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Abstract

This work addresses a new theory that concerns the reduction of vibrations of the launch vehicles
and satellites during lift-off. The thermal conductivity, mass diffusion and cross-coupling coefficients
are extrapolated for a two-phase flow. The obtained results show that the majority of the attenuation
effect is induced by the thermal damping; the smallest impact is due to the viscous damping, that
when compared to the remaining terms is negligible; and the mass diffusion damping that causes an
amplification, reducing the dominant effect of thermal attenuation.
Keywords: Propagation of sound, Attenuation of sound, Dissipative Medium, Two-phase flow,
Phenomenological coefficients

1. Introduction

One of the most intense man made sources of noise,
is the launch phase of a large rocket. A large rocket
motor or cluster can produce noise levels of 150-
170 dB affecting the first stage rocket structures.
Also of concern are the noise levels of 130-140 dB
in the payload shroud at the nose of the rocket that
houses the satellite(s). Thus satellite payloads have
to be certified against acoustic fatigue at in-flight
noise levels. One tried and tested means of reduc-
ing lift-off noise levels is to use a water spray: the
vaporization of water reduces the high exhaust gas
temperature and also absorbs sound. The design of
water spray systems for use at rocket launch pads is
a costly empirical process of trial and error due to
the lack of a suitable theoretical predictive frame-
work. Hence, the main goal of this work is to test
the new theory presented here calculating the total
acoustic damping based on the thermal conductiv-
ity, mass diffusion and cross-coupling coefficients;
while establishment the starting point as the six
fundamental equations of fluid mechanics where the
essential effects of mass and heat fluxes are consid-
ered while comparatively less important are omit-
ted, including viscosity, vaporization and chemical
reactions.

2. Theoretical Formulation

The equation of continuity states the conservation
of mass:

∂ρ

∂t
+∇ · (ρ~v) = 0, (1)

where ρ is the mass density and ~v the velocity. The
mass diffusion equation:

∂ξ

∂t
+∇ · (ξ~v) = −∇ ·~j, (2)

with concentration ξ and diffusive mass flux ~j. The
heat equation:

ρT

(
∂s

∂t
+ ~v · ∇s

)
= −∇ · ~q, (3)

involves the temperature T , the entropy s and the
heat flux ~q. The effect of viscosity was omitted in
the heat equation (3), and hence the inviscid mo-
mentum equation is used.

∂~v

∂t
+ (~v · ∇)~v = −ρ−1∇p, (4)

where p is the pressure. The medium is assumed to
be a perfect gas with equation of state:

p = ρRT, (5)

where R is the gas constant. The entropy for an
ideal gas, with constant specific heats at constant
volume CV and pressure Cp is given by:

s = s0 + CV log p− Cp log ρ. (6)

To close the system of eqs. (1) to (6) the heat ~q and
mass ~j fluxes are specified in terms of the gradients
of temperature ∇T and concentration ∇ξ by:

~q = −χ∇T − β∇ξ, ~j = −D∇ξ − α∇T, (7a,b)

where χ is the thermal conductivity, D the mass
diffusion coefficient and α, β the diffusive cross-
coupling coefficients.

Substitution of (7a) and (7b) respectively in (3)
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and (2) lead to the heat (8) and mass (9) diffusion
equations.

ρT

(
∂s

∂t
+ ~v · ∇s

)
= χ∇2T + β∇2ξ, (8)

∂ξ

∂t
+∇ · (ξ~v) = D∇2ξ + α∇2T. (9)

For the purpose of elimination among the funda-
mental equations (1), (4), (6), (8) and (9) it is con-
venient to put the entropy equation (6) in a differen-
tial form through the use of the material derivative
and solving it for the pressure leads to eq. (10):

Dp

Dt
= c2

Dρ

Dt
+ θ

Ds

Dt
(10)

where it appears the adiabatic sound speed c2 and
the non-adiabatic coefficient θ. The total state
of the fluid is assumed to consist of an uniform
mean state with subscript ”0” and an unsteady non-
uniform perturbation with superscript ” ′ ”.

