
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Mutation Testing ofQuantum Programs:
A Case Study with QISKit

Anonymous Author(s)∗

ABSTRACT
As quantum computing is still in its infancy, there is an inherent lack
of knowledge and technology to properly test a quantum program.
In the classical realm, mutation testing has been successfully used
to evaluate howwell a program’s test suite detects seeded faults (i.e.,
mutants). In this paper, building on the definition of syntactically-
equivalent quantum operations, we propose a novel set of mutation
operators to generate mutants based on qubit measurements and
quantum gates. To ease adoption of quantum mutation testing,
we further propose QMutPy, an extension of the well-known and
fully automated open-source mutation tool MutPy. To evaluate
QMutPy’s performance we conducted a case study on 24 real quan-
tum programs written in the IBM’s QISKit library. QMutPy has
proven to be an effective quantum mutation tool, providing insight
on the current state of quantum test suites and on how to improve
them.

KEYWORDS
Quantum computing, Quantum software engineering, Quantum
software testing, Quantum mutation testing

ACM Reference Format:
Anonymous Author(s). 2022. Mutation Testing of Quantum Programs: A
Case Study with QISKit. In ICSE’22: IEEE/ACM International Conference on
Software Engineering, 21–29 May, 2022, Pittsburgh, USA. ACM, New York,
NY, USA, 11 pages. https://doi.org/10.1145/AAA.BBB

1 INTRODUCTION
Quantum computation uses the qubit—the quantum-mechanical
analogue of the classic bit—as its fundamental unit instead of the
classic computing bit. Whereas classic bits can take on only one of
two basic states (e.g., 0 or 1), qubits can take on superpositions of
those basic states (e.g., 𝛼 · |0⟩ + 𝛽 · |1⟩), where 𝛼 and 𝛽 are complex
scalars such that |𝛼 |2 + |𝛽 |2 = 1, allowing a number of qubits to
theoretically hold exponentially more information than the same
number of classic bits. Thus, quantum computers can, in theory,
quickly solve problems that would be extremely difficult for classic
computers. Such computation is possible because of qubit properties
known as superposition of both 0 and 1, entangle multiple quantum
bits, and interference [38, 42].

The field of quantum computing is evolving at a pace faster than
originally anticipated [36]. For example, in March 2020, Honeywell

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICSE 2022, 21-29 May, 2022, Pittsburgh, USA
© 2022 Association for Computing Machinery.
ACM ISBN AAA-B-CCCC-DDDD-E/FF/GG. . . $15.00
https://doi.org/10.1145/AAA.BBB

announced1 a revolutionary quantum computer based on trapped-
ion technology with quantum volume 64 — the highest quantum
volume ever achieved, twice as the state of the art previously accom-
plished by IBM. Quantum volume is a unit of measure indicating the
fidelity of a quantum system. This important achievement shows
that the field of quantum computing may reach industrial impact
much sooner than originally anticipated.

While the fast approaching universal access to quantum com-
puters is bound to break several computation limitations that have
lasted for decades, it is also bound to pose major challenges in many,
if not all, computer science disciplines [43], e.g., software testing.
Testing is one of the most used techniques in software develop-
ment to ensure software quality [5, 12]. It refers to the execution
of the software in vitro environments that replicate (as close as
possible) real scenarios to ascertain its correct behavior. Despite
the fact that, in the classical computing realm, testing has been ex-
tensively investigated and several approaches and tools have been
proposed [4, 13, 17, 23, 25, 31], such approaches for Quantum Pro-
grams (QPs) are still in their infancy [18, 27, 40]. Worth noting that
(i) QPs are much harder to develop than classic programs and there-
fore programmers, mostly familiar with the classic world, are more
likely to make mistakes in the counter-intuitive quantum program-
ming one, and (ii) QPs are necessarily probabilistic and impossible
to examine without disrupting execution or without compromising
their results. Thus, ensuring a correct implementation of a QP is
even harder in the quantum computing realm [20].

Mutation testing [22, 34] has been shown to be an effective tech-
nique in improving testing practices, hence helping in guaranteeing
program correctness. Big tech companies, such as Google and Face-
book, have conducted several studies [6, 33, 35] advocating for
mutation testing and its benefits. The general principle underlying
mutation testing is that the bugs considered to create versions of
the program represent realistic mistakes that programmers often
make. Such bugs are deliberately seeded into the original program
by simple syntactic changes to create a set of buggy programs called
mutants, each containing a different syntactic change. To assess
the effectiveness of a test suite at detecting mutants, these mutants
are executed against the input test suite. If the result of running a
mutant is different from the result of running the original program
for at least one test case in the input test suite, the seeded bug
denoted by the mutant is considered detected or killed.

Just et al. [24] performed a study on whether mutants are a
valid substitute for real bugs in classic software testing and they
concluded that (1) test suites that kill more mutants have a higher
real bug detection rate, (2) mutation score is a better predictor of
test suites’ real bug detection rate than code coverage. We have
no reason to believe that it would be any different in quantum

1https://www.honeywell.com/us/en/press/2020/03/honeywell-achieves-
breakthrough-that-will-enable-the-worlds-most-powerful-quantum-computer

1

https://doi.org/10.1145/AAA.BBB
https://doi.org/10.1145/AAA.BBB
https://www.honeywell.com/us/en/press/2020/03/honeywell-achieves-breakthrough-that-will-enable-the-worlds-most-powerful-quantum-computer
https://www.honeywell.com/us/en/press/2020/03/honeywell-achieves-breakthrough-that-will-enable-the-worlds-most-powerful-quantum-computer


117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

ICSE 2022, 21-29 May, 2022, Pittsburgh, USA Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

computing. Thus, and in order to shed light on whether manually-
written test suites for QPs are effective at detecting mistakes that
programmers might often make, in this paper, we aim to investigate
the application of mutation testing on real QPs.

In this paper, we focus our investigation on the most popular
open-source full-stack library for quantum computing [11], IBM’s
Quantum Information Software Kit (QISKit) [1]2. QISKit was one
of the first software development kits for quantum to be released
publicly and provides tools to develop and run QPs on either proto-
type quantum devices on IBM Quantum Experience infrastructure
or on simulators on a local computer. In a nutshell, QISKit trans-
lates QPs written in Python into a lower level language called
OpenQASM [10], which is its quantum instruction language. Many
famous quantum algorithms such as Shor [37] and Grover [14] have
already been implemented using QISKit’s API3. In detail, the main
contributions of this paper are:
• A set of 5 novel mutation operators, leveraging the notion of

syntactically-equivalent gates, tailored for QPs.
• A novel Python-based toolset named QMutPy that auto-

matically performs mutation testing for QPs written in the
QISKit’s [1] full-stack library.

• An empirical evaluation of QMutPy’s effectiveness and effi-
ciency on 24 real QPs.

• A detailed discussion on how to extend test suites for QPs to
kill more mutants and therefore detect more bugs.

To the best of our knowledge, the study described and evaluated in
this paper is the first comprehensive mutation testing study on real
QPs. Our results suggest that QMutPy is capable in generating fault-
revealing quantum mutants and it surfaced several issues in the test
suites of the real QPs used in the experiments. We have discussed
two improvements to test suites, viz. increasing code coverage and
improving quality of the test assertions. Such improvements greatly
increase the mutation score of the test suites — hence, leading to
high quality QPs.

2 MUTATION TESTING OF QUANTUM
PROGRAMS

In this section, we explain our mutation strategy, including the five
novel mutation operators tailored for QPs, and the implementation
details of QMutPy — our proposed Python-based toolset to auto-
matically perform mutation testing for QPs written in QISKit’s [1].

2.1 Quantum Mutation Operators
Similar to classic programs, a QP is fundamentally a circuit in which
quantum bits (qubits) are initialized and go through a series of
operations that change their state. These operations are commonly
known and referenced to as quantum gates. Two of the most popular
and used quantum gates are the NOT gate and the Hadamard gate,
usually referred as the x gate and the h gate, respectively. They are
single-qubit operations, i.e., they change the state of one qubit [8].
The x gate is analogous to the classic NOT gate where it simply
inverts the current qubit state, the h gate is quantum specific, it puts
the qubit in a perfect state of superposition (i.e., equal probability
of being 1 or 0 when measured).

2https://qiskit.org
3https://github.com/Qiskit/qiskit-aqua/tree/stable/0.9/qiskit/aqua/algorithms

cp

crx

cry

crz

cswap

csx

cu1

cx

cy

cz

dcx

i

id

iswap

ms

p

r

rx

rxx

ry

ryy

rz

rzx

rzz

s

sdg

swap

sx

t

tdg

u1

u2

u3

x

y

z

cc
x ch cp cr

x
cr

y
cr

z

cs
w
ap cs

x
cu

1 cx cy cz dc
x h i id

is
w
ap m

s p r rx rx
x ry ry

y rz rz
x

rz
z s

sd
g

sw
ap sx

t
td

g u x y

Figure 1: Equivalent gates in the QISKit full-stack library.

At the time of writing this paper, QISKit v0.29.0 provides support
to more than 50 quantum gates4. This includes single-qubit gates
(e.g., h gate), multiple-qubit gates (e.g., cx gate) and composed
gates, or circuits, (e.g., QFT circuit). Given their importance on the
execution and result of a QP, as a simple typo on the name of
the gate could cause bugs that developers may not be aware of,
our set of mutation operators to generate faulty versions of QPs
is based on single- and multi-qubit quantum gates, in particular,
syntactically-equivalent gates.

