
qDocs: Citizen-Centered and Multi-Curator Document
Automation Platform: The Curator Perspective

José António Trocado de Saldanha Sousa e Menezes

Thesis to obtain the Master of Science Degree in

Information Systems and Computer Engineering

Supervisors: Prof. Doutor Alberto Manuel Rodrigues da Silva
Doutor João Paulo Pedro Mendes de Sousa Saraiva

Examination Committee

Chairperson: Prof. Mário Jorge Costa Gaspar da Silva
Supervisor: Prof. Doutor Alberto Manuel Rodrigues da Silva

Member of the Committee: Prof. João Carlos Ferreira

October 2019

Abstract

Document automation is a popular approach that supports the creation of electronic documents in a flex-
ible and efficient way, which provides several benefits for organizations. Document automation platforms
are popular in several areas and keep evolving over time. However, these platforms are most common
in private organizations, therefore not being used with the purpose to help citizens in general. These
systems allow the definition and management of (document) templates, which are extended versions of
common documents with particular elements called fields, merge fields or form objects.

This dissertation introduces and discusses qDocs, a citizen-centered and multi-curator document
automation platform, for managing dynamic electronic documents (e.g. id cards, forms, certificates) that
are accessible to any citizen in a easy and secure way. qDocs provides a single point of access for citi-
zens to create, use and manage their own documents. These documents are produced from templates
curated by public or private organizations (named as curators) that also participate in this qDocs ecosys-
tem. A curator creates its documents within the platform as templates that then become available for
citizens belonging to it. qDocs allows templates such as identification documents, certificates, reports,
forms and questionnaires. The design of these templates is defined in the scope of just one curator, but
the orchestration of data and services can come from different curators.

qDocs is a platform that already had a first stage of development before this work, but it still lacked
flexibility to fulfill specific requirements curators may have regarding documents, such as feature con-
figuration or participant invitation. Also, before this work, every curator user could perform any action
regarding its curator, with no access restrictions, like changing a document template. This dissertation
provides a solution to help qDocs become available for every kind of curator, with management within the
platform and with flexible configuration for curators that may have specific requirements for documents.

Keywords

Document Automation; Document; Template; Citizen-Centered; Curator; Citizen.

i

Resumo

A automação de documentos é uma abordagem que suporta a criação de documentos electrónicos de
uma forma flexı́vel e eficiente, o que oferece diversos benefı́cios para as organizações. As plataformas
de automação de documentos são populares em diversas áreas e continuam a evoluir ao longo do
tempo. No entanto, estas plataformas são mais comuns em organizações privadas, portanto, não são
usadas com o objetivo de ajudar os cidadãos em geral. Estes sistemas permitem a definição e o gestão
de modelos (de documentos), que são versões estendidas de documentos comuns com elementos
especı́ficos chamados campos, campos de fusão ou objetos de formulário.

Esta dissertação apresenta e discute o qDocs, uma plataforma de automação de documentos cen-
trada no cidadão e multi-curador, para a gestão de documentos eletrónicos dinâmicos (por exemplo,
cartões de identificação, formulários, certificados) que são acessı́veis a qualquer cidadão de uma
maneira fácil e segura. O qDocs fornece um único ponto de acesso para os cidadãos criarem, us-
arem e gerirem os seus próprios documentos. Esses documentos são produzidos a partir de modelos
curados por organizações públicas ou privadas (nomeadas como curadores) que também participam no
ecossistema do qDocs. Um curador cria os seus documentos dentro da plataforma como modelos que
depois se tornam disponı́veis para os cidadãos pertencentes a ele. O qDocs permite modelos como
documentos de identificação, certificados, relatórios, formulários e questionários. O design desses
modelos é definido no âmbito de um só curador, mas a orquestração de dados e serviços pode vir de
diferentes curadores.

O qDocs é uma plataforma que já tinha um primeiro estado de desenvolvimento antes deste tra-
balho, mas ainda não tinha flexibilidade para atender aos requisitos especı́ficos que os curadores po-
dem ter em relação aos documentos, como a configuração de recursos ou o convite do participantes.
Além disso, antes deste trabalho, cada utilizador do curador poderia realizar qualquer ação em relação
ao seu curador, sem restrições de acesso, como alterar um modelo de documento. Esta dissertação
fornece uma solução para ajudar o qDocs a a tornar-se disponı́vel para todo tipo de curadores, com
gerenciamento dentro da plataforma e com configuração flexı́vel para curadores que podem ter requi-
sitos especı́ficos para documentos.

Palavras Chave

Automação de Documentos; Documento; Modelo; Centrado no Cidadão; Curador; Cidadão.

iii

Contents

1 Introduction 1
1.1 Problem Statement . 4
1.2 Objectives . 4
1.3 Organization of the Document . 5

2 Related Work 6
2.1 Introduction . 7
2.2 Evaluation Framework . 8

2.2.1 Document Template Definition . 10
2.2.2 Document Generation . 11
2.2.3 Content Management . 11
2.2.4 Integration . 11
2.2.5 Platform Availability . 12
2.2.6 Digital Signature . 12
2.2.7 Citizen-Centered . 12
2.2.8 Other Features . 12

2.3 Document Automation Platforms . 13
2.4 Comparison and Discussion . 15

3 Technology 20
3.1 ASP.NET Core . 21
3.2 Angular . 22
3.3 Single Page Application (SPA) . 23

4 qDocs Functional Requirements 25
4.1 qDocs/Admin . 26

4.1.1 Domain Model . 27
4.1.2 Use Case . 28

4.2 qDocs/Curator . 29
4.2.1 qDocs/Curator Domain Model . 29
4.2.2 Curator Roles . 31
4.2.3 Administrator . 32
4.2.4 Data Manager . 33
4.2.5 Templates Editor . 33
4.2.6 Templates Manager . 36
4.2.7 Auditor . 36
4.2.8 Documents Manager . 37

4.3 qDocs/Citizen . 37
4.3.1 Domain Model . 37
4.3.2 Use Case . 39

4.4 Cross-Cutting Concerns . 40

v

5 qDocs Technical Description 41
5.1 Architecture Overview . 42
5.2 Design and Development . 42

5.2.1 qDocs/Admin . 43
5.2.2 qDocs/Curator . 44
5.2.3 qDocs/Citizen . 51
5.2.4 Cross-Cutting . 54

6 Evaluation 55
6.1 Scenario – A . 56

6.1.1 Curator-level . 56
6.1.2 Citizen-level . 59

6.2 Scenario – B . 63
6.2.1 Curator-level . 63
6.2.2 Citizen-level . 67

6.3 Discussion . 70

7 Conclusion 72
7.1 Conclusion . 73
7.2 Future Work . 73

Bibliography 74

vi

List of Figures

1.1 qDocs General Model (ArchiMate diagram) . 3

2.1 Document Automation Platforms’ Main Processes (BPMN diagram) 7

3.1 MVC Domain Model . 22
3.2 Angular Architecture Overview, (retrieved from [1]) . 23
3.3 Communication between a User and a Server, (retrieved from [2]) 24

4.1 qDocs/Admin Domain Model (UML Class Diagram) . 27
4.2 Citizen Use Case Diagram . 28
4.3 qDocs/Curator Domain Model (UML Class Diagram) . 30
4.4 Administrator Use Case Diagram . 32
4.5 Data Manager Use Case Diagram . 33
4.6 Templates Editor Use Case Diagram . 33
4.7 Document Template Workflow Domain Model(UML Class Diagram) 35
4.8 Document Template Workflow State Machine Diagram . 35
4.9 Templates Manager Use Case Diagram . 36
4.10 Auditor Use Case Diagram . 36
4.11 Documents Manager Use Case Diagram . 37
4.12 qDocs/Citizen Domain Model (UML Class Diagram) . 38
4.13 Citizen Use Case Diagram . 39

5.1 qDocs Technological Architecture . 42
5.2 Edit Curator Interface . 43
5.3 Settings Interface . 43
5.4 qDocs/Curator Home Interface . 45
5.5 List Specific Roles Interface . 46
5.6 Edit Specific Role Interface . 46
5.7 Associate Users Interface . 47
5.8 Edit User Interface . 47
5.9 Settings Configuration Interface . 49
5.10 List Templates Interface . 49
5.11 Edit Template Participants Interface . 49
5.12 Template Content Edition Interfaces . 50
5.13 Template Metadata Edition Interface . 50
5.14 My Documents Interface . 51
5.15 Documents Shared With Me Interface . 51
5.16 Document Interface . 52
5.17 Invite Participants Interface . 53
5.18 Shared Document Interface . 53

vii

5.19 Citizen Profile Interface . 53

6.1 Template Metadata . 58
6.2 Document Access — Document Types . 60
6.3 Document Access — Life Events . 60
6.4 Document Access — Organizations . 61
6.5 Document Visualization . 62
6.6 Template Creation Part 1 . 64
6.7 Template Creation Part 2 . 65
6.8 Participant Configuration . 66
6.9 Document Creation . 68
6.10 Document Access . 69
6.11 Participant Invitation . 69
6.12 Participant Document . 70

List of Tables

2.1 Evaluation Framework Overview . 9
2.2 Common Elements Supported . 10
2.3 Document Template Definition and Document Generation Table 16
2.4 Content Management and Integration Table . 17
2.5 Solo Dimensions Table . 18

viii

Acronyms

AJAX Asynchronous Javascript and XML

API Application Programming Interface

AWS Amazon Web Services

BPMN Business Process Modeling Notation

CMS Content Management Systems

CRM Customer Relationship Management

DBMS Database Management System

DMS Document Management System

DOM Document Object Model

E-Commerce Electronic Commerce

ERP Enterprise Resource Planning

IoC Inversion of Control

LHI Law Help Interactive

MS-Excel Microsoft-Excel

MS-Powerpoint Microsoft-Powerpoint

MS-Word Microsoft-Word

MVC Model-View-Controller

ORM Object-Relational Mapper

PC Personal Computer

REST Representational State Transfer

SPA Single Page Application

UI User Interface

UML Unified Modeling Language

WS Web Service

ix

x

1
Introduction

Contents

1.1 Problem Statement . 4

1.2 Objectives . 4

1.3 Organization of the Document . 5

1

Document automation is a popular approach that supports the creation of electronic documents in a

flexible and efficient way. These software systems allow the definition and management of (document)

templates, which are extended versions of common documents with particular elements called fields,

merge fields, form objects, etc. Document automation systems allow to create and assembly new doc-

uments from these previously defined templates by replacing form objects with concrete data collected

directly from end-users or from external data sources. Nowadays there are some document automation

tools and platforms (e.g., ActiveDocs, SmartDocuments, HotDocs or xPressDocx), but these are mainly

focused on document assembly for just one organization purpose, thus not accessible at all to the end-

users and, in particular, to citizens when they intend to interact with such organizations, in the scope of

administrative or bureaucratic processes [3].

This thesis introduces and discusses qDocs, a citizen-centered and multi-curator document automa-

tion platform for managing dynamic electronic documents that are accessible in a easy but secure way

to any citizen through any device [4]. It has been developed and promoted by MDSS1 with support and

research developed by the Information and Decision Support System Group of INESC-ID2.

The main purpose of qDocs is to provide citizens a single point of accessing and managing their

own documents, like identification documents, forms, certificates, reports and questionnaires. These

documents are provided by curators, which are private or public organizations that are connected to

the qDocs platform. A curator creates its documents within the platform as templates that then become

available for citizens belonging to it. qDocs is a collaborative platform that facilitates and promotes the

relationship between citizens and curators through any process that involves the request, publication,

access, delivery and sharing of electronic documents. The design of templates is defined in the scope

of just one curator, but the orchestration of data services can come from different curators.

qDocs allows the search for documents based on several criteria such as kind of life events (e.g. birth,

health or education), document type (e.g. certificates, forms or identification documents) or curator (e.g.

