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Resumo

Esta tese de mestrado apresenta o Operational Crew Reescheduling Problem (OCRSP), um problema

da gestão de transporte ferróviario que lida com a rápida reorganização de horários de trabalhadores

que foram afectados por algum evento imprevisto e propõe e implementa um algoritmo de Reinforce-

ment Learning e um algoritmo de Procura Local para o resolver.

Palavras-chave: Investigação Operacional, Crew Rescheduling, Reinforcement Learning,

Procura Local
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Abstract

This master’s thesis presents the Operational Crew Rescheduling Problem (OCRSP), a problem of rail-

ways management that deals with the quick rearranging of railway crew schedules that were disrupted

by an unforeseen event and proposes and implements a Reinforcement Learning algorithm and a Local

Search algorithm to solve it.

Keywords: Operations Research, Crew Rescheduling, Reinforcement Learning, Local Search
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Chapter 1

Introduction

This thesis presents the Operational Crew Rescheduling Problem (OCRSP) and presents two solutions

to it: one based on Reinforcement Learning and the other on Local Search methods.

Let’s start by motivating the problem. Railways are a seemingly simple transportation mode: trains

run trips on dedicated tracks to transport passengers or freight from one location to another, starting

and ending at specific times. However, if a Train Operating Company (TOC) has to provide several

hundred trips per day, considering overall client satisfaction and minimizing used resources, the problem

of planning becomes incredibly intricate.

To control complexity, TOC’s divide the planning task into different phases (long-term planning, short-

term planning, dispatching and control) and types of resources (track and time, rolling stock, and crew),

resulting in a set of smaller, and therefore less complex, dependent sub problems [1].

Some months prior to the actual day of operation, the TOC does long-term planning, a process to

construct the timetable (the list of trips) for a generic week and to assign abstract resources (rolling stock

and crew members) needed to perform all trips in the timetable.

The resulting plans must not only make efficient use of resources and oer supply to the demands

of railway users: they should also be robust and recoverable, since railway operations are exposed to

unforeseen events that disrupt the planned schedule. The schedule’s robustness permits small pertur-

bations to occur, without the need to modify the schedule. The recoverability allows the schedule, to be

easily rearranged after a disruption.

A few months to a few days before the day of operation, the TOC does short-term planning. In this

process, concrete resources are assigned to trips and the schedule is rearranged, if needed, due to

some predicted irregularity, like an anticipated infrastructure maintenance or a football match.

During the day of operation, unpredictable events, such as problems with the infrastructure, rolling

stock, crew, weather conditions and accidents, can disrupt the planned schedule, causing the planned

schedule to be inoperable.

These disruptions, due to the strong inter-dependencies in the railway network, shared resources

and to the cost efficient resource schedules, if not solved quickly, can propagate through space and time

over the railway network causing some train trips to be delayed or even canceled, causing frustration on
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clients [2]. This scenario may have serious financial and reputation consequences for the TOC.

The process of rearranging the disrupted schedule, with the goal of obtaining a new feasible one, is

called rescheduling. The rescheduling process, like the planning process, is divided into three separate

smaller processes, completed in this order: firstly, rearrange the timetable, then reschedule rolling stock,

and then, reschedule crew members. Iterations between the three steps may be necessary when it is

not possible to assign resources to some of the trips from the proposed timetable.

In rescheduling, it is of most importance to minimize canceled trips, to satisfy clients. Deviations from

the original planned schedule should also be minimized. A TOC that effectively and efficiently handles

disruptions, benefits in terms of its public image and overall costs.

In this document, we focus on the last phase of the rescheduling process, that is, rescheduling of

crew members’ tasks. From now on, we will call this problem, as in the literature, Operational Crew

Rescheduling Problem (OCRSP).

Until recently, OCRSP was tackled by human dispatchers who are responsible for the real time

management of railways operations, without any algorithmic support: they tried, using their experience

and know-how, to rapidly modify the unfeasible planned crew schedule, and get a feasible one [3].

However, the number of alternative options and decision variables makes the problem highly combi-

natorial and, thus, better suited for computational approaches. This situation motivated TOC’s to start

researching and developing algorithmic support for human dispatchers and, consequently, some ad-

vancements have been made in the development of algorithms to aid dispatchers [3].

This document proposes an algorithm for the OCRSP using Machine Learning, particularly, Rein-

forcement Learning (RL). Since the results were unsatisfactory, there was a change in strategy and a

Local Search algorithm was developed. This algorithm reuses almost all the structure built for the RL

algorithm.

To the best of the author’s knowledge, this is the first approach to the OCRSP using Machine Learning

techniques. However, several problems with some similarities to the OCRSP have been approached with

Machine Learning. In section 3.2, we will discuss this topic.

A big actor in the research and development of solutions for TOC’s, is SISCOG1, a Portuguese

software company whose products are used by railway and metro companies on several countries, to

improve the productivity and quality of their businesses.

One of SISCOG’s products, CREWS, is a decision-support software product that creates and man-

ages optimised crew schedules, considering timetables and rolling stock schedules, crew skills and

preferences, labour and operational constraints.

The results of the algorithms developed in this thesis will be compared, using real world examples,

with the current algorithms integrated in CREWS: these are mainly based on [4] and [2].

The main objective of the project described in this document is to construct an algorithm that can be

integrated in the CREWS product.

However, given the exploratory character of this thesis and the state-of-the-art algorithms already

used, the direct integration of our RL approach is not possible without further work.

1 For more information, access SISCOG’s web site (http://www.siscog.pt).
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Still, it can be a proof-of-concept, suggesting that AI and, in particular, Reinforcement Learning, can

be used to approach several problems concerning public transportation management.

1.1 Thesis Outline

The rest of the document is organized as follows:

• In Chapter 2, we give a description of the problem and provide an example of an instance, we

present previous research on solving the OCRSP and talk about previous research on apply-

ing Reinforcement Learning to problems similar to the OCRSP. We also introduce Reinforcement

Learning, present it’s successes, and formalize it.

• In Chapter 3, we give the proposed approach to the problem.

• In Chapter 4, we discuss the implementation of the proposed approach and it’s challenges.

• In Chapter 5, the results of the implementation are present and discussed.