The linearisation of the material derivative for
the mean flow leads to (11a), and the linearisation
of the fundamental equations (1), (4), (5) and (8)
to (10) leads respectively to eqs. (11b)–(16):

d

dt
≡ ∂

∂t
+ ~v0 · ∇ :

dρ′

dt
+ ρ0 (∇ · ~v ′) = 0, (11a,b)

ρ0
d~v′

dt
+∇p′ = 0, (12)

p′ = R (ρ0T
′ + T0ρ

′) , (13)

dp′

dt
= c20

dρ′

dt
+ θ0

ds′

dt
, (14)

ρ0T0
ds′

dt
= χ∇2T ′ + β∇2ξ′, (15)

dξ′

dt
+ ξ0 (∇ · ~v ′) = D∇2ξ′ + α∇2T ′. (16)

Applying the linearised material derivative (11a)
to (11b) and (16) leads respectively to (17) and (18)
after elimination of the velocity perturbation from
the momentum equation (12):

d2ρ′

dt2
= ∇2p′, (17)

d2ξ′

dt2
− ξ0
ρ0
∇2p′

= D∇2

(
dξ′

dt

)
+ α∇2

(
dT ′

dt

)
. (18)

The entropy perturbation s′ appears only in (15),
and is eliminated using (14):

χ∇2T ′ + β∇2ξ′

=
CV
R

(
dp′

dt
− Cp
CV

RT0
dρ′

dt

)
. (19)

Applying
d

dt
to eq. (19) leads to:

(γ − 1)

[
χ∇2

(
dT ′

dt

)
+ β∇2

(
dξ′

dt

)]
=

d2p′

dt2
− c20∇2p′. (20)

The r.h.s of (20) is the classical wave equation in-
volving the adiabatic sound speed.

The mass density perturbation ρ′ appears only in

eq. (13) and is eliminated applying d2

dt2
leading to:

Rρ0
d2T ′

dt2
=

d2p′

dt2
− c21 ∇2p′; (21)

the r.h.s of eq. (21) is the classical wave equation
involving the isothermal sound speed.

The temperature perturbation T ′ appears in

eq. (18) and after application of d
dt

is eliminated

using eq. (21).

d2

dt2

(
dξ′

dt
−D∇2ξ′

)
= ∇2

(
ξ0
ρ0

dp′

dt
+

α

ρ0R

d2p′

dt2
− αT0

ρ0
∇2p′

)
. (22)

The term in curved brackets on the l.h.s of eq. (22)
is the mass diffusion equation that holds at constant
pressure, when the r.h.s vanishes.

Solving eq. (20) for ξ′ and applying d
dt

leads to:

β∇2

(
d2ξ′

dt2

)
− 1

γ − 1

[
d3p′

dt3
− c20∇2

(
dp′

dt

)]
= − χ

ρ0R
∇2

(
d2p′

dt2

)
+ χ

T0
ρ0
∇4p′. (23)

Applying β∇2 to eq. (22) and substituting eq. (23)
leads to the acoustic wave operator with double,
thermal and mass, diffusion:

�2 =
1

γ − 1

d2

dt2

(
d2

dt2
− c20∇2

)
−
(

D

γ − 1
+

χ

ρ0R

)
∇2 d3

dt3

+

(
c20D

γ − 1
+ χ

T0
ρ0
− β ξ0

ρ0

)
∇4 d

dt

+
χD − αβ
ρ0R

∇4

(
d2

dt2
− c20
γ
∇2

)
, (24)

it applies to all scalar wave variables and to the di-
vergence of velocity. In the absence of diffusivities
eq. (24) reduces to the adiabatic wave equation in
the first brackets; the last brackets in eq. (24) is the
isothermal wave equation multiplied by the deter-
minant of the diffusion coefficients in (7a,b).

The solution of the wave equation (24) is sought
in the form of plane waves with frequency ω and
wave vector ~k. The spatial dependence in the wave
equation (24) appears only through Laplacians, so
only the modulus of the wave vector appears, the

2



dependence on the wavenumber implies isotropic
waves, since there is no preferred direction. The
isotropy is in a frame convected with the mean flow
velocity ~v0, since the linearised material derivative
(11a)≡(25a) leads to the Doppler shifted frequency
(25b):

d

dt
=

∂

∂t
+ ~v0 · ∇ → −iω,

ω = ω − ~k · ~v0. (25a,b)

Substituting the plane wave solution in the doubly-
diffusive acoustic wave equation (24) and using eq.
(25b) leads to the dispersion relation:

0 =
ω4

γ − 1
+ iω3k2

(
D

γ − 1
+

χ

ρ0R

)
−ω2k2

(
c20

γ − 1
+ k2

χD − αβ
ρ0R

)
(26)

−iωk4
(
c20D

γ − 1
+ χ

T0
ρ0
− β ξ0

ρ0

)
+ (χD − αβ)

T0
ρ0
k6

The four modes may be expected to be two damped
acoustic waves propagating in opposite directions
plus two decaying fields, one thermal and one dif-
fusive.

