recovery. [46] [57] A clear advantage of these devices is the possibility to

control the robot to move along the desired trajectory and still maintain a specific human-robot contact

force. It is aimed to provide a safe, comfortable and flexible place to healing and for the rehabilitation

process. [58]

This control strategy was developed considering that sometimes it is necessary to control the position

of the robot in some directions, while in other directions it is necessary to control the interaction force

between the device and the patient. Thus, when contacting with the patient, the robot’s task space is

separated in two subspaces, the position and the force subspace, and it completes the tracking control

over position and force in the corresponding subspace. As it helps patients walk freely, requiring the

active and full engagement of the patient, it is believed to accelerate the recovery process. [58]

However, it only allows the user to apply a certain resistance force along a fixed trajectory and do

not allow voluntary active movements from the patient. [57] Recently, adaptive controllers with forgetting

factors [ [65], [66] ] have been suggested to systematically reduce the feedforward assisting force to

achieve when tracking errors are minimal. Another approach to adaptive assistance is to use a system

for optimisation. In the patient-cooperative framework, the robot aims to reduce real-time torques of

human-robot interactions. [61]

2.2.2.D Bio-signals based control

Bio-signals enables the robotic devices to be controlled in a more natural form by using electromyogra-

phy (EMG) signals recorded from the user’s muscles, as it has been proven that there is a correlation
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between EMG signals, limb movement and muscle activities. [67] [57] In case of patients with mobility

impairments, it is rather complicated to perform diagnoses, so these signals are used as feedback. [46]

The EMG signal is the electrical activity produced by the skeletal muscle and it is mainly composed

of surface Electromyogram (sEMG) and Intramuscular Electromyogram (iEMG). sEMG is obtained by

adding electrodes to the skin’s surface, while the iEMG is obtained by inserting a needle electrode un-

der the skin into the muscle tissue under the skin. The Electroencephalogram (EEG) is the electrical

activity of the brain, which is collected by electrodes attached to the scalp, and it represents the voltage

fluctuations caused by the flow of ions between the neurons in the brain. [58]

Mostly used interactive controlling for lower-limb rehabilitation robotics use the surface electromyo-

gram (sEMG) and electroencephalogram (EEG), due to the non-intrusive way of getting both signals,

because there is no need of medical expert and its performance can get guarantees. [58] The most

important advantage of an interactive control based on EEG is that it is limited to the extent of physical

disability, meaning that even if the patient has completely lost the motor function of the limbs, consid-

ering that the brain can still produce motion control signals, the method is equally appropriate. This is

especially important for patients with total spinal cord injury, because their brains normally work, but the

control signal transduction pathway is cut off, so that muscles do not obtain the information required to

be controlled. [58]

There has been more interest in creating devices with EMG signals incorporated and to be used

throughout the therapy work cycle, which provides considerable amounts of data to be analysed to

prove efficacy. [46]

2.2.2.E Training modalities

The effectiveness of robot-assisted rehabilitation depends substantially on the ability to assist a patient’s

movement in the appropriate way for different recovery stages. As the rehabilitation process is divided

into three stages: preliminary, intermediate and advanced stage, where patients will gradually regain

the range of motion and strength at the injured limb, therefore, the patient needs to perform passive and

active exercises which are adapted to theirs recovery phase. [57] The training modalities are a strategy

to accomplish this goal of providing an adequate kind of exercise to each phase of the patient’s recovery.

Training modalities used in robots for stroke rehabilitation are often divided into four groups, namely:

• Passive;

• Active;

• Active Assistive;

• Active Resistive.
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Passive exercise can improve the movement ability, maintain range of motion, and reduce muscle

atrophy, through repetitive exercise. [68] [58] Usually it is used in the preliminary stage, when the patient

has very low muscle strength which is not sufficient to complete active movements and thus should

perform passive training, like moving the injured limb along a predefined trajectory with help from the

therapist or exercise in a common rehabilitation device. At this stage, we can only rely on the help of

external forces to help the patient achieve the training goals. The robot’s legs should move the patient’s

legs for rehabilitation training and the lower-limb rehabilitation robot must provide sufficient strength

for passive training. [68] This model has the advantage of being efficient even when the patient lacks

motivation. [58] Passive exercise is a consistent modality with the ”robot-in-charge” control allowed in

the LOPES rehabilitation robot, [57]

Active exercise is a modality applied since the intermediate stage of recovery and allows the patient

to move by his own effort without external assistance and resistance, as the patient already has a certain

muscle strength and the active motion of the smaller torque can be performed on the rehabilitation

device. At this point, the robot is required to perceive the patient’s state and strength/torque while

following the patient’s movements.The model for active exercise can be adapted to the patient’s intention,

which enhances the patient’s motivation. [58] LOPES rehabilitation robot has a control consistent with

this exercise called ”patient-in-charge”, where the user can walk freely within the device. [57]

Active assistive exercise is also applied since the intermediate stage of recovery when the patient

moves his limb following desired movements. At this stage, the muscles have strength but not suffi-

cient to be fully trained without help from the robot legs. [58] This strategy requires external, physical

assistance to aid the accomplish of patients’ target movements, it is comparable to the practice of thera-

pists who regularly manually apply this technique to provide ”assistance-as-needed.” [61] Following this,

the assistive control strategies are based in the underlying idea that the robot should only intervene if the

user moves along the desired trajectory, and when this condition is not met, the robot should create a

restoring force. [68] LOPES robot has an equal mode called ”therapist-in-charge”, which is conducted

between the patient-in-charge mode, and that considers the patient’s own walking efforts and the robot

assistance level to select the most appropriate torques to apply to the leg-joints. [57]

In active resistive mode, the robot provides force opposing the movement of the patient. This ex-

ercise has the goal of strengthening patient’s muscles which are already able to move in the full range

of motion. Different motion and amount of resistive force can be implemented to isotonic, isometric or

isokinetic exercises, where the robotic leg provides a specific force, which is opposite to the direction

of the leg. [58] This model is suitable to patients with high recovery, as patients in the advanced reha-

bilitation stage, where the objective of the exercises is to allow the patient to perform activities of daily

living. [68] [58] It can also be called the ”challenge-based” controllers, since these controllers make,

in some ways, the task more difficult or challenging, rather than making the task easier as the other
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controllers do. [61]

In addition to the standard training approaches used in robot-assisted recovery, recently designed

modalities have also been introduced for their unique robotic architectures or special training purposes.

[57] There is the trend of robotic-assisted therapy to develop training styles by incorporating traditional

therapeutic activity forms offered by the trainer. [57] A final field of development of robotic therapy control

algorithms is mobile robots, which don’t contact with patients but instead work alongside them, leading

and facilitating rehabilitation tasks. [61]

2.2.3 Evidence

It is now time to analyse the proven scientific evidence for lower-limb rehabilitation robots.

Beginning with a systematic review by M. Bruni et al [69] concluded that the use of robotic-assisted

therapy enhanced motor control in stroke patients, yet combined with traditional physical therapy, which

is consistent with the finding reached by Mehrholz and Pohl [70] in their 2017 report. Besides, their

research found that the sooner the training began, the better the recovery outcomes, because patients

with a subacute stroke who were equipped with electromechanical devices in conjunction with tradi-

tional physiotherapy care obtained better results (in terms of the the transition to independent walking)

than those receiving the conventional physical therapy. The reason to justify the outcome is that the

intervention in these robotic systems offers the possibility of carrying out more rigorous, repetitive and

task-oriented training that convention-specific over-ground walking trainings would not be feasible. How-

ever, no clear signs of a better robotic treatment than convectional therapy were found in chronic stroke

patients. [69]. Since the review of data from patients who received traditional therapy revealed that

motor skills were enhanced while functional improvements remained low, there was a possibility that

robotic rehabilitation would be a successful post-stroke treatment with the best outcomes in the sub-

acute phase. [69]

The Cochrane systematic review of 36 trials involving 1472 participants found that the greatest ad-

vantages in terms of independence in walking and walking speed can be obtained in individuals who

are not ambulatory at the beginning of the study and in those for whom early post-stroke intervention

is applied, which is particularly important for robotic devices recommended to be used in early stages

of recovery, like the cycling exercise. It has also been noted that there has been no specific descrip-

tion of the frequency, duration and timing of robotic gait training. [70] Several researchers agree that

patients can benefit from external support provided by robotic rehabilitation devices until they recover

on-the-ground walking capacity without further assistance. [71]

The largest amount of functional and neurological rehabilitation following stroke happens in the first

six weeks following stroke. In the light of this, four studies in the sub-acute phase of stroke reported

positive effects of exoskeleton training. Two studies [ [72], [73]] demonstrated enhanced walking inde-
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pendence with repetitive exoskeletal gait training for more constrained stroke participants, consistent

with results using treadmill-based robotics. [35]

A recent systematic review came to the same conclusion as Bruni et al [69] and Mehrholz and

Pohl [70], and included the well-known Lokomat in the tests. Notably, only a few studies to date have

focused on robotic-assisted gait rehabilitation in chronic stroke, showing that higher intensity training in

Lokomat may also improve walking speed in chronic hemiplegia patients with post-stroke. [74] Further-

more, a study by Lo and Triche [75] found that robotic gait training could be more effective in improving

walking speed, distance and knee-extensor strength than conventional therapy. Conventional training

on the other hand was found to improve the gait speed slightly more than the Lokomat rehabilitation pro-

gramme. [76] Interestingly, Domingo and Lam [77] have shown that Lokomat is a valid and reliable tool

for detecting abnormalities and differences in the proprioception of the lower extremities in people with

incomplete SCI, although walking in the Lokomat exoskeleton without guidance changes the temporal

step and neuromuscular deambulation control [78] The results of walking on Lokomat were comparable

to those of Gait Trainer I, showing increased oxygen consumption (not due to speed) and did not influ-

enced the force control. [79] In comparison with traditional gait training [80], [81], however, significant

progress was observed for most of the measured parameters (speed, coordination kinematic support of

the paretic limb).

Only a few studies have reported on the AutoAmbulator robotic-assisted device, and the clinical

benefits of the robot are still under discussion.

LOPES was assessed by Fleerkotte et al [45] who found significant improvements in speed, walking

distance, spatio-temporal measures and hip range of motion for chronic incomplete SCI patients.

Individuals affected by SCI and stroke were treated with GT and the results showed a significant

improvement in walking speed, resistance and in the activity of gastrocnemius muscle in the case of

paresis of central origin, related to plantar flexing of the foot at the ankle joint and bending of the leg at

the knee joint. In this regard, Picelli et al. [82] compared the effects of GT rehabilitation with an equal

amount of conventional physiotherapy in 41 Parkinson Disease (PD) patients and showed significant im-

provements in walking ability, gait speed, cadence and tiredness between robotic gait and conventional

training. [45]

Hesse and colleagues evaluated muscle activation patterns in subacute stroke patients during walk-

ing and stair climbing with and without the G-EO system, showing a comparable muscle activation in

both groups, and thus indicating that the device could represent a new therapeutic opportunity. [45] [83]

Goffedo [84] with twenty-six stroke subjects, aimed at comparing the effects of treadmill-based

Robot-Assisted Gait training, overground Robot-Assisted Gait training and conventional gait training

in stroke subjects through clinical and gait assessments. The results showed a significant improvement

in the clinical outcomes in both robotic and conventional therapy treatments.
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Although the authors were unable to clarify the reason, patients receiving end-effect training were

found to have better outcomes than those submitted to exoskeleton systems. his finding is consistent

with the previous study, which only in post-acute stroke patients demonstrated the efficacy of the end-

effector GT system, although exoskeletons had contested findings in both acute and sub-acute phases.

[69] [85] It was also found that the walking speed at the end of the training period was higher when the

end-effector systems were used compared to the exoskeletal ones. [70] Some reviews on robotic gait

training highlighted better outcomes in patients using end-effectors compared to stationary exoskeletons

for both stroke and SCI; some others found robotic treatment superiority to conventional treatments. All

the reviews outlined limitations with varied treatment intensity, frequency, and a small number of objects

in the study design, population, and assessment analysis. [86]

Robotic technologies have recently been widespread in rehabilitation, and their efficacy has been

demonstrated in clinical studies as indicated above, but there is no evidence available to researchers that

robotic technology is more effective in the training of stroke patients. [84] Studies on robotic rehabilitation

of gait in patients with stroke in the sub-acute phase found contradictory results, with some authors

showing greater improvement in rehabilitation outcomes after robotic training [ [71], [87] ] and others

finding no substantial differences between conventional and robotic care. [86]

Clinical trials have suggested that manual therapy could still be more successful than robotic gait

training in both subacute and chronic phases. [80] It is important to consider how different robotic meth-

ods respond to various recovery problems and patients, as well as to the needs of all users (patients,

therapists and clinicians) in general. [22] As recently reported in Cochrane Systematic Review [70], the

identification of patient characteristics most likely to benefit from robotic therapy is crucial.

Most of the studies are aimed at answering the question ”Are robotic devices effective for all kinds of

post-stroke patients?” [22] However, Morone et al [71] have highlighted the need to change the question

to ”Who are the most effective robotic devices for?” The objective should not be to test the efficacy of all

patients, but to have all the options available to improve their efficacy. [22] The key point for the diffusion

and correct use of new technologies is to identify the group of patients for whom and the rehabilitation

phase during which each type of technology is most beneficial.