• In Chapter 6, we present a conclusion to the thesis.
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Chapter 2

Problem description

The Operational Crew Rescheduling Problem (OCRSP) deals with assigning and reassigning tasks to

crew members after the timetable has been changed and the rolling stock has been rescheduled. A

crew member can either be a train driver or a train guard. We abstract from this so, from now on, we will

just refer to crew members.

In order to operate the timetable, trains are split into trips between relief points. A relief point is a

station where a crew member can switch from one rolling stock unit to another.

A task is the unit of work of a crew member: a task for a driver corresponds to driving a certain trip,

from a certain start location and start time to a certain end location and end time; a task for a guard is

to inspect tickets in a certain trip. There are also positioning trips where the crew member travels in the

train as a passenger or uses other means of transportation, such as taxis, to reach a location where he

can either take a break, sign out and go home or perform productive work.

A duty is a sequence of tasks planned for a crew member, usually, for a single day. Each duty must

end at the crew base where it started1. The set of crew bases is a subset of the set of relief points.

Depending on the TOC, several other constraints must be verified when checking the feasibility of

duties, such as the existence of a meal break at an appropriate time and location, maximum duty du-

ration, minimum time to transfer between rolling stock units and crew member appropriate skills for the

tasks. A duty is said to be feasible if it verifies all constraints.

In this context, a crew schedule is the set of all duties for a calendar day. A crew schedule is said to

be feasible if all the duties in it are feasible duties.

On the day of operation, the crew schedule is initially given by the original duties, that is, the duties

conceived in the short-term planning phase, each assigned to a crew member. The original duties are

either active duties, meaning that they are a sequence of tasks to be performed by the corresponding

crew member, or reserve duties, meaning that the crew member is on standby at a crew base for a given

time period, for handling the case that there are tasks that cannot be completed by the active duties due

to a disruption.

The original crew schedule, the one constructed in the planning phase, is a feasible crew schedule

1There exists the case of composing two duties, and, in between a rest period to sleep. Usually, those duties do not start and
end at the same crew base
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Figure 2.1: Example of an original crew schedule for a given day, with L feasible duties.

and covers all tasks that were planned.

In Fig. 2.1, an original crew schedule is presented. Each grey block is a task. The two dark grey

tasks represent positioning trips. Letters over the tasks indicate the departure/arrival station of the task.

After the occurrence of a disruption, dispatchers quickly proceed to rearrange the timetable and

reschedule the rolling stock.

Due to the rearranged timetable and rescheduled rolling stock, some crew duties may become in-

feasible. Duties can be made feasible by removing specific tasks from them and, in some cases, also

by adding positioning trips. However, this creates unplanned tasks, tasks that are not planned in any

duty, which must be quickly covered (assigned a crew member), otherwise, the corresponding trips will

be cancelled.

So, in this work we assume that the first step performed after a crew schedule becomes disrupted is

an initial repair, which results in a set of feasible duties, which we call initially repaired crew schedule,

and unplanned tasks.

In such a manner, the goal is to rapidly get a new feasible crew schedule, that covers as many tasks

as possible.

This is achieved by inserting the unplanned tasks in the duties. However, planning a task in a duty

might make the duty infeasible. Given this, it is also permitted to remove tasks from duties, which then

also become unplanned tasks.

Often, considering only the directly affected duties is not enough to produce a feasible crew schedule

that covers all tasks, after a disruption. It is usual to also consider a neighbourhood of the set of disrupted

duties, that is, a set of duties that were not directly affected by the disruption but might be helpful to solve

it by being available to cover tasks. For details about the construction of a neighbourhood, we refer to

(D. Potthoff, 2010, pp 31-41). These duties bring more possibilities to plan an unplanned task.

Therefore, an instance of the OCRSP, consists in a set of feasible duties (the initially repaired crew

schedule) and a set of unplanned tasks where the primary goal is to plan the maximum number of

unplanned task in those duties, getting a new feasible crew schedule.

In Fig.2.2 we have an instance of the OCRSP with N duties and M unplanned tasks. N is generally
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Figure 2.2: An instance of the OCRSP.

much smaller than the total number of duties in a crew schedule, in such a manner that computation

times are small enough to be acceptable for a real-time approach. The primary goal is to plan the

maximum number of unplanned tasks in the duties. The tasks that are being executed, or have already

finished at the time of rescheduling, cannot be removed from the duties.

So, a solution of an instance of the OCRSP is a feasible crew schedule and a set of zero or more

unplanned tasks. A solution with full coverage is a solution with no unplanned tasks.

Note that, given an instance of the OCRSP, we immediately have a solution: the given initially re-

paired crew schedule and the given unplanned tasks. However, this solution, generally, is much worse

than most solutions.

In a solution, an unplanned task is extremely undesirable, such that, a solution with more tasks

covered is always better then a solution with less tasks covered.

Changing a duty requires the crew member performing that duty to be informed, which may not

happen due to some communication problem. So, changing a duty is also undesirable, but not as much

as leaving a task unplanned.

When planning a task in a duty, the changed duty might contain overtime, changed breaks or the

need for a paid transport for positioning purposes (e.g. taxi). This costs are also considered in the

solution, but are much lower.

Usually, we work with 100∼500 duties and 10∼200 unplanned tasks. So, an OCRSP instance can

easily have 1040 distinct solutions2.

2The number of solutions of an OCRSP instance with N duties and M unplanned tasks can be grossly estimated by calculating
the number of arrangements where the M unplanned tasks can be planned in the N duties, that is, AN

M = N !
(N−M)!

. For example,

with N = 100 and M = 20, AN
M ∼ 1040
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2.1 Related work

In this section, we present previous work dealing with the OCRSP and research using RL on problems

with similarities to the OCRSP.

2.1.1 Dealing with the OCRSP

In the railway domain, crew rescheduling has been dealt with at least since 2005. Walker et al., in [5],

were the rst who investigated this issue. The paper presents a model for an integrated approach to

timetable rearrangement and crew rescheduling. Still, they considered only small instances.

A group of papers which based their approaches on set covering models are [6], [7], [2] and [8].

The OCRSP can be modeled as a set covering problem, interpreting the tasks as elements of a

universe and duties as subsets of that universe. The goal is to cover each task with, at least, one duty,

subjected to constraints, while minimizing the cost of the solution. Although the general approach in

these papers is the same, there are variations between them.