The diffusivities are usually small, and neglecting
their determinant simplifies the dispersion relation
(26) from a quartic to a cubic expression. In the
absence of dissipation the cubic dispersion relation
reduces to (27b) for purely acoustic waves (27c).

χ = D = β = 0 : ω2 − c20k2 = 0,

ω = ±c0k. (27a-c)

While in the presence of weak dissipation it may be
expected that the cubic dispersion relation leads to
three modes:

(i/ii) two sound waves propagating in opposite direc-
tions (27c) with weak dampings ε± (28a);

(iii) a purely decaying mode with damping δ (28b).

ω − ~k · ~v0 = ω =

{
±c0k − iε± = ω±

−iδ = ω∗
(28a,b)

The dispersion relation with roots (28a,b) must be
of the form:

0 = (ω − c0k + iε+) (ω + c0k + iε−) (ω + iδ). (29)

Since the product of diffusivities was neglected in
the cubic dispersion relation the product of damp-
ings (30a) is also neglected in eq. (29) leading to eq.
(30b):

ε+ε−, ε+δ, ε−δ � ω2 : ω3 + iω2 (ε+ + ε− + δ)

−ωc0k [c0k + i (ε− − ε+)]− iδc20k2 = 0. (30a,b)

The coincidence of (30b) with the cubic dispersion
relation proves that: the ”guess” about the modes
(28a,b) was correct; the coefficients of ω show that
the damping is the same for sound waves propa-
gating in opposite directions (31a) as should be ex-

pected; the independent term specifies the decay of
the non-acoustic mode (31b); the coefficient of ω2

determines the total damping (32a) leading to the
damping for the acoustic modes (32b).

ε+ = ε− ≡ ε,

δ = k2D +
γ − 1

ρ0

k2

c20
(T0χ− ξ0β) ; (31a,b)

2ε+ δ = k2
(
D +

γ − 1

ρ0

χ

R

)
ε =

k2 (γ − 1)
2
χ

2ρ0Rγ
+
γ − 1

2ρ0

k2

c20
ξ0β. (32a,b)

The thermal part of the thermoviscous acoustic dis-
sipation coefficient [1] per unit time is (33):

ε1 =
k2χ (γ − 1)

2

2ρ0Rγ
(33)

which is in agreement with the first term on the
r.h.s of (32b). The viscous dissipation coefficient for
acoustic waves [1] adds to eq. (33) a term involving
the shear η and bulk ζ viscosities (34a):

ε2 =
ω2

2ρ0c20

(
4

3
η + ζ

)
,

ε3 =
γ − 1

2ρ0c20

ω2

c20
ξ0β. (34a,b)

Thus the total dissipation coefficient for acoustic
waves, including thermal (33), mass diffusion (34b)
and viscous diffusion (34a) is.

ε = ε1 + ε2 + ε3 (35)

The damping (35) applies to the acoustic modes
propagating in opposite directions (28a). The third
mode (28b) is a purely decaying mode.

The energy density per unit volume (36a) in a
fluid is:

E = ρ

(
v2

2
+ U

)
,

dU = T ds− p dυ + µ1 dN1 + µ2 dN2, (36a,b)

where (36b) is the internal energy, υ the specific vol-
ume, (µ1, µ2) the chemical potentials and (N1, N2)
the mole numbers of the two constituents of the
two-phase flow; The two chemical terms last on the
r.h.s of eq. (36b) can be rewritten (37):

µ1 dN1 + µ2 dN2 = µdξ, (37)

where µ is the relative chemical potential. Being
eq. (38) the equation of energy,

DE

Dt
= −ρ

(
v2

2
+ U

)
(∇ · ~v)

− ~v · ∇p+ ρT
Ds

Dt
+
p

ρ

Dρ

Dt
+ µ

Dξ

Dt
. (38)

The diffusive terms involving the concentration (2)
and entropy (4) are separated from the rest in:

−∇ · ~q − µ∇ ·~j =
∂E

∂t
+∇ · [(E + p)~v] . (39)
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The energy equation (39) thus involves eq. (40a),
the energy density (36a) and the convective energy

flux ~F :
∂E

∂t
+∇ · ~F = −∇ · ~Q,

∇ · ~Q = ∇ · ~q + µ∇ ·~j, (40a,b)

and the diffusive energy flux is given by (40b). Sub-
stitution of eq. (40b) in eq. (3) leads to the equation
of entropy.