Tax Services, University or Public Services).

Figure 1.1 presents the general architecture for the qDocs platform; which suggests the integration

of four key applications: qDocs/Citizen, qDocs/Curator, qDocs/Admin, and qBox. The qDocs ecosystem

involves the interaction of the qDocs platform itself, the citizens and the curators. Citizens interact

through the qDocs/Citizen application. Curators create, define and configure templates through the

qDocs/Curator app and then what delivers the data to the respective citizens is the qBox platform,

which is the platform that integrates with all the curators’ databases and applications. The qDocs/Admin

application is used to manage and configure he general aspects of the qDocs platform.

1https://mdss.pt/index.php, last accessed 30th July 2019
2https://www.inesc-id.pt/, last accessed 30th July 2019

2

Figure 1.1: qDocs General Model (ArchiMate diagram)

Regarding data storage, data stored in one or more curators is dynamically merged in documents

generated in real time. The fact that data storage does not leave its respective curator’s data-centers,

allows curators full control over their information. Document materialization only happens in the citizen’s

device, increasing privacy and information security. Only the citizen can manage and has full access

over his own personal information.

For a citizen to have access to a document, the following happens in the qDocs ecosystem: first,

the citizen requests a document to the qDocs platform; then the qDocs platform sends a ”request ac-

knowledged” message to qBox; after that, qBox sends a key to qDocs; then qDocs sends that key with

the document template to the citizen’s device; then the citizen’s device sends the key directly to qBox;

then qBox sends the respective data to the citizen and the document is generated in the citizen’s device;

Finally, qBox saves the data from the citizen so he/she can access the document anytime from that

moment on.

3

1.1 Problem Statement

qDocs is an existing document automation platform that is still in an early stage of development so it

only provides basic features for curators and citizens, like template creation for curators and document

access for citizens.

Since qDocs is supposed to be used by any kind of curator, it must support the creation of templates

with different features and requirements, i.e. qDocs must support participant invitation for documents

that require interaction from different citizens, and also features such as payment or strong authentication

in order to access documents like certificates or forms. Also curator users are unable to configure

settings for their own curator and every curator as access to every functionality within its curator, without

any access restrictions.

Citizens in the qDocs platform must be able to interact with their documents according to what was

defined by the curator that owns the document template, i.e. a citizen has to pay for a certificate before

accessing it if the curator configures the certificate’s template in that manner. Also, citizens must be able

to invite participants to interact with their document or vice-versa. For example, the jury of a dissertation

defense meeting must sign the respective minute of the meeting although the document does not belong

to any of the jury’s members.

Therefore, this dissertation aims to provide curators management and configuration capabilities

within their curator, as well as flexibility regarding template configuration. The same goes for citizens,

that must be able to interact with their documents according to the configuration made by the respective

curators, including.

1.2 Objectives

After defining the problem, the objectives of this work are the following:

• Add roles and respective functionality to provide different levels of responsibility in the scope of

a curator — curator users do not have any access restrictions to functionalities within a curator,

so by creating roles this can be achieved; also with the implementation of new functionalities they

must attributed to specific roles;

• Add feature configuration to templates and test them in the citizen application — for example, a

curator must be able to configure if a document can be exported or not, and this implementation

must be tested in the qDocs/Citizen application;

• Add participant configuration to templates so citizens can invite participants to interact with their

documents and vice-versa, for example a certificate that needs to be signed — this also must be

implemented in the qDocs/Curator application and be tested in the qDocs/Citizen application;

4

• Add settings configuration to the qDocs/Curator and to the qDocs/Admin application — this pro-

vides more flexibility to the qDocs platform and to curators, since they can configure their own

settings;

• Enhance User Interface (UI) to improve user experience — throughout this work, improving the us-

ability experience for every kind of user must taken into account, for example improving navigation

between interfaces;

1.3 Organization of the Document

The remainder of this dissertation is organized as follows: Chapter 2 presents the related work, which is

about document automation platforms; Chapter 3 describes the technologies that are going to be used in

the development of the this work; Chapter 4 describes the functional requirements of the qDocs platform;

Chapter 5 presents a technical description of what was done with this work; Chapter 6 presents two

scenarios used for the evaluation of this work Chapter 7 discusses the main conclusion achieved with

this work along with suggestions for future work.

5

2
Related Work

Contents

2.1 Introduction . 7

2.2 Evaluation Framework . 8

2.3 Document Automation Platforms . 13

2.4 Comparison and Discussion . 15

6

Document automation provides several benefits for organizations such as improved efficiency in

document production (i.e. documents take less time to be produced), reduced human errors (i.e., end-

users only have to provide the necessary information rather than producing a document from scratch),

costs (producing multiple documents takes less time, so costs are reduced) and turn-around times for

clients (a document request can be fulfilled faster if a template already exists) [5–7].

This chapter performs a literature review to analyze the state-of-art of document automation plat-

forms, in what areas they are used and which ones are citizen-centered, since it is one key characteristic

of this research. In section 2.1 it introduces document automation platforms, then in section 2.2 presents

the evaluation framework used to assess popular platforms that are described in section 2.3. Finally,

section 2.4 compares and discusses the results obtained from the analysis.

2.1 Introduction

This research has been influenced by the relevance and impact of document automation platforms in

the efficiency of businesses, but also on their lack of being citizen-centered.

Figure 2.1: Document Automation Platforms’ Main Processes (BPMN diagram)

Figure 2.1, represented in a Business Process Modeling Notation (BPMN) collaboration diagram,

depicts the common processes and artifacts involved in the context of document automation platforms.

First (P1), a template manager is responsible for the definition and design of document templates, which

are stored in a persistent data storage for document templates. Second (P2), an operator or end-user

uses the document templates together with information obtained from a data-source to assembly or

produce specific documents, that can be stored in persistent data storage. Document automation (or

7

document assembly) software tools intend to replace the manual filling of form-based documents with

templates by allowing, for example, users answer software-driven interview questions. The information

collected from end-users or external data sources can be used with such document templates to produce

another set of concrete documents [8–10].

Document automation platforms are becoming popular in several areas, such as law [11], public

administration [12, 13], e-business [14] or even the aerospace industry [15]. Document automation

is particularly popular in the business and legal services areas, since it is where a great number of

repetitive documents (e.g. contracts, surveys, minutes) are produced [16–18]. For example, ”Do-It-

Yourself (DIY) law” is becoming a reality and is improved due to these document automation tools, since

it became easier for self-representing litigants to produce documents they need [19]; for example, A2J

Author1 is a platform designed for this purpose [20]. Regarding e-government, document automation

is also changing the paradigm from ”one-size-fits-all” to ”one user, one document” [11], enabling the

generation of personalized documents in domains with high variability, having a template that can be

reusable and slightly changed to different organizations [21].

Document automation tools keep evolving, for example, they are using machine learning techniques

to validate and automatically create contracts [22], can provide visual information, such as charts and

tables, based on the end-user or external data source information [23] and document templates are

easier to change or upgrade [24].

2.2 Evaluation Framework

To better analyze and compare document automation platforms an evaluation framework is defined.

This framework involves the following dimensions enumerated as illustrated in Table 2.1: (a) Document

Template Definition, (b) Document Generation, (c) Content Management, (d) Integration, (e) Platform

Availability, (f) Digital Signature, (g) Citizen-Centered, (h) Other Features. These dimensions provide

information about the architectural details of the platforms described.

The evaluation is based on the available information presented in each of the platforms’ websites

(demos included). A ranking system was not defined because the objective of this evaluation is to un-

derstand how document automation is addressed in the industry and what aspects should be considered

in the development of the qDocs platform.

The citizen-centered dimension is the only one that has a subjective measurement, because there

is no information about it but still is considered important since one objective of the qDocs platform is to

be citizen-centered.

1https://www.a2jauthor.org/, last accessed 30th July 2019

8

Table 2.1: Evaluation Framework Overview

Dimension Measurment Range Observations

Document

Template

Definition

Used Formats
Set of file formats

(e.g. MS-Word)

Measure can be a combination

of one or more file formats

Elements

Supported

Set of elements

(e.g. Repeating Items)

Measure can be a combination

of one or more elements that

are present in Table 2.2

Extended

Elements

Supported

Set of elements

(e.g. Link to External

Data Sources)

Measure can be a combination

of one or more elements

Document

Generation

Output Formats
Set of file formats

(e.g. PDF)

Measure can be a combination

of one or more file formats

Input Data-sets
Set of data-sets

(e.g. Databases, Excel)

Measure can be a combination

of one or more data-sets,

can be summarized as all of

the platforms’

integration solutions

Input Data-sets

Formats

Set of file formats

(e.g. XML)

Measure can be a combination

of one or more file formats

Content

Management

Templates Internal, External
Measure can be a combination

of one or more values

Generated

Documents
Internal, External

Measure can be a combination

of one or more values

Integration

Deployable as

a WS API
Yes, No Values are mutually exclusive

DBMS Yes, No Values are mutually exclusive

WSs and/or

APIs
Yes, No Values are mutually exclusive

Platform Availability
Server, Cloud,

Hybrid, Desktop

Measure can be a combination

of one or more values

Digital/Electronic Signature Yes, No Values are mutually exclusive

Citizen Centric Yes, No Values are mutually exclusive

Other Features
Set of non-specific

features

Measure can be a combination

of features that are not

measured in the previous

dimensions

9

2.2.1 Document Template Definition

What makes document automation so useful is the ability to have a document template with a set of

predefined elements so it is possible to produce the same type of document multiple times, making

template definition a key feature for this type of platforms.

This dimension is divided into three sub-dimensions: (a) Used Formats, which determines the tem-

plate file formats; (b) Elements Supported, which determines the elements that are supported by the

templates, e.g. plain text, selection lists, text variables, conditional blocks and repeating items. These

elements are described in Table 2.2; (c) Extended Elements Supported, which determines more com-

plex elements that are supported by the templates, e.g. links to external data sources, which is an

element that makes it possible to retrieve data from an external source; dynamic tables, charts and

graphs, which are elements that make it possible to generate tables, charts and graphs based on user

input; and variable sharing between document templates, which is an element that makes it possible

to store a variable to be used in several document templates. In the qDocs context, these elements

supported are called FormObjects when used individually and are called FormBlocks when grouped.

The value for the Used Formats dimension is the set of possible formats that a template can have, be-

ing Microsoft-Word (MS-Word) file formats the most common. The value for the Elements Supported

dimension is the set of elements that are supported by the platform and are present in Table 2.2. The

value All is used if all the elements from Table 2.2 are supported by the platform. The value for Extended

Elements Supported dimension is the set of more complex elements that are supported by the platform.

Table 2.2: Common Elements Supported

Name Description

Plain Text Input from the user with no restrictions

Selection Lists List of options for the user to select

Repeating Items Information that is repeated throughout the document

Text Variables

Information that is needed more than once in the document

so it is stored in a variable. The variable can be populated

through user input or automatically (e.g. date)

Conditional Blocks
Information that is added to the document

only if some conditions are met

10

2.2.2 Document Generation

After having document templates available, a user can proceed to document generation, being this

another key feature for these platforms.

This dimension is divided into three sub-dimensions: (a) Output Formats, which determines the file

formats for the generated document; (b) Input Data-Sets, which determines the type of data-sets that

the platform can read from, e.g. databases or Microsoft-Excel (MS-Excel) files; (c) Input Data-Sets

Formats, which determines the file formats that the document template can read in order to retrieve

the necessary data to produce the document, e.g. XML. The value for the Input Data-Sets dimension

is the set of possible data-sets that a document that is going to be generated can read from and the

values for the Output Formats and Input Data-Sets Formats dimensions are the set of file formats that

the data-sets (input) and the generated document (output) can have.

2.2.3 Content Management

Document automation platforms need to provide a way of managing the created templates and gener-

ated documents.