The models of [6] and [8] do not consider solutions without full coverage. On the other hand, the

models [7] and [2], include this possibility, but still aim at cancelling as few tasks as possible by putting a

large penalty on it. For a more detailed overview of these papers, we refer to [3].

Elaborating on [2], the model by [9] tolerates small timetable changes to prevent the cancellation of

trains without a driver. In the work [10] the authors look at the case where there is uncertainty in the

duration of the disruption.

We give special importance to [2], since it is the research that influenced the implemented approach

for crew rescheduling in large disruptions in CREWS. The authors formulate the crew rescheduling

problem as a set covering problem. Since there can be billions of feasible changes to the crew schedule,

they consider a core problem as the rst step to solve the set covering problem.

The core problem consists of only a subset of duties and tasks, including the unplanned tasks. They

solve this core problem using a column generation [11] based heuristic, with Lagrangian Relaxation.

After the initial core problem is solved, there still might be some unplanned tasks. They try to cover

these tasks by exploring a neighbourhood for each unplanned task.

A Multi-Agent system [12] to solve the OCRSP is suggested by [13]. In this approach, drivers are

represented by driver-agents who negotiate about rescheduling options in case of a disruption: they can

swap parts of their duties with other driver-agents.

If, due to a disruption, a driver-agent cannot cover some of his tasks, he asks the other driver-agents

if they can fulll this task. All driver-agents will look if they can take over the task.

It can happen that the task ts in the duty of a driver-agent without any problem, for example, if the

driver-agent has a long break. On the other hand, in most cases, the driver-agent can only take over the

task if he skips some other tasks of his duty. For these tasks, he asks all other driver-agents if they can

take over these tasks.

After comparing the Multi-Agent approach by [13] versus the Operations Research approach by [2],

it was concluded that the latter produced better results and it was implemented in CREWS.
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However, for small disruptions, that is, disruptions that do not involve track blockages or massive

cancellation of trips, [2] approach is not good enough. This is explained by the fact that their algorithm

is tailored to the properties of track blockages, thus, show long run-times for solving small disruptions.

With this in mind, [4] developed an heuristic to solve crew rescheduling after small disruptions. This

work is of special importance because some of the ideas of our solution were inspired by it. In this paper,

the problem is solved as an depth-rst iterative-deepening (DFID) search in a tree [14]. This tree has, as

nodes, solutions of the OCRSP, that is, a feasible schedule, plus zero or more unplanned tasks.

The root of the tree is a solution with unplanned tasks, for example, the one obtained after the process

of removing tasks to get the duties feasible, by the dispatchers.

A node Q is the child of a node P , if the solution in Q is obtained by planning an unplanned task in

the solution in P , that is, the solution in Q is obtained by inserting an unplanned task of P in a duty in P .

The solution in Q might have unplanned tasks that were planned in P , since, to plan a task, one might

have to remove some unplanned tasks. The unplanned tasks are solved sequentially. The leaves of the

tree contain the solutions without unplanned tasks, usually the better ones.

For those pairs that pass this test, a priority value is estimated, which predicts how good the un-

planned task would t in this duty. This value is estimated using proprieties related to the given task and

duty, such as, “the driver responsible for the duty is in the departure station within an hour of the start

of the unplanned task”. This value is used to decide the order of processing of the different unplanned

task–duty pairs.

The children of a node are created respecting their order of priority value: the lower the priority value

of the unplanned task-duty pair, the quicker the node, whose solution originates from the parent node,

planing that task in that duty, will be constructed.

The heuristic works fast, delivers good and desirable solutions and outperforms [2], when it comes

to OCRSP in small disruptions. The algorithm (Fig. 3) is also integrated in CREWS.

Figure 2.3: Pseudocode for the DFID part of the heuristic. Figure from [4].
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2.1.2 Reinforcement Learning on similar problems

RL has already been used to solve problems similar to the OCRSP. To solve real-time train rescheduling,

[15] use RL. The problem as some clear parallels with the the OCRSP. The research utilizes Q-learning

[16]. Some ideas of our solution approach were inspired by this paper. The RL approach is tested with

real world case and the results are satisfactory compared to some basic algorithms, such as FIFO (First

In First Out) and Random Walk. Still, the model has some limitations that prevent the algorithm to be

used in real scenarios. The paper serves as proof-of-concept for future researchers.

In the airline industry, to deal with fleet management after a disruption, [17] apply RL. The approach

deals with a disruption by swapping flights between the fleet. This research also uses Q-Learning. The

results manifest some interesting features, namely the ability to recover from heavily disrupted traffic.

This paper suggests future potential lines of research on applying RL.

As an innovative approach the scheduling of NASA space shuttle payload processing, [18] employ

RL. In this paper, the agent uses TD(λ)-learning [16]. The results suggest that reinforcement leaning

can provide a new method for constructing high-performance scheduling systems.

In the next section, we give a brief introduction to Machine Learning, present some Reinforcement

Learning successes and formalize Reinforcement Learning.

2.2 Reinforcement learning

2.2.1 Machine Learning

While Artificial Intelligence (AI) is the scientific area aimed at studying and developing computer systems

able to perform tasks normally requiring human intelligence, machine learning (ML) is a subset of AI

that encompasses algorithms, models, and other methods that allow computers to automatically learn

and improve from data, becoming more accurate performing a specific task, without being explicitly

programmed with hard coded rules [19].

Due to the recent availability of large amounts of data, the continuous increase in cheap computa-

tional processing power, affordable data storage, and new algorithms capable of solving tasks such as

vision or natural language processing, at human-level, there has been a rising interest in ML.

ML algorithms are often divided in three categories:

• Supervised learning algorithms can apply what has been learned in the past, to new data, using

labeled examples to predict future events. Starting from the analysis of a known training data set,

the learning algorithm produces an inferred function to make predictions about the output values.

The system is able to provide targets for any new input after sufficient training. The learning

algorithm can also compare its output with the correct, intended output and find errors in order to

modify the model accordingly [19].

• Unsupervised learning algorithms are used when the information used to train is neither classified

nor labelled. Unsupervised learning studies how systems can infer a function to describe a hidden
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structure from unlabeled data [19].

