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Resumo

Com a evolução da exploração espacial o avanço tecnológico torna-se necessário. Esta tese aborda

a atenuação do som em um meio dissipativo de duas fases tendo por objectivo modelar a redução do

ruı́do e vibrações dos lançadores e satélites, durante a descolagem. Com o estabelecimento da teo-

ria, baseada nas seis equações fundamentais da mecânica de fluidos, são considerados os principais

efeitos dos fluxos de massa e calor. A atenuação acústica obtida é devida a três efeitos, térmico, vis-

coso e de difusão de massa, que se combinam na atenuação global do som. A condutividade, difusão

de massa e os coeficientes de acoplamento cruzado são extrapolados e calculados para um escoa-

mento de dupla fase, com base nas relações de Onsager para processos irreversı́veis. A influência

da viscosidade de volume na atenuação acústica é também analisada como parte da atenuação vis-

cosa; embora a maioria dos trabalhos teóricos desprezem esta componente, na realidade representa

a maior quota da atenuação viscosa. Os resultados obtidos demonstram que a maioria do efeito de

atenuação é devido à atenuação térmica, relacionada com a condutividade térmica, o menor impacto

na atenuação geral é o da atenuação viscosa, que quando comparada com as restantes é desprezável.

A componente de difusão de massa tem o efeito de ampliação do som, com grandeza intermédia, pelo

que reduz a atenuação.

Palavras-chave: propagação do som, atenuação acústica, ondas dissipativas, fluxo bifásico.
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Abstract

With the advances of space exploration further steps in technological progress become necessary. This

thesis addresses the attenuation of sound in a two-phase dissipative medium that is used to reduce the

vibrations of the launch vehicles and satellites, during lift-off. In this theory, based on the six fundamental

equations of fluid mechanics, the main effects of mass and heat fluxes are included. The acoustic damp-

ing has three components; thermal, viscous and mass diffusion, that combine in the global attenuation

of sound. The thermal conductivity, mass diffusion and cross-coupling coefficients are extrapolated and

calculated for a two-phase flow, based on the Onsager relations for irreversible processes. The influence

of bulk viscosity in acoustic attenuation is also analysed as part of the viscous damping, whereas most

theoretical works ignore this component, it is shown that actually it represents the biggest share in the

viscous attenuation. The results obtained will demonstrate that the majority of the attenuation effect is

induced by the thermal damping, related to the thermal conductivity, the smallest impact in the overall

attenuation is due to the viscous damping, that when compared to the remaining terms is negligible.

The mass diffusion is intermediate in magnitude, and causes a sound amplification, that reduces the

dominant effect of thermal attenuation.

Keywords: propagation of sound, acoustic attenuation, dissipative waves, two-phase flow.
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Chapter 1

Introduction

In this first chapter the motivation for the thesis is explained and an overview of the subject is given. The

objectives expected to be fulfilled are stated as well as an outline of the work to be presented in the next

chapters.

1.1 Motivation

One of the most intense man made sources of noise, short of an explosion, is the launch phase of a

large rocket. A large rocket motor or cluster with a lift-off thrust of over one meganewton can produce

noise levels of 150-170 dB affecting the first stage rocket structures. Also of concern are the noise

levels of 130-140 dB in the payload shroud at the nose of the rocket that houses the satellite(s). Thus

satellite payloads have to be certified against acoustic fatigue at in-flight noise levels, unless the lift-off

noise levels are higher, and drive the requirements. One tried and tested means of reducing lift-off

noise levels is to use a water spray: the vaporization of water reduces the high exhaust gas temperature

and also absorbs sound. The design of water spray systems for use at rocket launch pads is a costly

empirical process of trial and error due to the lack of a suitable theoretical predictive framework, hence

this work is expected to be an attempt to develop a theory of sound propagation and attenuation in a

two-phase medium including thermal and mass diffusion.

1.2 Topic Overview

Nowadays space exploration aims on missions like returning to the moon, send humans to Mars and

increasingly more and more long distance space travel, requiring bigger and more powerful rockets than

ever. However, with this necessity and achievements also comes complications, as usual. This new

space era revolves around more affordable launches, implying cheaper vehicle production, reusable

launchers and simpler systems. While many of the targets are being achieved, as it is being the case

of SpaceX, Arianespace and other rocket companies, some problems still remain unsolved or at least

without a full functional solution. One of the remaining obstacles on accomplishing the current targets

1



is the noise produced during lift-off. Actually the first time that this was considered was for the Saturn V

rocket, one of the biggest and most powerful launchers ever made.

During lift-off the launcher faces the most severe dynamic environment in its flight cycle due to the

high acoustic loads generated. The primary source of the generated noise and vibrations comes from

the high jet exhaust velocity required to boost the launch vehicle, where shock waves are formed, the

intensity of these shock waves depends, not only, but also on the size of the rocket, which represents

a challenge for the vehicles proposed for future missions to Mars for example [1]. This represents a

problem because the extremely high acoustic loads create structural vibration affecting the operation of

the rocket launch vehicle, its components, payload and supporting structures leading to system failures

and the necessity of a more robust equipment to be included in the missions [1]. Hence, these problems

negatively affect the accomplishment of the targets already stated, making it crucial to come up with a

solution. One of the easiest solutions that help to mitigate part of the problem is to perforate the launch

pad. The majority of the launch pads are composed by flat concrete surfaces that are highly reflective of

sound waves reaching the launcher. More typical techniques include flame deflection, a proper choice

of nozzle configuration and water injection systems, also know as acoustic suppression systems, these

are the systems studied throughout this work.

It all started with Saturn V, the first ever water-based acoustic suppression system that can be seen

during a test performance in fig. 1.1.

Figure 1.1: Saturn V water suppression system captured during a test. [2]

Since then the systems used have evolved and NASA has been at the leading edge of the advances

having developed two more sophisticated systems since Saturn V, one used during the Space Shuttle

era and the other designed very recently, with its first test in the beginning of 2018 that is being developed

for their upcoming rocket, the SLS - Space Launch System. The acoustic suppression system built for

the Space Shuttle (fig. 1.2) was able to deliver approximately 57000 kg/s of water at the peak flow rate

[3]. Their new system during testing was able to flow 1.7 million litters of water (fig. 1.3) and it is expected

to reach a peak flow rate of approximately 70000 kg/s at full capacity [4].
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Figure 1.2: Space Shuttle water acoustic suppression system. [3]

Figure 1.3: SLS water acoustic suppression system. [3]

During this work, some of the calculations were made based on these systems, more specifically in

the mass flow rate parameter, but since NASA’s new system is not yet fully operational and so there is

not a real awareness on the exact value it will be able to achieve, the calculations hereafter are based

on the Space Shuttle system, with a mass flow rate of 57000 kg/s being implemented when necessary.

1.3 Objectives

The main goal of this thesis is to test the new theory presented here on the attenuation of sound in a two-

phase dissipative medium, creating in this way a theoretical approach on the subject. The way of testing

the theory, and check its applicability, is to calculate the acoustic damping. To do so, intermediate data is

required, including the calculation of thermal conductivity, mass diffusion and cross-coupling coefficients

for a two-phase medium. On the other hand, to perform these intermediate calculations it is necessary to

do research on a theoretical implementation model of the chemical potential as a function of temperature

and concentration; kinetic coefficients governed by the Onsager principle; shear and bulk viscosity, all of

them for a two-phase flow. Basically, in order to achieve the main goal it is first necessary to achieve the

intermediate objectives of obtaining the required data. The objectives of this work can be divided into

three steps, where each one needs to be fulfilled in sequence, from the base to the top as illustrated in

fig. 1.4.
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Figure 1.4: Thesis objectives.

In conclusion, the first objective to be achieved is the calculation of the chemical potential, kinetic

coefficients, shear and bulk viscosity for a two-phase flow. The second one, is the calculation of the

thermal conductivity, mass diffusion and cross-coupling coefficients. The third objective, considered the

main goal, is the calculation of the total acoustic damping whose results will act as a test in regard to the

accuracy of the proposed theory.

1.4 Thesis Outline

Chapter 2 Establishment of the starting point as the six fundamental equations of fluid mechanics,

namely continuity, mass diffusion, heat and momentum, plus the equations of state for a perfect gas and

entropy for an ideal gas. The essential effects of mass and heat fluxes are considered, comparatively

less important are omitted, including viscosity, vaporization and chemical reactions. The six fundamental

equations are linearised (section 2.1) around a constant state of uniform motion, and eliminated leading

to a doubly diffusive acoustic wave equation of order 4 in space and time. The corresponding quartic dis-

persion relation (section 2.2) drops to a cubic neglecting the products of diffusivities, that are assumed

to be small. This specifies two damping coefficients (section 2.3), one for acoustic-waves propagating

in opposite directions and the other for a third mode, that also decays in time and is a non-propagating

diffusion mode (section 2.4). The thermal conductivity, mass diffusion and cross-coupling coefficients

play an essential role, the cross-coupling coefficients are related by the Onsager reciprocity principle

(section 2.6) and must satisfy the second principle of thermodynamics by ensuring entropy growth (sec-

tion 2.5).

Chapter 3 Dedicated to both theoretical (section 3.1) and computational (section 3.2) implementa-

tions of the previously formulated theory. Presentation of the research on theoretical and empirical

models for chemical potential (section 3.1.1), kinetic coefficients (section 3.1.2), thermal conductivity

(section 3.1.3), shear viscosity (section 3.1.4) and bulk viscosity (section 3.1.5). Comparison of the var-
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ious models, calculation of the error percentage by comparison with theoretical and experimental data,

when available, as a measure of performance and decision on which the most adjusted one. Description

of the program developed in MATLAB with the purpose of being a mathematical tool for the necessary

theoretical calculations (section 3.2).

Chapter 4 Presentation and discussion of the results obtained after implementing the theory described

in chapter 2 with the theoretical models selected in chapter 3.

Chapter 5 Final remarks about the work performed compared with the defined objectives and notes

on what to change in order to attain improved results in subsequent studies on the subject.
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Chapter 2

Theoretical Formulation

In this chapter it is explained step-by-step the theoretical formulation of a new theory, concerning the

propagation and attenuation of sound in a two-phase dissipative medium.

2.1 Fundamental Equations for a Two-phase Dissipative Flow

The equation of continuity states the conservation of mass:

∂ρ

∂t
+∇ · (ρ~v) = 0, (2.1)

where ρ is the mass density and ~v the velocity. The mass diffusion equation:

∂ξ

∂t
+∇ · (ξ~v) = −∇ ·~j, (2.2)

is similar for the concentration ξ on the l.h.s of eq. (2.2) balanced on the r.h.s by minus the divergence

of the diffusive mass flux ~j. The heat equation:

ρT

(
∂s

∂t
+ ~v · ∇s

)
= −∇ · ~q, (2.3)

involves the temperature T and material derivative of the entropy s on the l.h.s balanced against minus

the divergence of the heat flux ~q that includes mass diffusion effects. The effect of viscosity was omitted

in the heat equation (2.3), and hence the inviscid momentum equation is used.

∂~v

∂t
+ (~v · ∇)~v = −ρ−1∇p, (2.4)

where p is the pressure. The medium is assumed to be a perfect gas with equation of state:

p = ρRT, (2.5)
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where R is the gas constant. The entropy for an ideal gas, that is a perfect gas with constant specific

heats at constant volume CV and pressure Cp is given by:

s = s0 + CV log p− Cp log ρ. (2.6)

The set of five scalar (2.1, 2.2, 2.3, 2.5, 2.6) and one vector (2.4) equations involves five scalar and one

vector variable namely the density ρ, pressure p, temperature T , entropy s, concentration ξ and velocity

~v.

To close the system (2.1)–(2.6) the heat ~q and mass ~j fluxes are specified in terms of the gradients

of temperature ∇T and concentration ∇ξ by:

~q = −χ∇T − β∇ξ, ~j = −D∇ξ − α∇T, (2.7a,b)

where:

(i) the first term on the r.h.s of eq. (2.7a) is the Fourier’s law involving the thermal conductivity χ;

(ii) the first term on the r.h.s of eq. (2.7b) is the Fick’s law involving the mass diffusion coefficient D;

(iii) the second terms on the r.h.s are the diffusive cross-coupling coefficients α, β that are related by

the Onsager reciprocity principle [5].

Substitution of eqs.(2.7a) and (2.7b) respectively in eqs.(2.3) and (2.2) lead to the heat (2.8) and mass

(2.9) diffusion equations.

ρT

(
∂s

∂t
+ ~v · ∇s

)
= χ∇2T + β∇2ξ, (2.8)

∂ξ

∂t
+∇ · (ξ~v) = D∇2ξ + α∇2T. (2.9)

For the purpose of elimination among the fundamental equations (2.1, 2.4, 2.5, 2.8, 2.9) it is convenient

to put the entropy equation (2.6) in a differential form (2.10b) using the material derivative (2.10a).

D
Dt
≡ ∂

∂t
+ ~v · ∇ :

Ds
Dt

=
CV
p

Dp
Dt
− Cp

ρ

Dρ
Dt
. (2.10a,b)

Solving eq. (2.10b) for the pressure leads to eq. (2.11a):

Dp
Dt

=
Cp
CV

p

ρ

Dρ
Dt

+
p

CV

Ds
Dt

= c2
Dρ
Dt

+ θ
Ds
Dt

(2.11a,b)

where eq. (2.11b) appears:

(i) the adiabatic sound speed (2.12a) involving the adiabatic exponent:

c2 ≡
(
∂p

∂ρ

)
s

=
Cp
CV

p

ρ
= γRT, θ =

(
∂p

∂s

)
ρ

=
p

CV
= p

γ − 1

R
, (2.12a,b)

(ii) the non-adiabatic coefficient (2.12b) that is needed because heat and mass diffusion are associ-

ated with entropy production.
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The total state of the fluid is assumed to consist of an uniform mean state with subscript ”0” and an

unsteady non-uniform perturbation with prime:

{p, ρ, T, s, ξ, ~v} (~x, t)

= {p0, ρ0, T0, s0, ξ0, ~v0}+ {p′, ρ′, T ′, s′, ξ′, ~v ′} (~x, t) . (2.13a-f)

The linearisation of the material derivative (2.10a) for the mean flow leads to (2.14a), and the linearisa-

tion of the fundamental equations (2.1, 2.4, 2.5, 2.11b, 2.8, 2.9) leads respectively to eqs.(2.14b)−(2.19):

d
dt
≡ ∂

∂t
+ ~v0 · ∇ :

dρ′

dt
+ ρ0 (∇ · ~v ′) = 0, (2.14a,b)

ρ0
d~v′

dt
+∇p′ = 0, (2.15)

p′ = R (ρ0T
′ + T0ρ

′) , (2.16)

dp′

dt
= c20

dρ′

dt
+ θ0

ds′

dt
, (2.17)

ρ0T0
ds′

dt
= χ∇2T ′ + β∇2ξ′, (2.18)

dξ′

dt
+ ξ0 (∇ · ~v ′) = D∇2ξ′ + α∇2T ′. (2.19)

The elimination among these 6 perturbation equations leads to the doubly diffusive acoustic wave equa-

tion (section 2.2).