This dimension is divided into two sub-dimensions: (a) Templates, which determines the way doc-

ument templates are managed; (b) Generated Documents, which determines the way generated doc-

uments are managed. Both dimensions can have one or more values from their measurement range,

that are the same: (a) Internal, if that management is supported using the platform itself or the local file

system; (b) External, if the management is supported by other software (e.g. an external file system,

Content Management Systems (CMS) or Document Management System (DMS)) rather than using the

platform.

2.2.4 Integration

Integration makes interaction between different systems possible [25], promoting interoperability [26].

This dimension is divided into three sub-dimensions: (a) Deployable as a Web Service (WS) Application

Programming Interface (API), which determines if the platform can be available through a WS API or

not, i.e. if the services it offers can be provided as WSs, meaning it is easier to integrate with other

applications; (b) Database Management Systems (DBMSs), which determines if the platform can inte-

grate with DBMSs; (c) WSs and/or APIs, which determines if the platform can integrate with other WSs

and/or APIs, i.e. if it can integrate with existing platforms. All sub-dimensions only allow a single value

from their measurement range, which is the same: (a) yes, if the platform provides a WS API and/or can

integrate with DBMSs, WSs and/or APIs; (b) no, if the platform does not provide a WS API and/or can

not integrate with DBMSs, WSs and/or APIs.

11

2.2.5 Platform Availability

Nowadays organizations and users can rely on the Cloud [27–29] to run an application, and not only on

dedicated servers, so knowing how a platform makes its services available is an important concern.

This dimension measures how the platform is available and allows the usage of one or more values

from its measurement range which can be: (a) Server, if the platform is available through installation

in a dedicated server; (b) Cloud, if the platform is available as an API in the cloud; (c) Hybrid, if the

platform is available through a mix between the Server and Cloud values; (d) Desktop, if it is available

as a Microsoft Office add-in and/or if it has its own API for installation in a Personal Computer (PC).

2.2.6 Digital Signature

This dimension measures whether a platform supports digital signatures or not, i.e. if documents can be

signed through the platform before or after being generated (e.g. a contract). It only allows a single value

from its measurement range: (a) yes, if the platform supports digital signatures; (b) no, if the platform

does not support digital signatures.

2.2.7 Citizen-Centered

This dimension measures if the platform is focused on the citizen or not, i.e. if the platform’s purpose is

to be used by the citizens therefore being for public use or if the platform was developed to be sold as

a solution for an organization. It only allows a single value from its measurement range: (a) yes, if the

platform is citizen-centered; (b) no, if the platform is not citizen-centered.

2.2.8 Other Features

This dimension measures features of a platform that do not fit in the other dimensions. The value

for this dimension is a set of non-specific features, such as HotDocs Market, which is an Electronic

Commerce (E-Commerce) platform for document templates; or such as signature notification, which

allows the owner of a generated document to be notified when a user digitally signs that document.

12

2.3 Document Automation Platforms

The need for document automation is really present in many areas such as e-business [14], legal ser-

vices [8, 18], public administration [12, 13] or even in the aerospace industry [15], so the emergence of

these platforms came along with concrete examples like: (a) ActiveDocs Opus, (b) Smart Documents,

(c) HotDocs, (d) A2J Author, (e) xPressDocx, (f) Templafy, (g) Clio and (h) SmartDocs - Acculynx.

These platforms share a common set of features and processes such as: (a) document template

definition; (b) document generation; and (c) content management. Their differences are in how they

provide such features. These platforms provide their services via Cloud, Server, APIs, or even Microsoft

Office add-ins. Regarding template creation, some use MS-Word as document template format while

others use PDF as well. They support different elements such as plain text, selection lists, text variables,

repeating items and conditional blocks. Regarding document generation, some platforms may receive

data from different sources as input. The generated documents can be produced in many formats,

e.g. PDF, HTML, XML, ODT or TIFF. Most of these platforms provide demos in their websites and

offer several integration possibilities. Some platforms offer extra features such as digital signatures and

customized workflow for documents.

ActiveDocs Opus ActiveDocs Opus by ActiveDocs2 is available via Server or Cloud, regardless of

platform (Amazon Web Services (AWS), Microsoft Azure, etc.). It supports more complex elements

such as: (a) links to external data sources and (b) dynamic tables, charts and graphs. It receives input

data-sets as XML from DBMSs and APIs, and the generated documents can have several formats such

as PDF, DOC and HTML. It integrates with several DBMSs and APIs: (a) Microsoft products, (b) SAP,

(c) Oracle, (d) DMSs and (e) legacy applications. The platform is not designed to be citizen-centered.

Smart Documents Smart Documents3 offers services that can be integrated with existing Customer

Relationship Management (CRM) or Enterprise Resource Planning (ERP) systems. Documents that are

going to be generated receive input data-sets as a XML file from DBMSs. It is deployable as a WS API.

The platform has a Data Retrieval Module to integrate with DBMSs and integrates with other WSs and

APIs. It is not designed to be citizen-centered.

HotDocs HotDocs4 is a document assembly software that is available via Server, Cloud or as mix in-

between (Hybrid). HotDocs Developer is HotDocs’ module for template creation. The used formats for

templates are MS-Word file formats or PDF, that works inside de platforms’ template editor. It supports

a more complex element that is variable sharing between documents, which lets a text variable that was

2https://www.activedocs.com/, last accessed 30th July 2019
3https://smartdocuments.eu/en/, last accessed 30th July 2019
4https://www.hotdocs.com/, last accessed 30th July 2019

13

created in a document template to be reused in another document template. HotDocs User is its module

for document generation, storage and management. Generated documents can be MS-Word or PDF

files. Besides the generated document, a file with the information provided to fill the document is created

as a XML file so it can be used as input data-set for future use. The platform is deployable as a WS API,

being able to integrate with DBMSs, WSs and APIs. It is not designed to be citizen-centered. Has an

extra feature called HotDocs Market : an E-Commerce platform that enables the distribution of content

subscription to legal professionals.

A2J Author A2J (Access to Justice) Author5 is a document assembly platform that is available via

Cloud. After the template is created, it is uploaded to the Law Help Interactive (LHI) server, which pro-

vides internet-based document assembly services powered by the HotDocs platform. A2J Guided Inter-

view is the software’s component for document generation. All the data used to produce the document is

given by the user and is sent to the LHI server as a XML file. The generated document is a PDF file. A2J

Author is designed to be citizen-centered because the main purpose of this platform is to deliver greater

access to justice for self-represented litigants by enabling non-technical authors from the courts, clerk’s

offices, legal services organizations, and law schools to create interactive templates [20]. The software

is free to interested court, legal services organizations, and other non-profits for non-commercial use

and has a guide for creating templates and a document generation demo available.

xPressDox xPressDox6 is a document automation platform that provides its services through three

different channels: (a) Desktop, (b) Servers and (c) Cloud (APIs). xPressDox Desktop works as a

MS-Word add-in to create and run templates. It includes different versions (Supervisor, Author and

Runner) that have different permissions regarding a template. Documents that are going to be produced

receive input from DBMSs. The generated document is a MS-Word or PDF file. xPressDox is deployable

as a Representational State Transfer (REST), .NET or COM API. xPressDox Servers integrate with

DBMSs, WSs and APIs. They are available in three different configurations (Windows Authentication,

API and Cloud Integration) and can be own hosted or not. The platform is not designed to be citizen-

centered.

5https://www.a2jauthor.org/, last accessed 30th July 2019
6http://xpressdox.com/, last accessed 30th July 2019

14

Templafy Templafy7 enables its main features via Microsoft Office add-ins. Regarding document tem-

plate definition, the templates defined have Microsoft Office file formats: (a) MS-Word; and (b) Microsoft-

Powerpoint (MS-Powerpoint). Regarding content management, templates are managed through an

external web interface and generated documents are managed through an external web interface or

through a CMS. It is not designed to be citizen-centered. It also has a feature called BrandChecker that

is used to check for non-compliant documents within a company, i.e. documents within an organization

have a tag that if it is not used, it is detected by the platform.

Clio Clio8 is a document automation platform similar to Templafy, so it is not going to be considered for

discussion in section 2.4. It also enables its features main features via a MS-Word add-in. Regarding all

of the evaluation framework’s dimensions, it presents the same values as Templafy, except for the other

features dimension, because it is not applicable.

SmartDocs - Acculynx SmartDocs9 by Acculynx10 offers its services through a software platform that

is embedded in a CRM platform (Acculynx). Documents can be uploaded in order to be transformed

into templates and they can be managed through the cloud. Digital signatures, legally binding contracts

and signature notification are key features of the software. Digital signatures make it possible for a

user to sign a document online on any device. Legally binding contracts are logs for each user’s digital

signature that include its name, email address, date, time and IP address. Signature notification allows

a document’s owner to be notified when a document is signed with a digital signature. The platform is

not designed to be citizen-centered.

2.4 Comparison and Discussion

The results of applying the evaluation framework to the platforms described are shown in Tables 2.3, 2.4

and 2.5. Despite not having information from all the evaluated platforms regarding all dimensions, it is

possible to understand common features regarding document automation platforms.

Regarding document template definition, MS-Word file formats are the most used. Using these

file formats gives flexibility to new users, because they can import templates that were already created

with MS-Word into the platform and then edit them. HotDocs additionally uses PDF files and A2J Author

does not have a specific used format. There is few information about elements (and extended elements).

However, plain text, selection lists, repeating items, text variables and conditional blocks are common

elements in all platforms. These elements are all described in Table 2.2 as presented in subsection

7https://www.templafy.com/, last accessed 30th July 2019
8https://www.clio.com/eu/features/legal-documents/, last accessed 30th July 2019
9http://www.acculynx.com/smartdocs, last accessed 30th July 2019

10http://www.acculynx.com/, last accessed 30th July 2019

15

2.2. HotDocs additionally has variable sharing between documents, which lets a text variable that was

created in a document template to be reused in another document template. This is an interesting

feature to speed up variable creation in templates that require the same type of information, e.g. a

variable that stores a name or a license number. ActiveDocs Opus supports dynamic tables, charts and

graphs, which is an interesting feature for all document automation platforms. For a citizen-centered

platform like qDocs, this feature would give more flexibility for curators to produce templates and for non

citizen-centered platforms it is useful to create detailed reports, for example.

Regarding document generation, PDF is the most used output file format and MS-Word file formats

are common too. HotDocs and ActiveDocs Opus also support XML. There is few information about input

data-sets and their formats. All platforms can gather data directly from DBMSs. ActiveDocs Opus can

also gather data from APIs. This data is read as a XML file for all platforms. Besides XML, JSON could

be used too, since it is a standard format for most applications.

Table 2.3: Document Template Definition and Document Generation Table

Document Template Definition Document Generation

Platforms
Used

Formats

Elements

Supported

Extended

Elements

Supported

Output

Formats

Input

Data

-Sets

Input

Data

-Sets

Formats

ActiveDocs MS-Word All

Link to

External

Data

Sources;

Dynamic

Tables,

Charts

and Graphs

MS-Word;

PDF;

XPS; ODT;

RTF; TIFF;

XML; HTML

DBMSs;

APIs
XML

Smart

Documents
MS-Word All NA PDF DBMSs XML

HotDocs
MS-Word;

PDF
All

Variable

Sharing

between

Documents

MS-Word;

PDF;

XML

DBMSs XML

A2J Author NA All NA PDF NA XML

xPressDox MS-Word All NA
MS-Word;

PDF
DBMSs NA

Templafy
MS-Word;

MS-Powerpoint
All NA NA NA NA

SmartDocs –

Acculynx
NA NA NA NA NA NA

16

Regarding content management, most of the evaluated platforms support this dimension by doing

content management within the platform. Only Templafy needs the support of an external web interface

and/or CMS because it offers its service via a Microsoft add-in. ActiveDocs Opus can manage its

generated documents through a DMS instead of doing it through the platform.