• Reinforcement learning is a type of ML methods inspired by biology, particularly, behaviourist

psychology. Here, the main idea is that of a learning agent that interacts with an environment

by executing actions, obtaining certain penalties or rewards after each action. The goal is for

the agent to learn a behavior that maximizes its cumulative reward along the interaction with the

environment [19]. The decoupling of the agent form the environment is a very important feature of

RL that makes the agent learning independent from the environment model and its simulation [16].

2.2.2 Reinforcement Learning Successes

The first big success of RL happened in 1994 when [20] created a RL-based program to play Backgam-

mon, called TD-Gammon. The program consists of an agent that is able to learn to play Backgammon

solely by playing against itself and learning from the results. TD-Gammon has surpassed all previous

computer programs in its ability to play backgammon.

More recently, [21] created a Deep Q-Learning agent capable of playing several Atari 2600 games,

with no adjustment of the architecture or learning algorithm between different games. The program

outperformed all previous approaches on various games and even surpassed human experts on a few.

A few years later, [22] of DeepMind, designed AlphaGo, a computer program that plays the board

game Go, using Reinforcement Learning. In March 2016, AlphaGo’s shockingly dominant victory over

the reigning world Go champion Lee Sedol in Seoul, Korea, signaled another great leap in RL.

Building upon the experience with AlphaGo, a DeepMind team developed AlphaGo Zero [23]. In

contrast to AlphaGo, this program used no human data or guidance beyond the basic rules of the game.

AlphaGo Zero demonstrated that superhuman performance can be achieved by pure reinforcement

learning and deep Neural Networks with very minimal knowledge of the domain and no reliance on

human data or guidance [16].

2.2.3 Formalizing Reinforcement Learning

The RL architecture consists of an agent and an environment which interact through a sequence of

discrete timesteps, where at each timestep, the agent receives some representation of the environment’s

state, and, on that information, selects an action. One timestep later, in part as a consequence of its

action, the agent receives a reward, and transits to a new state.

Thereby, the agent and the environment give rise to a sequence of states, actions, and rewards,

which we will call an episode. The agent learns doing actions and receiving the rewards from the

environment. This process is repeated throughout multiple episodes.

We use the following notation:

• t ∈ N0 represents the current time in a given episode. Each episode starts with t = 0.

• St represents the state of the environment at time t.
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• At represents the action taken by the agent at time t.

• Rt+1 ∈ R is the reward received after performing action At in state St.

• S represents the set of environment’s states.

• A is the set of all possible actions. A(St) is the set of actions the agent can perform when the

environment is in state St. For every t, A(St) ⊂ A.

• Ei = {S0, A0, R1, S1, A1, R2, S2, A2, R3, ...} is the i-th episode.

The goal of the agent, at each time t, is to maximize the return, Gt:

Gt =

∞∑
k=0

γkRt+k+1

where γ is a parameter, 0 ≤ γ ≤ 1, called the discount rate and, Rt+k+1, is the reward at time t+ k + 1.

The discount rate determines the present value of future rewards.

Figure 2.4: The basic elements of Reinforcement Learning. Figure from [16].

The agent’s policy π is a map, π : S × A → [0, 1], which gives the probability of taking a specific

action, when in a specific state. A policy denes the learning agent’s way of behaving at a given time.

With the goal of finding the optimal policy, that is, the policy that gives the agent the best expected

return, it’s useful to define the value function Q Q : S × A → R, that maps state-action pairs to the

expected return starting in that state, doing that action, and following a policy π that is:

Q(St, At) = Eπ[Gt|Current-State = St,Performed-action = At]

The Q-values are initialized to arbitrary values.

After each action in each episode, theQ-values are updated according to a rule which varies conform

the RL algorithm.

We will use the Q-Learning algorithm, whose update rule is:
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Q(St, At)← Q(St, At) + α
(
Rt+1 + γmax

A
Q(St+1, A)−Q(St, At)

)
where α is the learning rate, 0 ≤ α ≤ 1.

Usually, to learn accurate Q-values, the agent does thousands of episodes.

If the policy followed by the agent is the greedy policy, the action chosen by the agent at each time

step is the action with highest Q-value. If there is a tie, the agent chooses randomly between the actions

with the highest Q-value.

To learn the value of the state-action pairs, the agent must explore the state-action space. However,

the greedy policy does not allow much exploration of the state-action space. This problem is known as

the exploration-exploitation trade-off. We solve this issue by letting the agent use an ε-greedy strategy,

that is, at each time, with probability 1-ε, the agent chooses the action with highest Q-value (exploits),

and, with probability ε, the agent chooses a random action (explores).

Usually, ε starts high and decreases over the learning, to favor exploitation of the learned policy in

the final episodes.

Given all this, to characterize an RL problem, we need to define what is the agent and its actions,

the environment and its states, the rewards and episodes. In the next section, we describe all this

constituents of our RL approach to the OCRSP.
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Chapter 3

Proposed Approach

3.1 Single-instance vs multi-instance learning

When engineering an RL approach, one of these solution architectures must be chosen:

• Single-instance learning, where the agent trains on a single instance, the instance to solve. When

a new instance is given, the agent starts from zero, that is, the Q-values are initialized again. Con-

sequently, the agent does not transfer any knowledge between the solving of different instances.

• Multi-instance learning, where the agent trains on multiple instances, and, when given an instance

to effectively solve, it uses the previous learned Q-values to compute a solution.

We opt for the first architecture, the single-instance learning. While the multi-instance agent might be

quicker to solve a new instance, it might be harder for the Q-values to converge. The chosen paradigm

might get better convergence and be fast enough to use in real time solving. This is also the approach

chosen by [15] for the real-time train rescheduling problem and by [17] for the real-time airline fleet

disruption management.

3.2 Solutions and costs

In this section, we give notation about solutions and introduce the concept of cost function to evaluate

solutions. Let:

• Dt: Set of duties at time t. Dt is the crew schedule at time t. Dt has always the same number of

duties, N . Note that all duties in Dt are feasible.

• T : Set of tasks which have not started, at the time of rescheduling, i.e., the tasks that can be

planned/unplanned. At each time step t, we have the following partition of T :

– Pt is the set of planned tasks at time t: the tasks in duties of Dt.