Formally, a gate 𝑔 is considered syntactically-equivalent to gate
𝑗 if and only if the number and the type of arguments5 required
by both 𝑔 and 𝑗 are the same. At the time when we performed
our experiment, we had identified 40 gates that had syntactical-
equivalents. Figure 1 lists all gates and their syntactically-equivalent
ones. For instance, the h gate has 10 syntactically-equivalent gates:
i, id, s, sdg, sx, t, tdg, x, y, and z. Note that these gates do not
perform or compute the same operation; they are simply used in the
same manner and required the same number and type of arguments.

The following subsections briefly describe the five quantum
mutation operators proposed in this paper. Interested readers can
refer to the accompanying supplementary material to find examples
of each quantum mutation operator using the implementation of
the Shor [37] algorithm available in the QISKit-Aqua’s repository6.

2.1.1 Quantum Gate Replacement (QGR). This mutation op-
erator first identifies each call to a quantum gate function
(e.g., circuit.x()7), and then replaces it with all syntactically-
equivalent gates, e.g., circuit.h()8, one at a time. For instance,

4https://qiskit.org/documentation/apidoc/circuit_library.html
5Optional arguments are not taken into consideration.
6https://github.com/Qiskit/qiskit-aqua/blob/stable/0.9/qiskit/aqua/algorithms/
factorizers/shor.py

7https://qiskit.org/documentation/stubs/qiskit.circuit.library.XGate.html
8https://qiskit.org/documentation/stubs/qiskit.circuit.library.HGate.html

2

https://qiskit.org
https://github.com/Qiskit/qiskit-aqua/tree/stable/0.9/qiskit/aqua/algorithms
https://qiskit.org/documentation/apidoc/circuit_library.html
https://github.com/Qiskit/qiskit-aqua/blob/stable/0.9/qiskit/aqua/algorithms/factorizers/shor.py
https://github.com/Qiskit/qiskit-aqua/blob/stable/0.9/qiskit/aqua/algorithms/factorizers/shor.py
https://qiskit.org/documentation/stubs/qiskit.circuit.library.XGate.html
https://qiskit.org/documentation/stubs/qiskit.circuit.library.HGate.html


233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Mutation Testing of Quantum Programs ICSE 2022, 21-29 May, 2022, Pittsburgh, USA

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

for the x quantum gate, 10 mutants are generated as there are 10
syntactically-equivalent gates (see Figure 1).

2.1.2 Quantum Gate Deletion (QGD). Adding and removing quan-
tum gates from a QP can have a significant impact on its output.
The QGD operation deletes an invocation to a quantum gate.

2.1.3 Quantum Gate Insertion (QGI). This quantum mutation op-
erator performs the opposite action of the QGD operator. That is,
instead of deleting a call to a quantum gate, it inserts a call to a
syntactically-equivalent gate. For each quantum gate in the source
code, this mutation operator creates as manymutants as the number
of each syntactically-equivalent gates. For example, for the x gate,
which has 10 syntactically-equivalent gates, it creates 11 mutants,
one per equivalent gate. Note that the x gate itself can be inserted
in the source code, counting as a valid mutant.

2.1.4 Quantum Measurement Insertion (QMI). In quantum com-
puting, measuring a qubit breaks the state of superposition and
therefore the qubit’s value becomes either 1 or 0 (as in classical
computing), which can be considered a mutation by design. That is
the underline idea of the QMI operator. It adds a call to the measure
function9 for each quantum gate call.

2.1.5 Quantum Measurement Deletion (QMD). Contrary to QMI,
the QMD removes each measurement from a QP, one at a time.
Without a measure call, the QP keeps the superposition state and
as a consequence does not converge the qubit to either 1 or 0.

2.2 QMutPy Toolset
QPs written in Python and using QISKit library are a mix of classic
operations (e.g., initialization of variables, loops), as well as quan-
tum operations (e.g., initialization of quantum circuits, measuring
qubits). Thus, we foresee that the most suitable mutation tool for
QPs would be one that
• Supports Python programs and the two popular testing frame-

works for Python: unittest and pytest.
• Supports various classic mutation operators (e.g., Assignment

Operator Replacement, Conditional Operator Insertion).
• Supports the creation of a report that could be shown to a

developer or easily parsed by an experimental infrastructure
(as the one described in Section 3).

• Fosters wide adoption, the learning curve to install, configure
and use the tool ought to be low.
In this section, we first describe the most relevant mutation

testing tools out there and how we built QMutPy (available in
the accompanying supplementary material) on top of an existing,
already well adopted, mutation tool.

2.2.1 Python-based Mutation Testing Tools. Mutatest [26], mut-
mut [19], MutPy [16], and CosmicRay [7] are the most popular
mutation testing tools for Python that are available through pip10
(the package installer for Python). Albeit being open-source, fully
automated, and support classic mutation operators, not all tools
fulfil all our requirements.

9https://qiskit.org/documentation/stubs/qiskit.circuit.library.Measure.html
10https://pypi.org/project/pip

Mutatest [26] only supports pytestswhereas, e.g., the programs
in the QISKit-Aqua’s repository11 require unittest. It neither pro-
duces a report of a mutation testing session. Thus, any postmortem
analysis (e.g., statistical analysis) could not be easily performed.

mutmut [19] does not allow one to instantiate the tool with a
single mutation operator or a defined set of mutation operators.
This can be severely time consuming as a program could have
thousands of mutants, and more importantly a developer would
not be able to, e.g., only select quantum mutation operators. Thus,
using mutmut would be unproductive.

MutPy [16] and Cosmic Ray [7] are similar in nature. Both pro-
vide a reporting system, support unittest and pytest, and allow
one to select a subset of mutation operators. However, from our
own experience in installing and running the tools, MutPy’s learn-
ing curve is more gradual than Cosmic Ray. Thus, MutPy [16] tool
is the one that fulfils all requirements we aim in a mutation tool.

2.2.2 MutPy Flow. Given a Python program 𝑃 , its test suite 𝑇 , and
a set of mutation operators𝑀 , MutPy’s workflow is as follows: (1)
MutPy firstly loads 𝑃 ’s source code and test suite; (2) Executes𝑇 on
the original (unmutated) source code; (3) Applies𝑀 and generates
all mutant versions of 𝑃 ; (4) Executes𝑇 on eachmutant and provides
a summary of the results either as a yaml or html report.

Since steps one and two are self-explanatory, we will focus on
steps three and four. In step three, MutPy parses the code and for
each mutation operator12 checks if there are mutants to be gen-
erated. Mutants in MutPy are done through the Python Abstract
Syntax Tree (AST). When a possible mutation is found, the corre-
sponding node from the AST is removed and a mutated node is
created and injected into the unmutated source code.

In step four, MutPy executes 𝑇 on the mutated version and pro-
duces a report. Each report includes information such as the number
of mutants, whether each mutant was either killed, survived, in-
competent, or timeout, the time it took to run the 𝑇 on 𝑃 , time it
took to run 𝑇 on each mutant.

2.2.3 QMutPy. MutPy is built in a way that it is straightforward to
extend it with new mutation operators. Notwithstanding, address-
ing the technical challenges to implement the quantum operators,
we added the possibility for the tool to mutate AST 𝐶𝑎𝑙𝑙s13.

3 EMPIRICAL STUDY
We have conducted an empirical study to evaluate QMutPy’s effec-
tiveness and efficiency at creating quantum mutants. In particular,
we aim to answer the following research questions:

RQ1: How does QMutPy perform at creating quantum mutants?
RQ2: How many quantum mutants are generated by QMutPy?
RQ3: How do test suites for QPs perform at killing quantummutants?
RQ4: How many test cases are required to kill or timeout a quantum

mutant?
RQ5: How are quantum mutants killed?

11https://github.com/Qiskit/qiskit-aqua/tree/stable/0.9
12MutPy supports 20 classic mutation operators and seven experimental mutation
operators. If a user does not specify any mutation operator, MutPy applies all of
them in alphabetical order.

13https://docs.python.org/3/library/ast.html#ast.Call

3

https://qiskit.org/documentation/stubs/qiskit.circuit.library.Measure.html
https://pypi.org/project/pip
https://github.com/Qiskit/qiskit-aqua/tree/stable/0.9
https://docs.python.org/3/library/ast.html#ast.Call


349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

ICSE 2022, 21-29 May, 2022, Pittsburgh, USA Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

Algorithm LOC # Tests Time (seconds) % Coverage

adapt_vqe 151 5 85.66 82.78
bernstein_vazirani 80 33 4.28 98.75
bopes_sampler 91 2 320.51 81.32
classical_cplex 210 1 0.04 81.43
cobyla_optimizer 75 4 1.60 94.67
cplex_optimizer 60 3 0.70 81.67
deutsch_jozsa 85 64 4.18 98.82
eoh 70 2 34.71 100.00
grover 381 593 153.77 95.54
grover_optimizer 197 6 21.14 96.45
hhl 341 21 630.65 93.26
iqpe 231 3 20.38 93.51
numpy_eigen_solver 220 5 0.10 76.36
numpy_ls_solver 56 1 0.00 92.86
numpy_minimum_eigen_solver 73 5 0.24 94.52
qaoa 96 18 49.45 95.83
qgan 226 11 349.72 84.51
qpe 197 3 21.27 94.92
qsvm 303 8 266.19 78.22
shor 265 13 251.76 93.21
simon 89 48 17.21 98.88
sklearn_svm 88 4 0.13 76.14
vqc 443 13 1626.38 85.55
vqe 386 19 811.27 85.49

Average 183.92 36.88 194.64 89.78

Table 1: Details of QPs used in the empirical evaluation.
The test suite of each QP was identified and selected based on each program’s name.
In QISKit, a QP is named after the algorithm it implements and to its test suite is given
the prefix “test”. For example, the test suite test_shor.py corresponds to the program
shor.py. Code coverage was measured using the Coverage.py tool.