Regarding integration, not all platforms are deployable as WS APIs, but most of them can integrate

with DBMSs, WSs and APIs. Smart Documents, HotDocs and xPressDocx offer all types of integration.

On the contrary, SmartDocs - Acculynx is the only platform that does not offer any type of integration.

Regarding platform availability, most of the platforms offer their services via Server, i.e. they are

installed in a dedicated server. Some also offer their service via Cloud API. HotDocs also supports a

mix between Server and Cloud. Templafy only provides its services via a Microsoft Office add-in, which

is also possible in the xPressDocx platform. A2J Author only provides its services via Cloud.

Table 2.4: Content Management and Integration Table

Content Management Integration

Platforms Templates
Generated

Documents

Deployable

as a

WS API

DBMSs

WSs

and/or

APIs

ActiveDocs Internal

Platform;

External

(Integrated

with a DMS)

No Yes Yes

Smart

Documents
Internal Internal Yes Yes Yes

HotDocs

Internal

(Developer

Module)

Internal

(User

Module)

Yes

Yes (since

available

through

WS APIs)

Yes (since

available

through

WS APIs)

A2J Author NA NA NA NA NA

xPressDox Internal Internal Yes
Yes (Server

or Cloud)

Yes (Server

or Cloud)

Templafy

External

(Web

Interface)

External

(Web Interface

or integrated

with a CMS

No Yes Yes

SmartDocs –

Acculynx
Internal NA No No No

17

Regarding the digital signature dimension, only ActiveDocs Opus and SmartDocs - Acculynx sup-

port digital signatures.

The other features dimension presents features that may be relevant to implement in the qDocs

platform. Only A2J Author was designed to be citizen-centered, because its objective is to help self-

represented litigants. Most platforms are not designed to be citizen-centered, i.e. they were developed

as a solution for organizations, not as way to help citizens in processes that involve document production.

Table 2.5: Solo Dimensions Table

Platforms
Platform

Availability

Digital

Signature

Citizen

Centered

Other

Features

ActiveDocs Server; Cloud Yes No
Integrates with

Microsoft products

Smart

Documents
Server No No NA

HotDocs
Server; Cloud;

Hybrid; Desktop
No No

HotDocs Market

(E-commerce

platform)

A2J Author Cloud No Yes

LHI server that

provides services

powered by

HotDocs software

xPressDox
Server; Cloud;

Desktop
No No

Available through

.NET and

COM APIs

Templafy Desktop No No

Can check for

non-compliant

documents within

a company

SmartDocs –

Acculynx

Server;

Cloud
Yes No

Legally binding

contracts,

Signature

Notification

Although only one of the evaluated platforms was designed to be citizen-centered, there are some

aspects to take into account for platforms that are like qDocs. The process of document generation

adopted should be the same for both citizen-centered and not citizen-centered platforms, since it is a

simple, user-friendly method. Regarding availability, cloud is the best option, because all services can

be available to users in a single point of access (this method is already adopted by A2J Author). Digital

signatures should be supported to make these platforms more flexible. One ”other feature” that may

be useful for a citizen-centered platform is a workflow trigger for a document, i.e. a user generates a

18

document and after it is generated, it is automatically sent to another party connected to the platform

(in qDocs case, the document would be sent to certain curators and citizens, for example). These

suggestions are relative to the user (citizen) side of a platform to-be developed.

On the other side, a citizen-centered platform like qDocs needs to interact with several entities to

gather information. These type of platforms need to be able to integrate with legacy applications,

DBMSs, APIs and WSs. Regarding document template definition, these platforms should be able to

import a vast number of file formats, focusing on MS-Word file formats since they are the most com-

mon. For elements supported, the ones that were common between the evaluated platforms should be

adopted. Adding the variable sharing feature would be useful too, as stated before. Content manage-

ment should be done directly in the platform, since its availability would be via an API in the cloud.

19

3
Technology

Contents

3.1 ASP.NET Core . 21

3.2 Angular . 22

3.3 Single Page Application (SPA) . 23

20

qDocs is a Single Page Application (SPA) and uses two frameworks that integrate with one another.

This chapter describes the technologies that were used to develop the qDocs platform. Section 3.1

presents the ASP.NET Core framework, section 3.2 presents the Angular framework and Section 3.3

describes how SPAs work.

These frameworks use the following software programming languages: C#, Typescript (which is

compiled to Javascript), HTML and CSS. These frameworks were learned through an online course

available at Udemy1.

3.1 ASP.NET Core

ASP.NET Core2 is an open-source3, cross-platform framework to build cloud-based web applications

created by Microsoft, built on top of the .NET Core4 platform, an open-source5 general purpose de-

velopment platform created by Microsoft. Being a cross-platform framework, its applications can be

developed and run on Windows, macOS and Linux operating systems.

ASP.NET Core can also integrate with client-side6 frameworks such as Angular, React or Bootstrap.

ASP.NET Core has built-in support for the dependency injection7 software design pattern, a tech-

nique for achieving Inversion of Control (IoC) between classes and their dependencies. Without IoC the

flow of program logic is typically determined by objects that are bound to one another. On the other

hand, with inversion of control, the flow depends on the defined abstractions to be implemented that are

built up during program execution. Therefore, dependency injection allows applications to be composed

of loosely coupled modules and makes them easier to test and maintain. In addition, ASP.NET Core

uses the Model-View-Controller (MVC)8 architectural pattern, summarized in Figure 3.1. This pattern

separates an application into three groups of components with different responsibilities:

• Models - represent the state of the application and any business logic or operations that should

be performed by it, i.e. perform user actions and/or retrieve results of queries;

• Views - present the corresponding Models data through the user interface;

• Controllers - respond to user input and interaction, selecting which Models to work with and which

Views to render.

1https://www.udemy.com/build-an-app-with-aspnet-core-and-angular-from-scratch/, last accessed 30th July 2019
2https://docs.microsoft.com/en-us/aspnet/core/?view=aspnetcore-2.1, last accessed 30th July 2019
3https://github.com/aspnet/AspNetCore, last accessed 30th July 2019
4https://docs.microsoft.com/en-us/dotnet/core/, last accessed 30th July 2019
5https://github.com/dotnet/core, last accessed 30th July 2019
6https://docs.microsoft.com/en-us/aspnet/core/client-side/index?view=aspnetcore-2.1, last accessed 30th July 2019
7https://docs.microsoft.com/en-us/aspnet/core/fundamentals/dependency-injection?view=aspnetcore-2.1, last accessed 30th

July 2019
8https://docs.microsoft.com/en-us/aspnet/core/mvc/overview?view=aspnetcore-2.1, last accessed 30th July 2019

21

Figure 3.1: MVC Domain Model

Finally, ASP.NET Core uses Entity Framework Core9, which is a data access technology that works

as an Object-Relational Mapper (ORM), enabling interaction with databases using .NET objects. The

Entity Framework enables work with data in the form of domain-specific objects and properties without

the concern of the underlying database tables and columns where data is stored. This means that work

can be done at a higher level of abstraction when dealing with data, and creation and maintenance of

data-oriented applications is easier10.

3.2 Angular

Angular11 is a platform and framework for building client-side applications (i.e. applications that are in

the web browser). Its applications are built by composing the following elements: (a) HTML templates

with the Angular markup; (b) component classes to manage those templates; and (c) services to add

application logic. These elements are all boxed in modules.

An Angular application has at least one root module (that enables bootstrapping) and may have

many feature modules. Angular modules are called NgModules. They provide a compilation context for

a set of components that are dedicated to an application domain, workflow or a closely related set of

capabilities.

Angular applications have at least one component, which is the root component that connects a

component hierarchy with the page Document Object Model (DOM). A component defines a class that

contains application data and logic. It also has metadata that associates it with an HTML template that

defines a view to be displayed in a target environment. HTML templates have directives that provide

9https://docs.microsoft.com/en-us/ef/core/, last accessed 30th July 2019
10https://docs.microsoft.com/en-us/dotnet/framework/data/adonet/ef/overview, last accessed 30th July 2019
11https://angular.io/guide/architecture, last accessed 30th July 2019

22

program logic and binding markup that connects an Angular application and the DOM. There are two

different types of data binding: (1) Event Binding - an application responds to user input in the target

environment by updating the application data; and (2) Property Binding - values that are computed from

application data are interpolated into the target environment. Before a view is displayed, the Angular

framework evaluates the directives and resolves the binding syntax in the template to modify the HTML

elements and the DOM, according to the application’s data and logic.

Angular service classes provide data and/or logic that is not associated with a specific view, but

that is going to be shared across components. Services have specific metadata that allows them to

be injected into client components as a dependency. With dependency injection, component classes

delegate tasks (such as fetching data from a server to the service classes).

Finally, the Angular framework has a Router NgModule that enables the definition of a navigation

path among the different states and view hierarchies in an application.

Figure 3.2 represents the architecture overview of the Angular framework.

Figure 3.2: Angular Architecture Overview, (retrieved from [1])

3.3 Single Page Application (SPA)

SPAs are web applications or websites that are contained in a single web page. They are composed

of individual components which can be updated independently, with the goal to be able to update parts

of an interface without sending or receiving a full-page request, providing a more fluid user experience

[2,30,31]. There is no refresh on page request, unlike in multi-page applications in which there may be

a page reload on each request. All the necessary content is injected into the page through the use of

23

Asynchronous Javascript and XML (AJAX) and HTML templates to render the content.

On multi-page applications, HTML code is generated on the server. The template used is the server-

side template, so the web page is generated and sent to the browser. However, in the case of SPAs, the

HTML code is generated in real time on the client browser, according to the view.

Figure 3.3 represents the communication between the user, a SPA and a server. The communication

proceeds according to the following steps:

Figure 3.3: Communication between a User and a Server, (retrieved from [2])

1. Initial Request: HTTP request from the user to a specific URL.

2. Response with resources: the web server responds by sending all the resources (Javascript,

CSS and HTML files). When the user receives the response from the server, the SPA is executed

and loaded into the web browser.

3. Input: The user can send input to the SPA causing changes to its state. These changes are

handled either by the application or by requesting new data via AJAX from the server API.

4. Request: The request from the SPA to the server-side API is asynchronous (i.e., the request

returns control to the SPA before it receives the response from the API).

5. Response: The response is sent back to the SPA as soon as the API can handle the request.

6. Update: The SPA updates the components with the new data received from the server. This

update is executed by a re-rendering of the DOM and when it is complete, the SPA can receive

new input from the user. This is typically done by providing a callback function in the request

phase, which will be invoked when the response is received from the API.

In the qDocs platform, the Single Page Application (SPA) is implemented with the Angular framework,

and the API is implemented using ASP.NET Core.

24

4
qDocs Functional Requirements

Contents

4.1 qDocs/Admin . 26

4.2 qDocs/Curator . 29

4.3 qDocs/Citizen . 37

4.4 Cross-Cutting Concerns . 40

25

qDocs is defined by the integration of three applications: (a) qDocs/Citizen aimed at any citizen

looking for the benefits of the system; (b) qDocs/Curator particularly oriented to the curators that make

up the qDocs ecosystem; and (c) qDocs/Admin to manage and configure the available features for the

qDocs/Citizen and qDocs/Curator applications.

Since qDocs is a platform that already had an initial development, the proposed solution was to

further develop and extend the platform in the context of the curator. The development of this work

is not restricted to the qDocs/Curator application, because to enhance the curator’ user’s experience,

changes must be made to the whole qDocs ecosystem, therefore to the qDocs/Citizen and qDocs/Admin

applications. The changes in the qDocs platform will be functional, keeping the architecture of the

platform.