2.2 Doubly Diffusive Acoustic Wave Equation

Applying the linearised material derivative (2.14a) to eqs.(2.14b) and (2.19) leads respectively to eqs.(2.20a,b)

and (2.21) after elimination of the velocity perturbation from the momentum equation (2.15):

d2ρ′

dt2
= −ρ0∇ ·

(
d~v ′

dt

)
= ∇2p′, (2.20a,b)

d2ξ′

dt2
− ξ0
ρ0
∇2p′ = D∇2

(
dξ′

dt

)
+ α∇2

(
dT ′

dt

)
. (2.21)

The system of five scalar equations (2.20b, 2.21, 2.16, 2.17, 2.18) now has five scalar variables (p′, ρ′,

T ′, s′, ξ′). The entropy perturbation s′ appears only in eq. (2.18), and is eliminated using eq. (2.17) or

equivalently the linearisation of eq. (2.10b):

χ∇2T ′ + β∇2ξ′ = ρ0T0

(
CV
p0

dp′

dt
− Cp
ρ0

dρ′

dt

)
=
CV
R

(
dp′

dt
− Cp
CV

RT0
dρ′

dt

)
. (2.22a,b)
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Applying
d
dt

to eq. (2.22b) leads to:

(γ − 1)

[
χ∇2

(
dT ′

dt

)
+ β∇2

(
dξ′

dt

)]
=

d2p′

dt2
− c20

d2ρ′

dt2

=
d2p′

dt2
− c20∇2p′. (2.23a,b)

The r.h.s of eq. (2.23b) is the classical wave equation involving the adiabatic sound speed (2.12a), that

is valid when the l.h.s of eq. (2.23b) vanishes, that is, for constant entropy.

The system of four scalar equations (2.16, 2.20b, 2.21, 2.23b) involves four variables (p′, ρ′, T ′, ξ′).

The mass density perturbation ρ′ appears only in eq. (2.16) and is eliminated applying
d2

dt2
leading to:

Rρ0
d2T ′

dt2
=

d2p′

dt2
−RT0

d2ρ′

dt2
=

d2p′

dt2
−RT0∇2p′

=
d2p′

dt2
− c21 ∇2p′; (2.24a-c)

the r.h.s of eq. (2.24c) is the classical wave equation involving the isothermal sound speed (2.25)

because it holds when the l.h.s of eq. (2.24c) vanishes, that is in isothermal conditions.

c21 = RT0 =
c20
γ
. (2.25)

The system of three scalar equations (2.24c, 2.23b, 2.21) involves only three variables (p′, ξ′, T ′). The

temperature perturbation T ′ appears in eq. (2.21) and after application of
d
dt

is eliminated using eq.

(2.24c).

d2

dt2

(
dξ′

dt
−D∇2ξ′

)
=
ξ0
ρ0
∇2

(
dp′

dt

)
+ α∇2

(
d2T ′

dt2

)

= ∇2

(
ξ0
ρ0

dp′

dt
+

α

ρ0R

d2p′

dt2
− αT0

ρ0
∇2p′

)
, (2.26a,b)

implying (2.27).

∇2

(
d2T ′

dt2

)
=

1

ρ0R
∇2

(
d2p′

dt2
− T0
ρ0
∇2p′

)
. (2.27)

The term in curved brackets on the l.h.s of eq. (2.26a) is the mass diffusion equation that holds at

constant pressure, when the r.h.s of eq. (2.26a,b) vanishes.

The two equations (2.23b) and (2.26b) have two variables (p′, ξ′). Solving eq. (2.23b) for ξ′ and

applying
d
dt

and using eq. (2.27) leads to:

β∇2

(
d2ξ′

dt2

)
− 1

γ − 1

[
d3p′

dt3
− c20∇2

(
dp′

dt

)]
= −χ∇2

(
d2T ′

dt2

)

= − χ

ρ0R
∇2

(
d2p′

dt2

)
+ χ

T0
ρ0
∇4p′. (2.28a,b)
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The two equations (2.28b) and (2.26b) involve only two variables (ξ′, p′). Applying β∇2 to eq. (2.26b)

and substituting eq. (2.28b) leads to:

β∇4

(
ξ0
ρ0

dp′

dt
+

α

ρ0R

d2p′

dt2
− αT0

ρ0
∇2p′

)
= β

d
dt

[
∇2

(
d2ξ′

dt2

)]
− βD∇4

(
d2ξ′

dt2

)

=
1

γ − 1

[
d4p′

dt4
− c20 ∇2

(
d2p′

dt2

)]
− χ

ρ0R
∇2

(
d3p′

dt3

)
+ χ

T0
ρ0
∇4

(
dp′

dt

)

− D

γ − 1

[
∇2

(
d3p′

dt3

)
− c20 ∇4

(
dp′

dt

)]
+
χD

ρ0R
∇4

(
d2p′

dt2

)
− χDT0

ρ0
∇6p′. (2.29a,b)

This can be re-arranged as the acoustic wave operator with double, thermal and mass, diffusion:

�2 =
1

γ − 1

d2

dt2

(
d2

dt2
− c20∇2

)
−
(

D

γ − 1
+

χ

ρ0R

)
∇2 d3

dt3

+

(
c20D

γ − 1
+ χ

T0
ρ0
− β ξ0

ρ0

)
∇4 d

dt
+
χD − αβ
ρ0R

∇4

(
d2

dt2
− c20
γ
∇2

)
, (2.30)

that is of the fourth-order in time and sixth-order in space; it applies to all scalar wave variables, namely

the pressure, density, temperature, entropy and concentration perturbations (2.31a-e):

�2 {p′, ρ′, T ′, s′, ξ′,∇ · ~v ′} (~x, t) = 0, (2.31a-f)

because the linearised system has constant coefficients. The divergence of the velocity perturbation

satisfies the same wave equation (2.31f) and the curl is conserved as follows from eq. (2.15). In the

absence of diffusivities (2.30) it reduces to the adiabatic wave equation in the first brackets of (2.30);

the last brackets in (2.30) is the isothermal wave equation multiplied by the determinant of the diffusion

coefficients in eq. (2.7a,b). The wave operator (2.30) leads to the dispersion relation and wave modes

(section 2.3).

2.3 Dispersion Relation and Decay of the Three Modes

The solution of the wave equation (2.30) is sought in the form of plane waves (2.32a) with frequency ω

and wave vector ~k leading to:

p′ (~x, t) = A exp
[
i
(
~k · ~x− ωt

)]
:

{
∂

∂t
,∇,∇2

}
→
{
−iω, i~k,−k2

}
. (2.32a-d)

The spatial dependence in the wave equation (2.30) appears only through Laplacians, so only the mod-

ulus of the wave vector (2.32d) appears; this dependence on the wave-number implies isotropic waves,

since there is no preferred direction. The isotropy is in a frame convected with the mean flow velocity ~v0,

since the linearised material derivative (2.14a)≡(2.33a) leads to the Doppler shifted frequency (2.33b):

d
dt

=
∂

∂t
+ ~v0 · ∇ → −iω, ω = ω − ~k · ~v0. (2.33a,b)
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Substituting the plane wave solution (2.32a) in the doubly-diffusive acoustic wave equation (2.30, 2.31a-

f) and using eqs.(2.32b,d) and (2.33b) leads to the dispersion relation that is of fourth-order in frequency

and sixth-order in wave-number:

0 =
ω4

γ − 1
+ iω3k2

(
D

γ − 1
+

χ

ρ0R

)
− ω2k2

(
c20

γ − 1
+ k2

χD − αβ
ρ0R

)
−iωk4

(
c20D

γ − 1
+ χ

T0
ρ0
− β ξ0

ρ0

)
+ (χD − αβ)

T0
ρ0
k6. (2.34)

The four modes may be expected to be two damped acoustic waves propagating in opposite directions

plus two decaying fields , one thermal and one diffusive.

The diffusivities are usually small, and neglecting their determinant (2.35a) simplifies the dispersion

relation (2.34) from a quartic to a cubic (2.35b).

χD − αβ � ρ0Rc
2
0 : ω3 + iω2k2

[
D + (γ − 1)

χ

ρ0R

]
−ωk2c20 − ik4

[
c20D + (γ − 1)

T0χ− ξ0β
ρ0

]
= 0. (2.35a,b)

In the absence of dissipation (2.36a) the dispersion relation (2.35b) reduces to eq. (2.36b) for purely

acoustic waves (2.36c).

χ = D = β = 0 : ω2 − c20k2 = 0, ω = ±c0k. (2.36a-c)

In the presence of weak dissipation (2.35a) it may be expected that the cubic dispersion relation (2.35b)

leads to three modes:

(i/ii) two sound waves propagating in opposite directions (2.36c) with weak dampings ε± in eq. (2.37a);

(iii) a purely decaying mode with damping δ in eq. (2.37b).

ω − ~k · ~v0 = ω =

{ ±c0k − iε± = ω± (2.37a)

−iδ = ω∗ (2.37b)

The dispersion relation with roots (2.37a,b) must be of the form:

0 = (ω − c0k + iε+) (ω + c0k + iε−) (ω + iδ) . (2.38)

Since the product of diffusivities was neglected (2.35a) in the cubic dispersion relation (2.35b) the prod-

uct of dampings is also neglected (2.39a) in eq. (2.38) leading to eq. (2.39b):

ε+ε−, ε+δ, ε−δ � ω2 :

ω3 + iω2 (ε+ + ε− + δ)− ωc0k [c0k + i (ε− − ε+)]− iδc20k2 = 0. (2.39a,b)

Thus eqs.(2.39b) and (2.35b) must coincide. The coincidence of eqs.(2.39b)≡(2.35b) proves that:

(i) the ”guess” about the modes (2.37a,b) was correct;
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(ii) the coefficients of ω show that the damping is the same for sound waves propagating in opposite

directions (2.40a) as should be expected;

(iii) the independent term specifies the decay of the non-acoustic mode (2.40b),

ε+ = ε− ≡ ε, δ = k2D +
γ − 1

ρ0

k2

c20
(T0χ− ξ0β) ; (2.40a,b)

(iv) the coefficient of ω2 determines the total damping (2.41a) leading to the damping (2.41b) for the

acoustic modes:

2ε+ δ = k2
(
D +

γ − 1

ρ0

χ

R

)
ε =

k2 (γ − 1)
2
χ

2ρ0Rγ
+
γ − 1

2ρ0

k2

c20
ξ0β. (2.41a,b)

The thermal part of the thermoviscous acoustic dissipation coefficient [6] per unit time is eq. (2.42a):

ε1 ≡
ω2

2ρ0c20
χ

(
1

CV
− 1

Cp

)
=

k2χ

2ρ0Cp

(
Cp
CV
− 1

)
=
k2χ

2ρ0

γ − 1

Cp
=
k2χ (γ − 1)

2

2ρ0Rγ
(2.42a-d)

which is in agreement (2.42d) with the first term on the r.h.s of eq. (2.41b). In the passage from eq.

(2.42a) to eq. (2.42b) it was used eq. (2.36c) that is valid to the next order, that was neglected, in the

diffusion (2.35a) and damping (2.39a) coefficients. These dampings and frequencies apply (section 2.4)

to all wave variables (2.13a-f).

2.4 Amplitude, Phase and Decay of Six Wave Variables

The thermoviscous dissipation coefficient for acoustic waves [6] adds to eq. (2.42a) a term (2.43a)

involving the shear η and bulk ζ viscosities:

ε2 =
ω2

2ρ0c20

(
4

3
η + ζ

)
; ε3 =

γ − 1

2ρ0c20

ω2

c20
ξ0β, (2.43a,b)

the mass diffusion coefficient D appears in the damping of the diffusive mode (2.40b) but drops out of

the acoustic mode (2.41b) where appears (2.43b) the thermal-mass diffusion cross-coupling coefficient

in eq. (2.7a). Thus the total dissipation coefficient for acoustic waves, including thermal (2.42a-d) and

mass diffusion (2.43b) considered before, and adding the viscous diffusion (2.43a) omitted before is:

ε = ε+ ε2 = ε1 + ε2 + ε3 =
ω2

2ρ0c20

[
4

3
η + ζ + χ

(
1

CV
− 1

Cp

)
+
ξ0β

c20
(γ − 1)

]
. (2.44)

The damping (2.44) applies to the acoustic modes propagating in opposite directions (2.37a) of the

acoustic pressure perturbation (2.32a), leading to:

p′± (~x, t) = A exp
{
i
[
~k · ~x−

(
ω± + ~k · ~v0

)
t
]}

= A exp
{
i~k · [~x− (~v0 ± c0~n) t]

}
exp (−εt) ,

(2.45a,b)
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where eq. (2.46a) is the wave normal and eq. (2.46b) the group velocity corresponding to the phase

speed of propagation (2.46c) in opposite directions along the wave normal:

~k = k~n : ~w± = ~v0 ± c0~n, a± ≡ ~w± · ~n = ±c0 + ~v0 · ~n. (2.46a-c)

The third mode (2.37b) is a purely decaying mode (2.47b,c):

~y = ~x− ~v0t : p′∗ (~x, t) = A exp
{
i
[
~k · ~x−

(
ω∗ + ~k · ~v0

)
t
]}

= A exp
[
i~k · (~x− ~v0t)

]
exp (−δt)

= A exp
(
i~k · ~y

)
exp (−δt) , (2.47a-d)

relative (2.47d) to a reference frame (2.47a) convected with the uniform mean flow.

The total acoustic pressure perturbation is a superposition of the acoustic (2.45a,b) and diffusive

(2.47a-d) modes:

p′ (~x, t) = Ap′+ (~x, t) +B p′− (~x, t) + C p′∗ (~x, t) , (2.48)

with the arbitrary constants (A,B,C) determined by initial conditions. The five remaining wave variables

(2.13b-f) are a similar linear combination of two acoustic and one diffusive mode:

p′ (~x, t)

ρ′ (~x, t)

T ′ (~x, t)

s′ (~x, t)

ξ′ (~x, t)

~v ′ (~x, t)



=



p′+ (~x, t) p′− (~x, t) p′∗ (~x, t)

ρ′+ (~x, t) ρ′− (~x, t) ρ′∗ (~x, t)

T ′+ (~x, t) T ′− (~x, t) T ′∗ (~x, t)

s′+ (~x, t) s′− (~x, t) s′∗ (~x, t)

ξ′+ (~x, t) ξ′− (~x, t) ξ′∗ (~x, t)

~v ′+ (~x, t) ~v ′− (~x, t) ~v ′∗ (~x, t)




A

B

C


(2.49)

with the modes related by polarization relations that are obtained next. Substituting eqs.(2.45a,b) and

(2.47a-d) in eq. (2.15) specifies respectively the acoustic (2.50a,b) and diffusive (2.51a,b) modes of the

velocity perturbation:

~v ′± (~x, t) =
~k

ρ0ω±
p′± (~x, t) = ± ~n

ρ0

(
c0 ± i

ε

k

) p′± (~x, t) , (2.50a,b)

~v ′∗ (~x, t) =
~k

ρ0ω∗
p′∗ (~x, t) = i

k

ρ0δ
~n p′∗ (~x, t) . (2.51a,b)
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The modes for the mass density perturbation follow similarly from eq. (2.20b):

ρ′± (~x, t) =

(
k

ω±

)2

p′± (~x, t) =
(
c0 ± i

ε

k

)−2
p′± (~x, t) , (2.52a,b)

ρ′∗ (~x, t) =

(
k

ω∗

)2

p′∗ (~x, t) = −k
2

δ2
p′∗ (~x, t) . (2.53a,b)

The modes for the temperature perturbation follow from eq. (2.24b):

T ′± (~x, t) =
1

ρ0

 1

R
− T0(

c0 ± i
ε

k

)2
 p′± (~x, t) , (2.54)

T ′∗ (~x, t) =

[
1

ρ0R
− T0
ρ0

(
k

ω∗

)2
]
p′∗ (~x, t) =

(
1

ρ0R
+
T0 k

2

ρ0 δ2

)
p′∗ (~x, t) (2.55a,b)

Besides the polarization relations, relating the velocity, density and temperature to the pressure pertur-

bation, there are two more for the entropy and concentration.