2.2.4 Limitations of current technology and future steps

Biomedical engineers should establish a connection between the most recent neurological findings with

the specifics of the robots designed for gait rehabilitation, not only for simulating walking patterns and

mimicking the therapists but also to favouring and widening the possibilities for gait recovery. The role

of the robot should not replace the therapist, but rather provide an instrument in their hands for training

many determinants of a multisystem rehabilitation and improving patients’ outcomes and skills. [22]

This leads to the constant necessity for device and clinical studies improvement to achieve the goal of
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providing effective and optimal rehabilitation robotics.

While robot-aided gait rehabilitation has been described as a promising strategy for rehabilitation,

the practical improvements made during robotic gait training are still limited to date. The efficacy study

of powered exoskeletons and other devices in stroke rehabilitation will further strengthen and lead to

findings for or against its utilization for gait rehabilitation. The patient’s acuity should be considered as

well as his functional presentation, furthermore the extent of benefit has yet remain to be determined

through high quality research. [35] While it is generally accepted that most spontaneous clinical rehabil-

itation appears to occur during the first 3 months after the onset of the stroke, various recovery trends

can then emerge based on several dynamic causes, such procedures and associated results should be

taken into account to help understand where to anticipate healing, prepare the most suitable therapy and

assess the duration of rehabilitation, including the robotic one. [69] In literature reviews, how the robot

environment is conducted concerning the characteristics of the patient is never specified. We should

shift the concept of a common procedure for all patients, and facilitate care personalization, adjusting

the robots to the particular state of the patient. [86]

Robot-assisted gait teaching is approximately as effective as traditional Body-Weight Support Tread-

mill Training (BWSTT) therapy though involving the therapists considerably less physical activity. How-

ever, the goal of robotics in therapy is not merely to simplify existing rehabilitation procedures, but to

optimize recovery. Therefore, Marchal et al [8], suggested two directions for future research.

The first path is to concentrate on conducting randomized controlled clinical trials in order to rig-

orously equate robotic control systems with each other and traditional physiotherapies. The specific

control strategy chosen for the robot-assisted gait training seems to play a key role in the outcomes

of rehabilitation. However, the question of the most successful robot-assisted gait training technique

is still wide open. A second approach is to encourage the use of greater detail in determining which

preference of technological features (robot form, actuation, control algorithm, etc.) is most desirable for

which rehabilitation activities, which kinds of neurological injuries, and at what recovery point. Adjusting

the technical features to the particular pathophysiology of the condition, the rehabilitation stage and the

particular activity being trained may enhance its therapeutic benefit. [8]

Technology may become a means to trigger motor responses previously not feasible with the phys-

iotherapist’s practice alone. [88] If this is valid, we would switch from a concept of repetition or force

generation to a concept of motion awareness. In addition to the usual motor regions, brain areas such

as the insula, the amygdala, and other neuronal pathways linked to the deepest centers are triggered

when a movement is made under robotic control. These centers are crucial in deciding the movement’s

memory and stimulation. [89]

Exoskeleton-driven motions may become not only an action per se, but also a sensation and a mod-

ern motor planning modality that is structurally combined with the reprogramming of the motion control
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experience according to the concepts of motor visualization and action perception. [86] Intention is just

as crucial as action, as psychological states such as motive, inspiration, and determination are consid-

ered to be vital to the progress of recovery. [90] Therefore, shifting from the concept of empowerment

to the concept of action awareness, followed by action intention and then by motivational and emotional

strength is important. The number of repetitions done by a robotic device is an outcome and not the

focus of the procedure. [91]

Virtual Reality (VR) is considered to be the most innovative technology and will play an significant role

in the neuromotor rehabilitation in the next few years (especially when combined with robotic therapy).

In reality, Mirelman et al measured the impact of training on individuals’ gait after stroke with a VR

robot device relative to a robot alone, finding that the former was superior in enhancing their walking

capacity. [92]

Lastly, Dennis R. Louie and Janice J. [35] left us some questions that should be addressed in the

future. They indicated that the effect on stroke recovery according to characteristics of multiple ex-

oskeletons, like the number of joints actuated, level of assistance and coordination of stepping should

be analyzed. They also questioned how much exoskeletal gait practice is appropriate for patients who

have had a stroke in order to regain the most ability to walk. It is important for the future of gait recov-

ery that all of these limitations, questions and suggestions are taken into account in order to keep the

progress in the robotic rehabilitation field.
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Chapter 3

System Implementation and PID

Control

3.1 The Haptic Cycling Trainer

This thesis had the objective of continue to develop the already proposed and built system described in

this Section. The purpose of this novel device, its main characteristics, and how the system will operate

are all outlined here.

As described before in Chapter 2, there is the need to keep developing robotics rehabilitation devices,

in specific, devices that allow for gait recovery of stroke and injury patients. Joining the necessity for

innovative devices with the validated benefits of cycling trainer, a new cycling ergometer concept was

proposed to be used by the patient as shown in Figure 3.1, where the wheelchair can be placed close

to the cycling device allowing to easily adjust the position between the chair and the cycling trainer

according to the patient’s needs. The cycling ergometer comprises a crank arm with dynamically variable

length change with range from 8.5 cm to 24 cm. The aim of this design is for the therapist to be able to

build a personalized 360º route based on their knowledge of muscle activation patterns that governs the

relative muscle activation timings of the patient’s legs and improve motor relearning of gait or similar gait

patterns. During cycling exercises, this system can provide visual feedback, loads, and perturbations.

The proposed system, which is part of the stationary cycle ergometer, has the advantage of being more

accessible than alternative approaches such as treadmills or robotic exoskeletons.

In specific, it was established a few key characteristics for this system as:

• Provide a changing crank length function, accomplished via the crank-arm dynamic length adjust-

ment system;
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Figure 3.1: Schematic of the patient using the cycling ergometer

• Allow the operator to define a desired non-circular trajectory for each pedal, in order to encourage

specified muscular activation patterns or to mimic a particular kinematic output;

• Allow the operator to dynamically change the resistance of the bike fly-wheel of the cycloergometer

within each cycle.

Movement control methods were investigated to determine the most appropriate approach to im-

plement non-circular cycle routes, while the current devices used at clinical rehabilitation facilities were

explored to determine their modes of use, benefits, and limitations. A clinical specialist was consulted

for guidance on current technologies and how gaps could be addressed in potential devices, allowing

better visualization of what the system should tackle. A general layout was sketched and modeled us-

ing CAD software. Hence, with the information gathered, the Haptic Cycling Trainer (Haptic Cycling

Trainer (HaCT)) was proposed.

In Figure 3.2 it is shown how the HaCT is supposed to function, with each crank arm length adjustable

independently during the cycle rotation through motors (as shown in the right side of Figure 3.2) in

contrast with the currently available cycle ergometers with a constant crank arm length allowing only to

perform circular trajectories (as schematized in the left side of Figure 3.2). This mediated asymmetry has

the ability to generate gait-like movement exercises. The actuation mechanism will be combined with

a dynamic braking system, which will consist of a magnetic brake operating on the cycloergometer’s

flywheel to dynamically change the cycling load. Force sensors embedded in the pedals will be used to

control both the actuation and braking mechanisms as well as provide visual feedback for both patient

and therapist.
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Figure 3.2: Representation of the key difference of the HaCT device and the current available cycle ergometer. On
the left is represented the normal cycling functioning and in the right is represented how this system will
operate.

The feature of allowing a fully customized training trajectory is achieved through the “crank-arm

dynamic length adjustment system” (CADLA system). One actuator will be used for each pedal assembly

to dynamically change the length of the crank arm. The rotational power from the pedal will be transferred

to the traditional fly-wheel by each pedal assembly, allowing the difference in length between the two

pedal assemblies, which will translate into an asymmetry in the cycling path between the two legs.

In addition to the CADLA system, the dynamic braking system (DynB system) will be used to modify

the resistance of the fly-wheel of the cycloergometer dynamically inside each cycle. The system will

allow for the creation of custom loading patterns that will create a virtual force-field acting against the

cycling movement. The force-field, given the bilateral connection between the two pedals, will generate

an asymmetry between the two legs. So, responding to this asymmetry, the subject will have to increase

the activation of the different muscle groups during specific parts of the cycling pattern. Both CADLA

and the DynB systems will be controlled using a single controller based on an impedance-control design,

and, both controllers will rely on information from force and position sensors embedded in the pedals

and on position sensors embedded in the assembly of the CADLA system.

The whole HaCT system will be controlled using an easy-to-use software that will allow the user to

select desired patterns of crank-arm and braking asymmetries. A visual feedback interface will also be

implemented and will guide the subjects in producing the desired kinematic and kinetic patterns during

each gait cycle by giving them feedback on their performance. The visual feedback will also inform the

therapist of the patient’s performance.

3.2 Materials

To develop this project it was necessary to have access to the following material:

• MATLAB and Simulink software;
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• LabVIEW software;

3.3 LabVIEW Implementation

A previous model of the system was already developed in Simulink. However, it was chosen to continue

to develop the project in LabVIEW once it was necessary to use the CompactRio controller, LabVIEW na-

tive, as part of the system hardware. Furthermore, the project needs the implementation of a functional

and intuitive user interface, which is more suitable with the LabVIEW features. The modeled system is

the equivalent of the cycling system, which is composed of three other sub-systems as represented in

Figure 3.3. At this step, it was required to implement the system again in LabVIEW. The cycling system

is composed of two main sub-systems: the one that describes the behavior of the motor, the gear, and

the ballscrew components; and the second that describes the ballscrew’s kinematic and dynamic. With

these two components, it is possible to calculate the pedal position (in terms of length of the crank-arm)

and velocity.

Figure 3.3: Illustration of the Cycling System’s blocks that are already implemented in Simulink software. In blue
are presented the inputs and in green is represented the output.

In the Simulink model, several mechanical and material characteristics were calculated using a MAT-

LAB script and later used in the block diagram, as the blue inputs presented in Figure 3.3. In LabVIEW,

these characteristics are no longer automatically calculated, but alternatively, they are given as an input

for the system. In this software, every model has two main files, the front panel which is a simple user

interface, and the block diagram which has the block programming and implementation of the system.

Here, the mechanical and material characteristics were given as input in the front panel.

In each step of implementation, it was necessary to keep track of possible errors or incompatibilities

of both softwares. Each subsystem was first implemented with inputs and outputs checked according

to the similar model in Simulink. In the end, intensive debugging was done to check every calculated

value and to check if they matched with the ones calculated in Simulink. Throughout the implementation,

it was necessary to switch the solvers of both models from automatic step size to a fixed step size of

0.1 seconds, as this was causing significant differences in the calculated data, making comparisons

between the two models impossible.

32



By the end of this part, the blocks presented in Figure 3.3 were correctly implemented in the LabVIEW

environment and the model was ready to be enhanced.

3.4 PID Control

A position controller was implemented in closed loop to regulate the pedal position. The Proportional-

integral-derivative (PID) control consists of the additive action of the proportional (Kp), integral (Ki) and

derivative (Kd) components . It is the most widely used control strategy as the three terms are sufficient

to parameterize a structure that permits successful and efficient control for a variety of processes and

dynamic systems. Moreover, it has an extremely simple structure which makes it easier to work with and

apply intuitive tuning procedures. Adaptation, self-tuning, and gain scheduling can be easily introduced

into PID control which makes this a versatile controller. [93]

For this reason, and being this system yet in a preliminary phase, the PID controller was chosen to

be implemented in the model, as it is represented in the schematic in Figure 3.4.

Figure 3.4: Representation of the block system with the PID position controller. The setpoint (SetPoint (SP)) is the
input of the system and the output is the Process Variable (PV) which is the pedal position.

Next it was time to do the PID tuning, which was first done through the autotuning wizard available on

the software. The goal for the PID controller was to have a rising time fast enough to quickly follow the

possible changes in the setpoint signal and to have a smooth behaviour without ringing and significant

overshoot. Besides, it was necessary for the controller to allow the system to successfully follow signals

with frequencies between 1 Hz and 2 Hz.

3.4.1 PID Autotuning

The LabVIEW software already contains a palette of simple G-language building blocks known as Virtual

Instruments (Virtual Instrument (VI)). The “PID Autotuning VI” was available in the Control and Simula-

tion VIs and functions palette, and it was chosen to be included in the model. The “PID Autotuning VI”
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block implements the basic PID algorithm but also an autotune wizard that performs PID tuning by using

Relay Method, allowing autotuning parameters such as “controller type,” “relay cycles,” “relay amplitude,”

and “control specification” to be specified. The block allows to find values for Proportional Gain (Kc),

Integral Time in Minutes (Ti), and Derivative Time (Td) in return.

Initially, a step signal of 0.2 m of amplitude was defined to find the parameters, based on the range

limitations of the system and previous tests done in the Simulink model which was being used to compare

results. Then, it was attempted to find a controller using the setpoint as a sine wave of 1 Hz, as described

in equation 3.1.

setpoint(t) = 0.1625 + 0.0775 · sin(6.2832 · t) (3.1)

The autotuning parameters were adjusted in accordance with the VI’s findings in order to achieve

the desired response, and after a few tries, a PID controller that was satisfactory in terms of rising time

(reaching the target in 0.6 seconds) and smoothness was discovered.