– Ut is the set of unplanned tasks at time t. It can be the empty set.
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Each solution is a pair (Dt, Ut), i.e., a feasible crew schedule plus zero or more unplanned tasks.

To chose between solutions, there is a cost function c, that, given a solution, outputs a real number

representing the quality of the solution: the higher the cost, the worse the solution. The cost of a solution

is the sum of the costs of the duties plus the cost of the unplanned tasks1.

The solution cost function c is such that

c(Dt, Ut) =
∑
d∈Dt

costduty(d) +
∑
u∈Ut

costunplanned−task(u)

Given an instance, every duty already has a cost. Throughout the resolution, the duties are modified

and this changes the cost of the duty. For instance, the act of changing the duty at least once, adds in

the cost of the duty; other costs arise because of overtime, changed breaks or need for taxis.

The cost of an unplanned task is much larger than any other cost. For instance, adapting the costs

from [4], we get

costunplanned−task(u) = 1.000.000, while changing a duty d adds 300 to costduty(d). All the other costs

are smaller.

Next, we specify the basic components of our RL approach to the OCRSP: the agent and environ-

ment, the states, the actions, the rewards and the episodes.

3.3 Agent and Environment

Our RL agent will behave as a TOC dispatcher. Given an instance of the OCRSP, the agents goal is to

plan the maximum number of unplanned tasks, that is, to find a good solution.

The environment, which the agent interacts with, has information about the duties and the unplanned

tasks.

3.4 States

Each state of the environment represents a solution: St = (Dt, Ut), where Dt is the set of duties at time

t and Ut is the set of unplanned tasks at time t.

The agent’s purpose is to get to a state St = (Dt, Ut) where Ut = ∅ (the empty set), explicitly, to a

state with 0 unplanned tasks.

Sometimes, this might not be possible. In this case, the agent stops after a certain number of time

steps, hopefully, with a state that represents a better solution, that is, a state with lower cost (for the sake

of simplicity, since each state determines unequivocally a solution, we define the cost of a state as the

cost of the solution associated).

Given a state St, the agent has the core information to decide on an action At and get to state St+1.

This construction mimics the practice of human dispatchers, who rely on the information concerning

duties and unplanned tasks to determine their decisions.

1These functions are already provided by the CREWS product.
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The initial state S0 = (D0, U0) represents the solution automatically given by the OCRSP instance.

It contains the original duties with some unplanned tasks, that is, a solution without full coverage (every

OCRSP instance has unplanned tasks to solve; we never try to improve a solution with full coverage).

Observe that we can also see our approach as a OCRSP solution improvement heuristic: the initial

state can be a solution found by other approaches of the OCRSP, that needs to be improved. Everything

works the same way, only the origin of the initial state is different (raw solution after a disruption vs

solution found in other approach), but that is irrelevant for the computation.

In Fig. 3.1, we have a state of the environment St, that is, a solution, where Dt has N duty’s and Ut

has M unplanned tasks.

The tasks that are being performed on the current time cannot be manipulated, such as the past

tasks. So, we number only the tasks that can be planned/unplanned by the agent. The current time

does not change in the computation, as the computation is supposed to last some seconds. Therefore,

the set of tasks able to be planned/unplanned is static in a given instance of the problem.

To illustrate the point, we number the tasks in Duty 1, Duty 2 and Duty 3, and an unplanned task,

Task 11.

Figure 3.1: A visual representation of state St.

3.5 Actions

An action by the agent is to try plan an unplanned task in a duty. So, if the environment is in state

St = (Dt, Ut), the set of actions the agent can perform is A(St) = Dt × Ut.

Hence, for each t, At = (d, u), where d ∈ Dt is a duty and u ∈ Ut is the unplanned task which the

agent will try to insert in d.

Some actions cannot be executed due to the fact that some tasks cannot be planned in certain duties.

This can happen for a variety of reasons (e.g., the train driver doesn’t have the skills). This actions are
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impossible actions. Verhaegh and co-authors define the Basic Feasibility Check to quickly discard some

of the duties where a given unplanned task cannot be planned [4]. For instance, if the driver associated

with the duty does not have route or rolling stock knowledge to perform the task, the task cannot be

planned in that driver’s duty, so it fails the Basic Feasibility Check.

We will also use a Basic Feasibility Check, based on [4], to, at each step, get rid of most impossible

actions. Note that some impossible actions may pass the Basic Feasibility Check.

When it is possible to do the action, it might be the case that the unplanned task overlaps some

tasks already in the duty; if the minimum transfer time between two consecutive tasks is violated, this is

considered an overlap as well.

In this case, we say that the action is a conditionally possible action. The tasks overlapped in the

duty become unplanned tasks. Positioning trips do not have to be rescheduled and are simply canceled.

When an action can plan a task in a duty without removing tasks from the duty (there are no overlaps),

we say this is an unconditionally possible action.

In summary, we divide the actions into three categories: impossible actions, conditionally possible

actions and unconditionally possible actions.

Impossible action

An impossible action ensues when the action task cannot be planned in the action duty. This can happen

for a variety of reasons, such as:

• The crew member associated to the duty does not have the necessary route or rolling stock knowl-

edge to execute the task;

• The minimum travel time between current location and start location of the unplanned task is more

than the available time between current time and start time of the unplanned task;

Note that the environment has all this information about the tasks, duties and about the crew mem-

bers to which these duties are assigned.

When an agent performs an impossible action, the state remains the same. Before each action, it is

made the Basic Feasibility Check, to quickly discard most impossible actions.

Conditionally possible action

A conditionally possible action arises when it is possible to plan the task in the duty, but it is necessary to

create new unplanned tasks. This happens when the original unplanned tasks overlaps tasks or transfer

times in the duty.

In Fig. 3.1, we see state St, where Task 11 is unplanned. To illustrate a conditionally possible action,

assume that the agent, following some policy, chooses action At =(Duty 3, Task 11). Suppose the

crew member indicated with Duty 3 has the skills to perform Task 11, so the action is not immediately

impossible. Considering that Task 11 overlaps Task 8, Task 8 becomes unplanned. See Fig. 3.2.