The modes for the entropy perturbation follow from eqs.(2.18) and (2.23b).

ρ0T0
d2s′

dt2
=

1

γ − 1

(
d2p′

dt2
− c20∇2p′

)
, (2.56)

that on substitution of eqs.(2.45a,b) and (2.47a-c) lead respectively to eqs.(2.57) and (2.58).

s′± (~x, t) =
1

ρ0T0

1

γ − 1

[
1 +

(
1± iε

c0k

)−2]
p′± (~x, t) , (2.57)

s′∗ (~x, t) =
1

ρ0T0

1

γ − 1

[
1−

(
c0k

δ

)2
]
p′∗ (~x, t) . (2.58)

The modes for the perturbation of concentration follow from eq. (2.28b).

β ξ′ (~x, t) =

[
− χ

ρ0R

(
1−RT0

k2

ω2

)
+

i

γ − 1

(
ω

k2
− c20
ω

)]
p′ (~x, t) , (2.59)

leading to:

ξ′± (~x, t) =

−
χ

ρ0Rβ

1−

c20
γ(

c0 ± i
ε

k

)2
− 1

γ − 1

1

ε∓ i c0k

[(
c0 ± i

ε

k

)2
− c20

] p′± (~x, t) , (2.60)

ξ′∗ (~x, t) =

{
− χ

ρ0Rβ

(
1 +

c20k
2

γδ2

)
− 1

γ − 1

1

βδ

(
c20 −

δ2

k2

)]
p′∗ (~x, t) . (2.61)
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The dampings (2.40b) and (2.44) that appear in the wave fields (2.50b)–(2.55b), (2.57), (2.58), (2.60)

and (2.61) are specified by the thermodynamic and kinetic properties of the fluid mixture, that relate

to the first and second principles of thermodynamics and hence to the energy and entropy equations

(section 2.5).

2.5 Energy Density and Convective and Diffusive Fluxes

The energy density per unit volume in a fluid is the stagnation internal energy (2.62a) that is the sum of

the kinetic energy and internal energy (2.62b) specified per unit mass by the first principle of thermody-

namics

E = ρ

(
v2

2
+ U

)
, dU = T ds− pdυ + µ1 dN1 + µ2 dN2, (2.62a,b)

where υ is the specific volume or the inverse of the mass density (2.63a) and (µ1, µ2) the chemical

potentials and (N1, N2) the mole numbers of the two constituents of the two-phase flow; the mass

conservation requires eq. (2.63b) where (m1, m2) are the molecular masses of the two constituents:

υ =
1

ρ
; m1N1 +m2N2 = 0. (2.63a,b)

Using eq. (2.63b) the two chemical terms last on the r.h.s of eq. (2.62b) can be rewritten (2.64a):

µ1 dN1 + µ2 dN2 =

(
µ1 −

µ2

m2
m1

)
dN1 = µdξ, (2.64a,b)

where eq. (2.65a) is the concentration of the first species and (2.65b) the relative chemical potential:

ξ = m1N1, µ =
µ1

m1
− µ2

m2
. (2.65a,b)

Substituting eqs.(2.63a) and (2.64b) specifies (2.62b) the internal energy:

dU = T ds+
p

ρ2
dρ+ µdξ, (2.66)

as the sum of the heat, isotropic mechanical work and chemical energy of the two phases.

The equation of energy (2.67) specifies the rate of change with time of the total energy density

(2.62a), specified in a convected frame by the exact material derivative (2.10a):

DE
Dt

=

(
v2

2
+ U

)
Dρ
Dt

+ ρ~v · D~v
Dt

+ ρ
DU
Dt

. (2.67)

Using in the three terms of the r.h.s of eq. (2.67) respectively the equations of continuity (2.1), inviscid

momentum (2.4) and internal energy (2.66) leads to:

DE
Dt

= −ρ
(
v2

2
+ U

)
(∇ · ~v)− ~v · ∇p+ ρT

Ds
Dt

+
p

ρ

Dρ
Dt

+ µ
Dξ
Dt
. (2.68)
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The diffusive terms involving the concentration (2.2) and entropy (2.4) are separated from the rest in:

−∇ · ~q − µ∇ ·~j =
∂E

∂t
+ ~v · ∇E + E (∇ · ~v) + ~v · ∇p+ p (∇ · ~v)

=
∂E

∂t
+∇ · [(E + p)~v] . (2.69)

The term in square brackets is the convective energy flux (2.70b) involving the enthalpy (2.70a) plus

kinetic energy that is the stagnation enthalpy times the velocity and mass density in eq. (2.70c).

H = U +
p

ρ
: ~F = (E + p)~v

=
(
ρU +

ρ

2
v2 + p

)
~v = ρ

(
H +

v2

2

)
~v. (2.70a-d)

The energy equation (2.69) thus involves (2.71a) the energy density (2.62a) and convective flux (2.70b-

d):

∂E

∂t
+∇ · ~F = −∇ · ~Q, ∇ · ~Q = ∇ · ~q + µ∇ ·~j, (2.71a,b)

and the diffusive energy flux is given by eq. (2.71b), involving the heat (2.3) and mass (2.2) fluxes.

Substitution of eq. (2.71b) in eq. (2.3) leads to the equation of entropy.

ρT
Ds
Dt

= −∇ · ~Q+ µ∇ ·~j = −∇ ·
(
~Q− µ~j

)
−~j · ∇µ. (2.72a,b)

The first principle of thermodynamics concerns the internal energy (2.62b), and the second the entropy

production given locally by eq. (2.73a), where is used the equation of continuity (2.1) leading to eq.

(2.73c):

∂

∂t
(ρs) =

D
Dt

(ρs)− ~v · ∇ (ρs) = ρ
Ds
Dt

+ s
Dρ
Dt
− ~v · ∇ (ρs)

= ρ
Ds
Dt
− sρ (∇ · ~v)− ~v · ∇ (ρs) = ρ

Ds
Dt
−∇ · (ρs~v) . (2.73a-d)

The second term on the r.h.s of eq. (2.73d) is the divergence of the convective entropy flux, and hence

unrelated to diffusion, that is specified by the first term (2.74a) where may be substituted (2.72b) leading

to eq. (2.74b):

∂

∂t
(ρs) = ρ

Ds
Dt

= − 1

T

[
∇ ·
(
~Q− µ~j

)
+~j · ∇µ

]
. (2.74a,b)

The first term on the r.h.s of eq. (2.74b) may be re-written,

−
∇ ·
(
~Q− µ~j

)
T

= −∇ ·

(
~Q− µ~j
T

)
+
(
~Q− µ~j

)
· ∇
(

1

T

)
; (2.75)

the first term on the r.h.s of eq. (2.75) is the divergence of a flux, hence non-local, and only the second
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term contributes in eq. (2.74b) to the local entropy production:

0 < Ṡ ≡ ∂

∂t
(ρs) = − 1

T 2

(
~Q− µ~j

)
· ∇T −

~j · ∇µ
T

. (2.76a,b)

The heat (2.7a) and mass (2.7b) diffusion relations have kinetic coefficients that must satisfy (section 2.6)

the condition (2.76b) of entropy growth.

2.6 Thermal, Mass and Pressure Kinetic Coefficients

The entropy production per unit time is a linear function (2.77a) of the fluxes ẋn whose coefficients are

the gradients (2.77b):

Ṡ =
∑
n

Xnẋn > 0, Xn =
∂Ṡ

∂ẋn
. (2.77a,b)

For small gradients the fluxes are linear functions with kinetic coefficients (2.78a) that appear also in the

entropy production (2.78b):

ẋn =
∑
l

ΓnlXl, Ṡ =
∑
n,l

ΓnlXnXl > 0. (2.78a,b)

Since the entropy production (2.78b) is a quadratic form, the kinetic coefficients may be taken as sym-

metric (2.79a); also since it must be positive-definite, in the case of a 2×2 matrix of kinetic coefficients

the Cayley-Hamilton conditions (2.79b,c) must be satisfied [5]:

Γnl = Γln; Γ11 > 0, Γ22 >
Γ12Γ21

Γ11
=

(Γ12)
2

Γ11
> 0. (2.79a-c)

In the present case (2.76b) the fluxes are eq. (2.80a) and hence the gradients eq. (2.80b):

ẋn =
{
~Q− µ~j, ~j

}
, Xn =

{
−∇T
T 2

, −∇µ
T

}
. (2.80a,b)

Thus the diffusion relations (2.78a) are:

~Q− µ~j = −Γ11
∇T
T 2
− Γ12

∇µ
T
, ~j = −Γ12

∇T
T 2
− Γ22

∇µ
T
, (2.81a,b)

where the kinetic coefficients satisfy eq. (2.79b,c).

Solving eq. (2.81b) for the gradient of the chemical potential ∇µ and substituting in eq. (2.81a) it is

eliminated from the energy flux:

~Q = −

[
Γ11 −

(Γ12)
2

Γ22

]
∇T
T 2

+

(
µ+

Γ12

Γ22

)
~j. (2.82)

In the absence of mass flux (2.83a) the energy flux coincides with the heat flux that is specified by the
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Fourier’s Law (2.83b) where the thermal conductivity (2.83c) is positive by eq. (2.79c),

~j = 0 : ~Q = −χ∇T, χ =
1

T 2

[
Γ11 −

(Γ12)
2

Γ22

]
> 0; (2.83a-c)

thus heat flows from the higher to the lower temperatures. The energy flux in the presence of mass flux

is given by:
~Q = −χ∇T +

(
µ+

Γ12

Γ22

)
~j. (2.84)

The mass flux appears in eq. (2.81b) in terms of the gradient of temperature ∇T and chemical potential

∇µ instead of the concentration in eq. (2.7b). The free enthalpy is related to the internal energy (2.66)

by eq. (2.85a) leading to eq. (2.85b)

G = U − Ts+
p

ρ
: dG = −sdT +

1

ρ
dp+ µdξ. (2.85a,b)

Thus the chemical potential is (2.86a) the derivative of the free enthalpy with regard to the concentration,

and is a function of the same variables:

µ =

(
∂G

∂ξ

)
T,p

:

∇µ =

(
∂µ

∂T

)
p,ξ

∇T +

(
∂µ

∂p

)
T,ξ

∇p+

(
∂µ

∂ξ

)
T,p

∇ξ, (2.86a,b)

leading to eq. (2.86b).

Substituting (2.86a,b) specifies the mass (2.81b) and energy (2.84) fluxes respectively as:

−~j = D∇ξ + α∇T + ϕ∇p, − ~Q = χ∇T + β∇ξ + ψ∇p, (2.87a,b)

where:

(i) the barodiffusion coefficients

ϕ ≡ Γ22

T

(
∂µ

∂p

)
T,ξ

= 0, ψ ≡
(
µ+

Γ12

Γ22

)
ϕ = 0, (2.88a,b)

can be omitted from eq. (2.87a,b), because they must be zero, otherwise the entropy production

(2.76a,b) would have terms ∇p · ∇T and ∇p · ∇µ without fixed sign, contradicting the second

principle of thermodynamics that it must be positive in all cases;

(ii) the mass flux (2.81b) is thus given by eqs.(2.87a)≡(2.7b)≡(2.89a) with mass diffusion coefficient

(2.89b) and thermal cross-coefficient (2.89c).

~j = −D∇ξ − α∇T : D ≡ Γ22

T

(
∂µ

∂ξ

)
T

,

α ≡ Γ12

T 2
+

Γ22

T

(
∂µ

∂T

)
ξ

; (2.89a-c)
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(iii) using eq. (2.89a) the energy flux (2.84) is given by eqs.(2.90a)≡(2.87b) with coefficients (2.90b,c):

~Q = −χ ∇T − β ∇ξ : χ = χ+ α

(
µ+

Γ12

Γ22

)
,

β =

(
µ+

Γ12

Γ22

)
D; (2.90a-c)

(iv) rewriting eq. (2.71b) in the form of eq. (2.91a) and neglecting the second non-linear term on the

r.h.s. leads to eq. (2.91b)

∇ · ~Q = ∇ ·
(
~q + µ~j

)
−~j · ∇µ : ~Q = ~q + µ~j, (2.91a,b)

and substitution of eqs.(2.89a) and (2.90a) specifies the heat flux (2.7a)≡(2.92a):

~q = −χ∇T − β∇ξ : χ = χ+ α
Γ12

Γ22
, β = D

Γ12

Γ22
, (2.92a-c)

where eq. (2.92b) is the thermal conductivity and eq. (2.92c) the mass diffusion cross-coefficient.

The diffusion relations (2.7a,b) are valid with coefficients (2.89b,c; 2.92b,c) whereas the damping

(2.40b) of the decaying mode (2.47a-d) and the damping (2.44) of the acoustic modes (2.45a,b) are

specified in terms of the thermodynamic properties and diffusion coefficients of the binary mixture.
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Chapter 3

Implementation

The main objective of this work, as stated before, is to obtain an approach of a theory for sound atten-

uation by a two-phase dissipative medium. In the previous chapter (2) the theoretical foundation of the

theory was built and next it is implemented to verify its validity. This chapter is divided into two parts:

the theoretical implementation, where the mathematical relations necessary to obtain the total dissipa-

tion coefficient for acoustic waves are tested and chosen; and the computational implementation with

the description of a tool developed in MATLAB which applied the relations of the first part leading to the

results to be discussed in the next chapter.

3.1 Theoretical Implementation

The coefficients in eqs. (2.89b,c) and (2.92b,c) appear in the diffusion relations (2.7a,b) as well as in the

damping of the decaying (2.40b) and acoustic (2.44) modes, and hence it is important the dependence

of the relative chemical potential on both these coefficients and on the kinetic coefficients. Concerning

the viscous dissipation coefficient (2.43a) for acoustic waves it is necessary to perform a mathematical

extrapolation of the shear and bulk viscosities.