However, further testing of the controller was needed to inspect if it was capable of following sig-

nals with frequencies ranging from 1 to 2 Hz. Several experiments were planned and carried out in

accordance with the instructions in the Section 3.4.3

3.4.2 Tuning based on The Genetic Algorithm

On the performance results shown in Section 5.1 where the controllers using the Autotuning Wizard were

tested, these controllers revealed to be unsatisfactory in terms of stability, exhibiting some oscillatory

behavior after settling. It was important to look for additional PID parameters that would allow the system

to be stable and have a low error while maintaining a quick settling time. As a result, it was decided to

try different tuning methods in order to find an optimal controller.

The Genetic Algorithm (Genetic Algorithm (GA)) is a well-known algorithm, inspired by the biological

evolution process that mimics the Darwinian theory of survival of fittest in nature. [94] The GA is an

optimization technique developed by Holland in 1962, is successfully used to solve complex problems

in several areas for forecasting, information security, or operation management. [95] [94] Some previous

papers have presented the application of GA for system identification and PID tuning. [96] For these

reasons, it was chosen to tune the PID controller of our model with this new tuning method to find new

parameters that would allow the system to have a better performance. The GA optimization was carried

out in the MATLAB/Simulink environment, using the system’s previous Simulink model in conjunction

with an implemented script.
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3.4.2.A GA Theory

The Genetic Algorithm is a population-based meta-heuristic algorithm, which means it searches a large

number of solutions. By starting at many independent points and searching in parallel for suboptimal

solutions, these algorithms preserve population diversity and prevent solutions being stuck in local op-

tima. [94] [97]

The genetic algorithm starts with no knowledge of the correct solution and relies on responses from

its environment and evolution operators such as reproduction, crossover and mutation to arrive at the

best solution. The algorithm manipulates not just one potential solution to a problem but a collection

of potential solutions, known as population. The potential solutions in the population are called chro-

mosomes. These chromosomes are the encoded representations of all the parameters of the solution.

Each chromosome is compared to other chromosomes in the population and awarded a fitness rating

that indicates how successful this chromosome is. To encode better solutions, the GA uses genetic

operators or evolution operators such as crossover and mutation for the creation of new chromosomes

from the existing ones in the population. [97] This is achieved by either merging the existing ones in the

population or by modifying existing chromosomes. The selection mechanism for parent chromosomes

takes the fitness of the parent into account. This ensures that the better solution will have a higher

chance to procreate and donate their beneficial characteristic to their offspring. The objective function

assigns each individual a corresponding number called its fitness, which is then assessed and a survival

of the fittest strategy is applied. [97] The fitness values of all chromosomes are evaluated by measuring

the objective function in a decoded form after an initial chromosome population is randomly generated.

As a result of the selection process, a group of the best chromosomes is chosen based on each individ-

ual’s fitness. The genetic operators, crossover and mutation, are applied to this “surviving” population

to improve the next generation solution. Crossover is a recombination operator that combines subparts

of two parent chromosomes to produce offspring. This operator extracts common features from differ-

ent chromosomes in order to achieve even better solutions. Mutation is an operator that introduces

variations into the chromosome and occurs occasionally with a small probability. Through the mutation

operator, the search space is explored by looking for better points. This process continues until the

population converges to the global maximum or another stop criterion is reached. [95] The schematic of

the steps taken in a Genetic Algorithm optimization is shown in Figure 3.5.

3.4.2.B GA Optimization Simulations

A research was conducted to find the best controller with the GA optimization. For this analysis, it was

decided to run GA simulations to determine the three PID parameters (Kp, Ki, Kd) for a variety of error

criteria in order to reduce the error value and, at the end, compare these controllers to find the best fit

for our model.
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Figure 3.5: Genetic Algorithm flowchart.

In the design methodology of a PID controller, one of the most important performance criterion is

the difference (error) between the plant output and the setpoint signal. Using this error criterion as the

fitness function of the optimization algorithm results in a small overshoot with a long settling time. In

general, fitness functions are based in error equations. The performance indices chosen in our study

were: Integral of Time multiplied by Squared Error (ITSE) as described in Equation 3.2, Integral of

Absolute Magnitude of the Error (IAE) as in Equation 3.3, Integral of the Square of the Error (ISE)

present in Equation 3.4, Integral of Time multiplied by Absolute Error (ITAE) in Equation 3.5 and Mean

of the Square of the Error (MSE) in Equation 3.6.

ITSE =

∫ T

0

t · e(t)2dt (3.2)

IAE =

∫ T

0

|e(t)| dt (3.3)
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ISE =

∫ T

0

e(t)2dt (3.4)

ITAE =

∫ T

0

t · |e(t)| dt (3.5)

MSE =
1

t

∫ T

0

[e(t)]
2
dt (3.6)

The GA simulations were run in the MATLAB/Simulink environment, by using the MATLAB optimiza-

tion toolbox and the previous Simulink model of our system. A script called ”PID optim” was created to

describe the objective function used by the optimization toolbox. The objective function is the function

which will be minimized according to the algorithm, here the solution is a set of parameters which will

lead to a value. In the written script, the parameters to be optimized were the PID controller parameters

(Kp, Ki and Kd).

This script consisted of a function that received the PID parameters generated by each step of the

GA, applied these in the PID at the Simulink model, run the Simulink for a defined period of time measur-

ing the error and calculating the performance index, which would be the function’s output at the end. To

run the the Simulink model from the MATLAB environment it was necessary to define a simulation time,

a time step and the setpoint signal. In each iteration of the GA, this script would run to each generated

set of parameters to obtain the performance index in order to be evaluated and find convergence to a

minimum. Several simulations were done for each performance index, the settings defined at the MAT-

LAB Optimization tool were as the default apart from the ones shown in Table 3.1. The lower bounds

were chosen having in mind that the values for the PID gains couldn’t be negative. To define the upper

bounds which would be best for the GA simulations for every performance index, first, there were made

several tests to do a preliminary adjustment to limit values that could lead to better results. If the limit for

the upper bounds were too high, the GA would find PID parameters for a slow controller with too much

overshoot, so we start with all parameters with the upper bound of 1012 and according to results being

more closely to the ones desired, the bounds for Kp, Ki and Kd were refined until reached the ones

present in the table (3.1). The population size was chosen to be 50 as it was the recommended by the

toolbox for simulations with less than 5 variables.

Setpoint: Step Signal

It was studied the effect of the setpoint signal when tuning the PID controller to understand which would

lead to better results for the system, this was made by changing the input signal of the system in the

Simulink model being used by the script ”PID optim(x)” which contains the fitness function. The first

setpoint signal studied was a step of 0.2m, as the one used for the autotuning with the LabVIEW wizard.

In this way, it was found some PID parameters, minimizing each performance index, which were then
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Table 3.1: Settings for the GA in the MATLAB Optimization Tool.

Parameter Value
Fitness Function @ PID optim(x)
Number of Variables 3
Lower Bounds [0 0 0]
Upper Bounds [104 50 50]
Population Size 50

tested according to section 3.4.3. In these simulations the time step was defined as 0.0001 seconds,

each simulation in Simulink would run for 1 second and the settings for the MATLAB Optimization Tool

were as described in Table 3.1.

Setpoint: Sine Wave

The second setpoint signal studied was a sine wave defined, once again, in the Simulink model used by

the script with the fitness function. Here, two steps were employed to find the PID parameters that could

conduct the system to behave as required. Firstly, the first simulation was run with a sine wave charac-

terized in Equation 3.1, where the angular frequency was ω=6.2832 rads/s which was approximately 1

Hz.

setpoint(t) = 0.1625 + 0.0775 · sin(6.2832 · t) (3.7)

In the simulations performed the time step was set to 0.0001 seconds, each simulation in Simulink

would run for 10 seconds since it was observed a difficulty for the controllers to converge, and the

settings for the MATLAB Optimization Tool were as described in Table 3.1. The results found with this

approach were then tested according to the methodology described in Section 3.4.3.

After testing the first set of controllers, it was then necessary to try another approach to find a

controller to successfully follow a sine wave with frequencies between 1 and 2 Hz. According to the

results for the controllers performance (results can be seen in Appendix A.1), the best controller was

the one that minimized the MSE. For this reason, the fitness function that minimizes the MSE was

chosen to run simulations to discover PID parameters for different frequencies, starting with 2 Hz and

sequentially decreasing to 1.8 Hz, 1.7 Hz, 1.6 Hz, and 1.5 Hz. After these results, and being 1.5 Hz the

highest frequency with successful results, the simulations to find PID parameters minimizing the other

performance indexes were done using a sine wave with this frequency. The time step was still 0.0001

seconds, and the Simulink simulation time was 10 seconds. The setpoint for this set of simulations is

characterized in Equation 3.8, with an angular frequency of approximately 1.5 Hz which was ω=9.4248

rads/s.

setpoint(t) = 0.1625 + 0.0775 · sin(9.4248 · t) (3.8)
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Once again, these results were tested according to the Performance tests prepared in section 3.4.3.

3.4.2.C PID gains and time constants conversion

As mentioned before, there were two groups of controllers found: one using the LabVIEW software and

the other using the MATLAB/Simulink environment. In MATLAB/Simulink the PID block requires to use

the PID parameters as gains (Kp, Ki and Kd) while the LabVIEW environment uses the PID parameters

in gains (Kc) and time constants (Ti and Td) in minutes. It is necessary to convert these parameters in

order to use them all in the required software, and the relationship between all of these parameters can

be found in Equations 3.9 - 3.11:

Kc = Kp; (3.9)

Ti =
Kp

Ki
· 1
60

(minutes); (3.10)

Td =
Kd

Kp
· 1
60

(minutes); (3.11)

3.4.3 System’s Performance Tests

The controller we are trying to tune is for a post-stroke recovery device that allows the therapist to define

arbitrary trajectories with variable amplitude and speed, therefore it must be effective in following a

cycling frequency of around 60 RPM (1 Hz) and input amplitude shifts as quickly as possible. As a result,

a series of tests were prepared to determine how well the controllers found using the Autotuning Method

(Section 3.4.1) and the ones found using the GA optimization (Section 3.4.2) match our requirements.

3.4.3.A Step-response characteristics

The goal of this test was to study the rise time, settling time, overshoot, peak and peak time of each

controller. Based on these results, it was possible to find which was the fastest in convergence and with

the less overshoot possible. To do this test it was necessary to define the input of the system as a step

with 0.2 m of amplitude and run the LabVIEW implemented model (for the Autotuning results) or run the

Simulink model (for the GA results) for 4 seconds, time chosen to guarantee that all controllers converge

to the setpoint value. The MATLAB environment function ”stepinfo(x,t,y)” was used to obtain the desired

information, where x was a vector with the step-response data from the system, t was the corresponding

time vector and y was the value of the step used in the test, all this information was exported from the

models after the simulation. This test was performed for every controller and the results saved in a table
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Table 3.2: Chosen parameters for the Chirp Signal block used in the frequency performance test.

Parameter Value
Initial Time (s) 0.0
Initial Frequency (Hz) 0.1
Target Time (s) 10.0
Frequency at target time (Hz) 4.0

in order to compare each of them. The results of this test can be seen in Section 5.1.1 and 5.2.1, for the

controllers from the autotuning wizard and for the controllers discovered with the GA respectively.

3.4.3.B Frequency Test

This test consisted of two parts: the one where it was applied a chirp signal at the system’s input and the

other where the setpoint had its frequency manually changed. The aim of this experiment was to check

how controllers performed when they were subjected to a signal with increasing frequency according to

the simulation time (the chirp signal) and a signal whose frequency was increasing sequentially. This

test was carried out in the LabVIEW environment for the PIDs found with the Autotuning Wizard, and in

the Simulink environment for the GA results. The results for this test can be seen in Sections 5.1.2 (for

the LabVIEW results) and 5.2.2 (for the GA results).

Setpoint: Chirp Signal

To perform this test it was necessary to use the ”Chirp Signal” block, which generates a sine wave whose

frequency increases at a linear rate with time. This sine wave was manipulated as Equation 3.7 to fit

in the pedal range with the difference of the frequency that was not a constant but a variable changed

according to the chirp signal block algorithm. The input parameters of this block included the initial

frequency, the target time and frequency at target time. The values specified for the input of this block

are shown in Table 3.2 and Equation 3.12 determines the frequency (in hertz) of the signal at a given

time (in seconds) of the Simulink simulation while Equation 3.13 also determines the frequency (in hertz)

at a given time (seconds) but for the LabVIEW simulations.

f(t) =
ftarget − finitial
ttarget − tinitial

· t+ finitial (3.12)

f(t) =
ftarget − finitial

2 · ttarget
· t+ finitial (3.13)

Setpoint: Sine wave with frequency changed manually

It was observed that the system showed different behaviors when facing continuously changing fre-

quency signals and signals with a constant defined frequency. This test was designed to understand

the system performance when having slower changes in frequency. With the chirp signal test performed
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previously, the frequency is changed each time step which forces the system to adapt constantly without

time to converge. With this test, the frequency is increased in phases and kept for a determined pe-

riod, thereby, it is given enough time for the controller to converge and analyze the system performance

when in the presence of frequency stabled signals and having a truthful analysis of the system when in

presence of higher frequency signals.