The following sections present the functional requirements for each qDocs application, as well as

the cross-cutting concerns of this work. Sections 4.1, 4.2 and 4.3 begin with a presentation of the

domain model of the respective application, followed by use case diagrams to better explain what are

the requirements for each application. Both domain models and use case diagrams have the same color

scheme:

• White - if the class/use case already existed and was untouched throughout this work;

• Yellow - if the class/use case already existed but had technical modifications;

• Green - if the class/use case was created due to this work;

• Grey - if the class/use case does not exist in the platform but is scheduled for future work.

In addition to the color scheme, it is understood that use cases with the word ”Manage” are comprised

as creation, editing and deletion.

Finally, section 4.4 presents the considerations to take into account throughout this work.

4.1 qDocs/Admin

The qDocs/Admin application is used to manage and configure the available features for the qDocs/Cit-

izen and qDocs/Curator applications — provides administration features for the qDocs ecosystem.

In this section, Figure 4.2 presents the only use case diagram because the only actor of the qDoc-

s/Admin application is the Admin.

26

4.1.1 Domain Model

Figure 4.1 presents a Unified Modeling Language (UML) class diagram of the domain model related to

the qDocs/Admin application.

Figure 4.1: qDocs/Admin Domain Model (UML Class Diagram)

The Users class represents all users in the qDocs ecosystem. A curator general role represents

a role with a certain degree of responsibility regarding a curator. A curator specific role represents a

role that citizens may have regarding a certain curator. These roles are further explained in subsection

4.2.2. Users may have multiple curator general roles and curator specific roles, and vice-versa.

The Curators class represents curators in the qDocs ecosystem. A curator must be associated with

at least one curator specific role and one curator general role. These roles may be associated with

multiple curators.

The System Settings class represents all the settings that are set for the qDocs platform, e.g.

language and services available for the curators. This is a singleton class.

27

4.1.2 Use Case

The Admin is responsible for the following use cases:

• Manage Users — includes creating new users and give them Admin permissions;

• Manage Curators — includes changing their information and associating new Administrators to

them.

• System Settings Configuration — configure available template features (e.g. authentication

using Google Id) for curators and changing general settings (e.g. language).

Figure 4.2: Citizen Use Case Diagram

28

4.2 qDocs/Curator

The qDocs/Curator application is particularly oriented to the curators that make up the qDocs ecosystem

— it allows the design of electronic documents (e.g. identification documents, certificates, reports,

forms, questionnaires) based on the orchestration of services and data from different curators, managed

according a distributed, dynamic and secure manner.

In this section, there is a description of the different curator roles before the presentation of the use

case diagrams used to explain the functional requirements of this application, since the actors of the

qDocs/Curator application are defined by each curator general role. These curator general roles are the

following: (a) Administrator; (b) Data Manager; (c) Templates Editor; (d) Templates Manager; (e) Auditor;

(f) Documents Manager.

4.2.1 qDocs/Curator Domain Model

Figure 4.3 presents a UML class diagram of the domain model related to the qDocs/Curator application.

Document templates are represented by two classes: Document Template and Document Template

Version. Document Template Version holds the information regarding a particular version such as date

of creation and last update, and if the version is the one being used by the curator (if it is active or

not). Document Template stores the basic information of a document template such as full and short

names, and state and aggregates the first class. Document templates can have multiple versions and

a document template version is associated with only one document template. Document Templates

have an attribute called Template State, which is an enumeration and represents the current state of the

document template. Document templates can have multiple versions and a document template version

is associated with only one document template.

Document Types are used to group document templates that have similarities, e.g. forms or certifi-

cates. A document type can have multiple document templates associated with it and vice-versa.

Life Events are used to group document templates that have similarities regarding certain life events,

e.g. Birth or Marriage. A life event can have multiple document templates associated with it and vice-

versa.

Curator represents the curator to which the document template is associated with. A curator can

have multiple document templates associated with it and a document template can only be associated

with one curator.

Specific Roles (also known as User groups) are used to group document templates to specific

curator roles, e.g. an university diploma can only be accessed by students, which can be a specific

curator role. A specific role can have multiple document templates associated with it and vice-versa.

29

Figure 4.3: qDocs/Curator Domain Model (UML Class Diagram)

A data service is provided by a curator through the qBox platform. It is composed by one or more

data service methods, which organize the retrieved data in tables. Data service methods are composed

by one or more data service method fields, which are the content of the table cells created by the data

service method.

Form objects serve as a link between document template versions and data service method fields.

They are associated with document template versions and receive or retrieve data from a data service

method field, depending if the data service method field is an input or an output, respectively. The data

received or retrieved by the data service method field is then used by the document template. Like

document groups, form objects may be associated with form object groups, which group form objects

that have similarities, e.g. input or output.

Snippets are blocks of text edited in the qDocs platform that may be used in document template

edition. They can contain all the elements available in the qDocs template editor, such as form objects

or even other snippets. Snippets are represented by two classes: Snippet and Snippet Version. Snippet

30

Version holds the information regarding a particular version such as date of creation. Snippet stores the

basic information of a snippet such as full and short names, and aggregates the first class. Snippets

can have multiple versions and a snippet version is associated with only one snippet. Snippet versions

may be associated with multiple templates and vice-versa.

Template feature configuration is comprised as the set of features that a document template ver-

sion has enabled/disabled, e.g. Data Export or Strong Authentication. It has default values that are

set by the administrator of the curator. A template feature configuration can be associated with many

document template versions, but each document template version has only one template feature config-

uration associated to it.

Template participant configuration is comprised as the set of the participants a template version

may have. Participants are entities that have a role towards a document, e.g. the president of a university

must sign a student’s diploma, meaning the president is a participant in the student’s document in the

qDocs context. Participants may be invited to access a document that was created by a citizen and

perform the activities that are configured in the template participant configuration, Data Export or Sign.

Curator Information represents all the information regarding a curator, e.g. short name, full name

and fiscal id. This is a singleton class.

Curator Settings represent all the settings that are set by the administrator of the curator, e.g.

language and services available for that curator. This is a singleton class.

Template default feature configuration is comprised as the set of default features that a document

template version has enabled/disabled, e.g. Data Export or Strong Authentication. This is a singleton

class.

This work further develops the classes presented in this domain model, taking into account the

different roles that each user may have.

4.2.2 Curator Roles

In the qDocs/Curator application, users can have general and specific roles. Curator specific roles are

the ones that citizens have regarding a certain curator, e.g. in a university a specific role can be a student

or a professor. Each specific role can request a determined set of documents to its curator. Each curator

defines its own set of specific roles. On the other hand, curator general roles are associated with a

certain degree of responsibility regarding a curator. Therefore, each curator general role has access

to a specific set of features. To better understand the functional requirements of the qDocs/Curator

application, there is a use case diagram for each curator general role (Figures 4.4, 4.5, 4.6, 4.9, 4.10

and 4.11).

31

4.2.3 Administrator

The Administrator is responsible for the following use cases:

• Associate Users — manually or in bulk.

• Manage Users — includes assigning general and specific roles to a single user.

• Manage Curator-Level Entities — manage document types, form object groups and curator spe-

cific roles (also named user groups);

• Settings Configuration — configure general settings (e.g. language), configure available tem-

plate features (e.g. authentication using Google Id), configure the default values for templates’

features (e.g. making the Data Export feature disabled);

• Edit Curator — change curator information (e.g. Name, Fiscal Id, Image).

Figure 4.4: Administrator Use Case Diagram

32

4.2.4 Data Manager

Figure 4.5: Data Manager Use Case Diagram

The Data Manager is responsible for the following use cases:

• Manage Data Services — includes managing the respective data service methods and assigning

data service method fields to them;

• Manage Form Objects.

4.2.5 Templates Editor

Figure 4.6: Templates Editor Use Case Diagram

33

The Templates Editor is responsible for the following use cases:

• Manage Document Templates — includes designing them and managing their metadata, i.e.

configure their information, groups, features and their participants;

• Manage Workflow — change the state of a document template, including submitting the document

template for approval;

• Consult Versions — consult all versions created of a document template;

• Configure Features — configure a document template’s features;

• Configure Template Participants — configure which users can access and manipulate the doc-

ument, i.e. the document’s participants.

A workflow is comprised as a set of states that are associated with a document template. There are

several states for document templates. They are represented in Figure 4.7 and their sequence happens

as follows:

• Created — after creating a document template;

• Pending for Approval — after the document template is designed it can be submitted for approval

or if it was rejected it can be submitted for approval again;

• Rejected — if the responsible for approving the document template rejects it;

• Active — if the responsible for approving the document template approves it or if the responsible

for the document template activates it after it is inactive or deprecated;

• Deprecated — when a new document template version is activated;

• Inactive — if the responsible for the document template deactivates it.

Figure 4.8 presents a state machine diagram for a document template’s workflow.

34

Figure 4.7: Document Template Workflow Domain Model(UML Class Diagram)

Figure 4.8: Document Template Workflow State Machine Diagram

35

4.2.6 Templates Manager

Figure 4.9: Templates Manager Use Case Diagram

The Templates Manager is responsible for the following use cases:

• Consult Document Templates in ”Pending for Approval” State — includes approving/rejecting

document template versions that are submitted for approval, therefore in the ”Pending for Approval”

state.

4.2.7 Auditor

Figure 4.10: Auditor Use Case Diagram

The Auditor is responsible for the following use cases:

• Analyze Curator-Level Activity — includes visualizing dashboards and timeline graphics with the

most relevant KPIs at Curator-Level.

36

4.2.8 Documents Manager

Figure 4.11: Documents Manager Use Case Diagram

The Documents Manager is responsible for the following use cases:

• Consult Document in ”Pending for Approval” State — includes approving/rejecting submission

requests made by citizens, i.e. when a citizen requests a document, the Documents Manager

consults the request, and then it can approve (then the citizen who requested the document can

have access to it through its user interface) or reject (the citizen shall be notified of the situation

and request the document again) that request.

4.3 qDocs/Citizen

The qDocs/Citizen application is aimed at any citizen looking for the benefits of the system — allows

citizens to access and manage their documents in a secure manner.

In this section, Figure 4.13 presents the only use case diagram because the only actor of the qDoc-

s/Citizen application is the Citizen.

4.3.1 Domain Model

Figure 4.12 presents a UML class diagram of the domain model related to the qDocs/Citizen application.

Document represents a document that is accessible by a citizen.

User represents all citizens using the qDocs platform. A user may be associated with documents as

two different entities: owner or participant. If the user is a owner, then it may have multiple documents

and a document can only have one owner. If the user is a participant, then it can be associated with

multiple documents and vice-versa.

37

Document Share represents all the information regarding a document that was shared, i.e. if a

document is shared, it has information regarding who shared the document and who accessed it besides

the owner of the document.

Curator represents the curator to which a document is associated. A document may be associated

with one curator but a curator may be associated with multiple documents.

Document Types is comprised as the document groups to which a document is associated (e.g.

forms or certificates). A document may be associated with multiple document types and vice-versa.

Life Events is comprised as the life events to which a document is associated (e.g. birth or marriage).

A document may be associated with multiple document types and vice-versa.

Curator Specific Roles (also known as user group) is comprised as the roles to which a document

is associated (e.g. student or president). A document may be associated with multiple user groups and

vice-versa.

Citizen Information represents all the information regarding a citizen, e.g. id, name and curators to

which a citizen is associated with. This is a singleton class.

Figure 4.12: qDocs/Citizen Domain Model (UML Class Diagram)

38

4.3.2 Use Case

Figure 4.13: Citizen Use Case Diagram

The Citizen is responsible for the following use cases:

• Create Document — can only create documents to which it has access and if it can be the owner

of the document;

• Consult Documents — this includes inviting participants to the document and use enabled docu-

ment features, such as Share or Export;

• Manipulate Document — only participants can do this, it includes using features that will affect a

document, such as Sign;

• Strong Authentication — a citizen may be requested to go through a strong authentication pro-

cess in order to create, consult and manipulate a document.

• Pay — a citizen may be requested to pay a determined value in order to create, consult or manip-

ulate a document.