3.1.1 Chemical Potential

The chemical potential, also known as Gibbs free energy, is the tendency of a substance: to decompose

itself or to react with other substances; to suffer a change of state or to redistribute in space [7]. In a very

simple and generalized physical point-of-view it can be seen as the tendency to give particles, where

the particles tend to flow from the highest potential to the lowest one until it achieves equilibrium [8]. As

seen in sections 2.5 and 2.6 this property is strictly necessary to perform the main goal of this work.

With this, it is important to recall the definition of the relative chemical potential (2.65b):

µ =
µ1

m1
− µ2

m2
, (3.1)

21



where (µ1, µ2) are the chemical potentials of the two constituents of the two-phase flow, respectively

water and air. However, the air has no chemical potential due to the fact that its main components, O2

and N2, have a chemical potential of value equal to 0. The potential value 0 does not mean that the

substances have no tendency to transform, it is a matter of simplicity, where a zero value is assigned to

the most stable and usual form of an element as a base level for other element-containing substances

[7]. Reducing eq. (3.1) to

µ =
µ1

m1
=

µH2O

mH2O
. (3.2)

The relative chemical potential now depends exclusively of the water properties, respectively the chemi-

cal potential and molecular mass. There are many derivations of chemical potential formulas, to choose

the most appropriate one it has to be taken into account eq. (2.89b,c), dependent on both the tempera-

ture and concentration, which means that eq. (3.3) [7, 8], also known as mass action equation, has to

depend on these two variables.

µH2O (T, ξ) = µ0 +RT ln

(
ξ

ξ0

)
. (3.3)

Eq. (3.3) determines the difference between a specified state and a reference state calculated under

standard conditions, referenced by the subscript 0. It is noteworthy that eq. (3.3) is only valid for values

of ξ � ξ0. Substituting eq. (3.3) in eq. (3.2) it is obtained the relative chemical potential equation (3.4).

µ =

[
µ0 +RT ln

(
ξ

ξ0

)]
1

mH2O
. (3.4)

In table (3.1) are presented the data corresponding to the reference state [9], standard conditions [9]

and respective properties of eq. (3.4).

Table 3.1: Water chemical potential data

µ0 [kJ/mol] ξ0 [mol/m3] T0 [K] p0 [Pa] R [kJ/kmol.K] mH2O [kg/mol]

−237.18 1000 298 101130 8.314 0.01802

As it can be seen from table 3.1 the reference value of the water chemical potential is negative, as

a matter of fact, most of the chemical potential values are negative. This represents the stability of a

substance, being negative means it is not propitious to decomposition, it will not decompose into their

elements, instead it will spontaneously be produced from them [7].

The chemical potential of a substance varies with changes in temperature and concentration, it

decreases with increasing temperature and increases with increasing concentration [7]. This means

that in warmer environments the substance has less tendency to transform, whereas regarding to the

concentration, the more concentrated a substance is, the more is the tendency to decompose into their

elements. In figure 3.1 it is possible to observe this behaviour using the relation from eq. (3.4), it is

important to note that for higher concentrations the values depart quite noticeable from this relation,

hence it is recommended to maintain the concentration values between the range of validity (ξ � ξ0), in

the case of liquids this value is approximately 100 mol/m3 which is at the limit of ξ ≤ 100 mol/m3 [7].
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(a) Temperature variation for different concentrations in [mol/m3].

(b) Concentration variation for different temperatures in [K].

Figure 3.1: Variation of the relative chemical potential with temperature and concentration.

In chapter 2 the mass diffusion coefficient (2.89b) and the thermal cross-coupling (2.89c) rely on the

derivative of the relative chemical potential, in eq. (3.5a,b) both of the derivatives are presented as well

as their graphic representation (figs. 3.2 and 3.3) with temperature and concentration variations.

∂µ

∂ξ
=
RT

ξ

1

mH2O
,

∂µ

∂T
= R ln

(
ξ

ξ0

)
1

mH2O
. (3.5a,b)
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(a) Temperature variation of the derivative for different concentrations in [mol/m3].

(b) Concentration variation of the derivative for different temperatures in [K].

Figure 3.2: Derivative of the relative chemical potential with regard to concentration - ∂µ/∂ξ.

Since the derivative regarding to temperature reduces eq. (3.4) to one parameter in eq. (3.5b), the

concentration, there is only one representation depending on this parameter in fig. 3.3.
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Figure 3.3: Derivative of the relative chemical potential with regard to temperature - ∂µ/∂T .

3.1.2 Kinetic Coefficients

This work involves a thermodynamic system where both heat conduction and mass diffusion coexist and

when two or more irreversible transport processes occur simultaneously they may interfere with each

other. Besides prior work, Lars Onsager described in the most detailed form, the reciprocal relations

in irreversible processes [5, 10] by means of phenomenological relations and associated coefficients,

the kinetic coefficients, better known as phenomenological coefficients (Γnl). These relations consist of

appropriate flux-force pairs (3.7a,b), already obtained in section 2.6, where the fluxes (3.7a) include heat

and mass while the forces (3.8a,b) involve finite gradients in temperature, T , and chemical potential, µ.

The kinetic coefficients are the link between the fluxes and the forces (2.78a). In an attempt to simplify

the visualization of the following equations the subscripts q and j are used, corresponding to heat and

mass with the relation between nomenclatures being expressed in eq. (3.6).Γqq Γqj

Γjq Γjj

 =

Γ11 Γ12

Γ21 Γ22

 (3.6)

ẋn = {ẋq, ẋj} , Xn = {Xq, Xj} . (3.7a,b)

Xq = −∇T
T 2

, Xj = −∇µ
T
. (3.8a,b)

In this section the equations concerning the phenomenological coefficients relate to gradients but
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what matters the most for this analysis is the difference between the variable values and not so much

the position or distance between them. Therefore to simplify the calculations it is assumed that the

reference position is the beginning of the water jet, referenced as 0 meters, x1 = 0, and the second

position is the peak of the jet, considered in this case to have 1 meter, x2 = 1. Using the temperature

as example, this means ∇T =
∆T

∆x
=

∆T

x2 − x1
=

∆T

1− 0
= ∆T . All units presented are relative to the

gradients, the only purpose is to better observe the effect generated by the variation of the variables, in

this case temperature and chemical potential.

Since the two processes (3.8a,b), heat conduction and mass diffusion, interfere with each other it is

necessary to use the phenomenological relations (3.9a,b) [5].

ẋq = ΓqqXq + ΓqjXj , (3.9a)

ẋj = ΓjqXq + ΓjjXj . (3.9b)

The phenomenological coefficients Γqq and Γjj are due to the heat and mass uncoupled case whereas

Γqj and Γjq result from the coupling between the heat flux and the chemical potential difference and the

mass flux and temperature difference. It is possible to write the previous relations relating the heat flow

(3.10a) and mass flow (3.10b) substituting eq. (3.8a,b) in eqs. (3.9a,b), which was also already defined

previously in eq. (2.81a,b),

ẋq = −Γqq
∇T
T 2
− Γqj

∇µ
T
, (3.10a)

ẋj = −Γjq
∇T
T 2
− Γjj

∇µ
T
. (3.10b)

The objective is to obtain the values for the phenomenological coefficients, and literature on this subject

is scarce and even scarcer when the subject involves two-phase flows. The only method available to

calculate such values for this kind of flows is through the use of the kinetic theory of condensation and

evaporation [11–13], yet this method features some constraints that makes it unfeasible to the present

approach. In first place, as already stated in section 1.4 the vaporization effect being a less important

effect is to be omitted, and since the kinetic theory is based on this same effect it would disregard this

approximation. Even when deciding to use evaporation as a way of calculating the coefficients this is

a very slow process compared with the kind of process dealt here which would result in much smaller

values. Besides, the kinetic theory of condensation and evaporation deals with two-phase flows only of

the same fluid, this means water and water-vapour and not a water-air mixture as it is the case here.

With this in mind, the chosen approach is the direct use of the phenomenological equations, where the

heat related flow, ẋq, can not be assumed, but the mass flow, ẋj , is going to be treated as the water flow

of the deluge system, in this way trying to obtain the phenomenological coefficients for different system

configurations.

When ∆T = 0, eq. (3.10b) reduces to [11, 14, 15],

ẋj = −Γjj
∇µ
T
, (3.11)
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where T is the mean temperature.

Similarly, when ∆µ = 0, from eq. (3.10b) [11, 14, 15],

ẋj = −Γqj
∇T
T 2

. (3.12)

Recalling eq. (2.82), when there is no mass flux (2.83a), ~j = 0, it is obtained [11, 14, 15],

ẋQ = −

[
Γqq −

(Γqj)
2

Γjj

]
∇T
T 2

. (3.13)

As already mentioned, in the absence of mass flux the energy flux coincides with the heat flux that is

specified by Fourier’s law (2.83b) [14, 16]. It was stated in the beginning of this section that this method

is an approximation since it only takes into account the water phase instead of the two-phase flow,

therefore, the conductivity here will be different from the one considered in eq. (2.83c) which combines

both phases.

ẋQ = −κ∇T, (3.14)

where, κ is the water thermal conductivity in the spray system. Thus, substituting eq. (3.14) in eq. (3.13)

leads to an equation for Γqq,

κT 2 = Γqq −
(Γqj)

2

Γjj
. (3.15)

Through the Onsager’s reciprocal relations it is finally obtained the following eqs. (3.16)–(3.18) for

the phenomenological coefficients,

Γjj = −ẋj
T

∇µ
, (3.16)

Γqj = −ẋj
T 2

∇T
, (3.17)

Γqq = κT 2 +
(Γqj)

2

Γjj
, (3.18)

with

∆T = T2 − T1 = Texterior − Tsystem, ∆µ = µ2 − µ1 = µexterior − µsystem,

T =
T1 + T2

2
=
Tsystem + Texterior

2
. (3.19a-c)

The demonstration and calculation of the conductivity of water can be analysed in the next section

(3.1.3).

The results obtained for the kinetic coefficients are presented in the following figures. Since eqs. (3.16)–

(3.18) depend on the variation or the mean temperature what is important is the difference between the

two temperatures and not their individual values, so it is possible to assume a fixed system temperature

while varying the exterior one, for all the following cases it was chosen a system temperature of 23◦ C.

For the cases not dependent of temperature variation it was assumed an exterior temperature of 25◦ C.
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(a) Γ22 for different mass flows in [kg/s] with ξ = 100 [mol/m3] and Tsystem = 23◦ C.

(b) Γ22 for different concentrations in [mol/m3] with ẋj = 57000 [kg/s] and Tsystem = 23◦ C.

Figure 3.4: Γ22 with exterior temperature variation.

Regarding the concentration, when needed a constant value it was used 100 mol/m3 because as seen

in the previous section it is the limiting value for the good functioning of the chemical potential equation

(3.4). When testing the effects of the variation in concentration were used higher values comparatively

to the limiting one to observe the consequences when the domain of validity of eq. (3.4) is not respected.

For the water flow variation four very different values were chosen in an attempt to examine the impact

of this parameter. For the constant mass flow was used 57000 kg/s based on NASA’s deluge system.

In fig. 3.4 it is presented the coefficient Γjj from eq. (3.16) dependence on the temperature variation

for the two possible alternatives, water flow alteration with fixed concentration and vice-versa; for both
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cases, Γjj decreases with increasing temperature and increases with water flow and concentration.

(a) Γ22 for different mass flows in [kg/s] with Tsystem = 23◦ C and Texterior = 25◦ C.

(b) Γ22 for different Texterior in [K] with Tsystem = 23◦ C and ẋj = 57000 [kg/s].

Figure 3.5: Γ22 with concentration variation.

When subject to concentration variation (fig. 3.5), Γjj increases with it, it also increases with increasing

mass flow (fig. 3.5a) but decreases with increasing temperature (fig. 3.5b) which reassures what was

stated before, done with the simple purpose of observing the progress of the function (3.16) in both

strands. The Cayley-Hamilton condition in eq. (2.79c) is satisfied as it was mandatory.

While analysing Γqj from eq. (3.17) in fig. 3.6 it is important to state two points: the negative value

of this coefficient is due to the fact that the exterior temperature is higher than the one from the system,

causing the temperature variation, ∆T , in the gradient to be positive and since eq. (3.17) has a negative
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sign the final value is also negative; the exterior and system temperatures must not be the same as this

would turn out in a null temperature variation and successively a null gradient and with this parameter in

the denominator of eq. (3.17) it would tend to infinity making it a discontinuous function. Γqj depends on

the temperature, the mean and the gradient, and on the water flow, it decreases, in negative value, with

increasing temperature and increases with the mass flow.

Figure 3.6: Γ12 with exterior temperature variation for different mass flows in [kg/s] and Tsystem = 23◦ C.

Figure 3.7: Γ11 with exterior temperature variation for different concentrations in [mol/m3] and Tsystem =
23◦ C.

Γqq from eq. (3.18) depends not only on the water conductivity but also on the values of Γqj and Γjj ,

being derived from the other phenomenological coefficients. In the presence of temperature variation
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(fig. 3.7), Γqq decreases with increasing temperature and the same happens regarding to the concentra-

tion. In fig. 3.8 it is possible to observe the same behaviour, increasing concentration leads to smaller

values and higher temperatures leads to smaller values as well. The required condition from eq. (2.79b),

is achieved, as it is easily observed in figs. 3.7 and 3.8 .

Figure 3.8: Γ11 with concentration variation for different Texterior in [K] and Tsystem = 23◦ C.

3.1.3 Water Thermal Conductivity

The thermal conductivity, κ, is the parameter responsible for measuring a material’s ability to conduct

heat, in this case the material in question is water, flowing from the spray system. The temperature is

one of the most important variables when defining the phenomenological coefficients and thus, research

was made with the goal of defining the water thermal conductivity dependent on this variable. Further-

more since the coefficients from eqs. (3.16)–(3.18) are defined using a specific temperature, the mean

temperature T , the thermal conductivity will also be defined for this variable to maintain the consistency

in the equations. In this section various formulas from different authors are going to be presented and

compared with theoretical [17] and experimental [18] data calculating the error percentage between

them choosing the most fitted.

The constants in eq. (3.20a,b) from [19] are determined for a temperature range from 0 to 150◦ C, it
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is noteworthy that this is the only formula whose coefficients are calculated for degree Celsius.

κ = A+BT + CT 1.5 +DT 2 + ET 0.5;



A = 0.5650285,

B = 0.0026363895,

C = −0.00012516934,

D = −1.5154918× 10−6,

E = −0.0009412945.