This test required the use of the sine wave block with the frequency parameter connected to a sliding

scale, allowing to change the frequency value of the signal every 2 seconds. In this test, the sine wave

started with 1 Hz and the frequency was increased 0.1 Hz each 2 seconds until it reaches 2 Hz. The

test was 22 seconds long, with 10 different parts for each frequency step.

3.4.3.C Delay and RMSE calculation

The test to detect the delay between the process variable and the setpoint and the Root Mean Square

deviation was calculated using the MATLAB environment and employing the functions “finddelay” and

“immse”. The former function returns an integer scalar representing the delay between the two input

signals, in the case of periodic signals, the delay with the smallest absolute value is returned. The latter

function calculates the mean-squared error between the arrays x and y given as input, to obtain the

Root-Mean-Square Error (RMSE) it is done the squared root of the mean-squared error.

For this purpose, all controllers in both LabVIEW and Simulink models were run for 4 seconds with

a sine wave with 1 Hz. The data from the setpoint and the process variables were exported at the end

of the simulation. For the Simulink model, it was only needed to create a workspace variable using the

block “to workspace”. To analyze the data from the LabVIEW model, it was needed to export it to a

Microsoft Excel file and then read it with MATLAB function “xlsread” to extract the needed information.

The information given by the “finndelay” function is in sample units, therefore we have to convert the

results to seconds. The sampling frequency of all signals is the same and it was found to be 1000 Hz,

according to Equation 3.14 and knowing that the time step was defined as 0.001 seconds. By definition,

the sampling frequency is the number of samples per seconds, which makes it possible to determine

the delay time in seconds through Equation 3.15, where Tdelay is the delay between the two signals in

seconds and Nsamples is the number of samples of delay between the two signals.

Fs =
1

dt
⇔ Fs =

1

0.001
⇔ Fs = 1000Hz (3.14)

Tdelay =
Nsamples

1000
(3.15)
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Chapter 4

Pedal Trajectory and GUI

One of the most innovative features of this system, as previously mentioned, is the therapist’s opportunity

to freely design a pedal trajectory based on his experience that will contribute to efficient patient recovery.

This section explains how the trajectory block was implemented in LabVIEW, as well as the algorithm

used to generate the trajectory from the selected points.

4.1 Trajectory Planning

The purpose of trajectory planning is to generate the reference inputs to the motion control system

which ensures that the robot executes the planned trajectories. [98] The path is called to the location

of points in the joint space or operational space, which the robot has to follow to execute the desired

motion. Therefore, a path is just a geometric description of motion, while a trajectory is the combination

of the path and the timing law, which will define velocities and accelerations at each point. [98] In our

project, the system must receive the generated trajectory from the points and timing settings defined by

the therapist.

In the Graphical User Interface (GUI) to be developed, it is asked from the user (therapist) to select

a number of points that will define the path the system will follow. In Figure 4.1, it is shown the IMAQ

display in the project’s front panel where there is a scheme of the pedal. The two red circles, concentric

with the pedal, delimit the pedal’s workspace, which is between 8,5cm (represented by the smaller circle)

and 24cm (represented by the bigger circle). The user is advised to choose between 6 and 15 points

between the circles as this is a reasonable amount of data to create a trajectory. However, this is just a

guideline, and the device will consider fewer or more points. In case the user selects any point outside

the range, the system will show an error pop-up and will ask for the user to select the points inside the

range. The 8 cross points seen in Figure 4.1 are an example of where the points should be placed and

how it looks like when selecting all the initial path points.
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Figure 4.1: LabVIEW IMAQ display with representative image of pedal and its workspace.

Following the selection of path points, the user must enter the simulation time (in seconds) and pedal

rotation frequency (in hertz) into the user interface. Afterwards, these two parameters will be used to

determine the number of cycles to run as well as the theta step (in radians) of the simulation, data

important for the trajectory planning algorithm.

After all the information has been provided, the trajectory planning algorithm will process it and

compute the system’s trajectory.

4.1.1 Trajectory Planning Algorithm

The trajectory planning algorithm is a series of steps necessary to process the data collected in order to

achieve the actual trajectory that will be given to the system. This algorithm is divided into three stages

of data manipulation: data processing, vector manipulation, and trajectory interpolation.

Data Processing

At this stage, the user has selected the points in the pedal workspace, as well as the simulation time and

frequency. The frequency (f) is first converted to angular velocity (ω) based on the relationship between

these two parameters (Equation 4.1). With the angular velocity is then straightforward with Equation 4.2

to obtain the value of the theta step (dθ) having in mind that the time step (dt) is fixed in 0.001 seconds..

ω = 2 · π · f (4.1)

dθ = ω · dt (4.2)
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With the points to define the trajectory already chosen, the next step is to obtain its coordinates, this

is accomplished with resource to some built-in VIs in LabVIEW. First, the pedal image is obtained and

calibrated using the Vision Assistant tool where it is defined the center of the image and the real-world

measurements of the image (in meters). After this, the image is ready to be processed with Region of

Interest (ROI) tool where it will take out the contours in the image (the red crosses). These contours will

then be carried to an implemented VI which will use this information to extract the coordinates of each

red cross and put it in an XY cluster. While the coordinates of the selected points are being extracted,

there is a verification process to check if the cross is placed correctly in the pedal workspace. As

said previously, these points must be selected within the two red circles representing the minimum and

maximum crack arm length, the verification is done by calculating the distance between the point and

the circumference center and verifying if it is a value between the smaller and the bigger circumference

radius. In case a point is found to be outside the allowed range, an error message is displayed to the

user with the caption “Selection out of range” and the simulation stops automatically. At the end of this

step, we have all the XY coordinates (in pixels) in a cluster which will be used in the following steps.

Coordinates Manipulation

In this phase, a few manipulations are done to the XY cluster created in the previous step. First, there

is a conversion from the units of the coordinates (in pixels) to real-world units (in meters), this step is

done applying the “IMAQ Convert Pixel to Real World” VI which uses the previous calibrated image

and the array with pixel coordinates to transform these into a Real World coordinates with the desired

dimension. Then, the real world coordinates are converted from Cartesian (X,Y) to polar coordinates

(L,θ), according to Equations 4.3 and 4.4. At the end of this step, we have an array containing the red

cross coordinates in L (meters) and Thetas (rads). This array is then separated in two.

L =
√
x2 + y2 (m) (4.3)

θ =

{
arctan( yx ), y > 0

arctan( yx ) + 2π, y < 0
(rads) (4.4)

At the end of the L array, it is added the value of the first element in order to duplicate the first

point selected, this will later force the trajectory interpolation to do a complete circle by continuing to

interpolate the values up to the first point selected. This procedure also happens for the Theta array, but

the angle value added at the end is the value of the first element plus 2 pi to prevent the angle values to

have a gap between the first point and the last. Another VI was implemented to analyze the Theta array

and get the minimum angle found (which will correspond to the first point selected) and the maximum

angle found (corresponding to the last added element) as this information will be necessary for the next

steps.
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Trajectory Interpolation

It’s at this step that an important array is created, the ntheta array which contains all the theta values that

we wish to interpolate for the complete trajectory over the simulation time. This VI uses the simulation

time (T) defined by the user to create a time array from 0 to T with the defined time steps. Another

array is created using the minimum and maximum theta found in the Theta array and with the steps

according to the previously calculated dθ. After this, the ratio between the sizes of the time array and

the theta array is computed, to know how many theta cycles the time array contains. This ratio will give

the “number of cycles” information to the user. With this information, a new theta array is created (called

ntheta) which is the same size as the time array and with the initial theta array repeated as necessary

to fill in the simulation time (T). The ntheta array must be used in the interpolation block to force the

interpolation at the points contained in the array. Therefore, it will be given as input together with the L

and the Theta array for the interpolation block.

To proceed with the trajectory interpolation the LabVIEW block “Interpolate 1D VI” was used, which

performed one-dimensional interpolation using one of the available interpolation methods and based on

the lookup table defined by the X and Y (being the L and Theta vectors in this case). The selected

method was the cubic spline interpolation method, which proved to be the one leading to a more fit

trajectory to the selected points due to the method of fitting low-degree polynomials to small subsets

of data instead of a high-degree polynomial fitting all points at once. In contrast to piecewise linear

interpolation, cubic spline interpolation is piecewise smooth, with continuous slope and curvature at

the joint points. Furthermore, the spline interpolation prevents Runge’s phenomenon, when oscillation

occurs between points as had happened with other interpolation methods. [99] [100]

The interpolation block returns as output two arrays: one with the thetas at each time step of the sim-

ulation and the other with the corresponding L values. The representation of the interpolated trajectory

can be seen in Figure 4.2, where the selected points present in Figure 4.1 can also be seen in blue.

At the end of this step, we have the complete interpolated trajectory that will be performed across the

simulation time (T) according to the frequency (f) defined by the user. The L interpolated array is now

ready to be transferred to the system’s block to perform the simulation.
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Figure 4.2: Project’s front panel display with the interpolated trajectory resulting from the selected points present in
Figure 4.1

4.1.2 Predefined Trajectories

The previous section described how the trajectory is created from a set of selected points by the user,

nonetheless, there is still the possibility to have predefined trajectories that can be selected for the

system to follow. Three predefined trajectories were implemented: a circular shape (Figure 4.3.a), a

butterfly similar shape (Figure 4.3.b), and the foot gait pattern (Figure 4.3.c). In case the user chooses

to use an already defined trajectory, it is only needed to select which one is the more appropriate and set

the simulation time and the system will then perform the trajectory. The foot gait pattern trajectory was

created based on the pattern described in Figure 4.4 found in [18], where it is emphasized the key events

of the regular foot trajectory within the gait cycle. There were selected 20 points to define the trajectory

which had to be placed within the pedal range limits, some data points needed to be relocated from the

ideal location due to this limitation and therefore assigning a slightly different shape when comparing

with the ideal trajectory (such as the one shown in Figure 4.4).

These predefined trajectories were initially created as the manual method described previously, then

the interpolated L array is saved and given to the system when each predefined trajectory is selected at

the front panel.
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Figure 4.3: XY graph representing the three pre-defined trajectories implemented. a) Circular trajectory, b) Butterfly
shape, c) Foot gait pattern.

Figure 4.4: Gait pattern trajectory showing the position of the ankle in the saggital plane and representing the key
events in the regular gait pattern. Adapted from [18].

4.1.3 PID Selection method

The results of Chapter 5 did not conclude with a preferred PID controller, since all controllers had to be

further tested with an actual trajectory rather than simple sinusoidal waves.

Now, with the trajectory algorithm implemented and a few trajectories created, we are in the position

to continue to test the previous controllers. By the end of Chapter 5, it was concluded that the group

of controllers with the best general performance were the ones found with the GA optimization and

tuned with a step signal, these are the ones found with the Simulink model and expressed in gains

and not time constants as the parameters used in LabVIEW. First, the gain parameters (Kp, Kd, Ki)

were converted to time parameters (Kc, Ti, Td), according to equations present in Section 3.4.2.C, and

applied in the LabVIEW software, however, it was noticed that there was a difference when comparing

the controllers’ response in the LabVIEW model to the Simulink model. This performance difference

was due to the windup functionality already integrated into the PID block from LabVIEW, and that was

by default disabled in Simulink. To correct this error, the built-in LabVIEW PID block was replaced by

a set of blocks that represents the transfer function of the PID controller, which can be seen in Figure

4.5, and had as input the gains Kp, Kd and Ki. With this alternative solution, the controllers had the
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same response as when they were tested in Simulink, and it was no longer needed to convert the gain

parameters.

Figure 4.5: New implementation for the PID to correct the windup problem.

To test the controllers it was chosen to have the foot gait pattern trajectory as the setpoint, one

of the predefined implemented trajectories, considering that it is the simplest standard exercise the

system must be able to follow when training gait recovery. To compare the controllers’ performance it

was calculated the delay and RMSE values according to the methodology described in Section 3.4.3.C,

where the simulation was held for 4 seconds, enough time for the system to perform 2 cycles of the

trajectory. Section 6.1 presents and discusses these results.

4.1.4 Trajectory Tracking Evaluation Parameters

To assess the quality of the system performance when using trajectories, the RMSE and the delay be-

tween the trajectory and the system response were calculated using the same method as described in

Section 3.4.3.C. Additionally, the cross-correlation between the two signals was computed using Lab-

VIEW box “TSA Cross-Correlation”, receiving the Setpoint and the Process Variable as input, calculates

a biased weighting cross-correlation and returns the cross-correlation vector and the correlogram, which

is a graph of the cross-correlation values against the lag. Section 6.2 shows the outcomes of this pro-

cedure.

4.2 Graphical User Interface

To improve the user experience throughout the sessions, a Graphical User Interface (GUI) was created

with a set of features to allow the user to correctly choose which trajectory planning method they wish

to use (manually selected trajectory or use of a pre-defined trajectory) as well as providing necessary
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feedback information to the user, such as the system tracking trajectory in real time or visualizing the

pedal movement.

4.2.1 GUI description

The user interface in this project consists of a panel with three tabs that the user can choose from

depending on the simulation phase. In each tab, the user can either provide information for the device

to conduct the simulation or obtain the simulation’s results.