Compare with Fig. 3.1 the location of Task 11 and Task 8.
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Figure 3.2: A visual representation of state St+1, given state St represented in Fig. 4 and action
At =(Duty 3, Task 11)

.

Task 11 starts at station C, the station where the crew member is supposed to be. After the task is

completed, the crew member is in station E, the station where the next task starts. So, there is no need

for positioning trips (tasks where the crew member rides as a passenger) in this instance. Note that

if positioning trips were needed, the action was still conditionally possible, but the consequent solution

could have a higher cost then this one, particularly if the position trip was completed in a taxi.

Unconditionally possible action

An unconditionally possible action is an action that can be planned without the need to create more

unplanned tasks.

In the state St+1 illustrated in Fig. 3.2, consider the action At+1 = (Duty 2, Task 8). Assume the

crew member indicated with Duty 2 has the skills necessary to performTask 8. Observe that Task 8

only overlapsTask 5 and, the time between Task 4 and Task 8, is sufficient, according to labour rules

(the problem has all this information available for the agent), to be a meal break for the crew member

responsible for Task 8. If this restriction was not satisfied, the action would not pass the Basic Feasibility

Check.

Since Task 5 is a positioning trip, it does not need to be planned in another duty. Thus, Task 8

is inserted in Duty 2. Yet, this creates a position conflict, which needs to be solved for the duty to be

feasible (remember that all the duties in a solution must be feasible duties). The position conflict is solved

creating a positioning trip between Task 8 and Task 6. See Fig. 3.3. Here, we assume the positioning

trip is performed as a passenger in a train trip already planned in the timetable, however, the positioning

can have costs, if the crew member rides a taxi to get to the right position: this costs are much smaller

than the cost of an unplanned solution. However, they must be considered too.
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Figure 3.3: A visual representation of state St+2, given state St+1represented in Fig. 3.2 and action
At+1 =(Duty 2,Task 8).

3.6 Rewards (RL only)

Given the previous architecture, we now need to define what is the environment’s feedback to each

action performed by the agent.

Since our goal is, given an instance of the OCRSP, to find a solution with the lowest cost, which

corresponds to a solution with the fewest unplanned tasks, we need do design the rewards in such a

way that, given those rewards, our agent is encouraged to find a good solution.

The model for rewards is the following: the reward is the difference between the costs of the current

state St and the next state St+1, that is, after action At, the agent receives the reward Rt+1 = c(St) −

c(St+1).

The reward is positive if the cost of the next state is smaller then the cost of the current state and the

reward is negative if the cost of the solution increases in that time step. This design leads the agent to

follow states with decreasing cost, which is adequate, given the goal.

The reward is zero if the next state is the same as the current state (it’s very improbable that two

distinct states have the same cost), that is, the action taken was impossible.

If At is conditionally possible, then Rt+1 can be either positive or negative, depending on the cost of

St+1.

If At is unconditionally possible, then Rt+1 is positive, because St+1 has one less unplanned task,

which is the component with most weight in the solution cost.

3.7 Episodes (RL only)

Given an instance of the problem, every episode starts in the state representing the first solution given.
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The episode ends when the environment gets to a state that represents a solution with full coverage

(without unplanned tasks) or, possibly, after a predetermined number of timesteps.

After each action in each episode, the agent updates the Q-values, according to the Q-Learning

update rule. To achieve convergence of Q-values, it is usual to simulate thousands of episodes.
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Chapter 4

Implementation

4.1 Trying Reinforcement Learning

The implementation was made in C++ and used code previously built in SISCOG, such as classes and

functions that represent useful concepts for the problem.

Firstly, we defined new classes, such as Agent, State, Action, Transition, Episode and Solver. The

class that was most modified during software development was the Agent and the way it interacted with

State and Action: firstly, when the Agent found a new State, it created all State’ actions, that is, all the

possible pairs (template, uncovered task ), where the action is to try to plan uncovered task in the duty

assigned to template, to then choose a random action among all actions. This approach didn’t work

because of the time and memory needed to create and store all the actions.

The next strategy was the following: when the Agent needed to find a random action in a State, it

would do the following loop: within each iteration, the agent selects a random action, that is, a random

template and a random uncovered task. Then, it checks if that action was previously verified as a

possible action: if the action was already checked and is an impossible action, the agent will restart

the loop; if the action was already checked and it’s a possible action, the agent executes that action. If

the action wasn’t already checked, the agent will check if the action passes the feasibility check. If it

passes the feasibility check, we then verify if it is a possible action. If it is, the agent does that action.

This function, which we called GetRandomPossibleAction(state) will be thoroughly analyzed in the next

section, since it’s essential for the Local Search algorithm.

The feasibility check verifies quickly if an action is impossible by analyzing some proprieties of the

template and the uncovered task, such as:

• The driver has the skills to do the task;

• The time interval of the task is in the time interval of the template.

The feasibility check is, on average, 104 times faster than the possibility check, which verifies if an

action is possible. That’s the reason the feasibility check comes first: it quickly discards impossible

actions.
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This new strategy radically improved the algorithm’s performance, but the results were still much

below the benchmark. Next, we implemented Watkins’s Eligibility Traces on the tabular Q-Learning

algorithm [16]. This improved the performance by 22%: however the results were still not enough.

We tried various heuristics to solve the problem using Reinforcement Learning, but the results never

improved significantly.

With hindsight, we could see that, the graph of states for big problems, was weakly connected, that is,

the number of ways of going from state A to state B, were almost always 0 or 1. That way, Reinforcement

Learning strategies are much slower to converge. The results were unsatisfactory for production and a

new approach was needed.

4.2 Local Search

This realization led to some experimenting with new heuristics, which led to a big pivot: we got to the

Local Search algorithm.

Local search reuses almost all the structure created for the RL algorithm, but the algorithm is not an

RL algorithm. It has entities such as Agent, State, Action, but there is no learning. The results of this

algorithm were satisfactory, even better than the benchmark on some instances of the problem.

As with RL, the agent starts in the initial state, the state that contains the initial solution. The variable

T , which is the maximum number of tasks an agent can unplan in an action, is set to 0, that is, in the

beginning, an action is possible if and only if, to plan the uncovered task in the duty associated with the

template of the action, the agent doesn’t need to unplan any task (an unconditionally possible action).