(3.20a,b)

Equation (3.21) was obtained from [20] with temperature expressed in kelvin,

κ = −8.354× 10−6 T 2 + 6.53× 10−3 T − 0.5981. (3.21)

The following equation (3.22) from [21] has a domain of validity of [273; 633 K],

κ = −0.2758 + 4.6120× 10−3 T − 5.5391× 10−6 T 2. (3.22)

The eq. (3.23a) is expressed in terms of the dimensionless variables, reduced temperature (3.23b) and

reduced conductivity (3.23c), and has a range of validity of [274; 370 K] [22],

κ∗ = −1.48445 + 4.12292T ∗ − 1.63866T ∗
2

; T ∗ =
T

298.15
, κ∗ =

κ (T )

κ (298.15)
, (3.23a-c)

with κ (298.15) = 0.6065 W/mK as the standard value of the thermal conductivity of water at 298.15 K.

In fig. 3.9 are represented the results obtained from eqs. (3.20a,b)–(3.23a-c) compared with the

theoretical [17] and experimental data [18].

Figure 3.9: Comparison between the different formulas of the thermal conductivity and theoretical and
experimental data.
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To choose the most fitted formula two types of errors were used, eq. (3.24), the fractional error

applied to each available data point and the root mean square error, eq. (3.25), for groups of data.

e =

∣∣∣∣Predicted− Available
Available

∣∣∣∣× 100 (3.24)

eRMS =

[
1

N

N∑
K=1

e2K

]1/2
× 100 (3.25)

Table 3.2: Errors between thermal conductivity formulas and theoretical data [17].

Temperature interval [oC]
eRMS [%]

Eq.(3.20a,b) [19] Eq.(3.21) [20] Eq.(3.22) [21] Eq.(3.23a-c) [22]

[0,50] 0.36013 0.16553 0.65289 0.46701

[0,100] 0.29497 0.16784 0.68021 0.40763

[0,150] 0.27364 0.57054 0.62558 1.4581

[0,200] 0.25676 1.8123 0.58353 4.3735

[0,250] 0.25036 4.1934 0.57368 9.5544

[0,300] 0.37329 8.1687 0.56473 17.92

[0,365] 1.3031 13.1 0.69912 28.371

Table 3.3: Errors between thermal conductivity formulas and experimental data [18].

Temperature [oC]
Error [%]

Eq. (3.20a,b) [19] Eq. (3.21) [20] Eq. (3.22) [21] Eq. (3.23a-c) [22]

0 0.7181 0.2264 1.7274 0.8211

10 0.7424 0.1891 1.0339 0.3332

20 0.5590 0.0247 0.2999 0.1496

30 0.2654 0.2701 0.3437 0.1128

40 0.0095 0.4676 0.8299 0.1315

50 0.2099 0.5912 1.1434 0.1709

60 0.3070 0.6315 1.2824 0.2150

70 0.3216 0.6228 1.2867 0.2940

80 0.2601 0.5819 1.1762 0.4221

90 0.1589 0.5536 0.9977 0.6432

100 0.0250 0.5521 0.7660 0.9710

eRMS [%] 0.4028 0.4734 1.0670 0.4799

Since the theoretical data is very extensive and precise regarding the temperature interval measure-

ments (consult appendix A to the complete data set) and each formula has its own domain of validity the

root mean square error was computed for different incremented temperature intervals. The experimen-
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tal data is the opposite therefore both errors were calculated. The results are presented in tables 3.2

and 3.3 respectively. When analysing table 3.2, eq. (3.23a-c) is easily excluded since it is the one with

the highest error percentages reaching 28%, the same happens with eq. (3.21), besides the lowest val-

ues obtained in the first intervals, as of 200oC it presents the second highest errors and it is noteworthy

that even the lowest values have only approximately 0.2% of difference from the second lowest (3.20a,b).

The choice is clearly between eq. (3.20a,b) and eq. (3.22) and even then it is easy to see an overall bet-

ter performance in the first one. Regarding the experimental values (table 3.3) the errors by data point,

e, are so inconsistent that the choice will come down to the mean error, in which eq. (3.20a,b) is once

again the one with the lowest error percentage. Hence, the formula of the water thermal conductivity to

be implemented in eq. (3.18) for the calculation of Γqq is set as eq. (3.20a,b).

3.1.4 Shear Viscosity

Shear viscosity, η, also very well known as dynamic viscosity, as mentioned before is crucial for the

evaluation of the dissipation coefficient more specifically to the viscous dissipation coefficient in eq.

(2.43a). It is thus necessary to obtain a formula for the two-phase flow shear viscosity and apply it to an

air-water system. In this section, various formulas regarding the two-phase flow [23] are explored and a

choice is be made. To implement the chosen formula arises the necessity of air and water viscosities,

thus formulas for these parameters are studied, examining the most suitable one.

In the following equations the two-phase viscosity, ηm, satisfies an important limiting condition (3.26)

related to the mass quality [23], x = 0, ηm = ηg

x = 1, ηm = ηl

(3.26)

where x is the mass-quality and the subscripts l and g correspond to liquid and gas, respectively.

McAdams et al. [24] introduced

ηm =

(
x

ηl
+

1− x
ηg

)−1
. (3.27)

Based on the mass averaged value Cicchitti et al. [25] presented

ηm = x ηl + (1− x) ηg. (3.28)

Dukler et al. [26] introduced an expression based on the kinematic viscosity,

ηm = ρm

[
x

(
ηl
ρl

)
+ (1− x)

(
ηg
ρg

)]
, ρm =

(
x

ρl
+

1− x
ρg

)−1
, (3.29a,b)

where ρm is the density of two-phase gas-liquid flow [23]. Beattie and Whalley [27] proposed

ηm = ηg − 2.5ηg

(
xρg

xρg + (1− x)ρl

)2

+

(
xρg (1.5ηg + ηl)

xρg + (1− x)ρl

)
. (3.30)
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Lin et al. [28] presented the following definition of two-phase viscosity

ηm =
ηgηl

ηl + x1.4 (ηg − ηl)
. (3.31)

Fourar and Bories [29] introduced eq. (3.32),

ηm = ρm

(
√
xνl +

√
(1− x)νg

)2

, νl =
ηl
ρl
, νg =

ηg
ρg
, (3.32a-c)

where νl and νg are the kinematic viscosities of liquid and gas, respectively. Lastly, in [23] is described

a new expression derived by analogy with Maxwell-Eucken thermal conductivity formula.

ηm = ηl
2ηl + ηg − 2 (ηl − ηg) (1− x)

2ηl + ηg + (ηl − ηg) (1− x)
. (3.33)

In similarity to what was done for the water thermal conductivity, the assessment of the best definition

of two-phase flow viscosity should rely on errors formulations, however in this case there is no direct

experimental data on the two-phase viscosity, hence other method has to be applied.

Figure 3.10: Two-phase shear viscosity formulas in order to mass quality for air-water system.

In fig. 3.10 it is presented a comparison between eqs. (3.27)–(3.33) as a function of the mass quality.

While analysing the comparison it is possible to divide the viscosity formulas into two groups, one com-

posed by eqs. (3.28) and (3.33), approximately linear and the remaining ones, approximately with an

exponential form. It is important to understand this separation and what it means in terms of viscosity,

eq. (3.33), proposed in [23] is suitable for materials in which the thermal conductivity of the continuous

phase is higher than the thermal conductivity of the dispersed phase, this means that the heat flow avoid

the dispersed phase and the dominant phase is the liquid one [23]. The second group of formulas ex-
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press the opposite, where the dominant phase is the gas and the heat flow involves this phase as much

as possible, with lower thermal conductivities for the continuous phases and higher for the dispersed

ones [23]. With this explanation in mind it is possible to relate the first group of viscosities as being the

most suitable group for this specific flow resuming the choice to eqs. (3.28) and (3.33).

Figure 3.11: Two-phase conductivities [23].

Figure 3.11 besides working as a mirror in comparison to our results in fig. 3.10 it is a good decision

tool, it presents the division of the two viscosity groups as well as their explanation in terms of conduc-

tivity that is defined as analogous to the viscosity. In the case of water spray systems implemented on

launch pads the flow it is not a simple kind of spray jet, it is instead a system able to inject thousands

of litres in just a few seconds, thus from the interpretation of fig. 3.11 these systems are more likely to

behave as a parallel conductivity, linked to eq. (3.28).

In fig. 3.12 there is a demonstration of the behaviour of the chosen formula regarding temperature

and concentration. The last step to define the two-phase flow viscosity is the computation of water and

air shear viscosities.
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(a) ηm with temperature variation for multiple values of mass quality.

(b) ηm with temperature variation for multiple values of temperature in [K].

Figure 3.12: Temperature and concentration dependence of the two-phase shear viscosity, ηm.

Gas viscosity

With respect to air viscosity there are undoubtedly two main formulas for its calculation, therefore only

those are subject to discussion. The commonly used eq. (3.34a,b) refers to Sutherland’s Law [30, 31]

proposed by Sutherland [30] in which η0 is a known viscosity at a known temperature T0.
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ηg = η0g

(
T

T0

)3/2
T0 + S

T + S
;


η0g = 1.716× 10−5 [Pa · s],

T0 = 273 K,

S = 110.4 K.

(3.34a,b)

Equation (3.35) known as Power Law [31], also a very common approximation, has the same refer-

ence temperature and viscosity values of eq. (3.34b).

ηg = η0g

(
T

T0

)2/3

, (3.35)

In both formulas (3.34a,b) and (3.35) there is no mention to the pressure due to the fact that viscosity

is strongly affected by temperature changes but pressure only has a moderate effect on it. The viscosity

in both gases and liquids has a slow increase with pressure, but this effect is only felt upon 101.325

×105 Pa, being possible to neglect it [31]. Gas viscosity increases with temperature as is possible to

observe from fig. 3.13, comparing both equations (3.34a,b) and (3.35) with known values (available in

appendix B). In table 3.4 are presented the errors regarding these values.

Figure 3.13: Air shear viscosity comparison.

After analysing the results the choice is obvious, Sutherland’s Law (3.34a,b) is the one with the lowest

percentage of error in all the intervals studied.
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Table 3.4: Air shear viscosity error

Temperature Interval [oC]
eRMS [%]

Eq. (3.34a,b) Eq. (3.35)

[0,50] 0.0471 0.9525

[0,100] 0.0418 1.4742

[0,200] 0.0448 2.1802

[0,500] 0.0520 2.6758

[0,1100] 0.0466 2.4735

Liquid viscosity

The calculation of water viscosity is not so clear from the literature as that of air, hence some more

formulas need to be analysed in order to find the one most suitable for this work purpose. The first to

be studied is (3.36a,b) where the constants are determined for a temperature domain between 0 and

150◦ C [19],

ηl =
1

A+BT + CT 2 +DT 3
[Pa · s];



A = 557.825,

B = 19.409,

C = 0.136,

D = −3.116× 10−4.

(3.36a,b)

Poiseuille [32] presented the following early formula for pure water shear viscosity in millipoise1 [33],

ηl =
17.8

1 + 0.0377T + 0.00022T 2
[mP]. (3.37)

It should be pointed out that eqs. (3.36a,b) and (3.37) must be calculated in degree Celsius since their

constants have been computed using this unit. Equation (3.38a,b) is derived from experimental values,

it is valid within the 273.15 and 643 K temperature range and is given in centipoise2 [21],

log10 ηl = A+
B

T
+ CT +DT 2 [cP],



A = −10.2158,

B = 1.7925× 103,

C = 1.7730× 10−2,

D = −1.2631× 10−5.

(3.38a,b)

11 mP = 1× 10−4 Pa·s
21 cP = 1× 10−3 Pa·s
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From White [31] appears the following logarithmic function,

ln
ηl
η0l

= A+B

(
T0
T

)
+ C

(
T0
T

)2

[Pa · s],



η0l = 1.792× 10−3 [Pa · s],

T0 = 273.16 [K],

A = −1.94,

B = −4.80,

C = 6.74.

(3.39a,b)

Once again, similarly to air viscosity, the pressure was not considered for the same reasons, only

above 1 MPa does the pressure affects viscosity, below that its effect does not exceed ±0.2% [19]. A

comparison between the different formulas (3.36a,b)–(3.39a,b) relatively to water shear viscosity data

(appendix A) is found in fig. 3.14 where as expected the liquid viscosity decreases with temperature in

an exponential way. It is also possible to find the resulting errors for the same comparison in tables 3.5

and 3.6.

Figure 3.14: Water shear viscosity comparison.
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Table 3.5: Water shear viscosity error regarding theoretical data [17].

Temperature Interval [oC]
eRMS [%]

Eq. (3.36a,b) Eq. (3.37) Eq. (3.38a,b) Eq. (3.39a,b)

[0,50] 0.9067 3.9638 2.0695 1.7320

[0,100] 0.6472 5.7644 1.5487 1.2589

[0,200] 0.5380 10.789 1.3346 4.2435

[0,250] 0.9826 14.417 1.2990 8.1124

[0,300] 3.2871 17.925 1.2718 13.732

[0,365] 9.6630 19.362 1.4528 21.084

Table 3.6: Water shear viscosity error regarding experimental data [18].

Temperature [oC]
Error [%]

Eq. (3.36a,b) Eq. (3.37) Eq. (3.38a,b) Eq. (3.39a,b)

0 0.0180 0.7250 1.4885 0.0240

10 0.0124 2.6521 1.4061 1.7901

20 0.0078 3.5588 2.3363 2.1000

30 0.0408 4.1900 2.1731 1.6762

40 0.0641 4.7187 1.5698 1.0720

50 0.0696 5.2660 0.8366 0.5185

60 0.0553 5.8794 0.1512 0.1375

70 0.0378 6.5944 0.4121 0.0376

80 0.0003 7.4009 0.7962 0.0394

90 0.0071 8.3437 1.0409 0.3052

100 0.0299 9.3754 1.1095 0.7968

eRMS [%] 0.0388 5.863 1.3711 1.0699

In regard to table 3.5, Poiseuille (3.37) and White (3.39a,b) formulas are the first ones to be discarded

due to the very high percentage of error, mainly for higher temperatures. While eq. (3.36a,b) has the

lowest error values until 250oC, above this the errors become larger, whereas eq. (3.38a,b) has some

larger errors yet above the same limit the error does not increase as much. Relative to the data presented

in table 3.6, eq. (3.36a,b) has by far the best results with the smallest error percentage; however when

analysing it outside its scope of validity it was found a deficiency, pictured in fig. 3.15.
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Figure 3.15: Water shear viscosity.

Equation (3.36a,b) represented by the red dotted line presents an unexpected peak at approximately 827

K, the use of this formula would compromise all the following calculations for temperatures in a range of

validity of values containing this peak. Despite eq. (3.39a,b) having the second best results, the experi-

mental values in table 3.6 are much lower than the theoretical ones that were tested in table 3.5 where

this formula was immediately discarded, it is actually possible to notice that until 100oC the percentage

of error is very reliable and the problem happens for higher temperatures and it is necessary to have this

in account when choosing a feasible formula. In this way, eq. (3.38a,b) is chosen as the most fit for the

purpose.