First tab - Settings

The first tab is the Settings tab (Figure 4.6, element 1) which is the first step of the simulation, where

the user will provide all the information needed for the simulation, such as the trajectory data points (to

interpolate the pedal trajectory), the desired simulation time and pedal frequency. Inside this tab, there

is a box containing two tabs: the tab to select the manual trajectory definition (Figure 4.6, element a)

and the tab to select the pre-defined trajectories (Figure 4.6, element b). The user should decide which

method better fit his necessities. In the manual trajectory definition (Figure 4.6), on the left side there is

a graphical box containing the pedal image and its limits (Figure 4.6, element d) and is at this box where

the user will define the data points later used for the trajectory interpolation. The user is requested to

select from 6 to 15 points at this box, which is a chosen number of elements that are enough to create a

trajectory, however in case the user needs to select more points the system will accept it. Then, the user

must select the simulation time and the frequency desired (Figure 4.6, elements f and g, respectively).

If the user decides the use the pre-defined trajectories (Figure 4.7), he must select the corresponding

tab and choose between the 3 available predefined trajectories (Figure 4.7, element h) and select the

desired simulation time (element f of Figure 4.7). The frequency of all pre-defined trajectories is set to

0.5 Hz, and for this reason, the user is not required to select any frequency.

After all the settings defined, the user can press the built-in Run button of the LabVIEW software

and check the interpolated trajectory in the right box present in both manual (Figure 4.6, element e) or

predefined trajectories tab (Figure 4.6, element i), this box allows the user to check if the interpolation

has the desired characteristics and to validate the trajectory. If the trajectory is defective in some way,

the user should press the Stop button (Figure 4.6 or 4.7, element c) and then adjust the data points

selected (by dragging the red crosses) or defining a new set of data points. Otherwise, the user can

then move to the second tab (Figure 4.8).
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Figure 4.6: Project’s Graphical User Interface, first tab with the settings for the simulations and the Manual trajectory
tab.

Second tab - Results

The second tab (Figure 4.8) has the Results in real-time. At the upper part of the tab, there is the

Stop button (Figure 4.8, element j) and 4 numeric boxes representing the pedal velocity in RPM (Figure

4.8, element k), the number of total cycles the pedal will perform within the simulation time (Figure 4.8,

element l), the total distance traveled by the patient (in meters) at the end of the simulation (Figure 4.8,

element m) and the current simulation time (Figure 4.8, element n).

The pedal velocity (RPM) displayed in the GUI is calculated through the frequency defined by the

user in the first tab and using the following Equation 4.5.

RPM = f · 60 (4.5)

The number of total cycles is determined during the trajectory definition algorithm, where it is done a

calculation of the total time steps in the simulation and the total angle steps are needed to perform the

defined trajectory. As both values are not in the same dimension, there is the need to create an array of

angle steps with the same size as the time steps for the full simulation time, and for that reason, the angle

steps from the trajectory are replicated creating the number of cycles performed within the simulation.

To calculate the distance traveled by the patient throughout the simulation, a sub-VI receiving as input

the array with the interpolated x coordinates and another with the y coordinates was created. It was

then calculated the distance between two consecutive points using Equations 4.6 - 4.8 and, in the end,

a summation of all the distances calculated (Di) to obtain the total distance L (Equation 4.9, where i is

the index from 1 to N number of total points in both x and y arrays).
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Figure 4.7: Project’s Graphical User Interface, first tab with the Settings for the simulations and the predefined
trajectories tab.

dx = (xi+1 − xi)2 (4.6)

dy = (yi+1 − yi)2 (4.7)

Di =
√
dx+ dy (4.8)

L =

N∑
i=1

Di (4.9)

At the bottom, there are two graphical displays, the one on the left shows the pedal length versus

time (Figure 4.8, element o) where can be seen the desired pedal length (calculated from the trajectory

interpolation) in red and the system’s response in blue. On the right side, there is an XY graph (Figure

4.8, element p) displaying the interpolated trajectory in Cartesian coordinates in red, the data points

selected by the user at the settings part in dark blue, and in light blue, it is represented a vector which

moves throughout the simulation portraying the pedal movement. Both graphics are updated in each

simulation time step, giving the user real-time tracking results. All of this information allows the user

to track the system’s response, to compare and evaluate it against the desired settings, and to obtain

useful information to the therapy implemented.

Third tab - Verification

As this is an ongoing project that will be developed further, the third tab “Verification Parameters” (Figure
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Figure 4.8: Project’s Graphical User Interface, second tab with the simulation Results.

4.9) is listed for the engineers working with the system since it returns details unrelated to the functional

part of the system (unlike the results tab where it is given information about the implemented therapy and

it is especially useful for the practitioner and patient). At this tab there are 4 tabs for different parts of the

system and simulation phases containing: inputs given to the system such as mechanical characteristics

as motor and pedal constants (present in Figure 4.9, element q); calculated parameters in the trajectory

interpolation algorithm, several position arrays in cartesian or polar coordinates (Figure 4.9, element r);

system variables calculated during the simulation, e.g. loads, pedal inertia, currents and other variables

(Figure 4.9, element s); system’s blocks outputs as for example pedal position (Figure 4.9, element t).

The easy access to these variables is important for the continuing developing of this software as in case

there is a fault in the debugging process, the worker is able to promptly check the variable values to

identify the error and to correct it.
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Figure 4.9: Project’s Graphical User Interface, third tab with the verification parameters.
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Chapter 5

PID Control Study Results

5.1 LabVIEW Autotuning results

The parameters in Table 5.1 were discovered after several trials with the LabVIEW Autotuning Wizard

to find a suitable PID controller. The parameters found were only the Proportional Gain and the Integral

Time, indicating that the controllers discovered were PI controllers.

Table 5.1: Best PID parameters found with Autotuning Wizard.

Controller Setpoint PID Parameters Value

1 Step
Proportional Gain (Kc) 6.733267·1011
Integral Time (Ti, min) 4.704400·10−2

Derivative Time (Td, min) 0

2 Sine Wave
Proportional Gain (Kc) 2.312258·109
Integral Time (Ti, min) 2.761470·10−2

Derivative Time (Td, min) 0

The step response for controller 1 is shown in Figure 5.1. This controller has a good rising time

and converges to the setpoint value in 0.5 seconds; however, there is some overshoot and the signal

appears to be slightly oscillatory after convergence.
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Figure 5.1: System response of controller 1 to a step of 0.2m. It can be seen the step signal (SP) in red and, in
blue, the system response (PV)

Figure 5.2: System response (PV, blue line) of controller 2 to the sine wave (SP, red line) with 1 Hz used as a
setpoint for the Autotuning Wizard.
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Figure 5.3: System Response of controller 2 for a step of 0.2m, where the Y axis represent the signal amplitude (in
meters) and the X axis the time of simulation (in seconds). The setpoint signal (SP) is represented by
the red line and the system response (PV) in a blue line

The results for controller 2, which was tuned for a sine wave, are less satisfying in terms of rising

time, with convergence to the setpoint taking 0.6 seconds (Figure 5.2). When using this controller with a

step signal (Figure 5.3) the device takes about 0.5 seconds to reach the setpoint. After convergence, the

signal appears to be mildly oscillatory in both responses (Figure 5.2 and Figure 5.3), with some ringing

behavior as shown by controller 1.

These findings are analyzed in depth in Section 5.1.1, according to the step-response characteristics.

5.1.1 Step-response characteristics

This test was performed according to the methodology described in Section 3.4.3. The results obtained

for the step response characteristics of controllers 1 and 2 can be found in Table 5.2, with the best results

highlighted in blue and the worst in red.

Let us recall that having a controller that can quickly follow changes in the setpoint signal is crucial

for our system; in this case, and based on the results shown in Table 5.2, controller 2 is the best match

between the two. This controller has a faster rise time and a shorter settling time. The overshoot of

9.35 %, hitting a peak of 0.2187 m, is one of this controller’s drawbacks. However, after settling, both

controllers display oscillatory behavior, which is undesirable.

56



Table 5.2: Step Response characteristics of controllers found with the Autotuning wizard from LabVIEW.

Controller 1 2

Rise Time (s) 0.2199 0.2020
Settling Time (s) 0.4430 0.4165
Overshoot (%) 7.4000 9.3500
Peak (m) 0.2148 0.2187
Peak Time (s) 0.3500 0.3310

5.1.2 Frequency Test

The results of the Frequency performance tests are reported in the subsections below. For controllers 1

and 2, the Chirp Signal test and the manually defined frequency test were performed according to the

instructions in Section 3.4.3.

Setpoint: Chirp Signal

Equation 5.1 allows us to determine at which frequency the device no longer can reach the setpoint

signal, based on Equation 3.13 and the parameters specified for the Chirp signal listed in Table 3.2.

The chirp signal test for controller 1 is shown in Figure 5.4, where it can be seen that both signals (the

setpoint and the process variable) are no longer superimposed as of second 4.9 of simulation.

Figure 5.4: Chirp Signal Test for controller 1

f(t) =
4− 0.1

2 · 10
· t+ 0.1 (5.1)
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Table 5.3: Controller 1 and 2 performance in the Chirp signal test.

Controller Time Limit (s) Frequency Limit (Hz)

1 4.90 1.06
2 4.90 1.06

The test for controller 2 was conducted in the same manner as for controller 1, and due to the high

similarity of results, it is shown in Appendix A.2. Table 5.3 contains both the results for the maximum

time controllers could obey the chirp signal and the corresponding frequency. In this test, both controllers

performed similarly, demonstrating that they can follow a signal with increasing frequency up to 1.06 Hz,

which is within the frequency range the device is required to follow.

Setpoint: Sine wave with frequency changed manually

Images 5.5 and 5.6, display the results obtained for this test with controllers 1 and 2, respectively. Ten

vertical red lines can be seen in both Images, indicating shifts in the setpoint frequency every 2 seconds

of simulation; the frequency for each region is also shown in the figure.

Figure 5.5: Manual Chirp Signal Test for controller 1

When looking at Figure 5.5, it is noticeable that, for frequencies in the range of 1.0 to 1.4 Hz, the

model takes a few milliseconds to converge to the SP signal, about 0.40 seconds, corresponding to the

settling time found in the step signal test. The signal converges completely after these first milliseconds,

maintaining the satisfactory behavior until the next frequency is set at the SP signal. Due to the similarity

of both the System’s and SP signal at the time of the frequency shift, the signal converges much quicker
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at 1.5 Hz; although, when adjusting the SP frequency in the other parts of the test, there is a spike in

the SP signal, which takes the system some time to settle again. Between 1.6 and 2 Hz, the device

appears to have difficulty following the test signal. First, due to a lack of time to settle, it is unable to fully

converge to the SP signal, resulting in major overshoot at the sine wave peaks; then, as the frequency

rises, it takes longer to settle and starts to have a phase displacement; and finally, as the frequency

continues to increase, it takes longer to settle and begins to have a phase displacement. At the time the

SP signal reaches the 2 Hz frequency, the system response (PV) is not capable of converging within 2

seconds.

In Figure 5.6, the system response of controller 2 to this test is shown, which is significantly similar

to the response of controller 1.

Figure 5.6: Manual Chirp Signal Test for controller 2

In summary, these findings show that both controllers can obey signals with a frequency of up to 1.5

Hz, with enough time to converge and no phase displacement or overshoot. After this frequency, both

controllers show difficulties in converging with the SP signal, presenting overshoot and phase displace-

ment.

5.1.3 Delay and RMSE results

The delay test and RMSE calculation were performed as directed in Section 3.4.3.C, and the results

for the two controllers are presented in Table 5.4. Based on these findings, it can be concluded that

controller 2 has a better match to the sine wave, as shown by a lower delay value and a lower root mean
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Table 5.4: Delay and RMSE values found for controllers 1 and 2.

Controller 1 2

Delay (samples) 31 30
Delay (seconds) 3.1·10−2 3.00·10−2

RMSE 3.52·10−2 3.50·10−2

squared error. Despite the fact that it has better performance in this test, the difference between this

controller and the first is minor. The time delays of both controllers are in the range of 30 milliseconds.

Assuming a therapy session at 1 Hz, a delay of 30 ms would represent a trajectory shift, in which the

patient would place his foot with an inaccuracy of 10 degrees. For this reason, the time delay of both

controllers is considered to be inadequate.
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5.2 Genetic Algorithm results

According to each fitness function defined in Section 3.4.2.B, the GA found several controllers; all of the

controllers found, as well as their characteristics, are listed in Table 5.5.

Table 5.5: Best PID parameters found with the Genetic Algorithm.