As baseline, we have compared the results achieved by QMutPy’s
quantum mutation operators with MutPy’s classic mutation oper-
ators14. Note that works [30, 32] on quantum mutation are very
preliminary and no other classic or quantum mutation tool could
have been used as baseline (see Sections 2.2.1 and 6).

We show our commitment to open science [29] by making
QMutPy and our experimental infrastructure (data and scripts)
available to the research community to assist in future research.
TheQMutPy tool, data, and scripts are available in the accompanying
supplementary material. All artefact will immediately be publicly
available on GitHub upon acceptance of this paper.

3.1 Experimental Subjects
To conduct our empirical study we require (1) real QPs written in
the QISKit’s framework [1] (as, currently, QMutPy only supports
QISKit’s quantum operations), (2) QPs written in Python15, (3) an
open-source implementation of each QP, and (4) a test suite of each
QP. To the best of our knowledge there are four main candidate
sources of QPs that fulfil (1): the QISKit-Aqua’s repository16 itself,
the “Programming Quantum framework repository Computers”
book’s repository17 from O’Reilly, the “QISKit Textbook Source

14https://github.com/mutpy/mutpy#mutation-operators
15Although Jupiter Python notebooks include Python source code, they are not sup-
ported by QMutPy.

16https://github.com/Qiskit/qiskit-aqua/tree/stable/0.9/qiskit/aqua/algorithms
17https://github.com/oreilly-qc/oreilly-qc.github.io/tree/1b9f4c1/samples

Code”’s repository18 from the QISKit Community, and the official
“QISKit tutorials”’s repository19.

QISKit-Aqua’s20 repository provides the implementation of 24
QPs in Python, including the successful Shor [37], Grover [14], and
HHL [15], and a fully automated test suite for each program. Hence,
it fulfils all our requirements.

O’Reilly’s book provides the implementation of 182 QPs, 29 writ-
ten using the QISKit’s framework. However, no test suite is provided
for any of the 182 programs. Hence, it does not fulfil (4). “QISKit
Textbook Source Code”’s and “QISKit tutorials”’s repositories pro-
vide Jupiter Python notebooks with examples on how to interact
with the QISKit’s framework. No test suite is available for any of
the examples. Hence, it does not fulfil (2) nor (4).

Table 1 lists all QPs used in our empirical evaluation. For each
program it provides the number of lines of code, the number of
correspondent test cases, the time required to run the tests, and the
code coverage at line level of the tests.

In total, the 24 QPs in the QISKit-Aqua’s repository meet our cri-
teria. On average, the considered QPs have 184 Lines of Code (LOC),
where the smallest program has 56 LOC (numpy_ls_solver) and
the largest has 443 (vqc). The number of tests and the time required
to run all tests differ greatly. The number of tests ranges from 1 test
(classical_cplex and numpy_ls_solver) to 593 tests (grover),
and the runtime ranges from nearly 0 seconds (numpy_ls_solver)
to 1627 seconds (vqc).

Regarding code coverage, on average, QPs’ test suites cover 90%
of all lines of code. This is in line with best practices [21] and also
in line with a previous study conducted by Fingerhuth et al. [11]
where ratio of code exercise by QPs’ tests was slightly above the
industry-expected standard.

3.2 Experimental Setup
All experiments were executed on a machine with an AMDOpteron
6376 CPU (64 cores) and 64 GB of RAM. The operating system
installed on this machine was CentOS Linux 7. We used Python
version 3.7.0 in our experiments because it is the version supported
by QMutPy and one of the required versions of QISKit. To run all
experiments in parallel we used the GNU Parallel tool [39].

In our experiments, we ran QMutPy with two configurations:
with classic mutation operators only, and with quantum mutation
operators. For both configurations we used MutPy’s defaults pa-
rameters.

For each QP / test suite we collected the number of generated
mutants, the number of mutated LOC and the ratio of mutants per
LOC, the number of mutants killed, the number of mutants that
survived and were exercised as well as that survived and were not
exercised by the test suite, the number of incompetent mutants, the
number of timeout mutants, the mutation score calculated with the
number of survived mutants exercised and not exercised by the test
suite and finally the time it took to run all mutants.

18https://github.com/qiskit-community/qiskit-textbook/tree/3ffedf9
19https://github.com/Qiskit/qiskit-tutorials/tree/eb189a6
20Although QISKit-Aqua’s repository has been deprecated as of April 2021, all its
functionalities “are not going away” and have been migrated to either new packages
or to other QISKit packages. For example, core algorithms and operators’ functions
have been moved to the QISKit-Terra’s repository. More info in https://github.com/
Qiskit/qiskit-aqua/#migration-guide.

4

https://coverage.readthedocs.io/en/coverage-5.5
https://github.com/mutpy/mutpy#mutation-operators
https://github.com/Qiskit/qiskit-aqua/tree/stable/0.9/qiskit/aqua/algorithms
https://github.com/oreilly-qc/oreilly-qc.github.io/tree/1b9f4c1/samples
https://github.com/qiskit-community/qiskit-textbook/tree/3ffedf9
https://github.com/Qiskit/qiskit-tutorials/tree/eb189a6
https://github.com/Qiskit/qiskit-aqua/#migration-guide
https://github.com/Qiskit/qiskit-aqua/#migration-guide


465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Mutation Testing of Quantum Programs ICSE 2022, 21-29 May, 2022, Pittsburgh, USA

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

3.3 Experimental Metrics
To be able to compare the effectiveness of each test suite at killing
mutants we first compute its mutation score [22], i.e., ratio of killed
mutants to total number of mutants (excluding incompetent mu-
tants, e.g., mutants that introduce non-compiling changes). For-
mally, the mutation score of a test suite 𝑇 is given by:

∑︁
𝑜 ∈ 𝑂

|𝐾𝑜 |
|𝑀𝑜 |−|𝐼𝑜 | , |𝑀𝑜 | − |𝐼𝑜 | > 0

|𝑂 | × 100% (1)

where 𝑂 represents the set of mutation operators and 𝑜 a single
mutation operator, |𝑀𝑜 | the number of mutants injected by 𝑜 , |𝐼𝑜 |
the number of incompetent mutants generated by 𝑜 , and |𝐾𝑜 | the
number of mutants (of 𝑜) killed by 𝑇 .

As some mutants might not be killed by 𝑇 because the mutated
code is not even executed by 𝑇 , in our empirical analysis we also
report amutation scorewhich ignores mutants that are not executed
by 𝑇 . This score would allow one to assess the maximum mutation
score 𝑇 could achieve. Formally, this score is computed as:

∑︁
𝑜 ∈ 𝑂

|𝐾𝑜 |
|𝐸𝑜 |−|𝐼𝑜 | , |𝐸𝑜 | − |𝐼𝑜 | > 0

|𝑂 | × 100% (2)

where |𝐸𝑜 | represents the number of mutants injected by𝑚 and
exercised by 𝑇 .

Regarding time, we compute and report three different runtimes:
(1) total time to perform mutation analysis on test suite 𝑇 which
includes the time to create the mutants and run all tests on all
mutants (Runtime column in Table 2), (2) time to inject a mutant
in a non-mutated code (Generate mutant in Figure 2), (3) time to
create a mutated module after injecting the mutant (Create mutated
module in Figure 2).

3.4 Threats to Validity
Based on the guidelines in [41], we discuss the threats to validity.

Threats to External Validity: The QPs used in our empirical eval-
uation might not be representative of the whole QPs population.
Moreover, the state of test cases selected for each QP might not be
complete (i.e., we may have missed other test cases in QISKit-Aqua
that test the QPs’ code). To minimize these threats, we selected QPs
of various sizes, types, and levels of test coverage. Note that the lack
of real-world QPs is a well-known challenge [2, 9]. Another threat
is that we compared the results for only one, yet popular, quantum
framework (QISKit). Caution is required when generalizing to other
frameworks (e.g., Cirq).

Threats to Internal Validity: The main threat to internal validity
lies in the complexity of the underlying tools leveraged to build
QMutPy as well as the ones supporting our experimental infras-
tructure. To mitigate this threat the authors have peer-reviewed
the code before making the changes final.

Threats to Construct Validity: The parameters for drawing our
conclusions may not be sufficient. In particular, by default, MutPy
(hence, QMutPy) runs a test case 𝑡 on a mutant𝑚 for 5 times the
time 𝑡 takes to run on the non-mutated version. Increasing this
number may lead to different results (i.e., fewer timeouts).

4 RESULTS
Section 3 poses a set of research questions related to QMutPy’s
effectiveness and efficiency. The following subsections answer these
questions in detail.