3.1.5 Bulk Viscosity

In liquids and gases, molecules have translational, rotational and vibrational degrees of freedom. Whilst

the shear viscosity is associated with the translational motion, the bulk viscosity ζ, also known as vol-

ume viscosity among many other names, it concerns to the relaxation of both rotational and vibrational

degrees of freedom [34]. The two viscosities combined control sound attenuation. Its existence was first

assumed as a possibility by Stokes in 1845 but at that time there was no method for measuring it, and

during many years it was completely discarded from theoretical calculations. However, despite its funda-

mental role, even today no consistent and widely accepted method has yet been developed, with sparse

experiments based on different methods there is a paucity of data in the literature regarding this topic.

One of the biggest issues in testing theories is not only the already mentioned scarcity of experimental

measurements but also the lack of precision from the existing ones due to the fact that the bulk viscosity

cannot be measured directly, in fact it must be derived from other quantities measurements such as the
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sound absorption coefficient, α, based on Stokes’ law of sound attenuation [35–37],

α =
ω2

2ρv3

(
4

3
η +

γ − 1

cP
κ+ ζ

)
. (3.40)

The calculation of bulk viscosity is important in this specific work because as stated in section 3.1.4 it is

necessary in eq. (2.43a) to obtain the viscous dissipation coefficient, meaning that in order to calculate

it, the bulk viscosity is needed but to obtain this viscosity the absorption coefficient is required, leading

to a contradiction. In this way, formulas like the one in eq. (3.40) are not what is needed, instead it would

be advantageous to have a formula in which the bulk viscosity depends on temperature.

There are three possible experimental techniques that can be used to measure the bulk viscosity,

the Brillouin spectroscopy, laser transient grating spectroscopy and acoustic spectroscopy. As shown by

Dukhin et al [34] the acoustic spectroscopy is the most suitable method and since it depends directly on

the acoustic attenuation is the only one to have a validation procedure for the measured parameter while

using the theoretical definition (3.40). Similarly to the phenomenological coefficients in section 3.1.2 with

the scarcity of theoretical formulas and experimental results for fluids in general it is expected not to have

data or even a theoretical equation describing the behaviour of a two-phase flow when there is still not

a full comprehension for most of the molecular flows. Hence, in this section it is defined a bulk viscosity

formula for water, present in the spray system. Later on, the values obtained for water are compared

with the experimental values of air bulk viscosity to relate their order of magnitude.

Holmes et al [36] made an experiment using acoustic spectroscopy, the most qualified method, to

study the water bulk viscosity temperature dependence. With the results obtained it were determined

two possible equations (3.41a,b) and (3.42a,b) to fit the data,

ζ = A exp (−BT ) ,

A = 5.091712× 10−3,

B = 2.545425× 10−2
(3.41a,b)

ζ = A+BT + CT 2 +DT 3,



A = 5.94068× 10−3,

B = −2.37073× 10−4,

C = 4.94789× 10−6,

D = −3.97502× 10−8

(3.42a,b)

The first one (3.41a,b), is based on a common exponential model for shear viscosity where the results

obtained closely follow the model, while eq. (3.42a,b) is a cubic expression better fitting to the data [36].

The results obtained are presented in fig. 3.16 comparing with some of the existing data on literature.

In what concerns the experimental data, all the values used for this comparison and calculations are

contained in appendix A. Leonard Hall [38] computed this kind of values in 1947 but they can not be

considered experimental values since the absorption coefficient was calculated by means of theoretical

formulas and then implemented in eq. (3.40), thus the Hall data is here used as a base of comparison
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for the more recent experimental values regarding the older theoretical ones. After careful analysis of

fig. 3.16 there are some facts worth mentioning, eq. (3.42a,b) does in fact adjust better to the data

than eq. (3.41a,b) as can be seen in table 3.7 by the error percentage obtained. Nonetheless Holmes

experiment has a temperature range from 7 to 50oC and it is well known that the temperatures during

this work achieve a much higher value, when analysing the curve for Holmes cubic expression (3.42a,b)

is easily observed that the curve is well adjusted to the measurements but upon that it decays rapidly,

tending to infinity, turning it unfeasible for usage as it would compromise all the calculations in need of this

parameter. With eq. (3.41a,b) there is not this problem any more, the error is bigger but the difference

relatively to eq. (3.42a,b) is just of 4.31% having a total error of 4.77% which is acceptable, even more

so having in mind that there are not many experimental values that can be used for comparison and even

the existing ones have some differences between them. Xu et al [39] is an example, in their experiment

the Brillouin scattering method was implemented and a temperature range of 2 to 35oC was tested, the

results in similarity with the ones from Litovitz et al [37] and Dukhin et al [34] are not quite the same as

the ones from Holmes experiment, however it is important to note that all experimental values are very

close to each other and so the existing data, although being sparse, it is very consistent.

Figure 3.16: Bulk viscosity comparison.

The shear viscosity, the red doted curve, is present in fig. 3.16 as a comparison tool between both

viscosities. Bulk viscosity was neglected during many years and its value assumed as zero in most

of the calculations, yet it is clear that this parameter cannot be neglected and instead has a bigger

value than the dynamic viscosity. In fact it is approximately three times larger than its shear counterpart

throughout the experimental temperature range. With increasing temperature the exponential formula

for the bulk viscosity leads to a decrease in a monotonic form, as for the shear viscosity; however in the

experimental data it tends to the same values as the dynamic viscosity. More data would be needed over

a wider temperature range to study this behaviour. Thus, eq. (3.41a,b) is considered to have the best fit
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and it is implemented throughout the following work, mainly based in the fact that acoustic spectroscopy

achieve better results than Brillouin scattering [34].

Table 3.7: Bulk viscosity error.

Available data
eRMS [%]

Holmes exponential - Eq. (3.41a,b) Holmes cubic - Eq. (3.42a,b)

Leonard Hall [38] 40.202 81.019

Holmes et al [36] 4.770 0.455

Xu et al [39] 18.970 13.255

Table B.1, included in appendix B, contains experimental values on the air bulk viscosity that allows

a comparison with the values obtained for water. While the water takes values on the order of 10−3 as

seen in fig. 3.16, the air bulk viscosity is on the order of magnitude of 10−5 [40]. There is still a large

difference between the two orders of magnitude, with air having the lowest value; the initial assumption

of considering water, instead of air, as the predominant phase for viscosity it is now substantiated. It

is known, nonetheless, that the bulk viscosity of air should be considered at a later stage since it will

always influence the two-phase bulk viscosity.

3.2 Computational Implementation

After the theoretical implementation it is necessary to implement the formulas derived in the previous

section (3.1) and perform the respective calculations, obtaining the desired results. In order to do that

with the highest degree of confidence a mathematical tool, was developed on the MATLAB software. It

is important to emphasize that the code implemented is used only as a tool developed with the intent

of perform the calculations without the common human errors that come with more complicated and

extensive calculations. The computational tool is used to compare the results obtained with the existing

data in the literature, calculate the error between them and hence validate the formulas implemented

and obtain a graphic representation of the various results and equations. In this section is given an

overview on how the computational tool was developed, works and which results it leads to.

Multiple MATLAB functions were developed, each one responsible for a specific area of calculation;

next is given an explanation on each of the functions as well as some caution that must be taken into

account. It is noteworthy that the majority of the functions have one common feature, namely all of them

apply over a set of temperature and concentration intervals as well as for a specific point in temperature

and concentration, showing the variation with the two most important variables in study.

chemical potential Definition and calculation of the chemical potential and the relative chemical po-

tential from eqs. (3.3) and (3.4). Incorporation of the following two functions also related with chemical

potential to maintain the subject in only one global equation. The functions related to the chemical

potential and hence, with eq. (3.3) have to be used with a certain caution since it is a logarithmic expres-
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sion. In particular it is necessary to be careful with the concentration, ξ, present in the numerator of the

logarithm, that can not have a zero value as that would create a NaN response.

chemical potential temperature Obtaining of the formula for the derivative of the relative chemical

potential in order to temperature and posterior calculation. In this case, since the derivative only depends

on the concentration (3.5b) the calculation for a temperature interval is not available. This derivative

is the only that maintains the logarithmic expression thus maintaining the necessity of the previously

described caution.

chemical potential concentration Obtaining of the formula for the derivative of the chemical potential

in order to temperature (3.5a), its calculation and graphical representation.

shear viscosity water Implementation of eqs. (3.36a,b)–(3.39), call of the theoretical and experimen-

tal data, from Excel files previously created, these files contain temperature and viscosity values. The

data is stored into vectors and through the use of for cycles the viscosity values, for each of the equations

implemented, is calculated for the respective theoretical and experimental temperatures. The results ob-

tained are compared with those from the files calculating the error from eq. (3.24). The fractional error is

written in table format and it is transferred to a text document that is posteriorly saved on the computer.

The process is repeated for the root mean square error (3.25). Plot of the multiple equations and data

available for a graphical comparison. Definition of eq. (3.38) as the liquid viscosity.

shear viscosity air The exact same process implemented before for water shear viscosity but this

time with eqs. (3.34a,b) and (3.35). Both viscosities depend only on the temperature as can be seen by

their equations, so once again it is not possible to apply concentration variation.

shear viscosity two phase This function acts as a mother function for viscosity calling the two last

described and viscosity related functions. Definition of the two-phase density and kinematic viscosities

from eqs. (3.29b) and (3.32b,c) and all the two-phase viscosity models to be studied, eqs. (3.27)–(3.33).

Graphical comparison of the multiple models and definition of the chosen one as the two-phase shear

viscosity. In this case, it remains the calculations for temperature intervals and the mass quality on which

the viscosity depends acts as a concentration variation.

bulk viscosity Reading of the Excel file with theoretical and experimental data and storage of the

values in vector format. Call of the water shear viscosity function only for graphical comparison pur-

poses. Definition of the exponential bulk viscosity equation (3.41a,b) and the cubic expression (3.42).

Calculation and writing of the errors in the exact same form as in water and air shear viscosity. Graph-

ical comparison between Holmes et al expressions, water shear viscosity and the data from the file.

Definition of the exponential expression as the bulk viscosity, dependent only on the temperature.
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thermal conductivity water Definition of the temperature as mean temperature, as already explained

on section 3.1.3 and definition also of the multiple formulas for water thermal conductivity (3.20a,b)–(3.23).

Reading of the Excel file with theoretical and experimental data with posterior error calculation, once

again as calculated in the viscosities. Graphical comparison of the models studied and data available,

definition of the chosen formula as the water thermal conductivity.

onsager coefficients Definition of exterior and mean temperature as well as temperature variation;

exterior chemical potential as the relative chemical potential previously calculated; system chemical

potential and chemical potential variation, regarding temperature and concentration. Call of the water

thermal conductivity. Implementation and calculation of eqs. (3.16)–(3.18). In this case, Γ12 does not

depend on the concentration thus, only being calculated for intervals of temperature. During the calcu-

lation of the coefficients it is necessary to have some caution: Γ22 = Γjj (3.16) depends on the variation

of the chemical potential, so once again the concentration can not be equal to zero, besides that since

this variation is in the denominator of the coefficient it can not have a zero value, this means that the

exterior chemical potential can not be equal to the one from the system, considered as the standard

chemical potential of water thus, the concentration must not achieve the 1000 mol/m3 since it would

return the logarithm as zero; Γ12 = Γqj (3.17) has the temperature variation in the denominator, which

means that if there is no temperature difference, the variation will have a zero value and the expression

will be undefined hence, the exterior temperature must be higher that the one from the system; Since

Γ11 = Γqq depends on both the previous coefficients the same previously cautions must be taken into

account.

conductivity overbar Definition and calculation of the conductivity defined in eq. (2.83c). This con-

ductivity depends on Γ11, Γ12 and Γ22 the already mentioned precautionary measures are applied here

as well.

coupling alpha Definition and calculation of the thermal cross-coupling coefficient from eq. (2.89c).

The α coefficient, depends on Γ12, Γ22 and
∂µ

∂T
so both temperature variation and chemical potential

logarithmic cautions apply.

conductivity Definition and calculation of the thermal conductivity described in eq. (2.92b). Once

again, dependence on Γ12 and Γ22 requires the same careful.

mass diffusion Definition and calculation of the mass diffusion coefficient defined in eq. (2.89c). This

coefficient depends on
∂µ

∂ξ
, that is not a logarithmic expression, however it depends on Γ22 that presents

the variation in temperature and in chemical potential.

coupling beta Definition and calculation of the mass diffusion cross-coefficient from eq. (2.92c). The

β coefficient will also depend on temperature and chemical potential variation.
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dampings Definition of the acoustic damping, ε, normalized by the Doppler shifted frequency squared

(ω2). The total damping is divided into three more specific dampings that are firstly defined and calcu-

lated and only then combined to obtain the total acoustic damping, the final result. The thermal damping

(2.42d) is defined and calculated, secondly the viscous damping (2.43a) and thirdly the mass diffusion

damping (2.43b). Lastly, it adds up the three dampings obtaining the total acoustic damping in order to

temperature, concentration, mass quality and pressure. The thermal damping, depends on the conduc-

tivity and its mathematical restrictions as well as the mass diffusion damping that depends on the mass

diffusion cross-coefficient, β. The only one that does not have any restrictions regarding temperature or

concentration is the viscous damping.

Thesis main This is the main file, the one that generates all the calculations described until now. In

this function it must be inserted the manual inputs with all the values for which it is necessary to per-

form the calculations: exterior temperature, system temperature, concentration, pressure, mass quality

and water flux specific points and temperature, concentration, pressure and mass quality intervals. This

file contains also the standard values necessary, specifically chemical potential, water and air density,

adiabatic exponent, molecular mass of water, ideal gas constant, reference temperature, pressure and

concentration, these values must not be changed since they are specified accordingly to literature and

the demands of the theoretical models used throughout all the calculations.

As it could be seen, there are some mathematical constraints in the calculations derived from the

models used that can not be bypassed. Besides, in section 3.1 was defined the domain of validity of

each of the formulas used, that should always be respected in order to obtain the best results possible

from the equations.

All of the above functions have the option to display a graphical representation concerning the de-

pendence on the temperature and concentration variation, if dependent of both parameters; otherwise it

has only the representation for the one dependent parameter. However, since the acoustic damping is

the main result, and the most important to study and analyse it is the only one to be displayed, for each

of the damping components and the total damping, as plots for temperature and concentration intervals,

and as a numerical value for a specific point in temperature and concentration. The remaining graphical

representations are disabled and can be enabled, removing the comments, whenever one desires to

analyse that specific calculation/result. Figure 3.17 depicts a flowchart of the mathematical tool in its

final form where only the acoustic damping results are displayed.
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Figure 3.17: Flowchart of the mathematical tool.
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Chapter 4

Results

While in chapter 3 was developed the first step of the objectives proposed in section 1.3, in this section

is presented and discussed the results obtained regarding the fulfilment of the second (section 4.1) and

third (section 4.2) steps represented in fig. 1.4. It is important to state that in the results presented in

this chapter when a parameter is not varying it has a fixed and standard value that is used throughout

the calculations; those reference values, are presented in the next table (table 4.1).

Table 4.1: reference values used during the results calculation.