Setpoint Controller Minimization Function Fitness Value Proportional Gain (Kp) Integral Gain (Ki) Derivative Gain (Kd)

Step

3 ITSE 2.6741·10−4 1.6893·103 5.0293 4.5115
4 IAE 2.6741·10−4 1.2088·103 10.7923 19.7306
5 ISE 3.9610·10−3 1.3167·103 38.6458 44.7140
6 ITAE 2.5430·10−3 1.1880·103 20.9267 38.8858
7 MSE 3.9573·10−6 1.4609·103 18.4192 6.7847

Sine Wave

8 ITSE 7.8753·10−4 4.3890·103 16.1422 190.4731
9 IAE 5.4530·10−2 5.6924·103 13.7644 198.9054
10 ISE 5.6610·10−3 2.3484·103 3.8705 167.4149
11 ITAE 2.7150·10−2 6.5481·103 22.7569 14.8852
12 MSE 5.6619·10−7 2.2469·103 32.5615 191.7545

The GA optimization in MATLAB was used to find controllers 3 to 12 (enumeration according to Table

5.5) with two separate setpoints. Controllers 3–7 were optimized with a step signal of 0.2 m, while

controllers 8–12 were optimized with a sine wave according to Equation 3.8. Closer inspection of Table

5.5 shows the fitness values of all controllers discovered with the sine wave are greater than those

discovered with the step, indicating a lower fitness quality to the setpoint. Comparing the PID gains from

both groups of controllers, the proportional and integral gains are all of the same magnitudes; however,

the derivative gains discovered for the sine wave setpoint were generally larger, demonstrating a greater

role of the PID’s derivative component.

Appendix A.3 shows the step response graphs for all controllers. These findings are analyzed in

detail in Section 5.2.1, based on the step-response characteristics.

5.2.1 Step-response characteristics

Table 5.6 presents the results of the GA optimization for the step response characteristics of all con-

trollers discovered.

All of the controllers have the same rise time of 0.9161 seconds, with controller 6 settling the fastest

Table 5.6: Step response characteristics of controllers found with the GA algorithm. In blue are marked the best
results found for each step characteristics and in red are the worst results.

Controller 3 4 5 6 7 8 9 10 11 12

Rise Time (s) 0.1961 0.1961 0.1961 0.1961 0.1961 0.1961 0.1961 0.1961 0.1961 0.1961
Settling Time (s) 0.3308 0.3026 0.3176 0.3009 0.3241 0.7768 2.3808 0.3951 NaN 0.3926
Overshoot (%) 4.7836 2.0762 3.1477 2.0296 3.8596 8.4860 9.2486 6.0658 9.8118 6.0261
Peak (m) 0.2096 0.2042 0.2063 0.2041 0.2077 0.2170 0.2185 0.2121 0.2196 0.2121
Peak Time (s) 0.3050 0.2980 0.3010 0.2980 0.3030 0.3140 0.3160 0.3080 0.3170 0.3080
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and controller 11 never settling. It was then checked that controller 11 could not converge with the step

signal after longer simulation times. Controller 6 had the least amount of overshoot, while controller

11 had the most. Controller 6 was the best controller in terms of reached peak and peak time, while

controller 11 was the worst once more. It’s interesting that the controllers discovered with ITAE as

the minimization function produced both better and worse outcomes. Even though controller 11 had

unsatisfactory results with the step response characteristics, when using it to follow a sinusoidal wave

this controller proved to be equally effective as the other controllers, implying that we can continue to

take it into consideration in the remaining performance tests.

5.2.2 Frequency Test

The results of the Frequency test are presented in the subsections that follow. For controllers 3 to

12, both the Chirp signal test and the manually defined frequency test were performed in the Simulink

environment. These experiments were conducted out according to the procedures outlined in Section

3.4.3.

Setpoint: Chirp Signal

Considering the large number of controllers tested and the similarity of the results, only the graph for

the first controller tested (controller 3) is shown in Figure 5.7, with the rest of the results being found

in Appendix A.4. Equation 5.2 was used to determine the limit frequencies, which was derived from

Equation 3.12 and the data from Table 3.2.

Figure 5.7: Chirp Signal Test for controller 3.

f(t) =
4− 0.1

10
· t+ 0.1 (5.2)
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Table 5.7: Results for the Chirp signal test for each controller found with the GA.

Controller Limit Time (s) Frequency Limit (Hz)

3 2.52 1.08
4 2.78 1.18
5 2.75 1.17
6 2.75 1.17
7 2.75 1.17
8 2.50 1.08
9 2.50 1.07
10 2.51 1.07
11 2.40 1.03
12 2.51 1.07

The results are summarized in Table 5.7, where the limit time is the time when the system no longer

aligns with the setpoint and the frequency limit is the frequency determined using Equation 5.2.

Table 5.7 shows that all controllers had similar results for the maximum time they could follow the

SP signal, implying that all controllers have similar maximum frequency limits. In general, all of the

controllers in this section were capable of tracking sine wave signals with a frequency of about 1 Hz.

Controllers 4–7 performed slightly better than the others, being able to follow signals up to 1.18 Hz while

the others could only follow signals at lower frequencies of about 1.07 Hz. The ability of controller 11 to

imitate the SP signal was the worst, beginning to be out of phase at 1.03 Hz.

Observing the results of these controllers (shown in Appendix A.4), it is important to note that, al-

though their limit frequencies are quite close, their answer in the first few seconds of simulation differs

significantly. Controllers 3 to 7 were slightly faster at converging to the chirp signal, but they had a

small phase shift during the period they were still able to follow it. When these controllers reached their

maximum, they displayed some overshoot at first, followed by a progressive phase displacement.

Surprisingly, the second group of controllers (tuned with a sine wave) behaved differently in the first

few seconds of simulation, taking longer to converge to the SP signal and presenting ringing. Controller

8 took 0.5 seconds to converge and ringing, while controllers 9 and 11 experienced this behavior for

around 1.5 seconds. Controllers 10 and 12 settled promptly and had residual ringing. In some way, this

study is quite revealing, demonstrating that when following low-frequency signals, the second group of

controllers performs significantly worse than the first, even considering that they were tuned with a sine

wave as a setpoint.

Setpoint: Sine wave with frequency changed manually

The findings for this test are presented in Appendix A.5 due to the large number of controllers. When the

graphs with the test results were analyzed, it was noticed that all controllers had a satisfactory settling

time between 1 Hz and 1.5 Hz, taking around 0.5 seconds to reach the SP signal.

Controller 3 effectively followed the sine wave up to a frequency of 1.8 Hz, after which the device
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Table 5.8: Delay and RMSE results for all controllers found with GA optimization

Controller 3 4 5 6 7 8 9 10 11 12

Delay (samples) 37 42 40 42 39 28 27 32 27 32
Delay (seconds) 3.7·10−2 4.2·10−2 4.0·10−2 4.2·10−2 3.9·10−2 2.8·10−2 2.7·10−2 3.2·10−2 2.7·10−2 3.2·10−2

RMSE 3.40·10−2 3.43·10−2 3.42·10−2 3.43·10−2 3.41·10−2 3.39·10−2 3.39·10−2 3.38·10−2 3.41·10−2 3.38·10−2

needed more time to settle (about 1 second) and then presented a phase displacement. The behavior

of controllers 4-7 was similar, but with a smaller phase displacement after the 1.8 Hz signal. A closer

look at the responses of controllers 8-12 reveals a different behavior. Controllers 8 and 10 had some

difficulty settling to a 1.6 Hz wave, taking about 1 second to converge, then at 1.7 Hz it took 1.75 seconds

to converge, resulting in a large overshoot at the peaks, and at higher frequencies the system was no

longer able to settle, resulting in a phase displacement and peaks overshoot. Controller 9 also had

difficulty settling with the 1.6 Hz wave, requiring approximately 1 second to converge and 2 seconds at

1.7 Hz, during which it displayed the same behavior as the others, showing phase displacement and

overshoot. Controller 11 required 1 second to settle at the 1.6 Hz sine wave and then presented phase

displacement and overshoot at peaks while failing to converge to the SP signal. Controller 12 had some

difficulty at 1.7 Hz, needing 1 second to settle, but it was no longer able to converge, exhibiting phase

displacement and overshoot at the wave peaks.

5.2.3 Delay and RMSE results

Table 5.8 contains the results of the delay and RMSE calculations for all GA optimized PIDs. When

comparing the delay results, there is a significant difference between the controllers tuned with the step

(controllers 3-7) and the ones tuned with the sine wave (controllers 8-12), with the former having higher

delays ranging from 37 to 42 milliseconds from the setpoint and the latter having delays ranging from 27

to 32 milliseconds. Even though the second group of controllers outperforms the first in terms of delay

analysis, it is essential to note that even a 20-millisecond delay with the setpoint is significant.

According to the RMSE results, the second group of controllers (controllers 8-12) has better perfor-

mance than the first group, which can be explained by the fact that these controllers were configured

to effectively follow a sine wave and hence are more capable of doing so and with better performance

results in experiments using sine waves as the setpoint.

5.3 Controllers performance discussion and conclusions

Following extensive testing of all 12 controllers discovered, it is necessary to discuss the findings and

highlight some conclusions. Beginning with the step-response test and providing a summary of all

controllers performance, the results are presented in Tables 5.2 and 5.6. The best controller using the
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first methodology, according to data from Table 5.2, had a rise time of 0.2020 seconds, took about

0.4 seconds to settle and showed an overshoot of 9.35%. Whilst, according to results from Table 5.6,

the best controller took 0.1961 seconds of rise time, around 0.3 seconds to settle and overshoot of

2.0296%. These findings suggest that controllers discovered through GA optimization outperformed

those discovered through the Autotuning wizard in LabVIEW software. These controllers were found

to be better at reaching the setpoint signal, with less overshoot and ringing. When comparing the

controllers that were tuned with a step signal (controllers 1, 3-7) against the ones tuned with a sine wave

(controllers 2, 8-12), for this test, the former group had better results showing a lower settling time and

reduced overshoot. From all controllers, the one presenting better results with a step as a setpoint is

controller 6 found with the GA optimization using a step signal as the setpoint and minimizing the ITAE

value.

The frequency test was divided into two parts: a chirp signal as the setpoint, where it was determined

how far these controllers could follow the SP at a constantly changing frequency; and the second test,

which had the goal of evaluating all controllers performance with constant frequency waves at various

frequency values, where it was determined when the controllers stopped being able to quickly follow the

SP. The results for the first test are shown in Tables 5.3 and 5.7. In summary, these results show that

there is no significant difference between all controllers, the two controllers found with the Autotuning

method were able to follow the chirp signal until 1.06 Hz of frequency. Closer inspection of Table 5.7

shows that controllers were able to follow the signal until 1.08 Hz - 1.18 Hz, with controllers 4-7 present-

ing a slightly better performance. Surprisingly these controllers are the ones found with the step as the

setpoint signal. From all controllers found, the one with the better outcome for this test is controller 4

found with the GA optimization with a step signal as the setpoint and minimizing the IAE index.

The results of the second test in this section are more qualitative, so a summary table (Table 5.9)

was created to allow for a better comparison of all controllers. The only difference between controllers

1 and 2 is the amount of time required to settle at 1.6 Hz, with the first requiring more time, and for

higher frequencies, both controllers behave the same. Surprisingly both controllers were able to settle

at 1.8 Hz presenting some overshoot at the peaks, this can be explained by the combination of a few

conditions: the system did not converge for the 1.7 Hz but it was very close to converging meaning that

it did not have enough time to converge; Comparing with the first group (controllers 1 and 2) at 1.6 Hz,

controller 3-7 and controller 12 had a better settling time, presenting any difficulty in following the wave.

Controllers 3-7 had a better performance, in comparison with the others, for higher frequencies: for 1.7

Hz they settle in 0.5 seconds, for 1.8 they settled in 1 second, and for 1.9 Hz and 2 Hz controller 3

was not able to settle while controller 4-7 were able to settle in less than 1 second presenting only a

residual phase displacement. It is interesting how controllers 4-7 outperformed the others in this survey,

considering that they were tuned with a step signal.
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Since some controllers showed a displacement with the setpoint, it was important to analyze this

behavior, and thus the delay and RMSE between the SP and the PV were measured. This test was run

for 4 seconds with a sine wave at 1 Hz, and the results are shown in Tables 5.4 and 5.8. Controllers

1 and 2 presented a delay of 31 milliseconds and 30 milliseconds, respectively, regarding the sine

wave while the GA found controllers presented delays ranging from 27 to 42 milliseconds. Comparing

the ones tuned with the step signal and those tuned with the sine wave, the first group performed the

worst. Controllers 8-12, which were tuned with a sine wave, performed better and had lower delays,

as predicted. Since these controllers were tuned with the sine wave, it is presumed that they will have

better outcomes when following a signal with the same characteristics. Regarding the RMSE values, the

controllers found with the Autotuning method had the worse result and consequently provided the worse

fitting to the SP. Once again, controllers 8-12 demonstrated to be more fitted to the wave presenting

reduced values of RMSE. For this section, the best controllers regarding the delay are controller 8 and

11, and regarding the RMSE value are controllers 10 and 12, all of these controllers were found using

the GA optimization tuned with the sine wave.

Even though this series of tests was not definitive in the sense that it did not lead to a single best

controller, it did allow for a clearer understanding of the output potential of the discovered controllers and

determining whether or not they met the standards. All of these controllers produced satisfactory per-

formance, meeting the minimum requirements for settling time (all less than 0.5 seconds), overshoot (all

less than 10%), and successfully following signals at 1 Hz. It was assumed that controllers discovered

through the GA optimization would have better performances when comparing with the ones found with

the Autotuning wizard, once the former is a more complex approach taking into account the controller

performance indexes. The results reinforced this assumption.

Considering the results of all tests, it was surprising that the controllers tuned with the step as the

setpoint performed the best. Despite the fact that controllers 8-12 were tuned using the ideal setpoint (a

sine wave with 1 Hz) they did not perform as well as controllers 3-7 in the output tests, only outperforming

them in the delay and RMSE results. This outcome can be explained by the controllers tuned with the

step being slightly faster than the others and therefore more capable of following the setpoint to higher

frequencies.