4.1 RQ1: How does QMutPy perform at creating
quantum mutants?

Figure 2 shows the distribution of time QMutPy takes to generate
a mutant using classic and quantum mutation operators. On the
one hand, the time taken to remove or inject new nodes into the
program’s AST is higher on all quantummutation operators (except
QMD) than on classic mutation operators. The latter takes up to
a maximum of 2.68s (SCD) whereas the former takes up to 5.53s
(QGD), 11.36s (QMI), 61.13s (QGR), and 75.04s (QGI). On the other
hand, the time taken to create a mutated version, i.e., to convert
the mutated AST back to Python code, is relatively small (less than
0.1s) for all classic and quantum mutation operators.

QMutPy takes up to 16x more time to generate quantum
mutants than to generate classic mutants.

We hypothesize the following reasons to explain its performance
while creating quantum operators:

(1) Mutation operators based on functions calls (i.e., calls to quan-
tum gates). Our set of quantum mutation operators, conversely to
the classic ones, are based on function calls. Mutating a function is
more complex than mutating, for example, a constant or a logical
operator. It is worth noting that classic mutation operators that
also modify function calls (e.g., SCD) are also more time consuming
than operators that work at, e.g., logical operator level, as the LOD.

(2) Search for quantum gates. Quantum mutation operators QGR,
QGD, QGI, and QMI first visit all nodes of the AST and for each
function call checks whether it is a call to a quantum gate. As the
number of function calls in a program is typically high, we estimate
that the consecutive checking is time consuming. Possible solutions
to address this problem would be to create a new type of operation
in the Python AST, analogous to logical operators, but specifically
dedicated to quantum gates.

(3) Search for an equivalent gate. In QMutPy’s current implemen-
tation, once a call to a quantum gate is found, quantum mutation
operators QGI and QGR (the two most time-consuming operators)
attempt to find a correspondent equivalent gate in the set of avail-
able operators. This issue could be mitigated by pre-processing the
set of equivalent gates.

(4) Modifying or adding nodes in the AST. Although quantum
mutation operators QGR, QMD, and QGD only modify one node
of the program’s AST, QGI and QMI not only modify one node but
also add another to the end of the AST. We estimate this to increase
the runtime of these operators.

The generation of quantum mutants is more complex to per-
form than classic mutants and therefore, as expected, more
time consuming. Given the low number of quantum mutants
we were able to generate (see RQ2), we argue QMutPy’s
runtime at generating quantum mutants slightly affects the
overall time spent on mutation testing.

5



581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

ICSE 2022, 21-29 May, 2022, Pittsburgh, USA Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

1.99 1.56
2.07 1.88 2.19 1.72 1.48

2.53

1.27 1.03

2.02 2.14 2.12
1.26

2.12 1.72
2.68 2.64 2.31

5.53

75.04 61.13

2.05

11.36

Classic Quantum

AOD AOR ASR BCR COD COI CRP DDL EHD EXS IOD IOP LCR LOD LOR ROR SCD SCI SIR QGD QGI QGR QMD QMI

0.1

0.5

1.0

2.5

5.0

10.0

25.0

50.0

100.0

Operator

T
im

e
 (

s
e

c
o

n
d

s
)

Generate mutant Create mutated module

Figure 2: Distribution of the time required to inject a mutant and create a mutated target version. For each mutation operator, the purple text reports the maximum
time of the ‘Generate mutant’ phase, i.e., time to inject or remove nodes from the AST, the green star reports the average time a mutation operator takes to create a mutated module
(i.e., Python code), and the orange circle reports the median time a mutation operator takes to generate a mutant and create a mutated module.

4.2 RQ2: How many quantum mutants are
generated by QMutPy?

To answer this research question, we analyze our data at two dif-
ferent levels: (i) program level, i.e., how many quantum mutants
are generated per program (see Table 2), and (ii) mutation operator,
i.e., how many mutants are generated by each quantum mutation
operator (see Table 3). For this research questions, we focus on the
columns “# Mutants” and “# Mutated LOC” on both tables.

4.2.1 RQ2.1: How many quantum mutants are generated on each
program? As we can see in Table 2 (column “# Mutants”), QMutPy
generates at least one quantummutant for 11 out of the 24QPs. This
means that the remaining programs neither use quantum gates nor
measurements. Thus, further more quantum mutation operations
should be investigated and developed to support those QPs.

On average, QMutPy generated 64 quantum mutants (e.g., 1
mutant for vqe and qsvm – 207 mutants for shor). Given that our set
of mutation operators focus on specific function calls which might
not occur as often as, e.g., classic arithmetic operations in a program,
on average, QMutPy only mutated 4 lines of code with an average
of 13 mutants per line (see column “# Mutated LOC”). In contrast,
at least one classic mutant was generated for all programs. 147
mutants on average (+83) and 64 lines of code mutated (+60) with
an average of 3 mutants per line (-10). Note that QPs are composed
of more traditional programming blocks such as conditions, loops,
and arithmetic operations than calls to the quantum API. Thus, and
as there are many more lines of code that can be mutated using
classic mutation operators than using quantum mutation operators,
it is expected to have fewer quantum mutants in a QP.

4.2.2 RQ2.2: How many mutants are generated by each quantum
mutation operator? As we can see in Table 3 (column “# Mutants”),
on average, 140 mutants were generated by our set of quantum
mutation operators. The quantummutation operator that generated
fewer mutants is QMD (12 mutants), whereas QGI (328 mutants) is
the one generating more mutants. These results show that
• Quantum measurements are not that common in QPs (as only

12 measurements were mutated).
• Out of the 40 quantum gates with at least one syntactical-

equivalent gate, 28 appear in the evaluated QPs.

• The insertion and replacement of quantum gates with their
syntactical-equivalent ones represent 90% of all quantum mu-
tants. This shows the importance of syntactically-equivalent
gates, tailored for QPs, in mutation testing.

Worth noting that the average number of mutants generated by
our quantum mutation operators is slightly below the number of
mutants generated by classic mutation operators (140 vs. 186, which
is highly dominated by CRP). As there are many more lines of code
that could be targeted by classic mutation operators (e.g., usage
of constants) and many more classic operators (18 vs. our set of 5
quantum ones), it is expected that there are more classic mutants
than quantum mutants. Nevertheless, the top-2 quantum mutation
operators (i.e., QGI and QGR) generated more mutants than 15 out
of the 18 classic mutation operators (i.e., AOD, AOR, ASR, BCR,
COD, COI, CRP, DDL, EHD, EXS, IHD, IOD, IOP, LCR, LOD, LOR,
ROR, SCD, SCI, and SIR), 628 vs. 517 mutants.

For 11 out of 24 QPs, QMutPy mutates 4 lines of code and
generates 14 different mutants per mutated line. In total, it
generates a total of 696 mutants, 140 per mutation operator.

4.3 RQ3: How do test suites for QPs perform at
killing quantum mutants?

The goal of this question is to analyze the quality and resilience of
test suites designed to verify QPs. As mentioned before, the idiosyn-
crasies underlying QPs (e.g., superposition, entanglement) makes
testing far from trivial. We argue that QMutPy’s mutants can be
used as benchmarks to assess the quality of tests designed to verify
QPs. Table 2 reports the results of performing mutation testing on
the 24 QPs described in Table 1, whereas Table 3 summarizes the
results per mutation operator.

As we can see in Table 3, out of the 696 mutants generated by
our quantum mutation operators, 325 (46.70%) were killed by the
programs’ test suites. QGI, the mutation operator that generated
more mutants, had a ratio of 102 killed mutants, followed by QGR
with 170 killed mutants out of 300 generated. The non-killed mu-
tants either survived to the test suites (307, 44.11%), were not even
exercised by the test suites (2 QMD mutants, 0.29%), or resulted in
a timeout (62, 8.91%). In comparison, out of the 3527 generated by

6



697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Mutation Testing of Quantum Programs ICSE 2022, 21-29 May, 2022, Pittsburgh, USA

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Quantum Program # Mutants # Mutated LOC # Killed # Survived # Incompetent # Timeout % Score Runtime