Parameter Reference value

Exterior temperature 25oC

System temperature 23oC

Concentration 100 mol/m3

Pressure 101325 Pa

Mass quality 0.5

Water flow 57000 kg/s

4.1 Thermal and Mass Kinetic Coefficients

4.1.1 Conductivity - χ

The first coefficient from chapter 2 to be obtained is the thermal conductivity expressed in eq. (2.83c)

and recalled next.

χ =
1

T 2

[
Γ11 −

(Γ12)
2

Γ22

]
> 0. (4.1)

The first detail to pay attention to from figs. 4.1 and 4.2 is that both feature a positive conductivity value

as it is imposed by eq. (4.1). With regard to temperature variation (fig. 4.1) the result is as expected

for a liquid: a decreasing value with increasing temperature. However, it is important to note that the

formula in eq. (4.1), for χ, does not coincide with the conductivity χ, that is discussed subsequently in
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section 4.1.4. The concentration does not have a significant impact in the variation of the conductivity,

in fact it is negligible, as can be seen from fig. 4.2, after all it is a thermal coefficient and so it is normal

for the major effect to come from temperature.

Figure 4.1: Conductivity χ with temperature variation.

Figure 4.2: Conductivity χ with concentration variation for multiple temperature values in [K].

4.1.2 Mass Diffusion Coefficient - D

The mass diffusion coefficient from eq. (2.89b), also presented in eq. (4.2), depends on the chemical

potential derivative,
∂µ

∂ξ
, while this parameter increases with temperature (fig. 3.2a), Γ22 from which D
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also depends, decreases with temperature (fig. 3.4) and in this case the predominant effect comes from

the latter, with the mass diffusion coefficient slightly decreasing with increasing temperature.

D ≡ Γ22

T

(
∂µ

∂ξ

)
T

. (4.2)

Relatively to water flow (fig. 4.4), the mass diffusion coefficient increases with the amount of flow, agree-

ing with Fick’s Law expressed in eq. 2.7b.

Figure 4.3: Mass diffusion coefficient D with temperature variation for multiple concentration values in
[mol/m3].

Figure 4.4: Mass diffusion coefficient D with temperature variation for multiple mass flow values in [kg/s].

When analysing eq. (4.2) it is easily observed that the concentration dependence of the mass diffusion
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coefficient is a consequence of the fact that the diffusion flow depends on the difference of the chemi-

cal potential of the system, it is also expected that this value diminishes with increasing concentration

(fig. 4.5), since the higher the molecular density is, the harder it gets for the molecules to flow from one

point to another, implying a smaller diffusion rate. Contrary to the thermal conductivity, this is a mass

related coefficient, thus being normal to the mass related parameters to have a bigger influence.

Figure 4.5: Mass diffusion coefficient D with concentration variation for multiple temperature values in
[K].

4.1.3 Thermal Cross-coefficient - α

The thermal-cross coefficient (2.89c) and (4.3) as a cross-coupling coefficient accounts for the influence

of both temperature and concentration.

α ≡ Γ12

T 2
+

Γ22

T

(
∂µ

∂T

)
ξ

. (4.3)

The concentration dependence comes from the logarithmic expression, in eq. (3.5b), and the variation in

eq. (3.16), while the temperature dependence is due to Γ22 and Γ12, eqs. (3.16) and (3.17) respectively.

Being a thermal coefficient, once more, it is expected a substantial part of the effect from the temperature

related parameters. In this case there is clearly a parameter with a massive value when comparing with

the remaining, Γ12 (fig. 3.6), thus being the dominant parameter. As a dominant parameter, α presents

the exact same variations as Γ12, this means that the thermal cross-coefficient decreases, in absolute

value, with increasing temperature and increases with increasing mass flow quantity (fig. 4.6).
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Figure 4.6: Thermal cross-coefficient α with temperature variation for multiple mass flow values in [kg/s].

The temperature has such a considerable impact that the concentration variation is considered negligible

(fig. 4.7). Both the kinetic cross-coupling coefficient and the chemical potential have negative values in

this way being α also negative.

Figure 4.7: Thermal cross-coefficient α with concentration variation for multiple temperature values in
[K].

55



4.1.4 Thermal Conductivity Coefficient - χ

The final form of the thermal conductivity coefficient, formulated in eq. (2.92b) and recalled in eq. (4.4)

is presented in figs. 4.8–4.10.

χ = χ+ α
Γ12

Γ22
. (4.4)

Figure 4.8: Conductivity coefficient χ with temperature variation for multiple concentration values in
[mol/m3].

After analysing the results obtained it is clear that the behaviour of the thermal conductivity is closest

from the behaviour of liquids than from gases, this result is due to the fact that the kinetic coefficients

were calculated for a water system, instead of a two-phase system. Just as it happens for liquids, in this

case, the thermal conductivity also decreases with increasing temperature (fig. 4.8) as a result of the

liquid expansion and the molecules moving apart, decreasing the attraction forces. It is also typical of

liquids behaviour to achieve approximately constant values at higher temperatures. The dependence on

the mass flow (fig. 4.9) comes through the use of the kinetic coefficients, which are proportional to the

flow value, hence the conductivity will increase with the increasing of water flow.

Relatively to the concentration (fig. 4.10), the conductivity rely on χ that was proven earlier to have

a negligible dependence regarding the concentration, the same happens with α from which χ is also

dependent, the other two values in eq. (4.4) are Γ12 and Γ22. As seen from eq. (3.17), Γ12 does not

depend of the concentration, with this the only parameter able to affect the concentration is in fact Γ22

through the variation of chemical potential and since this value is in the denominator of eq. (3.17) and is

extremely small when compared with the one from the numerator, it will intensely affect the final result.

Thus, the results relatively to the decreasing of the conductivity with the increase of concentration, in

fig. 4.10 are a reflection of the system chemical potential represented in fig. 3.1b. The enormous values

difference between the temperature curves is due to the fact that in fig. 4.8 the conductivity decays
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exponentially in just approximately 10 K, presenting only high levels of thermal conductivity for low

temperatures.

Figure 4.9: Conductivity coefficient χ with temperature variation for multiple mass flow values in [kg/s].

Figure 4.10: Conductivity coefficient χ with concentration variation for multiple temperature values in [K].

4.1.5 Mass Diffusion Cross-coefficient - β

The mass diffusion cross-coefficient (2.92c) and (4.5) is the mass related coefficient and the first result

to be aware of is the difference in the order of magnitude relatively to its conjugate, the thermal cross-

coefficient. While α is of the order of 104, the mass coefficient, β is of the order of 1010 a much higher
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value. Meaning that in the cross-coupling reaction the mass diffusion is what influences the most.

β = D
Γ12

Γ22
. (4.5)

In figs. 4.11 and 4.12 it is possible to see the results for temperature variation with different concen-

trations and mass flows, in an overall observation the behaviour is the same as the thermal cross-

coefficient, decreasing values with increasing temperature and for higher mass flows, higher coefficients,

seen from an absolute value point-of view. However, the difference between the two cross-coefficients

is the influence of the concentration, while on the thermal component the concentration effect was ne-

glected, being this a mass related coefficient it has to take into account the chemical potential variations

and hence a concentration contribution (fig. 4.13), nonetheless the effects are bigger for smaller con-

centrations.

Figure 4.11: Mass diffusion cross-coefficient β with temperature variation for multiple concentration
values in [mol/m3].
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Figure 4.12: Mass diffusion cross-coefficient β with temperature variation for multiple mass flow values
in [kg/s].

Figure 4.13: Mass diffusion cross-coefficient β with concentration variation for multiple temperature
values in [K].

4.2 Acoustic Attenuation

It is known from sections 2.3 and 2.4 that the acoustic attenuation is divided into three components, the

thermal damping in eq. (2.42d), the viscous damping, eq. (2.43a) and the mass diffusion damping from

eq. (2.43b). For this analysis, the same dampings were parametrized (4.7)–(4.9) by the Doppler shifted
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frequency, ω2, in a way of easing the reading of the graphical results.

ϑ = ϑ1 + ϑ2 + ϑ3, (4.6)

ϑ1 =
ε1

ω2 =
(γ − 1)

2
χ

2p0γ2R
, (4.7)

ϑ2 =
ε2

ω2 =
1

2p0γ

(
ζ +

4

3
η

)
, (4.8)

ϑ3 =
ε3

ω2 =
γ − 1

2p0γ2RT0
ξ0β. (4.9)

The total acoustic attenuation as stated before is calculated through the sum of the three components

as shown in eq. (4.6).

4.2.1 Thermal Damping

The thermal damping (4.7) being the temperature related component of the total attenuation is propor-

tional to the thermal conductivity, that in turn depends on the thermal cross-coefficient, in this way having

all the temperature related components in its formulation. Being proportional to the thermal conductivity

the results of this damping will assume the same behaviour, with a different, smaller, order of magnitude

mainly due to the division by the exterior pressure.

Figure 4.14: Thermal damping ϑ1 with temperature variation for multiple concentration values in
[mol/m3].
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Figure 4.15: Thermal damping ϑ1 with temperature variation for multiple mass flow values in [kg/s].

In figs. 4.14 and 4.15 it is possible to observe that the attenuation decreases with the increasing of tem-

perature, as was already stated, due to the fact that with increasing temperature the energy of thermal

motion loosens the molecules in this way decreasing the attraction forces and hence, the conductivity

which induces a decreasing in the attenuation. For higher mass flows a bigger amount of water will be

present in the system, thus having more molecules interacting and an increasing capacity of conducting

the heat flux.

Figure 4.16: Thermal damping ϑ1 with concentration variation for multiple temperature values in [K].

The variation of the thermal attenuation with regard to concentration (fig. 4.16), is once again, a portrait

of the behaviour of the chemical potential, since the thermal conductivity also has components derived

from mass diffusion. In cases like this, where it happens multiple irreversible processes, as heat conduc-
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tion and mass diffusion, the temperature differences present in the system will cause a degradation of

energy by conduction of heat but the second process happening simultaneously will cause an additional

degradation of energy making the total rate of increase of the entropy greater than it would be just by

heat conduction alone [5].

Figure 4.17: Thermal damping ϑ1 with pressure variation.

The effect of the pressure variation (fig. 4.17) is as expected, since it is present in the denominator of

eq. (4.7) it presents an almost inversely proportionality, nonetheless its graphical representation will be

presented for all dampings in order to compare the order of magnitude of each one of them.

4.2.2 Viscous Damping

The attenuation owing the viscosity effect of the medium is given by eq. (4.8). This is an attenuation

that depends only on the viscosities, shear and bulk, and as analysed in section 3.1.5 although the bulk

viscosity presents a higher value comparatively to the shear viscosity, it is still a value on the order of

magnitude of 10−3 a much smaller value when in comparison, for example, with the thermal conductivity

(1012) that is the parameter on which the thermal damping depends. With this, when combining both

viscosity effects the values achieved, of the order of 10−8 (fig. 4.18) can not be compared with the ones

obtained for thermal damping, hence it is completely negligible. Nonetheless, it is relevant to analyse

the results obtained for the viscous damping.
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Figure 4.18: Viscous damping ϑ2 with temperature variation for multiple mass quality values.

When comparing fig. 4.18 with figs. 3.12a and 3.16 it is easy to observe the effect of the bulk vis-

cosity, especially if attending to the black filled curve, represented for a mass quality x = 0, where in

fig. 3.12a is almost constant and in this case it presents an approximate exponential decay. However, it

should be borne in mind, while the shear viscosity is calculated for a two-phase flow, the bulk viscosity

was evaluated only for the water component, thus this component is being summed to the entire range of

viscosities, this meaning it is also being added when it should only exist air. This explains the major dif-

ference between the two curves from both figures stated before, however the value for air bulk viscosity,

as in the water case, is still bigger than the shear, as can be seen from the values presented in table B.1

on appendix B, even if in a smaller order of magnitude, it would present the same features. Regard-

ing to temperature variation (fig. 4.18), the viscous attenuation decreases with increasing temperature

exhibiting a liquid like behaviour, since when there is an increase in temperature the mean particles

have a greater thermal energy being more easy to overcome the attractive forces that are binding them

together, implying a decreasing viscosity and so a decreasing power of attenuation.
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Figure 4.19: Viscous damping ϑ2 with mass quality variation for multiple temperature values in [K].

It was already discussed how the water presents a higher viscosity value than the air, and so it is

expected that when increasing the mass quality, and thus the quantity of water in the system the viscosity

also increases leading to an increase of the attenuation (fig. 4.19). When x = 1 the attenuation will

present a result for a full water medium, in terms of both bulk and shear viscosity. For x = 0, while the

two-phase shear viscosity presents a full air behaviour, as it should be, the bulk viscosity will add a water

component due to the lack of a two-phase model for this parameter. Once again, the pressure variation

(fig. 4.20) is presented mainly with a purpose of completeness, since the effect is the same for all the

attenuation components.

Figure 4.20: Viscous damping ϑ2 with pressure variation.
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4.2.3 Mass Diffusion Damping

The mass diffusion damping, eq. (4.9), is the mass related component of the total acoustic attenuation

depending directly on the concentration and the mass diffusion cross-coefficient. The very first result that

is important to note is that this damping has a negative value, meaning that instead of contributing to the

acoustic attenuation it has in fact an amplification effect, increasing the heat flux instead of decreasing

it as it is necessary in an attenuation case. The second result worth mentioning is that, since it depends

directly on the concentration it would be expected to have a variation regarding this parameter, however

as can be analysed in fig. 4.22 this does not happen and the variation in concentration can actually be

neglected. This effect is explained by the fact that both terms, ξ and β cancel due to the existence of

opposite gradients of concentration. While the ξ value increase in the direction of the mass flux, within

the water spray jet, the mass diffusion cross-coefficient β subsequent from Fourier’s law imply a heat

flow from higher to lower temperatures, which happens in the opposite direction of the mass flow. The

temperature variation effect (fig. 4.21) reproduces the behaviour of the mass diffusion cross-coefficient,

it decreases with increasing temperature and increases with the mass flow, in absolute value, since the

higher the mass flow, the bigger the amount of water present in the system and thus more mass in which

the diffusion process can happen.

Figure 4.21: Mass diffusion damping ϑ3 with temperature variation for multiple mass flow values in [kg/s].
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Figure 4.22: Mass diffusion damping ϑ3 with concentration variation for multiple temperature values in
[K].

For the pressure variation (fig. 4.23) it should be kept in mind that the values presented are negative and

that seen from an absolute point-of-view the attenuation decays almost linearly with increasing pressure.

Figure 4.23: Mass diffusion damping ϑ3 with pressure variation.

4.2.4 Total Damping

The final and most important goal is the analysis of the total acoustic attenuation obtained after imple-

mentation of the new theory hereby presented. In order to do so, all the previously calculated dampings,

are added as contemplated in eq. (4.6) and all the possible results graphically represented in figs. 4.24–
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4.27. The total damping consist of three components: the thermal damping accounts for highest attenu-

ation by a large margin as concerns the order of magnitude of the three dampings, and thus dominates

the global attenuation. The viscous damping presented the exact opposite, being the smallest attenua-

tion and in fact able to be neglected. The mass diffusion damping has the opposite effect to attenuation,

meaning that is does not contribute to attenuate but instead to amplification.