ρT
Ds

Dt
= −∇ ·

(
~Q− µ~j

)
−~j · ∇µ. (41)

The second principle of thermodynamics leads to
eq. (42):

∂

∂t
(ρs) = ρ

Ds

Dt
−∇ · (ρs~v) . (42)

The second term on the r.h.s of eq. (42) is the di-
vergence of the convective entropy flux, and hence
unrelated to diffusion leading to eq. (43b):

∂

∂t
(ρs) = ρ

Ds

Dt

= − 1

T

[
∇ ·
(
~Q− µ~j

)
+~j · ∇µ

]
. (43a,b)

The first term on the r.h.s of (43b) may be re-
written,

−
∇ ·
(
~Q− µ~j

)
T

= −∇ ·

(
~Q− µ~j
T

)
+
(
~Q− µ~j

)
· ∇
(

1

T

)
, (44)

only the second term of the r.h.s of eq. (44) con-
tributes to the local entropy production:

0 < Ṡ = − 1

T 2

(
~Q− µ~j

)
· ∇T −

~j · ∇µ
T

. (45a,b)

The entropy production per unit time is a linear
function of the fluxes ẋn whose coefficients are gra-
dients. For small gradients the fluxes are linear
functions with kinetic coefficients (46a) that appear
also in the entropy production (46b):

ẋn =
∑
l

ΓnlXl, Ṡ =
∑
n,l

ΓnlXnXl > 0. (46a,b)

Since the entropy production (46b) is a quadratic
form, the kinetic coefficients may be taken as sym-
metric (47a); also since it must be positive-definite,
in the case of a 2×2 matrix the Cayley-Hamilton
conditions (47b,c) must be satisfied [2]:

Γnl = Γln; Γ11 > 0,

Γ22 >
Γ12Γ21

Γ11
=

(Γ12)
2

Γ11
> 0. (47a-c)

In the present case (45b) the fluxes are eq. (48a)
and hence the gradients eq. (48b):

ẋn =
{
~Q− µ~j,~j

}
, Xn =

{
−∇T
T 2

,−∇µ
T

}
. (48a,b)

Thus the diffusion relations (46a) are:

~Q− µ~j = −Γ11
∇T
T 2
− Γ12

∇µ
T
,

~j = −Γ12
∇T
T 2
− Γ22

∇µ
T
, (49a,b)

where the kinetic coefficients satisfy eq. (47b,c).
Solving eq. (49b) for the gradient of the chemical
potential ∇µ and substituting in eq. (49a):

~Q = −

[
Γ11 −

(Γ12)
2

Γ22

]
∇T
T 2

+

(
µ+

Γ12

Γ22

)
~j. (50)

In the absence of mass flux (51a) the energy flux
coincides with the heat flux (51b) where the thermal
conductivity (51c) is positive by (47c),

~j = 0 : ~Q = −χ∇T,

χ =
1

T 2

[
Γ11 −

(Γ12)
2

Γ22

]
> 0. (51a-c)

The energy flux in the presence of mass flux is given
by:

~Q = −χ∇T +

(
µ+

Γ12

Γ22

)
~j. (52)

The chemical potential is the derivative of the free
enthalpy with regard to the concentration:

µ =

(
∂G

∂ξ

)
T,p

: ∇µ =

(
∂µ

∂T

)
p,ξ

∇T

+

(
∂µ

∂p

)
T,ξ

∇p+

(
∂µ

∂ξ

)
T,p

∇ξ, (53a,b)

Substituting eq. (53a,b) specifies the mass (49b)
and energy (52) fluxes respectively as:

−~j = D∇ξ + α∇T + ϕ∇p,

− ~Q = χ∇T + β∇ξ + ψ∇p, (54a,b)

where:

(i) the barodiffusion coefficients ϕ and ψ can be
ommited, because they must be zero;

(ii) the mass flux (49b) is thus given by (55a):

~j = −D∇ξ − α∇T : D ≡ Γ22

T

(
∂µ

∂ξ

)
T

,

α ≡ Γ12

T 2
+

Γ22

T

(
∂µ

∂T

)
ξ

; (55a-c)

(iii) using (55a) the energy flux (52) is given by
(56a):

~Q = −χ ∇T − β ∇ξ : χ = χ+ α

(
µ+

Γ12

Γ22

)
,

β =

(
µ+

Γ12

Γ22

)
D; (56a-c)