Classic mutants
adapt_vqe 142 64 (2.22) 3 0 / 0 3 136 7.31 / 7.31 1023.66
bernstein_vazirani 19 10 (1.90) 13 4 / 0 0 2 67.14 / 67.14 3.51
bopes_sampler 38 22 (1.73) 0 0 / 0 0 38 0.00 / 0.00 1119.35
classical_cplex 212 82 (2.59) 88 69 / 44 0 11 49.50 / 53.77 4.54
cobyla_optimizer 50 25 (2.00) 24 11 / 8 0 7 51.31 / 55.44 4.35
cplex_optimizer 23 14 (1.64) 1 7 / 10 1 4 4.17 / 4.17 1.96
deutsch_jozsa 27 11 (2.45) 18 5 / 0 0 4 47.50 / 47.50 4.21
eoh 34 14 (2.43) 10 21 / 0 0 3 22.02 / 22.02 36.61
grover 270 137 (1.97) 100 89 / 28 5 48 31.90 / 32.28 1031.75
grover_optimizer 187 73 (2.56) 8 0 / 0 1 178 6.65 / 6.65 329.12
hhl 266 121 (2.20) 127 102 / 26 5 6 39.14 / 41.04 1998.06
iqpe 287 93 (3.09) 162 94 / 12 5 14 43.31 / 43.73 81.05
numpy_eigen_solver 214 94 (2.28) 76 73 / 42 6 17 21.37 / 23.83 5.90
numpy_ls_solver 36 14 (2.57) 10 13 / 6 1 6 14.86 / 17.16 1.60
numpy_minimum_eigen_solver 41 19 (2.16) 13 12 / 0 5 11 35.42 / 35.42 2.28
qaoa 15 9 (1.67) 4 8 / 0 2 1 45.00 / 45.00 29.94
qgan 186 80 (2.33) 59 0 / 0 2 125 23.98 / 23.98 3779.19
qpe 189 68 (2.78) 79 73 / 6 8 23 29.59 / 29.80 82.51
qsvm 141 88 (1.60) 57 34 / 38 1 11 45.94 / 48.50 674.82
shor 331 123 (2.69) 153 136 / 30 0 12 40.78 / 44.99 1011.41
simon 58 21 (2.76) 37 13 / 0 0 8 63.40 / 63.40 23.94
sklearn_svm 38 20 (1.90) 6 17 / 12 1 2 28.75 / 28.75 1.25
vqc 411 181 (2.27) 116 175 / 91 2 27 27.25 / 30.52 8630.39
vqe 312 136 (2.29) 100 15 / 0 6 191 31.87 / 31.87 13419.82

Average 146.96 63.29 (2.25) 52.67 40.46 / 14.71 2.25 36.88 32.42 / 33.51 1387.55

Quantum mutants
bernstein_vazirani 93 5 (18.60) 74 19 / 0 0 0 91.32 / 91.32 7.29
deutsch_jozsa 93 5 (18.60) 66 27 / 0 0 0 87.68 / 87.68 7.70
grover 93 5 (18.60) 17 76 / 0 0 0 50.32 / 50.32 212.24
grover_optimizer 52 2 (26.00) 2 0 / 0 0 50 25.00 / 25.00 118.56
hhl 2 2 (1.00) 1 0 / 1 0 0 50.00 / 100.00 97.70
iqpe 105 5 (21.00) 82 19 / 0 0 4 90.56 / 90.56 31.07
qsvm 1 1 (1.00) 1 0 / 0 0 0 100.00 / 100.00 47.85
shor 207 9 (23.00) 50 150 / 0 0 7 53.34 / 53.34 779.68
simon 47 3 (15.67) 32 15 / 0 0 0 86.36 / 86.36 13.45
vqc 2 2 (1.00) 0 1 / 1 0 0 0.00 / 0.00 170.21
vqe 1 1 (1.00) 0 0 / 0 0 1 0.00 / 0.00 144.21

Average 63.27 3.64 (13.22) 29.55 27.91 / 0.18 0.00 5.64 57.69 / 62.23 148.18
Table 2: Summary of our results per QP. Note that although 24 QPs were considered in our study, in here we only list the ones for which QMutPy was able to generate at least
one mutant (either classic or quantum).
Column “Quantum Program” lists the subjects used in our experiments. Column “# Mutants” reports the number of mutants per subject. Column “# Mutated LOC” reports the
number of lines of code with at least one mutant and the ratio of mutants per line of code. Column “# Killed” reports the number of mutants killed by the subject’s test suite. Column
“# Survived” reports the number of mutants that survived and were exercised by the test suite, and the number of mutants that survived and were not exercised by the test suite. Note
that any buggy code or mutant that is not exercised by the test suite cannot be detected or killed. Column “# Incompetent” reports the number of mutants that were considered
incompetent, e.g., mutants that make the source code uncompilable. Column “# Timeout” reports the number of mutants for which the subject’s test suite ran out of time. Column “%
Score” reports the mutation score considering all mutants killed and survived (but excluding incompetents), and reports the mutation score considering all mutants killed by the test
suite and all mutants that survived and were exercised by the test suite. Column “Runtime” reports the time, in minutes, QMutPy took to run on all mutants.

classic mutation operators, 1264 (35.84%) were killed, 971 (27.53%)
survived, 353 (10.01%) were not exercised by the test suites, and 885
(25.10%) timeout. These results show that the programs’ test suites
might have been designed to mainly verify the quantum aspect of
each program as
• +10.86% more quantum mutants are killed than classic ones.
• Only 0.29% of all quantum mutants are not exercised the test

suites, as opposed to 10.01% (+9.72%) of the classic mutants.
At program level, on average, the mutation score achieved by

all programs’ test suites was 57.69% if all mutants are considered
(Equation (1)) and 62.23% if only mutants covered by the test suite
are considered (Equation (2)). Recall that noncoveredmutantswould
never be killed by any test. Themutation score achieved by each test

suite ranged from 0% (vqc and vqe, more on this in Section 5.1) to
100% (hhl and qsvm). The mutation score achieved by all programs’
test suites on classic mutants was 33.51% on average (considering
all programs) and 41.61% if we only consider the same set of 11
programs for which quantum mutation operators were able to
generated at least one mutant. That is, the programs’ test suites
achieved a higher mutation score on quantum mutants than on
classic mutants, +20.62% (62.23% vs. 41.61%). Hence, reinforcing the
idea that the test suites may have been designed to mainly verify
the quantum characteristics of each QP.

Regarding the time required to run mutation testing, on average,
test suites took 148.18 minutes to run on quantum mutants. Note
that although different programs have more / less mutants or test

7



813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

ICSE 2022, 21-29 May, 2022, Pittsburgh, USA Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

Operator # Mutants # Killed # Survived # Incompetent # Timeout

Classic mutants
AOD 42 15 12 / 4 0 11
AOR 421 169 105 / 41 0 106
ASR 67 5 23 / 4 0 35
BCR 11 2 1 / 5 0 3
COD 63 34 10 / 6 0 13
COI 397 221 53 / 19 0 104
CRP 1860 634 551 / 256 0 419
DDL 147 15 55 / 0 44 33
EHD 2 0 0 / 1 0 1
EXS 4 0 0 / 2 0 2
IOD 100 10 17 / 0 10 63
IOP 31 3 25 / 0 0 3
LCR 38 11 11 / 0 0 16
LOD 1 0 0 / 0 0 1
LOR 1 0 0 / 1 0 0
ROR 185 79 47 / 11 0 48
SCD 31 8 21 / 0 0 2
SCI 69 34 25 / 0 0 10
SIR 57 24 15 / 3 0 15

Average 185.63 66.53 51.11 / 18.58 2.84 46.58

Quantum mutants
QGD 28 18 8 / 0 0 2
QGI 328 102 196 / 0 0 30
QGR 300 170 102 / 0 0 28
QMD 12 8 1 / 2 0 1
QMI 28 27 0 / 0 0 1

Average 139.20 65.00 61.40 / 0.40 0.00 12.40

Table 3: Results per mutation operator. (Refer to Table 2 for an explanation of
each column.)

cases, the runtime of each QP’s test suite on quantum mutants
differs largely. For instance, shor’s test suite, the QP with more
quantum mutants, took 779.68 minutes; qsvm, the QP with fewer
mutants and tests, took 47.85 minutes; and grover, the QP with
more tests, took 212.24 minutes. In comparison to classic mutants,
programs’ test suites took longer to run on quantum mutants than
on classic. For example, qsvm’s test suite took 47.85 minutes to run
on the only generated quantummutant and 4.79 minutes on average
( 674.82 minutes
141 classic mutants ) on each classic mutant. The reasons behind these
time differences are explained in Section 4.1.

Test suites for QPs achieved a lowmutation score on quantum
mutants (62.23%), although +28.72% higher than the mutation
score achieved on classic mutants.

4.4 RQ4: How many test cases are required to
kill or timeout a quantum mutant?

The goal of this question is to understand the effectiveness of cur-
rent quantum test suites. Figure 3 shows the distribution of the
number of tests required to kill or timeout each mutant per muta-
tion operator and per QP.

At the mutation operator level, the average number of tests
needed to kill or timeout each quantum mutant is 9 (e.g., 1 test for
QMI — 73 tests for QMD). The average number of tests needed to
kill or timeout each classic mutant is 26, with 10 out of 18 classic
mutation operators executing more than 500 tests.

At program level, the average number of tests needed to
kill or timeout a quantum mutant is 13 (e.g., 1 test for
bernstein_vazirani, iqpe, and qsvm, and 73 for grover). Regard-
ing classic mutants, the average number of tests needed to kill or
timeout each classic mutant was 18 (considering all programs) or
64 if only the 10 programs for which at least one quantum mutant
was generated and killed or timeout are considered.

As fewer tests are required to kill quantum mutants than to kill
classic mutants, these results are in line with the assumption that
these test suites primarily check quantum-related behavior.

On average, quantum mutants require -65% tests to be killed
or timeout than classic mutants (9 vs. 26).

4.5 RQ5: How are quantum mutants killed?
With this question we aim to analyze what kills quantum mutants.

We have observed that, out of the 1589 killed mutants, two-thirds
of mutants are killed by errors (1067) and the other one-third by test
assertions (522). Figure 4 reports the number of mutants killed by
errors and test assertions permutation operator. Overall, themajority
of classic mutants are killed by errors. As already mentioned, we
argue that QISKit test suites are mainly designed to check for the
correct behavior of QPs. Therefore, they are less resilient to classic
mutations and likely to be killed by errors instead of test assertions.
This observation does not hold for quantum mutants.