• Access Citizen Profile — a citizen can access its profile to check its information, including the

curators to which it is associated to; a citizen can also edit its information, e.g. its alias and email.

39

4.4 Cross-Cutting Concerns

During the development of the qDocs platform there are some requirements that are cross-cutting to

the whole qDocs platform. The platform must provide security features such as confidentiality, integrity,

authenticity, and non-repudiation. It should provide security at communication-level using a Kerberos-

based protocol; support Personal Data Privacy; support User Authentication based on citizen id and

password or other means such as AMA’s autenticacao.gov.pt service; and support User Authorization

based on general and specific roles. Integration is another important concern, since qDocs is a cloud-

based platform must support interoperability with other external system that will request information

from different sources, some of them Curators with legacy applications [25, 26]. The platform must

integrate with AMA’s managed external systems. This will be done with qBox, which is a Curator’ specific

external system to provide such integration. Finally, the platform must support multi-language and take

UI aspects, i.e the platform must be provide an attractive, simple and easy to use user experience.

In this work the focus is on the User Authorization based on general and specific roles and everything

related with the UI.

40

5
qDocs Technical Description

Contents

5.1 Architecture Overview . 42

5.2 Design and Development . 42

41

This chapter presents what is accomplished with this work. Section 5.1 presents the architecture of

the platform and section 5.2 describes what is developed in each qDocs application.

5.1 Architecture Overview

Since it is a web based solution, the architecture is the one of a full stack application. Figure 5.1 shows

the technological architecture of the qDocs platform with the technologies used in each side of the

application, including the database. The application has three major components: client, server and

database. Users access the application through the client and make requests to the server through it.

The server then retrieves the requested information from the database and sends it to the client. The

database uses PostgreSQL1, which is open-source object-relational database system that uses and

extends the SQL language. The server uses the ASP.NET CORE framework and the client uses the

Angular 4 framework. These two technologies are already described in Chapter 3 and are the ones

already being used, since qDocs is already in an early stage of development before this work.

Figure 5.1: qDocs Technological Architecture

5.2 Design and Development

This section describes the technical implementation performed in the qDocs platform. Subsections 5.2.1,

5.2.2 and 5.2.3 present the implementations that are specific to each qDocs application and subsection

5.2.4 describe the implementations that are common to all applications.

1https://www.postgresql.org/about/, last accessed 30th July 2019

42

5.2.1 qDocs/Admin

The qDocs/Admin application provides administration features for the qDocs ecosystem. It was already

possible to create new curators and edit their information before this work, but it was not possible to edit

all information regarding a curator, so these minor changes were developed. Also the settings interface

was implemented with this work. Figure 5.2 presents the Edit Curator Interface and figure 5.3 presents

the Settings Interface.

Figure 5.2: Edit Curator Interface Figure 5.3: Settings Interface

In figure 5.2 a user with admin privileges can edit a certain curator’s information, including its short

name, full name, type (e.g. public sector, education or other) and fiscal id. A user could not change

the type and fiscal id values before this work. Also the user with access to this interface can see which

citizens are associated to the curator with the Administrator general role.

In figure 5.3 a user can change the general settings of the qDocs platform (comprised only as the

language) and activate/deactivate services that are going to be used by the curators, such as document

export as pdf or as csv files.

43

5.2.2 qDocs/Curator

The qDocs/Curator application allows curators to design and configure their document templates and

make them available for citizens. Before this work, a user from the curator could:

• Associate users to the curator;

• Manage users associated to the curator;

• Manage curator-level entities;

• Manage data services;

• Manage form objects;

• Manage document templates;

• Design document templates, using form objects and snippets.

With this work, some features were enhanced (e.g. all managing interfaces have pagination and

search bars) and others were created in order to provide a better experience for the users of the curator

(e.g. associating users in bulk and configure features for document templates). Figures 5.4, 5.5, 5.6,

5.7, 5.8, 5.10, 5.11, 5.12, 5.13, 5.9 present the qDocs/Curator interfaces that included major technical

implementation. These implementations include:

• Creation of curator General Roles;

• Settings interface development;

• Bulk association of users to the curator;

• Item deletion option (e.g. a Administrator could not delete a Form Object Group he created);

• Participant configuration;

• Template feature configuration;

• Search bars, pagination and filters to improve item search;

• Buttons to improve navigation between interfaces;

44

Figure 5.4: qDocs/Curator Home Interface

Figure 5.4 presents the qDocs/Curator initial interface for a curator user. It has the name of the

curator followed by several navigation options. The option User Groups is the one used to manage

curator specific roles (User Groups was the name used before this work and was not changed). These

navigation options are available to determined curator general roles:

• Administrator — can access the Form Object Groups, Document Groups, Users, User Groups

and Settings options;

• Data Manager — can access the Services, Form Objects and Snippets options;

• Templates Editor — can access the Templates option;

• Templates Manager — can access the Pending Templates option (currently it does nothing, it is

scheduled for future work, as stated in chapter 7);

• Auditor — does not have access to any option, since its functional requirements are scheduled

for future work, as stated in chapter 7.

• Documents Manager — can access the Pending Documents option (currently it does nothing, it

is scheduled for future work, as stated in chapter 7);

These curator general roles and curator specific roles are already described in Chapter 4.

45

Figure 5.5: List Specific Roles Interface Figure 5.6: Edit Specific Role Interface

Figure 5.5 shows the UI presented after choosing the option ”User Groups”. It presents a list with

all curator specific roles created in the presented curator. With this work, the pagination and search

features were created so the curator user can access the desired ”user group” easily. Also the Delete

User Group feature was created. If the curator user chose any other option, the UI would be similar, and

was affected in the same manner by this work, therefore not all other options are presented.

Figure 5.6 is the UI presented after choosing ”Edit User Group”, presented in Figure 5.5. In this

menu, a curator Administrator may change the short and full names of the curator specific role selected

and may consult which citizens are associated to it and associate more (this interface was not affected by

this work). If the curator wanted to edit a determined curator-level entity, the interface would be similar,

therefore not all other options presented.

Figure 5.7 is the UI presented when a curator Administrator wants to associate users to the curator.

It can associate a single user by providing its Email and Citizen Card Number (this feature was already

available before this work) or associate users in bulk by providing a csv file with the citizens’ Citizen

Card Number, Email, Curator General Role and Curator Specific Role (this feature was created with this

work).

Figure 5.8 is the interface presented when a curator Administrator wants to edit information regarding

another curator user. It can consult the users information (CCNumber, Alias, Email and Phone Number)

and assign General and Specific Roles to the user. Before this work, it was not possible to assign

Specific Roles to a user through this interface. In Figure 5.8 there is a General Role named Citizen

that was not presented. This General Role is used to associate a citizen to a curator, without any

46

responsibility. This has to be done because for a citizen to request documents from a curator, it must

be associated to with a general role, that was how the platform was designed before this work, and the

architecture was kept.

Figure 5.7: Associate Users Interface Figure 5.8: Edit User Interface

Figure 5.9 presents the Settings Configuration interface divided into two parts. In figure 5.9(a) a

curator Administrator can change its curator information (short name, full name, country, image url and

fiscal id) and change its general settings (comprised only as the language). In figure 5.9(b) a curator

Administrator can change the services available for template configuration and the default features for

templates. Regarding services available, the ones that appear for a curator Data Manager to select are

the ones enable by the Admin of the qDocs platform.

Figure 5.10 is the UI that lists all document templates of a curator. Besides a search bar and pagi-

nation, with this work filtering options were added. A user may search a document template using filters

such as Life Events or Document Types and, if available, using sub-filters such as Birth or Taxes (for Life

Events, for example). Through this interface a user can choose to edit a document template’s metadata,

content or participants or to view the active version of that document template, if available.

Figure 5.11 is the Edit Template Participants Interface. In this UI a curator Templates Editor can

change the number of participants and their information. A participant’s information is comprised as its

role (a name given by the curator Templates Editor), its multiplicity and the features it has available, such

as Sign a document or Export it. The multiplicity parameter may have four options with the following

meaning:

• Opcional — a document may have one participant with this role (0..1);

47

• Mandatory — a document must have one participant with this role (1);

• ZeroMultiple — a document may have zero or more participants with this role (*);

• OneMultiple — a document must have at least one participant with this role, but may have more

(1..*).

Figure 5.12 presents the template Edit Content UI. Figure 5.12(a) is the initial template Edit Content

UI. It provides all common text edition features such as text alignment and font size. In addition to

these common features, it has a blue button with a Q letter that enables all features relative to document

template edition. Figure 5.12(b) is the modal presented after pressing this button. Through this interface

a curator user may insert snippets, form objects, conditions, formulas and IfElse conditions into the

document template. These features were all available before this work.

Figure 5.13 presents the Template Edit Metadata interface divided in two parts. In figure 5.13(a)

a curator user can consult the document template’s short name, full name, version, creation date (the

time when the template was created), publication date (the time when the template’s version became

active) and history, i.e. consult the document template’s previous versions (this interface is not presented

because it is similar to the other list interfaces). Regarding figure 5.13(a) a curator user can also enable

the sharing types of a document, which can be:

• Key — a citizen receives a key and sends it to other citizens so they can access the document;

• hyperlink — a citizen receives an hyperlink and other citizens can access the document through

it.

All of these features were already available before this work. In figure 5.13(b) a curator user can

configure the document template’s features such as Export, Strong Authentication, Payment and the

Payment Value, if the previous is enabled. This was created with this work. A curator user can also

assign the document template to document groups, comprised as Life Events, Document Types and

Organization Groups (named document groups in the curator home interface). Both Life Events and

Document Types are predetermined by the qDocs platform. In addition, it can assign document tem-

plates to specific roles and consult the scope and state of the template. This was already available

before this work.

48

(a) (b)

Figure 5.9: Settings Configuration Interface

Figure 5.10: List Templates Interface Figure 5.11: Edit Template Participants Interface

49

(a) Edit Content Interface (b) QDocs Edition Options Interface

Figure 5.12: Template Content Edition Interfaces

(a) (b)

Figure 5.13: Template Metadata Edition Interface

50

5.2.3 qDocs/Citizen

The qDocs/Citizen application is aimed at any citizen looking for the benefits of the system. Before this

work, a citizen user could:

• Create documents;

• Consult its documents;

• Use the share document feature;

• Access and edit its profile information.

The purpose of this work regarding the qDocs/Citizen application was to test and validate what was

implemented in the qDocs/Curator application, e.g. the participant configuration and document feature

availability. Figures 5.14, 5.15, 5.16, 5.17, 5.18 and 5.19 present the qDocs/Citizen interfaces that

suffered technical implementation in the scope of this dissertation.

Figure 5.14: My Documents Interface Figure 5.15: Documents Shared With Me Interface

Figure 5.14 presents the My Documents interface. Through this interface a citizen create a new

document or access its documents through different filters, including Life Events, Document Types and

Organizations (i.e. curators). Before this work, accessing a document through a filter was not done

properly, e.g. a citizen could select every kind of life event despite not having documents with life events

associated with it.

Figure 5.15 presents the interface to access a document shared with the citizen, therefore there is

an option to delete the document. Citizens can not delete their own created documents, so the interface

51

to access a citizen’s own documents is similar but without the delete document button. These interfaces

did not have technical implementations but are shown to provide context.

(a) (b)

Figure 5.16: Document Interface

Figure 5.16 shows an example of a citizen’s document. Figure 5.16(b) includes the buttons that pro-

vide the features available for the document. As explained before, the available features for a document

are configured by the curator Templates Editor. For example, if the Templates Editor did not enable the

share feature, that button would not appear in the document interface. Before this work, a citizen would

always have access to all document features.