The agent performs random possible actions, planning a task per action, without unplanning any task.

After some iterations, the number of possible actions gets small and the agent needs too much time

to find a possible action in the current state (there’s also the case that some states don’t have possible

actions for some T ).

This time is a function of aggressiveness, a parameter of the Local Search algorithm: the higher the

aggressiveness, the more actions the agent will check in the current state until it gives up.

If the aggressiveness is set to 1, the agent will check every combination of uncovered task and

template to check if there is some possible action.

At this point, T is incremented to 1, that is, a possible action possible can uncover one task. Now,

the current state has more possible actions, actions that need to uncover one task.

The number of uncovered tasks of two consecutive states can stay the same or decrease by 1,

whereas, when T = 0, the number of uncovered tasks is always decreasing by 1 in each transition.

The agent iterates until it gets to a state where it can’t find any additional actions. It halts here,

outputting the solution of the last found state, the one with less uncovered tasks.

The pseudocode for Local Search is displayed in Algorithm 1.

The algorithm as 2 parameters:

• aggressiveness. This is a double between 0 and 1 which tells how aggressive the search is. This
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Algorithm 1 Local Search
1: procedure :
2:
3: set agressivness
4: set maxTime
5:
6: time← 0
7:
8: T ← 0
9: state← initialState

10:
11:
12: while time < maxTime do
13:
14: action← GetRandomPossibleAction(state)
15:
16: if action exists then
17: newState← Transtition(state, action)
18: state← newState
19: else
20: if T=1 then
21: return best solution found
22: if T = 0 then
23: T ← 1
24:
25: time← GetCurrentT ime()
26:

parameter determines the maximum number of actions an agent will try in a given state, until it

finds a possible one. The role of this parameter will be more analyzed in a following.

• maxTime. This is the maximum number of seconds the algorithm will run until It halts and returns

the best solution found.

On lines 3 and 4 of Algorithm 1, these parameters are set according to the user. For production, we

usually set maxTime to 60, that is, the run will take 1 minute, and aggressiveness to 0.8.

On line 6, we initialize the variable time, which saves how much time has passed since the start of

the execution.

On line 8, the variable T is set to 0. T is the maximum number of tasks the agent can uncover when

performing an action. For example, if an action uncovers 3 tasks and T = 2, the action is not possible.

This variable starts on 0, that is, in the beginning an action is possible if it doesn’t uncover any tasks.

Through the course of a run, T will be increased to 1, when there are no more possible actions with

T = 0.

On line 9, we initialize the variable state with the value initialState, which is constructed with the initial

solution of the problem. The body of the algorithm consists in a while loop which stops when the run is

going for more than maxTime seconds.

Every iteration of the algorithm consists in a state transaction. On line 13, the agent tries to find a

possible action for the current state, and sets action to the result.

The function GetRandomPossibleAction(state), which will be analyzed next, returns a random possi-
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ble action or, if it doesn’t find any, returns a null action.

On line 15, there’s an if-else statement: if action exists (not null), then the agent will find newState,

applying action on state. Then, state becomes newState, that is, state becomes the previous state when

action is executed.

Otherwise, if action is null, that is, if the agent didn’t find any possible actions on state, the algorithm

follows: if T = 1, then the algorithm halts and returns the best solution found, that is, it compares

all states found and outputs the best solution (note that every state corresponds to one and only one

solution). If action is null and T = 0, this means that the agent can’t find any possible actions in state

that don’t uncover tasks. To keep searching for better states, the algorithm allows the agent to remove 0

or 1 tasks per action. That is, T ← 1.

In line 24, the variable time is actualized and if time < maxTime, a new iteration starts.

The function GetRandomPossibleAction(state) was coded for the RL algorithm, but it is fundamental

for Local Search. As explained, the function receives state, the current state of the run, and tries to

find a possible action in that state, that is, an action that plans an uncovered task in a template, without

unplanning more than T tasks. If a possible action is found, that action is returned. Otherwise, the agent

returns a null action.

The pseudocode for GetRandomPossibleAction(state) is displayed on Algorithm 2 .

Algorithm 2 GetRandomPossibleAction(state)
1: procedure :
2:
3: while state.numberOfActionsAlreadyChecked < L do
4:
5: action← GetRandomAction(state)
6:
7: if action already checked and is not possible then
8: restart loop
9: if action already checked and is possible then

10: return action
11:
12: if action does not pass feasability check then
13: add action to state.setOfActionsAlreadyCheckedAndNOTpossible
14: restart loop
15: else
16: if action is possible then
17: add action to state.setOfActionsAlreadyCheckedAndPossible
18: return action
19: else
20: add action to state.setOfActionsAlreadyCheckedAndNOTpossible
21: restart loop
22: return null
23:

=0

The pseudocode for the algorithm for this function consists in the following:

In line 3, there’s a while loop whose condition is ”the number of actions already checked in the state

is less than L”. An action is already checked if the agent knows that the action is possible or impossible.

If it’s the first time visiting state, then the number of actions already checked is 0. With each iteration of
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the while loop, the agent checks a different random action.

L is an solving constant which depends on the size of the problem and the aggressiveness of the

local search: larger problems have larger L’s. Higher aggressiveness means higher L. L represents the

maximum number of actions an agent will check in a state before giving up on state.

The total number of actions, possible or impossible, in a state is

numberOfTemplates × state.numUncoveredTasks, which is too large.

Using L, which is much smaller than the total number of actions in the state, the algorithm doesn’t

get stuck finding a possible action in a state. In the first states and with T = 0, about 10% of the actions

are possible. This number decreases and can hit 0%. When T get incremented to 1, in an intermediate

state, only about 4% of actions are possible. This number decreases again, as the solution gets better.

The first step of each iteration is in line 5. It consists in choosing a random action, action, which will

be checked, that is, verified if it is possible or impossible. The function GetRandomAction(State) simply

returns a random action, that is, a pair composed of a random template and a random uncovered task.

Every state has, as attributes, two sets of actions:

• state.setOfActionsAlreadyCheckedAndPossible; the actions that are already checked and are pos-

sible.