QGD, QGR, QGI, and QMD mutants are killed more often by
test assertions than by errors. We also observed that QMI mutants,
as expected, are killed by errors only. The reason is that QISKit
does not have a fail-safe mechanism for inserting measurements.
When a measurement operation is randomly inserted, the circuit
may become unprocessable and an error is thrown.

Quantum mutants are mainly killed by test assertions (with
the exception of QMI mutants). Classic mutants, on the other
hand, are mainly killed by errors.

5 IMPROVING QUANTUM TEST SUITES
The results in Section 4 suggest that, despite the average quantum
mutation score of the QISKit’s test suites is high, there is room for
improvement. For example, we observed that 150 out of the 207
quantum mutants generated for shor survived.

We draw on two hypotheses to guide our discussion on how to
improve QPs’ test suites to kill more quantum mutants:
ℎ1 The low mutation score achieved by each test suite is due to

their low coverage.
ℎ2 The low mutation score achieved by each test suite is due to

their low number of test assertions.
Note that the described mutations and improvements to the test
suites are available in the accompanying supplementary material,
and will be publicly available on GitHub upon acceptance.

5.1 Improving coverage
Figure 5 shows the relation between coverage and mutation score
of each test suite. We can see that, on one hand, QPs’ test suite
with higher coverage tend to achieve higher mutation scores.
bernstein_vazirani, simon, and deutsch_jozsa are three of the

8



929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Mutation Testing of Quantum Programs ICSE 2022, 21-29 May, 2022, Pittsburgh, USA

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

5
6

8

5
4

2

5
6

19 19

5 5
6

19

5

3

1

12

5

16

25

6

55 53

23

56

19 19

27

5

51

19
15

64

4

12

17

593 593

11

593 593 593 591

19 19

593

11

593

19

592 577

19 20
26

5
6

3

14

1

9 9 8

17

3

65 65 65 73

13

9

Classic Quantum

AOD AOR ASR BCR COD COI CRP DDL EHD EXS IOD IOP LCR LOD ROR SCD SCI SIR QGD QGI QGR QMD QMI

1

2

3

4
5

10

25

50

100

250

500

Operator

#
 T

e
s
ts

(a) Distribution of the number of tests that must be executed to kill or timeout a mutant per mutation operator.

19

3

1

17

7

1 1

11

1

5

1

4

1

12
6

578

1 1

3
2

1
2

1

5

13

5

2

17

8

3
2

8
4 4

1

3

1

9
6

314

1

14

3 3

1
2

8
5

19
13

4

48

13
8

3

11
18

5

1

5
3

21

6

593

2

64

3 4

1
2

33

5

18

19 17

7

1 1

14

6

65

3

1

19 16
8

1 1

14

6

50

9
5

19 18
13

1

3

14

6

73

18
33

13

C
la

s
s
ic

Q
u
a
n
tu

m

vqe
vqc

sklearn_svm
sim

on
shor

qsvm qpe
qgan

qaoa

numpy_minim
um_eigen_solve

r

numpy_ls_solve
r

numpy_eigen_solve
r

iqpe hhl

grove
r_optim

izer

grove
r

eoh

deutsch_jozsa

cplex_optim
izer

cobyla_optim
izer

classical_cplex

bopes_sampler

bernstein_va
zira

ni

adapt_vqe

1

5

10

25

50

100

250

500

1

5

10

25

50

100

250

500

Algorithm

#
 T

e
s
ts

(b) Distribution of the number of tests that must be executed to kill or timeout a mutant per program.
Figure 3: Distribution of the number of tests that must be executed to kill or timeout each mutant. The purple text reports the maximum number of tests needed to kill
a mutant, the green star reports the median of the number of tests needed to kill a mutant, and the orange circle reports the average number of tests needed to kill a mutant. The red
line represents the overall average number of tests needed to kill a classic mutant or a quantum mutant.

13
2

85 84

5 1 1 7
27

47

174

109

525

1
14 10 3 2 9

33
46

8
34

6
18 15

3

65

37

128

42

5 3
27

Classic Quantum

AOD AOR ASR BCR COD COI CRP DDL IOD IOP LCR ROR SCD SCI SIR QGD QGI QGR QMD QMI

0

100

200

300

400

500

Operator

#
 O

c
c
u
rr

e
n
c
e
s

Assertion Error

Figure 4: Number of mutants killed by an assertions or an error per mutation operator. In our experiments we found three types of errors thrown by the test suites.
(1) Qiskit-related: AquaError, QiskitOptimizationError, QiskitError, and CircuitError. (2) Python: NotImplementedError, IndexError, ValueError, AttributeError,
IsADirectoryError, ZeroDivisionError, OverflowError, UnboundLocalError, RuntimeError, NameError, and KeyError. (3) Third-party: CplexSolverError, DQCPError,
AxisError and LinAlgError.

QPs with the highest coverage and mutation score. On the other
hand, cplex_optimizer, adapt_vqe, and bopes_sampler are the
lowest in terms of code coverage and mutation score. Thus, with
this first hypothesis we aim to investigate whether increasing the
coverage of QPs, e.g., covering mutated lines of code that are not
exercised by the program’s test suite, leads to a higher mutation
score.

Table 2 shows that there are two QPs (hhl and vqc) that have
one mutant, generated by the QMD operator, that survived the test
suites and are not covered by any test.

We extended hhl’s and vqc’s test suite21 22 to cover these meth-
ods and added a more specific test assertion to each test. By re-
running the mutation analysis using the augmented test suites, we
21https://github.com/Qiskit/qiskit-aqua/blob/stable/0.9/test/aqua/test_hhl.py
22https://github.com/Qiskit/qiskit-aqua/blob/stable/0.9/test/aqua/test_vqc.py

9

https://github.com/Qiskit/qiskit-aqua/blob/stable/0.9/test/aqua/test_hhl.py
https://github.com/Qiskit/qiskit-aqua/blob/stable/0.9/test/aqua/test_vqc.py


1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

ICSE 2022, 21-29 May, 2022, Pittsburgh, USA Anon.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

0

20

40

60

80

60 70 80 90 100

% Coverage

%
 M

u
ta

ti
o
n
 S

c
o
re

adapt_vqe bernstein_vazirani bopes_sampler classical_cplex cobyla_optimizer cplex_optimizer

deutsch_jozsa eoh grover grover_optimizer hhl iqpe

numpy_eigen_solver numpy_ls_solver numpy_minimum_eigen_solver qaoa qgan qpe

qsvm shor simon sklearn_svm vqc vqe

Figure 5: % Mutation score vs. % Coverage.

verified that our hypothesis hold. In both QPs, the mutants that
survived our initial mutation analysis are killed by the augmented
test suites. That is, hhl’s mutation score increased from 50% to 100%
(coverage increased from 86.55% to 89.16%), and vqc’s mutation
score from 0% to 50% (coverage increased from 93.26% to 94.43%).

5.2 Improving test assertions
As mentioned before, QPs are probabilistic in nature. Suppose a
quantum circuit with 2 qubits. When read, these qubits could either
be 00, 01, 10, and 11. Suppose that the correct behavior is to observe
00 with 25% probability and 11 with 75%. If, instead, we observe
survived mutants for all the qubit values 00, 01, 10, and 11 with
some probability, then we would have a false negative since the
mutant should have been killed.

We argue that asserting the number of measurements in the test
suites is necessary to avoid these false negatives — hence, improving
the mutation score. To verify this intuition, we augmented shor’s
test suite23 (the QP with the most generated quantum mutants, see
Table 2) with additional test assertions. The added assertions check
the correctness of the number of obtained measurement values.

Similar to ℎ1, we re-run the mutation analysis using the aug-
mented test suites to verify that ℎ2 holds. Mutation score achieved
by the shor’s original test suite was 53.34% (50 mutants killed and
150 survived out of 207). The augmented test suite achieved a muta-
tion score of 72.81% (109 mutants killed and 91 survived). In detail,
the augmented test suite killed 6 out of 8 QGD mutants (+3 than
original test suite), 32 out of 99 QGI mutants (+19), 63 out of 91
QGR mutants (+37), and the same QMD and QMI mutants (1 out of
1 and 7 out of 8, respectively) as the original test suite.

6 RELATEDWORK
Liu et al. [28] has shown that quantum mutation is useful to check
the correct behavior of QPs. They proposed a search-based tech-
nique leverating six mutation operations: insert and remove an op-
eration, swap two operations, replace a gate in an operation, replace
qubits in an operation, and replace an operation. The technique
aims at reducing QPs’ runtime while keeping their correctness.
23https://github.com/Qiskit/qiskit-aqua/blob/stable/0.9/test/aqua/test_shor.py

Regarding quantum mutation tools, to the best of our knowledge
MTQC [32] and Muskit [30] are the only two — preliminary —
works that were published before. MTQC is a Java-based quantum
mutation testing tool that uses a Graphic User Interface (GUI) to
perform mutations on either QISKit or Q# QPs. MTQC performs
primitive, custom mutations, albeit we can say that the operation it
performs is similar to our QGR operation. However, the concept of
equivalent gates is not defined and the gate swaps performed are a
subset of our set of equivalent gates. They implement 52 isolated
operations, each replacing a gate by another. Compared to MTQC,
QMutPy is a fully automatic approach and offers a larger set of
mutation operators, including classic ones.