When analysing fig. 4.24 it is clear that the attenuation with temperature variation is a reproduction

of the thermal damping, decreasing with increasing temperature due to the thermal conductivity effect,

already established in section 4.1.4. In fig. 4.25 it is actually possible to see the reflection of the mass

diffusion contrary damping effect when attending to the available zoom and comparing it with the one

from fig. 4.16, showing a slightly decrease in the total attenuation relatively to the thermal damping. The

red dotted line is the one where the effect is more easily observed in fig. 4.16 it slightly surpasses 100

where in turn in the fig. 4.25 it achieves this as a maximum value. The mass quality effect (fig. 4.26) is

negligible since the viscous attenuation is the only that depends on this parameter and the magnitude

of this damping is much smaller when compared with the thermal damping, hence the effect of this

damping is not even felt. The pressure, as expected, maintains its approximately inversely proportional

effect (fig. 4.27).

Figure 4.24: Total acoustic damping ϑ with temperature variation for multiple concentration values in
[mol/m3].
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Figure 4.25: Total acoustic damping ϑ with concentration variation for multiple temperature values in [K].

Figure 4.26: Total acoustic damping ϑ with mass quality variation for multiple concentration values in
[mol/m3].

68



Figure 4.27: Total acoustic damping ϑ with pressure variation.

Table 4.2: Total damping vs. temperature and concentration.

ξ [mol/m3]

T [oC]
25 50 75 100 150 250 500 1000

25 1.04× 105 609.05 175.61 85.53 35.68 14.13 5.26 2.62

50 8.41× 104 488.03 139.18 67.12 27.54 10.62 3.81 1.88

100 6.45× 104 367.01 102.75 48.72 19.39 7.13 2.35 1.04

150 5.31× 104 296.22 81.45 37.95 14.63 5.08 1.50 0.58

200 4.49× 104 245.99 66.33 30.32 11.25 3.63 0.90 0.25

To complete this chapter, in table 4.2 can be seen the total damping obtained for a combination of

temperature and concentration values.
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Chapter 5

Conclusions

Lastly, but definitely not less important, this last chapter is destined for the final conclusions regarding

the work developed throughout this thesis, as well as some recommendations of improvements that

could and should be featured in a future work.

5.1 Achievements

In the first chapter it were established the objectives to be attained with this work (section 1.3), some of

them are considered to have been fully achieved, while others were only partially achieved. Based on

the objectives pyramid (fig. 1.4) it is presented next, in table 5.1 a status of the proposed objectives all

of them implying the calculation for a two-phase flow.

Table 5.1: Objectives achievement.

Objectives Status

Chemical potential Achieved

Kinetic coefficients Partially achieved

Shear viscosity Achieved

Bulk viscosity Partially achieved

Thermal conductivity Achieved

Mass diffusion coefficient Achieved

Cross-coupling coefficients Achieved

Total acoustic damping Achieved

The objectives considered to have been partially achieved is due to the fact that the calculations were

not performed for a two-phase flow, but instead only for the liquid phase, as was the case for the kinetic

coefficients and bulk viscosity. However, the majority of the objectives proposed are considered to have

been fulfilled, it is important to remind that the main goal was not to obtain a definitive theory, but instead

a first approach to this new theory in an attempt of understanding its effects and application possibilities.
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The major achievement of this thesis is definitely the calculation of the acoustic damping that enabled

a deeper understanding on how the various components interact between them and the impact of each

in the acoustic attenuation. Concluding, the acoustic attenuation is dominated by the thermal damping

which means the heat conduction irreversible process is the one with the biggest impact, while the mass

diffusion damping has the opposite effect, the one of sound amplification, which means that the second

irreversible process present, the mass diffusion, through the chemical potential differences instead of

degrade the energy it will enhance its effect. As concerns to the viscous part, a better understanding

on how the bulk viscosity affects a flow comparatively to the shear viscosity, is important and it was

established in this work, regarding to the liquid phase, that the bulk viscosity actually has a bigger

influence in the medium than its shear counterpart. Nonetheless, this effect does not have an influence

in the final result due to the very small magnitude when compared with the thermal damping.

5.2 Future Work

In a posterior work, there are some items to have in mind, specifically,

• the calculation of the kinetic coefficients must be improved allowing inclusion of the gas phase

enabling the results for a two-phase flow as it is supposed;

• the bulk viscosity has to be improved in the same way than the kinetic coefficients, because once

again it was only calculated for the liquid phase and similarly to the shear viscosity it needs an air

component;

• the approximations stipulated in section 1.3 regarding the omission of the less important effects

when establishing the basis of the theory, with the six fundamental equations of fluid mechanics,

must be considered. Mainly the effects of viscosity, vaporization and chemical reactions that are

not considered in the equations of continuity, mass diffusion, heat, momentum, perfect gas state

and entropy for an ideal gas that represent the basis of this theory. The inviscid momentum equa-

tion could have been replaced by the viscous momentum equation leading to the total acoustic

damping in eq. (2.44) where the product of diffusivities is neglected.
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Appendix A

Water Data

Table A.1: Water Data [17, 18].

Theoretical data Experimental data

Temperature Thermal Conductivity Shear Viscosity Temperature Thermal Conductivity Shear Viscosity

T [oC] κκκ× 10−3 [W/m.K] ηηη × 10−4 [Pa·s] T [oC] κκκ× 10−3 [W/m·K] ηηη × 10−4 [Pa·s]

0 562,0 17,920 0 561,0 17,930

1 564,1 17,914 10 580,0 13,070

2 566,2 17,312 20 598,4 10,020

3 568,2 16,737 30 615,4 7,977

4 570,3 16,192 40 630,5 6,532

5 572,3 15,183 50 643,5 5,470

6 574,3 14,716 60 654,3 4,665

7 576,2 14,272 70 663,1 4,040

8 578,1 13,848 80 670,0 3,544

9 580,0 13,445 90 675,3 3,145

10 581,9 13,060 100 679,1 2,818

11 583,8 12,692

12 585,6 12,341

13 587,4 12,005

14 589,2 11,684

15 591,0 11,376

16 592,7 11,081

17 594,4 10,799

18 596,1 10,527

19 597,8 10,267

20 599,5 10,016

21 601,1 9,776

22 602,7 9,544

23 604,3 9,321
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Continuation of table A.1

Theoretical data Experimental data

Temperature Thermal Conductivity Shear Viscosity Temperature Thermal Conductivity Shear Viscosity

T [oC] κκκ× 10−3 [W/m.K] ηηη × 10−4 [Pa·s] T [oC] κκκ× 10−3 [W/m·K] ηηη × 10−4 [Pa·s]

24 605,9 9,107

25 607,5 8,900

26 609,0 8,701

27 610,5 8,509

28 612,0 8,324

29 613,5 8,145

30 615,0 7,972

31 616,4 7,805

32 617,8 7,644

33 619,3 7,488

34 620,6 7,337

35 622,0 7,191

36 623,3 7,050

37 624,7 6,913

38 626,0 6,780

39 627,3 6,652

40 628,6 6,527

41 629,8 6,406

42 631,1 6,289

43 632,3 6,175

44 633,5 6,065

45 634,7 5,958

46 635,9 5,853

47 637,9 5,752

48 638,2 5,654

49 639,3 5,558

50 640,5 5,465

51 641,6 5,375

52 642,6 5,286

53 643,7 5,201

54 644,8 5,117

55 645,8 5,036

56 646,8 4,957

57 647,8 4,880

58 648,8 4,805

59 649,8 4,732

60 650,8 4,660
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Continuation of table A.1

Theoretical data Experimental data

Temperature Thermal Conductivity Shear Viscosity Temperature Thermal Conductivity Shear Viscosity

T [oC] κκκ× 10−3 [W/m.K] ηηη × 10−4 [Pa·s] T [oC] κκκ× 10−3 [W/m·K] ηηη × 10−4 [Pa·s]

61 651,7 4,591

62 652,6 4,523

63 653,6 4,457

64 654,5 4,392

65 655,3 4,329

66 656,2 4,267

67 657,1 4,207

68 657,9 4,149

69 658,8 4,091

70 659,6 4,035

71 660,4 3,981

72 661,2 3,927

73 661,9 3,875

74 662,7 3,824

75 663,4 3,774

76 664,2 3,724

77 664,9 3,678

78 665,6 3,631

79 666,3 3,585

80 667,0 3,540

81 667,6 3,497

82 668,3 3,454

83 668,9 3,412

84 669,5 3,371

85 670,1 3,331

86 670,7 3,291

87 671,3 3,253

88 671,9 3,215

89 672,5 3,178

90 673,0 3,142

91 673,5 3,106

92 674,1 3,071

93 674,6 3,037

94 675,1 3,004

95 675,5 2,971

96 676,0 2,939

97 676,5 2,907
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Continuation of table A.1

Theoretical data Experimental data

Temperature Thermal Conductivity Shear Viscosity Temperature Thermal Conductivity Shear Viscosity

T [oC] κκκ× 10−3 [W/m.K] ηηη × 10−4 [Pa·s] T [oC] κκκ× 10−3 [W/m·K] ηηη × 10−4 [Pa·s]

98 676,9 2,876

99 677,3 2,846

100 677,8 2,816

102 678,6 2,758

104 679,3 2,702

106 680,0 2,648

108 680,7 2,596

110 681,3 2,546

112 681,8 2,498

114 682,4 2,451

116 682,8 2,406

118 683,2 2,362

120 683,6 2,320

122 683,9 2,280

124 684,2 2,240

126 684,5 2,202

128 684,6 2,165

130 684,8 2,129

132 684,9 2,095

134 685,0 2,061

136 685,0 2,029

138 684,9 1,997

140 684,9 1,966

142 684,8 1,937

144 684,6 1,908

146 684,4 1,880

148 684,1 1,853

150 683,9 1,826

152 683,5 1,800

154 683,2 1,775

156 682,8 1,751

158 682,3 1,727

160 681,8 1,704

162 681,3 1,682

164 680,7 1,660

166 680,1 1,639

168 679,4 1,618
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Continuation of table A.1

Theoretical data Experimental data

Temperature Thermal Conductivity Shear Viscosity Temperature Thermal Conductivity Shear Viscosity

T [oC] κκκ× 10−3 [W/m.K] ηηη × 10−4 [Pa·s] T [oC] κκκ× 10−3 [W/m·K] ηηη × 10−4 [Pa·s]

170 678,7 1,598

172 678,0 1,578

174 677,2 1,559

176 676,4 1,540

178 675,5 1,522

180 674,6 1,504

182 673,7 1,486

184 672,7 1,469

186 671,7 1,453

188 670,6 1,436

190 669,5 1,420

192 668,3 1,405

194 667,2 1,390

196 665,9 1,375

198 664,7 1,360

200 663,4 1,346

202 662,0 1,332

204 660,7 1,318

206 659,2 1,305

208 657,8 1,292

210 656,3 1,279

212 654,7 1,266

214 653,2 1,254

216 651,5 1,241

218 649,9 1,229

220 648,2 1,218

222 646,4 1,206

224 644,7 1,195

226 642,8 1,184

228 641,0 1,173

230 639,1 1,162

232 637,1 1,151

234 635,2 1,141

236 633,1 1,131

238 631,1 1,121

240 629,0 1,111

242 626,8 1,101
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Continuation of table A.1

Theoretical data Experimental data

Temperature Thermal Conductivity Shear Viscosity Temperature Thermal Conductivity Shear Viscosity

T [oC] κκκ× 10−3 [W/m.K] ηηη × 10−4 [Pa·s] T [oC] κκκ× 10−3 [W/m·K] ηηη × 10−4 [Pa·s]

244 624,6 1,091

246 622,4 1,082

248 620,1 1,072

250 617,8 1,063

252 615,5 1,054

254 613,0 1,045

256 610,6 1,036

258 608,1 1,027

260 605,6 1,018

262 603,0 1,009

264 600,4 1,001

266 597,7 0,993

268 595,0 0,984

270 592,2 0,976

272 589,4 0,968

274 586,6 0,959

276 583,7 0,951

278 580,7 0,943

280 577,7 0,936

282 574,7 0,928

284 571,6 0,919

286 568,5 0,912

288 565,3 0,904

290 562,0 0,897

292 558,7 0,888

294 555,4 0,881

296 551,9 0,874

298 548,5 0,866

300 545,0 0,859

305 535,9 0,839

310 526,5 0,821

315 516,7 0,802

320 506,5 0,783

325 495,8 0,764

330 484,8 0,744

335 473,3 0,724

340 461,4 0,703
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Continuation of table A.1

Theoretical data Experimental data

Temperature Thermal Conductivity Shear Viscosity Temperature Thermal Conductivity Shear Viscosity

T [oC] κκκ× 10−3 [W/m.K] ηηη × 10−4 [Pa·s] T [oC] κκκ× 10−3 [W/m·K] ηηη × 10−4 [Pa·s]

345 449,1 0,681

350 436,5 0,658

355 423,8 0,632

360 411,9 0,603

365 404,0 0,568

Table A.2: Water bulk viscosity data [34, 36–39].

Bulk Viscosity - ζ × 10−3 [Pa·s]

T [oC] ζHall T [oC] ζHolmes T [oC] ζXu T [oC] ζLitovitz T [oC] ζDukhin

0 8,0 7 4,50 2 7,60 15 3,09 25 2,43

4 7,0 10 4,03 3 6,50

5 6,8 15 3,38 4 6,25

10 6,0 25 2,47 8 4,80

20 4,7 40 1,84 10 3,85

30 3,7 50 1,48 15 3,25

40 2,9 20 2,95

50 2,4 25 2,25

60 2,1 30 2,10

70 1,7 35 2,00

80 1,4

.
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Appendix B

Air Data

Table B.1: Air Data [40, 41].

Temperature Shear Viscosity Temperature Bulk Viscosity

T [oC] ηηη×10−6 [Pa·s] T [K] ζζζ×10−5 [Pa·s]

0 17,15 253,5 0,970

5 17,40 254,3 0,973

10 17,64 254,8 0,974

15 17,89 276,0 1,038

20 18,13 276,7 1,040

25 18,37 278,0 1,044

30 18,60 297,0 1,099

40 19,07 297,2 1,100

50 19,53 317,7 1,157

60 19,99 318,2 1,159

80 20,88 318,7 1,160

100 21,74 319,2 1,161

125 22,79 337,0 1,210

150 23,80 337,2 1,210

175 24,78 338,2 1,213

200 25,73 338,6 1,214

225 26,66

250 27,50

300 29,28

400 32,50

412 32,87

500 35,47

600 38,25
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Continuation of table B.1

Temperature Shear Viscosity Temperature Bulk Viscosity

T [oC] ηηη×10−6 [Pa·s] T [K] ζζζ×10−5 [Pa·s]

700 40,85

800 43,32

900 45,66

1000 47,88

1100 50,01
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