• state.setOfActionsAlreadyCheckedAndNOTpossible; the actions that are already checked and are

impossible

If action is an already checked action and is not possible, that is, action is in

state.setOfActionsAlreadyCheckedAndNOTpossible, the loop is restarted. If action is on the set of al-

ready checked and possible actions, the function returns action. If the iteration hits line 12, means that

action wasn’t already checked. The next step is to test if action is possible or impossible.

In line 12, we verify if the action passes the feasibility test (this test quickly discards impossible

actions. However, some impossible actions pass the feasibility check). If the action doesn’t pass the

feasibility check, means action is an impossible action: action is added to the set of actions

state.setOfActionsAlreadyCheckedAndNOTpossible and the loop is restarted.

If action passes the feasibility test, then we test if action is indeed possible (line 16). Testing if

an action is possible is much more time consuming than the feasibility check : this is the reason the

feasibility check is executed first, so it quickly rejects most impossible actions.

If action is possible, then we add action to state.setOfActionsAlreadyCheckedAndPossible and return

action.

If action is not possible, the same code is executed as in lines 13 and 14: action is added to the set

of impossible action in the state and the loop is returned.

If the agent checks more than L actions in a state, it gets out of the while loop and returns null.

In the next chapter, we show and discuss the results of the RL algorithm, the Local Search algorithm

and Thjis algorithm [4].
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Chapter 5

Results

We tested the various algorithms on 4 instances of different sizes (see Table 1). The first instance is

a small problem. In production, the instances are usually bigger, such as Instance 2, Instance 3 and

Instance 4.

Number of templates Number of uncovered tasks

Instance 1 28 33

Instance 2 180 713

Instance 3 942 734

Instance 4 1143 1591
Table 1 - Description of the instances

The runs were performed on an Intel Core i7-7700K 4.20 GHz with 32 GB of RAM.

We tested the RL algorithm with various times and parameters. As said before, the results were

unsatisfactory for production. Either way, we experimented runs of 60 min of the RL algorithm to check if

it converges to some good solution. Since changing the parameters of the RL algorithm barely affected

the results, we opted to fix the parameters.1

We tested Local Search (with 1 minute of maxTime, 4 minutes of maxTime and with the same running

time as Thjis) and Thjis. The next table presents the results for 6 algorithms:

1. RL running 4 minutes;

2. RL running 60 minutes;

3. Local Search running 1 minute;

4. Local Search running 4 minutes;

5. Local Search running the same time as Thjis;

6. Thjis.

1The RL algorithm used the following parameters for every run: α = 0.6; γ = 0.4; εinitial = 0.5;
numberOfTransitionsPerEpisode = 500
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The implementation of Thjis algorithm available tried to plan the most tasks and halt, being impossible

to specify the time of the run.

Local Search has a variable user defined execution time.

Each algorithm, except Thjis, was ran 4 times in each instance, since they contain some randomness,

albeit the variability of results isn’t large. The number of tasks planned shown in Table 2 is the average

of planned tasks in the 4 runs.

Instance 1 Instance 2 Instance 3 Instance 4

RL (4 min) 33/33 (1 seg) 56/713 21/734 11/1591

RL (60 min) 33/33 (1 seg) 378/713 294/734 105/1591

Local Search (1 min) 33/33 (1 seg) 449/713 322/734 320/1591

Local Search (4 min) 33/33 (1 seg) 459/713 360/734 423/1591

Local Search 33/33 (1 seg) 356/713 (7 seg) 322/734 (62 seg) 371/1591 (120 seg)

Thjis 33/33 (1 seg) 331/713 (7 seg) 349/734 (62 seg) 380/1591 (120 seg)
Table 2 - Number of solved tasks of the different algorithms on the 4 instances

5.1 Discussion

We can see that the performance of RL (4 min) and RL (60 min) is much worse than Local Search and

Thjis. As referenced before, the program must execute fast to be useful: if it takes much more than 4

minutes, it’s not good enough for real world usage.

Instance 1 is a small instance that every algorithm can totally solve, that is, plan all unplanned tasks,

in less than 1 second.

For the bigger problems, there are clear differences in the results obtained by the various algorithms.

The RL algorithm, even running for 60 minutes, is still worse than Local Search and Thjis, running

less than 2 minutes.

The results obtained by Local Search are at the same level as those obtained by SISCOG’s imple-

mentation of Thjis algorithm. In Instance 2, Local Search (1 min) planned 449 out of 713 uncovered

tasks, while Thjis planned 331, in 7 seconds. Adding 3 more minutes to Local Search only plans 10

more tasks, suggesting that the bulk of the results is in the first 60 seconds.

In Instance 3, a similar scenario occurs: RL (4 mins) plans only 21 tasks out of 734. RL (60 min)

plans 294 tasks which is less than Local Search (1 min) which plans 322. In this instance, Thjis plans

394 tasks in 62 seconds.

In Instance 4, the RL algorithm running for 4 min only plans 11 out of 1591 tasks; running for 1 hour

increases the number of planned tasks to 105. Here again, the RL results are poor when compared to

Local Search and Thjis.

As expected and desired, the relative performance of an algorithm doesn’t depend on the instance.

The failure of RL is attributed to the weakly connected states of the big problems. For state S1 to

be connected with state S2, the solution in S2 must be obtained by inserting a task in some duty in the
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solution of S1. For big problems, most of the states only connect to one state, which makes the agent’s

learning redundant.

This results show great potential on Local Search, but further testing must be taken. Some additional

code optimization is also suggested.
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Chapter 6

Conclusions

This project started with the goal of solving the OCRSP with Reinforcement Learning techniques. We

tried tabular Q-learning with Eligibility Traces but the results were not good enough: in hindsight, we

can see that the agent’s learning is slow because the states for production-size problems are weakly

connected. To be able to produce something commercially useful, various turns were made. Finally, we

reached the Local Search algorithm which gave good results for the OCRSP.

The making of this project was challenging and rewarding. I learned a lot about areas I’m passionate

about, such as, Artificial Intelligence, Operations Research and Software Development.

Trying to solve OCRSP with tabular Q-learning with Eligibility Traces proved impossible. In future

research, it might be explored the use of Q-learning with state features and Q-value function approxima-

tion.

The Local Search algorithm is powerful enough to be tried in production. It was integrated in

SISCOG’s CREWS code base for further testing and optimization.
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