Muskit [30] is a Python mutation tool that is provided as a com-
mand line interface, a GUI, and a web application. Muskit supports
19 QISKit gates and can perform three quantum mutation oper-
ations: add, remove, and replace gate. These are similar to our
QGI, QGD, and QGR mutation operators, respectively. QMutPy, on
the other hand, supports 40 gates (+21) and two additional muta-
tion operators. Although Muskit has also been tailored for QISKit
programs, it cannot be used out-of-the-box on, e.g., the 24 QPs eval-
uated in our empirical study. Muskit either uses a manually-written
test suite or automatically generates a new suite [2]. Note that both
test suites are sequences of test inputs and not complex sequence
of code statements (e.g., calls to constructors to instantiate objects,
method calls on these objects) as the ones used in our study which
are required to test the 24 QPs. Furthermore, Muskit’s test analyzer
requires a program specification to determine whether a mutant
has been killed by a test case. No specification is available for the
24 QPs considered in our study and writing one would require
expertise on QISKit and on quantum computing.

7 CONCLUSIONS
In this paper, we propose a mutation-based technique to test QPs,
coined QMutPy, that is capable of mutating QPs for QISKit, the IBM
quantum framework. To demonstrate the effectiveness of QMutPy,
we have carried out an empirical study with 24 real QPs (selected
from QISKit). We observed several issues that may lead to future
failures— non-optimal code coverage; lowmutation scores; minimal
number of test cases. Furthermore, we observed that quantum
mutants required less test cases to be killed than classic mutants.
This is likely due to the objective of the designed test suites —
checking for the QP’s behavior.

As a consequence of our observations, we draw on two potential
ways to improve test suites: coverage and assertion improvements.
We showed how both improvements can increase the mutation
score significantly on the QPs considered in our study24.

As for future work, we plan to extend QMutPy with other muta-
tion operators, and offer QMutPy to other quantum frameworks
(e.g., Cirq and Q#). Moreover, combining QMutPy with techniques
to automatically generate test suites for QPs [3, 18, 27, 40] is an
interesting venue for future work. Finally, we plan to run our muta-
tion analysis on real quantum computers (and not just simulators)
and check for potential differences.

24We are currently discussing with the IBM QISKit developers how to integrate our
findings into their codebase.

10

https://github.com/Qiskit/qiskit-aqua/blob/stable/0.9/test/aqua/test_shor.py


1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

Mutation Testing of Quantum Programs ICSE 2022, 21-29 May, 2022, Pittsburgh, USA

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

REFERENCES
[1] Gadi Aleksandrowicz, Thomas Alexander, Panagiotis Barkoutsos, Luciano Bello,

Yael Ben-Haim, David Bucher, Francisco Jose Cabrera-Hernández, Jorge Carballo-
Franquis, Adrian Chen, Chun-Fu Chen, Jerry M. Chow, Antonio D. Córcoles-
Gonzales, Abigail J. Cross, Andrew Cross, Juan Cruz-Benito, Chris Culver, Sal-
vador De La Puente González, Enrique De La Torre, Delton Ding, Eugene Du-
mitrescu, Ivan Duran, Pieter Eendebak, Mark Everitt, Ismael Faro Sertage, Al-
bert Frisch, Andreas Fuhrer, Jay Gambetta, Borja Godoy Gago, Juan Gomez-
Mosquera, Donny Greenberg, Ikko Hamamura, Vojtech Havlicek, Joe Hellmers,
Łukasz Herok, Hiroshi Horii, Shaohan Hu, Takashi Imamichi, Toshinari Itoko,
Ali Javadi-Abhari, Naoki Kanazawa, Anton Karazeev, Kevin Krsulich, Peng Liu,
Yang Luh, Yunho Maeng, Manoel Marques, Francisco Jose Martín-Fernández,
Douglas T. McClure, David McKay, Srujan Meesala, Antonio Mezzacapo, Nikolaj
Moll, Diego Moreda Rodríguez, Giacomo Nannicini, Paul Nation, Pauline Ol-
litrault, Lee James O’Riordan, Hanhee Paik, Jesús Pérez, Anna Phan, Marco
Pistoia, Viktor Prutyanov, Max Reuter, Julia Rice, Abdón Rodríguez Davila,
Raymond Harry Putra Rudy, Mingi Ryu, Ninad Sathaye, Chris Schnabel, Ed-
die Schoute, Kanav Setia, Yunong Shi, Adenilton Silva, Yukio Siraichi, Seyon
Sivarajah, John A. Smolin, Mathias Soeken, Hitomi Takahashi, Ivano Tavernelli,
Charles Taylor, Pete Taylour, Kenso Trabing, Matthew Treinish, Wes Turner,
Desiree Vogt-Lee, Christophe Vuillot, Jonathan A. Wildstrom, Jessica Wilson,
Erick Winston, Christopher Wood, Stephen Wood, Stefan Wörner, Ismail Yunus
Akhalwaya, and Christa Zoufal. 2019. Qiskit: An Open-source Framework for
Quantum Computing. https://doi.org/10.5281/zenodo.2562111

[2] Shaukat Ali, Paolo Arcaini, Xinyi Wang, and Tao Yue. 2021. Assessing the
effectiveness of input and output coverage criteria for testing quantum programs.
In 2021 14th IEEE Conference on Software Testing, Verification and Validation
(ICST). IEEE, 13–23.

[3] Shaukat Ali, Paolo Arcaini, Xinyi Wang, and Tao Yue. 2021. Assessing the Effec-
tiveness of Input and Output Coverage Criteria for Testing Quantum Programs.
In 2021 14th IEEE Conference on Software Testing, Verification and Validation
(ICST). 13–23. https://doi.org/10.1109/ICST49551.2021.00014

[4] M. Moein Almasi, Hadi Hemmati, Gordon Fraser, Andrea Arcuri, and Junde-
finednis Benefelds. 2017. An Industrial Evaluation of Unit Test Generation:
Finding Real Faults in a Financial Application. In Proceedings of the 39th In-
ternational Conference on Software Engineering: Software Engineering in Prac-
tice Track (Buenos Aires, Argentina) (ICSE-SEIP ’17). IEEE Press, 263–272.
https://doi.org/10.1109/ICSE-SEIP.2017.27

[5] Paul Ammann and Jeff Offutt. 2016. Introduction to Software Testing (1 ed.).
Cambridge University Press, USA.

[6] Moritz Beller, Chu-PanWong, Johannes Bader, Andrew Scott, Mateusz Machalica,
Satish Chandra, and Erik Meijer. 2021. What It Would Take to Use Mutation
Testing in Industry–A Study at Facebook. arXiv:2010.13464 [cs.SE]

[7] Austin Bingham. [n.d.]. Cosmic Ray: mutation testing for Python. https://github.
com/sixty-north/cosmic-ray.

[8] Jean-Luc Brylinski and Ranee Brylinski. 2002. Universal quantum gates. In
Mathematics of quantum computation. Chapman and Hall/CRC, 117–134.

[9] J. Campos and A. Souto. 2021. QBugs: A Collection of Reproducible Bugs in
Quantum Algorithms and a Supporting Infrastructure to Enable Controlled
Quantum Software Testing and Debugging Experiments. In 2021 IEEE/ACM 2nd
International Workshop on Quantum Software Engineering (Q-SE). IEEE Computer
Society, Los Alamitos, CA, USA, 28–32. https://doi.ieeecomputersociety.org/10.
1109/Q-SE52541.2021.00013

[10] Andrew W. Cross, Lev S. Bishop, John A. Smolin, and Jay M. Gambetta. 2017.
Open Quantum Assembly Language. arXiv:1707.03429 [quant-ph]

[11] Mark Fingerhuth, Tomáš Babej, and Peter Wittek. 2018. Open source software in
quantum computing. PLOS ONE 13, 12 (12 2018), 1–28. https://doi.org/10.1371/
journal.pone.0208561

[12] Gordon Fraser and José Miguel Rojas. 2019. Software Testing. Springer Interna-
tional Publishing, Cham, 123–192. https://doi.org/10.1007/978-3-030-00262-6_4

[13] Alessio Gambi, Marc Mueller, and Gordon Fraser. 2019. Automatically Testing
Self-Driving Cars with Search-Based Procedural Content Generation. In Proceed-
ings of the 28th ACM SIGSOFT International Symposium on Software Testing and
Analysis (Beijing, China) (ISSTA 2019). Association for Computing Machinery,
New York, NY, USA, 318–328. https://doi.org/10.1145/3293882.3330566

[14] Lov K. Grover. 1996. A Fast Quantum Mechanical Algorithm for Database
Search. In Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory
of Computing (Philadelphia, Pennsylvania, USA) (STOC ’96). Association for
Computing Machinery, New York, NY, USA, 212–219. https://doi.org/10.1145/
237814.237866

[15] AramW. Harrow, Avinatan Hassidim, and Seth Lloyd. 2009. Quantum Algorithm
for Linear Systems of Equations. Phys. Rev. Lett. 103 (Oct 2009), 150502. Issue 15.
https://link.aps.org/doi/10.1103/PhysRevLett.103.150502

[16] Konrad Hałas. 2011. MutPy: A Mutation Testing Tool for Python 3.x Source
Code. https://github.com/mutpy/mutpy. Accessed: 2021-01-18.