The results in this chapter show that the controllers found are capable of meeting the system’s min-

imum requirements, with the group of GA optimized controllers tuned with a step presenting the best

performance; however, evaluating these with a specified pedal trajectory is the best way to choose the

best option.

66



Ta
bl

e
5.

9:
S

um
m

ar
iz

ed
re

su
lts

of
th

e
M

an
ua

lF
re

qu
en

cy
te

st
fo

ra
ll

co
nt

ro
lle

rs
1

to
12

.

Fr
eq

ue
nc

y
(H

z)
C

on
tro

lle
r

1
2

3
4

5
6

7
8

9
10

11
12

1.
0

S
et

tli
ng

tim
e:

0.
5

s
S

et
tli

ng
tim

e:
ar

ou
nd

0.
5

s

1.
1

1.
2

1.
3

1.
4

1.
5

1.
6

S
et

tli
ng

tim
e:

1.
75

s
S

et
tli

ng
tim

e:
1

s
S

et
tli

ng
tim

e:
0.

5
s

S
et

tli
ng

tim
e:

1s
S

et
tli

ng
tim

e:
1

s
S

et
tli

ng
tim

e:
1s

S
et

tli
ng

tim
e:

1
s

S
et

tli
ng

tim
e:

0.
5

s

1.
7

D
oe

s
no

ts
et

tle
Pe

ak
s

ov
er

sh
oo

t
S

ig
ni

fic
an

tP
ha

se
D

is
pl

ac
em

en
t

S
et

tli
ng

tim
e:

0.
5

S
et

tli
ng

tim
e:

1.
75

s
Pe

ak
s

ov
er

sh
oo

t
S

et
tli

ng
tim

e˜
2

s

S
et

tli
ng

tim
e:

1.
75

s
Pe

ak
s

ov
er

sh
oo

t˜

D
oe

s
no

ts
et

tle
Pe

ak
s

ov
er

sh
oo

t
S

ig
ni

fic
an

tP
ha

se
di

sp
la

ce
m

en
t

S
et

tli
ng

tim
e:

1
s

1.
8

S
et

tli
ng

tim
e:

0.
5

s
Pe

ak
s

ov
er

sh
oo

t
S

et
tli

ng
tim

e:
1

s
D

oe
s

no
ts

et
tle

Pe
ak

s
ov

er
sh

oo
t

S
ig

ni
fic

an
tp

ha
se

di
sp

la
ce

m
en

t
1.

9
D

oe
s

no
ts

et
tle

Pe
ak

s
ov

er
sh

oo
ta

nd
si

gn
ifi

ca
nt

ph
as

e
di

sp
la

ce
m

en
t

D
oe

s
no

ts
et

tle
Pe

ak
s

ov
er

sh
oo

ta
nd

si
gn

ifi
ca

nt
ph

as
e

di
sp

la
ce

m
en

t
R

es
id

ua
lp

ha
se

di
sp

la
ce

m
en

t
2.

0

67



Chapter 6

Trajectory Results

6.1 PID Selection

As described in Section 4.1.3, it was essential to further test the controllers with the foot gait trajectory

to test their performance with a real trajectory instead of sinusoidal signals. The measured values for

RMSE, and delay between the device response and the setpoint are available in Table 6.1.

Whereas the first group of controllers (controllers 3-7) tends to have reduced values for the error,

the second group (controllers 8-12) has better performance regarding the presented delay between the

SP and the PV. The controllers leading to the minimum error are controllers 4 and 6 with the RMSE

of 2.66·10−2 and the controller with the smallest delay is controller 8 with 110 milliseconds of minimum

detected delay between the signal and the setpoint. There was the need to further analyze the system

response with these 3 controllers. In Figures 6.1, 6.2 and 6.3 are presented the system response with

the foot gait trajectory with controllers 4, 6 and 8 , respectively.

Both Figures 6.1 and 6.2 share a number of key features, as they both have responses quite closely

with the setpoint. Both controllers allow the system to quickly converge to the setpoint, taking around

0.5 seconds to converge with little overshoot, and after settling the system does not present any ringing

behavior. What is striking about both figures are the delays presented at the peaks, meaning that these

controllers have difficulties in following sharp forms in the trajectory even though they are acceptable in

terms of settling time.

Now, looking at Figure 6.3, which corresponds to the system response with controller 8, it has sig-

Table 6.1: Delay and RMSE results with the foot gait trajectory as setpoint for controllers found with GA optimization.

Controller 3 4 5 6 7 8 9 10 11 12

Delay (samples) 13 15 14 15 14 11 12 12 14 12
Delay (seconds) 1.30·10−1 1.50·10−1 1.40·10−1 1.50·10−1 1.40·10−1 1.10·10−1 1.20·10−1 1.20·10−1 1.40·10−1 1.20·10−1

RMSE 2.69 ·10−2 2.66·10−2 2.68·10−2 2.66·10−2 2.68·10−2 2.79·10−2 2.86·10−2 2.72·10−2 2.89·10−2 2.72·10−2
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Figure 6.1: System response with controller 4 to the foot gait trajectory.

Figure 6.2: System response with controller 6 to the foot gait trajectory.
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Figure 6.3: System response with controller 8 to the foot gait trajectory.

nificant differences when comparing with the last two analyzed controllers. Here, the system converges

only after 0.75 seconds presenting a significant overshoot and ringing. At the peaks, there is present a

delay, however bigger than the ones found with the other controllers, after the peaks the system once

again shows difficulties in settling to the setpoint signal. After the convergence, nearly 1.25 seconds of

simulation, it can be seen that there is almost no delay between the blue and the red line in the graphic

justifying the smallest delay presented in Table 6.1. Apart from this positive feature of the system re-

sponse, the overall response of this controller is not suitable.

From the data obtained in the step response characteristics test, provided in Table 5.6, it is revealed

that controller 6 had the best results regarding the settling time, overshoot, and peak time. The fact

that controller 6 was the fastest controller between all found is relevant to explain the proper response

when subjected to a trajectory. Additionally, from Table 5.9, where it is presented the results from all

controllers in the manual frequency shifting test, controller 6 was in the group of controllers with the best

response, being able to follow up to 1.8 Hz without difficulties and only presenting phase displacement

in sinusoidal signals with 1.9 and 2 Hz. These results prove that controller 6 is a better fit for the system

than controller 4, and for this reason, it will be used in all remaining tests.
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6.2 Trajectory tracking results

6.2.1 Circular Trajectory

The circular trajectory was defined by selecting 9 points in the delimited pedal range as seen in Figure

6.4. For this test two frequencies were selected: 0.5 Hz to test the system at an appropriate pace for

walking therapy and 1 Hz to test the system at its maximum frequency.

Figure 6.4: XY graph containing the data points selected to define the trajectory in blue and the interpolated trajec-
tory in red.

6.2.1.A Frequency of 0.5 Hz

The simulation time was 10 seconds which resulted in 5 trajectory cycles within the simulation. In Fig-

ure 6.5 it is represented the system’s response to the interpolated trajectory represented in Figure 6.4.

The red line is the calculated values of L from the trajectory algorithm (desired values) and in blue is

the system’s response. Even though the simulation time was defined for 10 seconds, for simplicity it is

represented in the graph the first 4 seconds of simulation as this is the more relevant part of the simula-

tion, where the system is converging to the setpoint, and enough to represent the system’s performance

throughout the simulation.

Figure 6.5 shows nearly 2 cycles. The first cycle finishes at 2.50 seconds and it can be seen that the

system takes around 0.25 seconds to converge with the SP. The settling time represents 10% of the

first cycle which is a satisfactory result.

The system seems to react adequately to differences in the pedal length. The RMSE and the delay

were calculated and the results are at Table 6.2. The error between the SP and the PV is 1.60·10−3 ,
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Figure 6.5: Graph of pedal length (meters) versus simulation time (seconds) at 0.5 Hz. The setpoint is shown in
red, while the system’s response is shown in blue.

Table 6.2: RMSE and delay results for the circular trajectory at 0.5 Hz.

Trajectory Circular

RMSE 1.60·10−3

Delay (s) 0

which is the smallest error discovered thus far. The lowest delay calculated between the two signals is

zero, indicating an ideal response.

The cross-correlation of both signals is present in Figure 6.5, where the x-axis is the lag and the y

axis the normalized cross-correlation values. There was a correlation of 1 at lag 0 which means that both

signals are extremely similar and there is not a time delay between the signals, as the lag increases to

both positive and negative extremes, the correlation value decreases smoothly. The symmetrical shape

of the graph shows that there is not a random correlation between the signals and so that they are

strongly related.
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Figure 6.6: Correlogram of the system response to the circular trajectory at 0.5 Hz. In the y axis, the cross-
correlation values are presented, and in the x axis the lag.
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Figure 6.7: Pedal length (meters) versus simulation time (seconds) graph at 1 Hz, with the setpoint and the system’s
response represented.

Table 6.3: RMSE and delay results for the circular trajectory at 1 Hz.

Trajectory Circular

RMSE 3.20·10−3

Delay (s) 0

6.2.1.B Frequency of 1 Hz

In this test, the simulation time was 10 seconds once again but it resulted in 10 trajectory cycles. Figure

6.7 depicts 4 cycles, with the first cycle completing in one second of simulation. The first thing to notice

is that the system takes 0.25 seconds to reach the setpoint which is nearly 50% of the first cycle lost as

the system tries to converge.

Even though the system reacts adequately to sudden differences in the pedal length (as presented

at 0.9 seconds of simulation) there is still a minor delay between the two signals. For this reason, the

parameters presented in Table 6.3 were calculated, allowing us to better assess the trajectory tracking

performance of the cycling system. The calculated value for the RMSE was 3.7·10−3 indicating that the

error between the system response and the trajectory data is residual, while the minimum delay found

was 0 which is the optimum result.

The cross-correlation of both signals is depicted in Figure 6.8. There was a correlation of 1 at lag
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Figure 6.8: Correlogram of the system response to the circular trajectory at 1 Hz. In the y axis it is represented the
cross-correlation values and in the x axis the lag.

0, demonstrating that both signals are extremely similar and that there is no time delay between them.

As the lag increases to both positive and negative extremes, the correlation value declines smoothly,

similar to the result obtained at a lower frequency. The symmetrical structure of the graph indicates,

once again, that the correlation between the signals is not random and that they are tightly related.

Overall, these findings show that the device works adequately for simple trajectories, such as a circle,

at a suitable walking speed for therapy of 0.5 Hz and for the maximum desired speed of 1 Hz.
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6.2.2 Foot Gait Trajectory

The foot gait trajectory, defined in Section 4.1.2, was already employed to find the optimum controller

between the ones found at Chapter 5. Here, this trajectory is analysed in other perspective, to evaluate

the quality of the system response when following this trajectory at different frequencies. Firstly, the

results at 0.5 Hz, the adequate velocity for gait therapy, were checked and then it was tested for 1 Hz,

the system’s maximum velocity.

Figure 6.9: XY graph containing the data points selected to define the trajectory in blue and the interpolated trajec-
tory in red.

6.2.2.A Frequency of 0.5 Hz

In Section 6.1 this trajectory was tested with several controllers at 0.5 Hz which contributed to the

selection of the actual controller as the optimum. For this reason, the system is validated for smaller

frequencies with this controller and with this trajectory. In Figure 6.2, from Section 6.1, nearly two

trajectory cycles of this system with the foot gait trajectory at 0.5 Hz are represented. Closer inspection

of this figure shows that the system needs 0.30 seconds to settle, which is 0.15% of the first cycle that

finishes at 2 seconds. This result is not ideal, nonetheless it can be accepted. The delay presented at the

peaks were the worst aspect of the system response, demonstrating difficulties to follow this trajectory

at this frequency.

The RMSE value and the delay were already calculated and presented at Table 6.1. The system

presented a RMSE of 2.66·10−2 and the minimum delay found between the SP and the PV is 1.50·10−1

seconds.

76



Figure 6.10: Correlogram of the system response with the foot gait trajectory at 0.5 Hz as input. In the y axis, the
cross-correlation values are represented, and in the x axis the lag.

The correlogram obtained, presented in Figure 6.10, goes accordingly with the quality of the rest

of the results. It can be seen that at lag 0 the cross-correlation is almost 1 however it is a narrow

spike indicating that both signals have only some areas that are similar. The oscillating pattern, as the

cross-correlation values does not diminish smoothly, is caused by the combination of extremely similar

and divergent regions of the two signals. When both signals are divergent (at the peaks), the cross-

correlation is lower, and the opposite is true when the signals converge.

6.2.2.B Frequency of 1 Hz

Figure 6.11 presents the system response to the trajectory at 1 Hz.

The simulation time was set to 10 seconds, nevertheless, for simplicity, it is only shown the first 4

seconds of simulation allowing the analysis of the system settling and the stabilized response. The

pedal length reaches the desired value in approximately 0.25 seconds of simulation, taking 25% of the

first cycle. What is noteworthy about Figure 6.11 is the discrepancy presented at the peaks, that coincide

with the sharp areas in the trajectory. Because of the high frequency of the signal, the trajectory quickly

changes in these sharp areas and the system is not fast enough to converge without causing a delay.