Figure 5.17 presents the Invite Participants interface. In this interface, a user can configure the par-

ticipants of its document, i.e. assigns a role (e.g. President) and provides the CC Number of the citizen

user that will have the assigned role. The citizen can see the features available for each participant role,

e.g. in the figure the participant ”Presidente” can sign the document and the ”Vogal” can export it. For

participants to have access to the document, the owner of the document must use the share feature and

provide the key or hyperlink to the respective citizen users. Then these users can access the document

and see an interface similar with the one presented in Figure 5.18, which has the Sign button available in

this case. With this work, the described interfaces and application logic were created and implemented

but the participants’ features were not, only the button availability.

52

Figure 5.19 presents the user profile interface. In this interface a user can change its information

(alias, email, phone number and password) and verify its associations with curators. A user can not

change its CC Number because in order to create an account, its CC Number must be verified.

Figure 5.17: Invite Participants Interface Figure 5.18: Shared Document Interface

(a) (b)

Figure 5.19: Citizen Profile Interface

53

5.2.4 Cross-Cutting

During this work, all interfaces newly created kept the visual style that was already implemented before

this work. In addition the following cross-cutting technical implementations were made:

• Search Bars and Pagination — all list interfaces did not have these features; they make the

search for items in a list easier;

• Navigation — in some interfaces navigation was not flexible or not properly done, e.g. it was not

possible to navigate from the template edit metadata interface to the template edit content interface

directly and vice-versa;

• Curator Name — before this work, all curator interfaces did not have the respective curator’s name

on them; this was implemented to provide context to the curator user;

• Authorization — before this work, when a citizen was associated to a curator it was allowed to

access the curator’s interface, however it could not do anything.

54

6
Evaluation

Contents

6.1 Scenario – A . 56

6.2 Scenario – B . 63

6.3 Discussion . 70

55

This chapter presents two scenarios used to test the implementations done in the qDocs platform.

Both scenarios present the life-cycle of a document in a fictional academic context. Section 6.1 presents

the Scenario – A focused on the following aspects:

• Template metadata configuration, manually use of payment and strong authentication features;

• Access to a created document through different filtering options;

• Access to the created document and check the available features.

Section 6.2 presents the Scenario – B focused on the following aspects of the qDocs application:

• Template design;

• Participant configuration;

• Document creation;

• Access to the created document;

• Participant invitation;

• Access to the document by a participant.

Finally, Section 6.3 discusses the presented scenarios and compares the qDocs application with the

related work.

6.1 Scenario – A

Consider a master degree certificate of qualifications from a student of Instituto Superior Técnico, a

certificate that proves the student completed a master degree.

6.1.1 Curator-level

Before the certificate is available in the qDocs/Citizen application, a Templates Editor must design the

corresponding template, configure its metadata. Figure 6.1 presents the form to configure and define the

metadata for the ”Certificado de Habilitações” template. From the properties presented in Figure 6.1(a)

only the ”AllowSharingTypes” can be edited. This parameter allows the Templates Editor to configure

if the template can be shared via hyperlink or key. In this scenario, the certificate can be shared via

hyperlink and key. Since the template is on version 4, the Templates Editor can check the template’s

history if he wants. The ”CreationDate” refers to the date of creation of the current template’s version

and the ”PublicationDate” refers to the date of activation of the current template’s version. Figure 6.1(b)

shows the rest of the metadata form. The ”AllowedFeatures” of a template are:

56

• Export — the citizen can export the document, e.g. as a PDF file format;

• Strong Authentication — to access the document, a citizen must go through a Strong Authentica-

tion process (the implementation of this process is scheduled for future work);

• Payment — to access the document, a citizen must pay the value that is defined in the ”Payment-

Value” parameter (the implementation of this process is scheduled for future work).

The parameters inside ”DocumentGroups” (i.e. ”LifeEvents”, ”DocumentTypes” and ”Organization-

Groups”) are classifiers that may help citizens to search their documents. In this scenario, the values

for these parameters are the following: (a) Education (Life Event); (b) Declaration (Document Type);

(c) Certificado (Organization Group, also named document group in the curator interface). A “User-

Group” (also known as Curator Specific Role) can also be selected and if that is the case, only citizens

with these roles can access that document. “UserGroups” are also set by the Curator Administrator, as

stated before. The value for this parameter is ”Finalista”, which means only citizen students who have

finished their degrees may create this document. Templates can be defined as an internal or external

scope: if it is internal, only users associated with the Curator can access its documents, e.g. a student

from university X can not access documents from university Y; if it external, the document is available

for any citizen user.

After designing the template and defining its metadata, it is activated, therefore it is ready to be

created in the qDocs/Citizen application.

57

(a)

(b)

Figure 6.1: Template Metadata

58

6.1.2 Citizen-level

For this scenario, the following would happen: (a) The student requests the creation of his ”Certificado

de Habilitações”; (b) that request is approved by the Documents Manager of Instituto Superior Técnico;

(c) the student now has access to the document in his qDocs/Citizen application. This workflow is

scheduled for future work. With this work, the student would be the one creating his own ”Certificado de

Habilitações”.

After the document is created, the student can access it using the classifiers that were set by the

Templates Editor when he configured the template’s metadata. Figures 6.2, 6.3 and 6.4 present the

sequences of interfaces the student sees when he wants to access its ”Certificado de Habilitações”

using the different classifiers. Figure 6.2 presents the access to the document through the ”Document

Type” classifier, Figure 6.3 presents the access to the document through the ”Life Event” classifier and

Figure 6.4 presents the access to the document through the ”Organization Groups” classifier.

After accessing the document through any of the specified classifiers, the student must pay for the

document and proceed through a Strong Authentication process before visualizing the document, be-

cause that was specified in the template’s metadata. This process is represented in Figures 6.5(a),

6.5(b) and 6.5(c). The implementation of the Payment and Strong Authentication features are scheduled

for future work, since the focus of this work was to implement the functionality in the curator side of the

qDocs platform. Figure 6.5(d) presents the end of the visualization of the ”Certificado de Habilitações”

with the ”Share” button visible, because the Templates Editor only enabled that feature.

The student only has to pay for the document for the first time he wants to access it, but he has to go

through the Strong Authentication process every time he tries to access the document.

59

(a)

(b)

Figure 6.2: Document Access — Document Types

(a)

(b)

Figure 6.3: Document Access — Life Events

60

(a)

(b)

(c)

Figure 6.4: Document Access — Organizations

61

(a)

(b)

(c)

(d)

Figure 6.5: Document Visualization

62

6.2 Scenario – B

Consider a minute of the dissertation defense meeting of Instituto Superior Técnico, a document used

to evaluate a student’s dissertation after its defense meeting.

6.2.1 Curator-level

Before it is available in the qDocs/Citizen application, a Templates Editor has to design the template for

the minute. Figures 6.6 and 6.7 show how the template editor of the qDocs/Curator application looks just

before saving the template. In the editor, form objects are inserted using the blue button with the letter

”Q” and are represented by their name followed by the ”@” symbol and by the ”Input” or ”Output” words,

meaning the form object is of type ”Input” (i.e. the citizen must insert some information when creating

the document and then it will be stored in the Curator’s database when the document is generated)

or ”Output” (i.e. the created document is already filled with information from the respective Curator),

respectively. This information is between brackets and red parentheses as shown in the figures. In this

minute the form objects are:

• ([Nome do Aluno@Input]) — the evaluated student’s name;

• ([Número do Aluno@Input]) — the evaluated student’s faculty number;

• ([P11@Input]) to ([P28@Input]) — the evaluated student’s score in each parameter; the score may

have the values NA (Not applicable), Mau (Poor), Medı́ocre (Mediocre), Suficiente (Fair), Bom

(Good) or Muito Bom (Very Good);

• ([Nota@Input]) — the evaluated student’s dissertation grade;

• ([Justificacao@Input]) — the justification of the student’s grade;

• ([Unanimidade@Input]) — the unanimity, i.e. if the dissertation’s grade was a unanimous decision;

the values of this form object are Yes or No;

• ([Data@Input]) — the date of the dissertation’s defense meeting.

After designing the template, the Templates Editor configures the participants of the document as

shown in Figure 6.8. In this case, there are 4 participants and they all can Sign and Export the document,

since it is a minute from the faculty. The participants of this document have different multiplicity rules,

because to evaluate a dissertation it is mandatory to have one ”Presidente”, one ”Orientador”, zero or

one ”Co-Orientador” and zero or more ”Vogal”. When the Templates Editor finishes the configuration it

saves it.

After designing the document template and configuring its participants, the template’s metadata is

set and then the template is activated, making the document ready to be created in the qDocs/Citizen

platform.

63

(a)

(b)

Figure 6.6: Template Creation Part 1

64

(a)

(b)

Figure 6.7: Template Creation Part 2

65

Figure 6.8: Participant Configuration

66

6.2.2 Citizen-level

Figure 6.9 shows the interface presented to the user that will generate the minute of the dissertation’s

defense meeting. The boxes to be filled refer to the form objects inserted in the template. Theoretically,

in this case, the user that would create the document would not fill it, since it is the participant with the

role ”Presidente” the responsible for doing it, but with this work the user who creates the document is

the one who should fill it. The filling of documents by participants is scheduled for future work.

After filling the boxes, the user then saves the document and it is generated and ready to be con-

sulted. When the user wants to consult the generated document, an interface similar to Figure 6.10 will

appear, and now the user has the option to invite the respective participants to the document using the

button ”Invite Participants”. This button is available because there are participants that were configured

previously.

Figure 6.11 presents the interface where the user invites the respective participants to the document.

For citizens to be invited has participants of a document, a user must know their CC Number and check

if it correct using the ”checkUser” button. After all participants are set, the user clicks the ”Save” button

and then he must share the document with the participants in order for them to access the document.

For future work, after the user clicks the ”Save” button, a notification with a key or hyperlink should be

sent automatically to the participants of the document.

When participants receive the sharing key or hyperlink to access the document to which they were

invited to, they see an interface similar to the one in Figure 6.12. It is similar to the interface of a

user accessing its generated document, but the buttons that appear are the ones that were set by the

Templates Editor in the participant configuration. These buttons allow the participant to perform actions

such as Sign the document or Export it. The figure only shows pop-ups in green with a success message

for both Sign and Export because with this work the functionality of these features was not done, but it

is scheduled for future work.

After all participants signed the document, the grade of the student’s dissertation can be published.

The workflow relative to document manipulation by participants (e.g. signing a document) is also sched-

uled for future work.

67

(a)

(b)

Figure 6.9: Document Creation

68

(a)

(b)

Figure 6.10: Document Access

Figure 6.11: Participant Invitation

69

Figure 6.12: Participant Document

6.3 Discussion

The scenarios presented in this chapter were tested in a controlled environment, supervised by both

advisors of this work, which are participants in the qDocs project. As stated in the beginning of this

chapter, both scenarios presented the life-cycle of documents in the academic context. The first scenario

was focused on the configuration of a template and its consequences for a citizen who wants to access a

document created with that template. The second scenario was focused on the design of a template and

its participant configuration. This scenario included the interaction of a citizen with a document created

with the designed template and the interaction of the invited participants with that same document.

After this work, qDocs provides more functionalities to all kinds of users of the platform (administra-

tors, curators and citizens): administrators now manage users, curators and services available for the

curators; curator users have more options to configure their templates and the different curator general

roles provide better management flexibility; citizens now can access shared documents as participants

and have specific features available when accessing their documents.

Comparing to what was introduced and discussed in Chapter 2, qDocs differs from the platforms

analyzed but has some of the suggested features for a citizen-centered platform.

On the curator side, qDocs gathers information from associated curators through the qBox appli-

cation, allowing the platform to integrate with entities that use different systems. Regarding template

definition, although it is not possible to import documents, qDocs provides an HTML text editor within

the qDocs/Curator application, making template definition possible through any device with internet con-

nection. This editor provides all elements present in Table 2.2. With the definition of Data Services

70

and Form Objects it is possible to gather (and store) data directly from curators’ databases and use it

in different templates, so there is no need to define a Form Object or Data Service twice for the same

purpose.