[17] Hadi Hemmati, Andrea Arcuri, and Lionel Briand. 2013. Achieving Scalable
Model-Based Testing through Test Case Diversity. 22, 1, Article 6 (March 2013),

42 pages. https://doi.org/10.1145/2430536.2430540
[18] Shahin Honarvar, Mohammad Reza Mousavi, and Rajagopal Nagarajan. 2020.

Property-Based Testing of Quantum Programs in Q#. In Proceedings of the
IEEE/ACM 42nd International Conference on Software Engineering Workshops
(Seoul, Republic of Korea) (ICSEW’20). Association for Computing Machinery,
New York, NY, USA, 430–435. https://doi.org/10.1145/3387940.3391459

[19] Anders Hovmöller. 2016. Mutmut: a Python mutation testing system. https:
//github.com/boxed/mutmut. Accessed: 2021-01-18.

[20] Yipeng Huang and Margaret Martonosi. 2018. QDB: from quantum algorithms
towards correct quantum programs. arXiv preprint arXiv:1811.05447 (2018).

[21] Marko Ivanković, Goran Petrović, René Just, and Gordon Fraser. 2019. Code
coverage at Google. In Proceedings of the 2019 27th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering. 955–963.

[22] Yue Jia and Mark Harman. 2010. An analysis and survey of the development of
mutation testing. IEEE transactions on software engineering 37, 5 (2010), 649–678.

[23] Natalia Juristo, Ana M Moreno, and Wolfgang Strigel. 2006. Guest editors’
introduction: Software testing practices in industry. IEEE software 23, 4 (2006),
19–21.

[24] René Just, Darioush Jalali, Laura Inozemtseva, Michael D. Ernst, Reid Holmes, and
Gordon Fraser. 2014. Are Mutants a Valid Substitute for Real Faults in Software
Testing?. In Proceedings of the 22nd ACM SIGSOFT International Symposium on
Foundations of Software Engineering (Hong Kong, China) (FSE 2014). Association
for Computing Machinery, New York, NY, USA, 654–665. https://doi.org/10.
1145/2635868.2635929

[25] Rafaqut Kazmi, Dayang N. A. Jawawi, Radziah Mohamad, and Imran Ghani. 2017.
Effective Regression Test Case Selection: A Systematic Literature Review. ACM
Comput. Surv. 50, 2, Article 29 (May 2017), 32 pages.

[26] Evan Kepner. [n.d.]. mutatest: Python mutation testing. https://github.com/
EvanKepner/mutatest.

[27] Gushu Li, Li Zhou, Nengkun Yu, Yufei Ding, Mingsheng Ying, and Yuan Xie.
2020. Projection-Based Runtime Assertions for Testing and Debugging Quantum
Programs. Proc. ACM Program. Lang. 4, OOPSLA, Article 150 (Nov. 2020), 29 pages.
https://doi.org/10.1145/3428218

[28] P. Liu, S. Hu, M. Pistoia, C. R. Chen, and J. M. Gambetta. 2019. Stochastic
Optimization of Quantum Programs. Computer 52, 6 (2019), 58–67.

[29] Daniel Méndez Fernández, Martin Monperrus, Robert Feldt, and Thomas Zim-
mermann. 2019. The open science initiative of the Empirical Software Engi-
neering journal. Empirical Software Engineering 24, 3 (01 Jun 2019), 1057–1060.
https://doi.org/10.1007/s10664-019-09712-x

[30] Eñaut Mendiluze, Shaukat Ali, Paolo Arcaini, and Tao Yue. 2021. Muskit: A
Mutation Analysis Tool for Quantum Software Testing. Technical Report.

[31] Carlos Pacheco, Shuvendu K. Lahiri, Michael D. Ernst, and Thomas Ball. 2007.
Feedback-Directed Random Test Generation. In Proceedings of the 29th Interna-
tional Conference on Software Engineering (ICSE ’07). IEEE Computer Society,
USA, 75–84. https://doi.org/10.1109/ICSE.2007.37

[32] Javier Pellejero. 2020. MTQC: Mutation Testing for Quantum Computing. https:
//javpelle.github.io/MTQC. Accessed: 2021-01-18.

[33] Goran Petrović and Marko Ivanković. 2018. State of Mutation Testing at
Google. In Proceedings of the 40th International Conference on Software En-
gineering: Software Engineering in Practice (Gothenburg, Sweden) (ICSE-SEIP
’18). Association for Computing Machinery, New York, NY, USA, 163–171.
https://doi.org/10.1145/3183519.3183521

[34] Goran Petrovi’c, Marko Ivankovi’c, G. Fraser, and René Just. 2021. Does Mutation
Testing Improve Testing Practices? 2021 IEEE/ACM 43rd International Conference
on Software Engineering (ICSE) (2021), 910–921.

[35] Goran Petrovic, Marko Ivankovic, Gordon Fraser, and Rene Just. 2021. Practical
Mutation Testing at Scale: A view from Google. IEEE Transactions on Software
Engineering (2021), 1–1. https://doi.org/10.1109/TSE.2021.3107634

[36] John Preskill. 2018. Quantum Computing in the NISQ era and beyond. Quantum
2 (Aug. 2018), 79. https://doi.org/10.22331/q-2018-08-06-79

[37] Peter W. Shor. 1999. Polynomial-Time Algorithms for Prime Factorization and
Discrete Logarithms on a Quantum Computer. SIAM Rev. 41, 2 (1999), 303–332.
https://doi.org/10.1137/S0036144598347011

[38] Andrew Steane. 1998. Quantum computing. Reports on Progress in Physics 61, 2
(1998), 117.

[39] O. Tange. 2011. GNU Parallel - The Command-Line Power Tool. ;login: The
USENIX Magazine 36, 1 (Feb. 2011), 42–47. https://doi.org/10.5281/zenodo.16303

[40] Jiyuan Wang, Ming Gao, Yu Jiang, Jianguang Lou, Yue Gao, Dongmei Zhang,
and Jiaguang Sun. 2018. QuanFuzz: Fuzz Testing of Quantum Program.
arXiv:1810.10310 [cs.SE]

[41] Claes Wohlin, Per Runeson, Martin Höst, Magnus C Ohlsson, Björn Regnell, and
Anders Wesslén. 2012. Experimentation in software engineering. Springer Science
& Business Media.

[42] Noson S Yanofsky andMirco AMannucci. 2008. Quantum computing for computer
scientists. Cambridge University Press.

[43] Jianjun Zhao. 2020. Quantum Software Engineering: Landscapes and Horizons.
arXiv:2007.07047 [cs.SE]

11

https://doi.org/10.5281/zenodo.2562111
https://doi.org/10.1109/ICST49551.2021.00014
https://doi.org/10.1109/ICSE-SEIP.2017.27
https://arxiv.org/abs/2010.13464
https://github.com/sixty-north/cosmic-ray
https://github.com/sixty-north/cosmic-ray
https://doi.ieeecomputersociety.org/10.1109/Q-SE52541.2021.00013
https://doi.ieeecomputersociety.org/10.1109/Q-SE52541.2021.00013
https://arxiv.org/abs/1707.03429
https://doi.org/10.1371/journal.pone.0208561
https://doi.org/10.1371/journal.pone.0208561
https://doi.org/10.1007/978-3-030-00262-6_4
https://doi.org/10.1145/3293882.3330566
https://doi.org/10.1145/237814.237866
https://doi.org/10.1145/237814.237866
https://link.aps.org/doi/10.1103/PhysRevLett.103.150502
https://github.com/mutpy/mutpy
https://doi.org/10.1145/2430536.2430540
https://doi.org/10.1145/3387940.3391459
https://github.com/boxed/mutmut
https://github.com/boxed/mutmut
https://doi.org/10.1145/2635868.2635929
https://doi.org/10.1145/2635868.2635929
https://github.com/EvanKepner/mutatest
https://github.com/EvanKepner/mutatest
https://doi.org/10.1145/3428218
https://doi.org/10.1007/s10664-019-09712-x
https://doi.org/10.1109/ICSE.2007.37
https://javpelle.github.io/MTQC
https://javpelle.github.io/MTQC
https://doi.org/10.1145/3183519.3183521
https://doi.org/10.1109/TSE.2021.3107634
https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.1137/S0036144598347011
https://doi.org/10.5281/zenodo.16303
https://arxiv.org/abs/1810.10310
https://arxiv.org/abs/2007.07047

	Abstract
	1 Introduction
	2 Mutation Testing of Quantum Programs
	2.1 Quantum Mutation Operators
	2.2 QMutPy Toolset

	3 Empirical study
	3.1 Experimental Subjects
	3.2 Experimental Setup
	3.3 Experimental Metrics
	3.4 Threats to Validity

	4 Results
	4.1 RQ1: How does QMutPy perform at creating quantum mutants?
	4.2 RQ2: How many quantum mutants are generated by QMutPy?
	4.3 RQ3: How do test suites for QP perform at killing quantum mutants?
	4.4 RQ4: How many test cases are required to kill or timeout a quantum mutant?
	4.5 RQ5: How are quantum mutants killed?

	5 Improving Quantum Test Suites
	5.1 Improving coverage
	5.2 Improving test assertions

	6 Related Work
	7 Conclusions
	References