This result is confirmed by the data presented at Table 6.4, with the minimum delay found of 3.90

seconds which is a significant amount. The RMSE result was of 4.21·10−2 which was a rather worse

result than the obtained with this controller and with the same trajectory in Section 6.1 but with a lower

frequency. However, taking into consideration the previous results, even though at half velocity of the

one in this section, the controller had already indicated that it was not fast enough in following the foot
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Figure 6.11: Pedal length (meters) versus simulation time (seconds) graph at 1 Hz. In red is represented the
setpoint and in blue the system’s response.

Table 6.4: Delay and RMSE result for foot gait trajectory at 1 Hz.

Trajectory Foot Gait

RMSE 4.21·10−2

Delay (s) 3.9·10−1

gait trajectory as it is necessary.

The correlogram in Figure 6.12 demonstrates the low quality of the system reaction to the trajectory.

At lag 0, the cross-correlation is approximately one, although it is a narrow spike, indicating that both

signals share only a few areas. The symmetrical decrease of the cross-correlation values, when the lag

goes to extremes, shows the fragile similarity between the two signals. However, the lack of smoothness

of the correlogram’s shape displays the oscillatory unanimity of the system response with the defined

trajectory.

In summary, the results for the system with the foot gait trajectory at 0.5 and 1 Hz show that the

best controller chosen, from the set of controllers discovered using diverse approaches, does not have

a satisfying behaviour for complex trajectories.
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Figure 6.12: Correlogram of the system response with the foot gait trajectory as input. In the y axis, the cross-
correlation values is represented, and in the x axis the lag.
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Chapter 7

Conclusion

7.1 Discussion

The proposed goal for this thesis was to further improve the Haptic Cycling Trainer by transferring the

previously established system from the Simulink environment to LabVIEW software once it was more

suitable for developing the user interface, as well as allowing the use of the CompactRIO controller to

link the plant to the device’s hardware. Furthermore, the aim of finding a suitable controller using various

methodologies was established, as was the goal of implementing a trajectory planning algorithm for the

device using data provided by the user and implementing a Graphical User Interface.

In Chapter 2 was described the problematic of stroke and patient rehabilitation and its impact on

people’s lives and countries economy. It was discussed how important it is to develop new technologies

to enhance the rehabilitation process and patient’s quality of life after the stroke event. This background

analysis allowed to pinpoint the gaps in current technology and to highlight the potential of the cycling

exercise in the early stages of stroke recovery.

The description of the further development of the Haptic Cycling Trainer starts in Chapter 3. The

first aim of this thesis, the implementation of the previous project developed in Simulink to the LabVIEW

environment, was attained as the system was correctly implemented in the desired software. After this

process, it was made an additional update of the system by implementing a position controller and an

analysis of the suitable control. It was used two different approaches to tune the PID controller, one using

the Autotuning Wizard from LabVIEW and the other using a Genetic Algorithm with the Optimization

Toolbox from MATLAB. In general, the controllers tuned with the step signal had better performance

and at the end of the study, it was chosen as the best-fit controller one discovered using the step as

the setpoint. The findings of this investigation, such as the conclusion that controllers found with the

GA optimization had a better performance, complement those of earlier studies which stated that the
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Genetic Algorithm is a valuable tool to solve complex questions and, in specific, for PID tuning. [96] [94]

The goal of creating a trajectory algorithm was accomplished in Chapter 4. an algorithm was devel-

oped to collect the data points selected from the user to create a trajectory for the pedal to follow. A set

of predefined trajectories was implemented, including one that mimics the foot gait trajectory. A clean

and intuitive Graphical User Interface was designed in Section 4.2, where the user is able to select the

method for the trajectory definition (between manual or predefined trajectories), to select the data points

for the desired trajectory, select the frequency and simulation time. The GUI also allows to access the

simulation results, track the system response, observe in real-time the pedal movement and compare

with the desired trajectory while having information about the number of cycles performed and total dis-

tance traveled by the patient at the end of the simulation. As this is an ongoing project, the GUI also was

designed with an area specially designated for future work in the project which allows monitoring other

variables of the system.

Lastly, some tests were performed, in Chapter 6, to check the system response to two trajectories,

the circular and the foot gait trajectory. The system response to the circular trajectory was ideal, with

the pedal being able to successfully follow the trajectory without delays and at 0.5 Hz and at the limit

frequency of 1 Hz. Nonetheless, with the foot gait trajectory, the system did not have a good enough

performance for both frequencies tested, with major delays at the sharp areas of the trajectory meaning

that the controller is not the fittest to the system. This result clearly indicates that even choosing the best

controller between the group of 12 controllers, the system response to some trajectories is not satisfac-

tory which raises questions about the tuning method and even if a simple PID controller is enough to

control this complex system or if it will be necessary to implement a new upcoming control methodology.

Overall, it is possible to state that the main objectives for this thesis were met. The findings from

this study made several contributions to the project development. To begin with, it allowed the entire

system to be implemented and nearly ready for testing with the CompactRIO controller and the physical

components of the system, testing that was planned to be done in this thesis but was not allowed due

to COVID-19 pandemic situation. It was discovered that a PID controller is unlikely to be sufficient to

control the device, implying that more comprehensive controlling methodologies are needed. A trajectory

algorithm was created allowing the user to create the desired trajectories. The device now has a user

interface that allows the user to choose the simulation settings and view the results. The present work

has gone some way towards enhancing the development of this project, putting this system one step

closer to be used in gait rehabilitation. The Haptic Cycling Trainer has the potential to be extremely

useful for both therapists and patients, allowing for early-stage rehabilitation and improving patients’ gait

and independence while remaining accessible and affordable. In this way, it is expected for this device

to overcome the current limitation of gait rehabilitation and make a positive impact in people’s life after

the stroke event.
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7.2 Future Steps

Keeping in mind that this work is part of an ongoing project that is still in its early stages of development,

there is still a lot of work to be undertaken. Now that this study has been completed, it is possible to

analyze the thesis development as a whole, identify some work limitations, and state what could be done

in future project development. Many modifications, simulations, and studies have been postponed due

to material supply delays (due to COVID-19 pandemics) and a lack of time (i.e. the experiments with

real data are usually very time-consuming). Future studies will focus on a more in-depth examination of

specific processes, new proposals to explore different methods or pure interest.

From the first part of this project, the controller analysis, it is unfortunate that the chosen PID did not

perform as expected, based on the results in Chapter 5 and Section 6.1, when tested with the foot gait

trajectory in Section 6.2. This leads us to question if a PID controller was the best way to manage the

system and if the testing could be performed differently. Further research on control strategies should be

carried out to establish which would be a better approach for the system. Nonetheless, as mentioned in

the device descriptions, it is intended for this device to apply different loads along the trajectory, implying

that an impedance control should be applied to the system in conjunction with the already implemented

position controller. It would be interesting to incorporate a hybrid control in this device, which has the

advantage of allowing the user to apply a specific resistance force along a predetermined trajectory

but not allowing voluntary active movements from the patient. It also allows the patient to experience

different mobility patterns and aid in strengthening the patient’s muscles. [46] [57] These features will

be critical when using this system in rehabilitation. Another interesting control approach may be the use

of bio-signals-based controls, which would enable this system to be operated in a more natural way by

using the patient’s EMG, which could be used as feedback in the case of stroke survivors. An EMG-

triggered control may be introduced, as suggested by Krebs et al. [101], in which the patient can move

the limbs without assistance at the beginning of the therapy session and robotic assistance is triggered

when the EMG value exceeds a certain threshold.

The trajectory planning algorithm performed well in Chapter 6, but it had some limitations that should

be addressed in the future. Modifications to the algorithm should be made to allow for the use of variable

velocity during the simulation time. Following the implementation of impedance control, the algorithm

should be able to process information about various loads applied in the pedal at various stages of

the trajectory or simulation. Furthermore, an initialization routine must be introduced to allow the pedal

to reach an initial position to begin the rehabilitation session while also converging with the trajectory

implemented by the therapist. This study was created in 2020 during the COVID-19 pandemic, and it

was restricted in many respects. It was planned at the beginning of the thesis to test the device and

the trajectories by attaching the LabVIEW project to the CompactRIO controller, the DC motors, and the

pedals with the ballscrew system. However, due to the material being trapped at the supplier’s facilities
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and the restricted amount of time available in the robotics laboratory, it was not possible to continue with

this part of the research. In this scenario, future research should certainly put the work learned in this

project to the test.

As a result of incorporating the previously mentioned features into the system, the Graphical User

Interface must be updated. It would be useful to investigate a new approach for the therapist to plan the

desired trajectory, once additional data, such as different velocities and loads at different stages of the

trajectory, are provided. It would also be interesting to provide a 3D representation of the pedal in real-

time rather than the currently implemented 2D display, as well as to display details about the patient’s

performance during the therapy session. It is critical that therapists review the GUI and provide feedback

on the functionalities introduced, including the easiness of information provision and results display. This

input could be extremely beneficial, allowing for the implementation of additional relevant functionalities

to the rehabilitation process along with determining which way this device could be of greater benefit to

therapists.

Finally, to evaluate whether this device is useful in stroke gait rehabilitation and to collect scientific

evidence, it must be tested on healthy and unhealthy subjects.
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Appendix A

Appendices

A.1 Performance Tests: sine wave 1 Hz

The results of the first set of controllers found with the sine wave with 1 Hz of frequency as mentioned

in Section 3.4.2.B. These tests were performed as explained in Section 3.4.3.

Setpoint controller Minimization Function Fitness Value Proportional Gain (Kp) Integral Gain (Ki) Derivative Gain (Kd)

Sine Wave

A ITSE 5.0649·10−4 9.8441·103 5.1668 48.8645
B IAE 4.6100·10−2 9.7545·103 4.5751 48.6237
C ISE 4.6000·10−3 9.8386·103 6.4136 49.8423
D ITAE 5.1570·10−2 9.9500·103 4.1602 49.4978
E MSE 4.5999·10−7 9.9533·103 5.5371 49.9760

Table A.1: PID parameters found using the GA with a sine wave with 1 Hz as setpoint.

Controller A B C D E

Rise Time (s) 0.1913 0.1912 0.1913 0.1913 0.1912
Settling Time (s) 0.5288 0.5263 0.5288 0.5296 0.5300
Overshoot (%) 8.4048 8.4324 8.4028 8.4064 8.4043
Peak (m) 0.2114 0.2114 0.2114 0.2114 0.2114
Peak Time (s) 0.3070 0.3070 0.3070 0.3070 0.3070

Table A.2: Step Response characteristics of controllers found with the GA algorithm with a sine wave with 1 Hz.

All controllers were able to follow the chirp signal up to 1.07 Hz.
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A.2 Performance Tests: Autotuning Chirp Signal Test

In this section is represented the system response of Controller 2 in the performance test mentioned in

Section 5.1.2 with the chirp signal.

Figure A.1: Step response of Controller 2.
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A.3 GA Step Response

In this appendix are shown the step responses of Controllers 3 to 12. This test was carried out according

to the instructions in Section 3.4.3, and the findings were analyzed in Section 5.2.1
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(a) (b)

(c) (d)

Figure A.2: (a) GA step response Controller 3; (b) GA step response Controller 4;
(c) GA step response Controller 5; (d) GA step response Controller 6.
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(a) (b)

(c) (d)

Figure A.3: (a) GA step response Controller 7; (b) GA step response Controller 8;
(c) GA step response Controller 9; (d) GA step response Controller 10.
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(a)

(b)

Figure A.4: (a) GA step response Controller 11; (b) GA step response Controller 12.
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A.4 Frequency test: GA Chirp Signal

The results of Controllers 3 to 12 from the chirp signal test mentioned in Section 3.4.3 are shown in the

following figures, and these results are further examined in Section 5.2.2.
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(a) (b)

(c) (d)

Figure A.5: (a) Chirp signal test performance of Controller 3; (b) Chirp signal test performance of Controller 4;
(c) Chirp signal test performance of Controller 5; (d) Chirp signal test performance of Controller 6.
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(a) (b)

(c) (d)

Figure A.6: (a) Chirp signal test performance of Controller 7; (b) Chirp signal test performance of Controller 8;
(c) Chirp signal test performance of Controller 9; (d) Chirp signal test performance of Controller 10.
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(a)

(b)

Figure A.7: (a) Chirp signal test performance of Controller 11; (b) Chirp signal test performance of Controller 12.
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A.5 Frequency test: GA Manual Chirp test

The results of the manual chirp test for Controllers 3 to 12 are shown in the following Images; it was

carried out as defined in Section 3.4.3, and the results are analyzed in Section 5.2.2.

Figure A.8: Manual chirp signal test performance of Controller 3
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Figure A.9: Manual chirp signal test performance of Controller 4

Figure A.10: Manual chirp signal test performance of Controller 5
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Figure A.11: Manual chirp signal test performance of Controller 6

Figure A.12: Manual chirp signal test performance of Controller 7
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Figure A.13: Manual chirp signal test performance of Controller 8

Figure A.14: Manual chirp signal test performance of Controller 9
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Figure A.15: Manual chirp signal test performance of Controller 10

Figure A.16: Manual chirp signal test performance of Controller 11

107



Figure A.17: Manual chirp signal test performance of Controller 12
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