On the citizen side, the process of document creation is similar in every platform, because it is

a simple, user-friendly method. With this project, qDocs now has the participant configuration and

invitation feature which is different from the platforms evaluated. It is scheduled for future work that

citizens must make a request for document creation, and when the request is approved by a Documents

Manager they may have access to the document. Regarding digital signature, despite being presented

in the second scenario as something a participant can do in a document, it is scheduled for future work.

Regarding content management, which is common to both citizens and curators, it is done within the

qDocs platform. When a citizen requests the generation of a document the information needed to do

it comes directly from qBox, which is stored in the curator’s system. This makes document generation

secure, because the information stored in qDocs is relative to the information it needs to request to qBox,

so sensitive information is never stored directly in the qDocs platform. Also qDocs is a cloud platform,

so all its features are available to users by accessing the qDocs website.

Concluding, if qDocs is evaluated according to the framework presented in Table 2.1 it will have its

values oriented to a citizen-centered platform as it should be. Comparing it to A2J Author, which is the

other citizen-centered platform evaluated, qDocs may support a broader range of users, since every

curator may join the platform, meaning every kind of document will be accessible to citizens.

71

7
Conclusion

Contents

7.1 Conclusion . 73

7.2 Future Work . 73

72

This chapter presents the conclusion of this work (Section 7.1) and recommends implementations

for the future of the work (Section 7.2).

7.1 Conclusion

Document automation is an approach that supports the creation of electronic documents in a flexible

and efficient way, which provides several benefits for organizations. Document automation platforms

are popular in several areas and keep evolving over time. However, these platforms are most common

designed to be used by private organizations, therefore not addressing the purpose to help citizens in

general. qDocs is a platform designed for that purpose, it provides a single point of access for citizens

to access and manage their own documents (e.g. id cards, forms, certificates). These documents

are provided by curators that use the qDocs platform to both manage templates and data. This work

proposes an improvement to the qDocs platform, so that every citizen and curator may benefit with the

use of the platform.

After analyzing the state-of-art, no other platform seems to match what qDocs offers. Being able

to connect with any kind of curator, which has specific requirements regarding documents would be a

major benefit for citizens because they would have a single point of access to all their documents. This

work was evaluated in a controlled environment by applying qDocs to two scenarios that had different

requirements.

7.2 Future Work

This section describes a few implementations to the be done in the future to this work. These sugges-

tions emerged during the development of this work but due to reasons as time constraints or complexity

they were not considered. The suggestions for future work are the following: Curator General Roles

Use Cases — the Templates Manager, Documents Manager and Auditor curator general roles exist in

the qDocs platform but they do not do yet anything; in particular for future work the use cases presented

for these roles (in Section 4.2) should be implemented; Strong Authentication — this feature was

scheduled for future work due to its complexity of implementation and since many curators have docu-

ments that require citizen authentication in order to be accessed; with this work only the general logic

regarding this feature was considered; Payment — this feature was scheduled for future work due to its

complexity of implementation and since many curators have documents that need to be payed in order

to be accessed; with this work only the general logic regarding this feature was considered; Participant

Notification — when a user invites other users to have access and participate in his document, they

should be notified with an access key or hyperlink automatically; Document Manipulation by Partici-

73

pants — participants can only access a document and see buttons relative to the features available for

them; however these features should be implemented (such as Sign and Export) and interactions with

the document like filling specific fields should be implemented as well.

74

Bibliography

[1] Google, “Angular - Architecture overview.” [Online]. Available: https://angular.io/guide/architecture

[2] M. Kilger, “A shadow handler in a video-based real-time traffic monitoring system,” Proceedings of

IEEE Workshop on Applications of Computer Vision, vol. 1992-Novem, pp. 11–18, 1992.

[3] J. A. Menezes, A. Silva, Rodrigues da Silva, and J. Saraiva, “Citizen-Centric and Multi-Curator

Document Automation Platform : the Curator Perspective,” in Proceedings of ISD’2019, AIS, 2019.

[4] MDSS, “qDocs , Citizen centric document technology,” White Paper, 2018.

[5] R. Lankester, “Implementing Document Automation: Benefits and Considerations for the Knowl-

edge Professional,” Legal Information Management, vol. 18, no. 2, pp. 93–97, 2018.

[6] M. Lauritsen, “Knowing documents,” Proceedings of the International Conference on Artificial Intel-

ligence and Law, vol. Part F1271, pp. 184–191, 1993.

[7] V. Mital and A. D. Elliman, “Document assembly and evidence analysis - Two approaches to hyper-

text,” pp. 149–175, 1994.

[8] D. R. Mountain, “Disrupting conventional law firm business models using document assembly,”

International Journal of Law and Information Technology, vol. 15, no. 2, pp. 170–191, 2007.

[9] M. Lehtonen, R. Petit, O. Heinonen, and G. Lindén, “A Dynamic User Interface for Document As-

sembly,” Proceedings of the 2002 ACM Symposium on Document Engineering, pp. 134–141, 2002.

[10] T. F. Gordon, “A Theory Construction Approach to Legal Document Assembly,” Expert Systems in

Law, pp. 211–225, 1992.

[11] N. Loutas, F. Narducci, A. Ojo, M. Palmonari, C. Paris, and G. Semeraro, “PEGOV 2014: 2nd inter-

national workshop on personalization in eGovernment services and applications,” CEUR Workshop

Proceedings, vol. 1181, pp. 1–9, 2014.

[12] N. Colineau, C. Paris, and K. V. Linden, “Automatically generating citizen-focused brochures for

public administration,” ACM International Conference Proceeding Series, pp. 10–19, 2011.

75

https://angular.io/guide/architecture

[13] A. Kamphuis, “Revolutionary Technology,” Courts Today, 2012.

[14] R. J. Glushko and T. McGrath, “Document Engineering for e-Business,” Proceedings of the 2002

ACM Symposium on Document Engineering, pp. 42–48, 2002.

[15] R. Eito-Brun and A. Amescua-Seco, “Automation of Quality Reports in the Aerospace Industry,”

IEEE Transactions on Professional Communication, vol. 61, no. 2, pp. 166–177, 2018.

[16] N. J. Petro Jr, “DOCUMENT AUTOMATION: Using Technology to Improve Your Practice,” GPSolo,

vol. 32, no. 5, pp. 56–62, 2015.

[17] M. W. Wong, H. Haapio, S. Deckers, and S. Dhir, “Computational Contract Collaboration and Con-

struction,” Proceedings of the 18th International Legal Informatics Symposium IRIS 2015., vol. 512,

no. February, pp. 505–512, 2015.

[18] R. Smith and A. Paterson, “Face to Face Legal Services and their Alternatives : Global Lessons

from the Digital Revolution,” White Report, 2014.

[19] R. Klempner, “The case for court-based document assembly programs: A review of the New York

state court system’s ”DIY” forms,” Fordham Urban Law Journal, vol. 41, no. 4, pp. 1189–1226,

2015.

[20] J. Frank, “A2J Author, Legal Aid Organizations, and Courts: Bridging the Civil Justice Gap Using

Document Assembly,” Western New England Law Review, vol. 39, no. 2, 2017.

[21] M. C. Penadés, P. Martı́, J. H. Canós, A. Gómez, M. C. Penadés, P. Martı́, J. H. Canós, A. Gómez,

P. Line-based, N. Loutas, F. Narducci, A. Ojo, and M. Pal, “Product Line-based customization of

e-Government documents,” In PEGOV 2014: Personalization in e-Government Services, Data and

Applications (Vol. 1181). CEUR-WS, 2014.

[22] K. Betts and K. Jaep, “The Dawn of Fully Automated Contract Drafting: Machine Learning Breathes

New Life Into a Decades-Old Promise,” Duke Law & Technology Review, vol. 15, no. 1, pp. 216–233,

2017.

[23] S. Passera, H. Haapio, and M. Curtotti, “Making the Meaning of Contracts Visible – Automating Con-

tract Visualization,” IRIS Conference on Legal Informatics 2014, in Salzburg, vol. 450, no. February,

pp. 443–450, 2014.

[24] M. E. Key, “The Universalization of Data Interaction Technology Research between Database and

Spreadsheet of WORD Based on OLE Qing-zhong JIA and Bin XIAO,” DEStech Transactions on

Environment, Energy and Earth Sciences (SEEIE 2016), 2016.

76

[25] W. He and L. D. Xu, “Integration of distributed enterprise applications: A survey,” IEEE Transactions

on Industrial Informatics, vol. 10, no. 1, pp. 35–42, 2014.

[26] R. Iqbal, N. Shah, A. James, and T. Cichowicz, “Integration, optimization and usability of enterprise

applications,” Journal of Network and Computer Applications, vol. 36, no. 6, pp. 1480–1488, 2013.

[27] Y. Zhai, M. Liu, J. Zhai, X. Ma, and W. Chen, “Cloud versus in-house cluster: Evaluating amazon

cluster compute instances for running MPI applications,” State of the Practice Reports, SC’11, 2011.

[28] D. Molnar and S. Schechter, “Self Hosting vs . Cloud Hosting : Accounting for the security impact of

hosting in the cloud,” 9th Workshop on the Economics of Information Security (WEIS 2010), 2010.

[29] R.L.Grossman, “The case for cloud computing,” IT Professional, vol. 11, no. 2, pp. 23–27, 2009.

[30] F. Monteiro, Learning Single-page Web Application Development, packt publ ed., 2014.

[31] A. Mesbah and A. V. Deursen, “Migrating Multi-page Web Applications to Single-page A JAX In-

terfaces,” Mesbah, Ali, and Arie Van Deursen. ”Migrating multi-page web applications to single-

page Ajax interfaces.” 11th European Conference on Software Maintenance and Reengineering

(CSMR’07). IEEE, 2007.

77

	Titlepage
	Abstract
	Abstract
	Resumo
	Resumo
	Contents
	List of Figures
	List of Tables
	Acronyms

	1 Introduction
	1.1 Problem Statement
	1.2 Objectives
	1.3 Organization of the Document

	2 Related Work
	2.1 Introduction
	2.2 Evaluation Framework
	2.2.1 Document Template Definition
	2.2.2 Document Generation
	2.2.3 Content Management
	2.2.4 Integration
	2.2.5 Platform Availability
	2.2.6 Digital Signature
	2.2.7 Citizen-Centered
	2.2.8 Other Features

	2.3 Document Automation Platforms
	2.4 Comparison and Discussion

	3 Technology
	3.1 ASP.NET Core
	3.2 Angular
	3.3 Single Page Application (SPA)

	4 qDocs Functional Requirements
	4.1 qDocs/Admin
	4.1.1 Domain Model
	4.1.2 Use Case

	4.2 qDocs/Curator
	4.2.1 qDocs/Curator Domain Model
	4.2.2 Curator Roles
	4.2.3 Administrator
	4.2.4 Data Manager
	4.2.5 Templates Editor
	4.2.6 Templates Manager
	4.2.7 Auditor
	4.2.8 Documents Manager

	4.3 qDocs/Citizen
	4.3.1 Domain Model
	4.3.2 Use Case

	4.4 Cross-Cutting Concerns

	5 qDocs Technical Description
	5.1 Architecture Overview
	5.2 Design and Development
	5.2.1 qDocs/Admin
	5.2.2 qDocs/Curator
	5.2.3 qDocs/Citizen
	5.2.4 Cross-Cutting

	6 Evaluation
	6.1 Scenario – A
	6.1.1 Curator-level
	6.1.2 Citizen-level

	6.2 Scenario – B
	6.2.1 Curator-level
	6.2.2 Citizen-level

	6.3 Discussion

	7 Conclusion
	7.1 Conclusion
	7.2 Future Work

	Bibliography
	Bibliography