(iv) rewriting eq. (40b) leads to (57b):

∇ · ~Q = ∇ ·
(
~q + µ~j

)
−~j · ∇µ :

~Q = ~q + µ~j, (57a,b)
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and substitution of eqs. (55a) and (56a) spec-
ifies the heat flux (58a):

~q = −χ∇T − β∇ξ : χ = χ+ α
Γ12

Γ22
,

β = D
Γ12

Γ22
. (58a-c)

The diffusion relations (7a,b) are valid with coef-
ficients from eqs. (55b,c) and (58b,c) whereas the
damping of the decaying mode (31b) and the damp-
ing of the acoustic modes (35) are specified in terms
of the thermodynamic properties and diffusion co-
efficients of the binary mixture.

3. Implementation
This section is divided into two parts: the the-
oretical implementation, where the mathematical
relations to obtain the total dissipation coefficient
for acoustic waves are calculated; and the compu-
tational implementation with the description of a
tool created in Matlab which applied the relations
leading to the results.

3.1. Theoretical Implementation
The coefficients from eqs. (55b,c) and (58b,c) that
appear in the damping of the acoustic modes, de-
pend on the relative chemical potential and kinetic
coefficients. Concerning, specifically the viscous
dissipation coefficient (34a) it is necessary to per-
form a mathematical extrapolation for the shear
and bulk viscosities.

3.2. Chemical Potential
The chemical potential (??b), as seen previously is
strictly necessary to perform a first approach of this
new theory. The air has no chemical potential due
to the fact that its main components, O2 and N2,
have a chemical potential of value equal to 0, thus
leading to a relative chemical potential dependent
only of water (59),

µ =
µ1

m1
=

µH2O

mH2O
. (59)

In order to calculated the water chemical potential
it will be used a mass action equation (60) [3, 4],

µH2O (T, ξ) = µ0 +RT ln

(
ξ

ξ0

)
[kJ/mol], (60)

determining the difference between a specified state
and a reference state calculated under standard con-
ditions, referenced by the subscript 0. It is notewor-
thy that eq. (60) is only valid for values of ξ � ξ0.
Substituting eq. (60) in eq. (59) it is obtained the
relative chemical potential equation (61).

µ =

[
µ0 +RT ln

(
ξ

ξ0

)]
1

mH2O
[kJ/kg]. (61)

The chemical potential of water presents a nega-
tive value, as a matter of fact, most of the chemical
potential values are negative. This represents the
stability of a substance, being negative means it

will not decompose into their elements, instead it
will spontaneously be produced from them [3]. The
chemical potential of a substance decreases with in-
creasing temperature and increases with increasing
concentration [3]. This means that in warmer envi-
ronments the substance has less tendency to trans-
form, whereas the more concentrated a substance is,
the more is the tendency to decompose into their
elements. It is important to note that for higher
concentrations the experimental values depart quite
noticeable from eq. (61), hence it is recommended
to maintain the concentration values between the
range of validity, ξ ≤ 100 mol/m3 [3].

The mass diffusion coefficient (55b) and the ther-
mal cross-coupling (55c) rely on the derivative of
the relative chemical potential presented in eq.
(62a,b).

∂µ

∂ξ
=
RT

ξ

1

mH2O
,

∂µ

∂T
= R ln

(
ξ

ξ0

)
1

mH2O
. (62a,b)

3.3. Kinetic Coefficients

This work involves a thermodynamic system where
both heat conduction and mass diffusion coexist
and when two or more irreversible transport pro-
cesses occur simultaneously they may interfere with
each other. The phenomenological relations (49a,b)
derived by Onsager [2, 5] consist of appropriate flux-
force pairs (48a,b) where the kinetic coefficients Γnl
act as a link between them (46a). In an attempt to
simplify the visualization of the following equations
the subscripts q and j are used, corresponding to
heat and mass and the relation between nomencla-
tures is expressed in eq. (63).[

Γqq Γqj
Γjq Γjj

]
=

[
Γ11 Γ12

Γ21 Γ22

]
(63)

What matters the most when analysing the phe-
nomenological coefficients is the difference between
variable values and not actually the gradient.
Therefore to simplify the calculations it is assumed
that the reference position is the beginning of the
water jet, referenced as 0 meters, x1 = 0, and the
second position is the peak of the jet, considered in
this case to have 1 meter, x2 = 1, leading to ∆x = 1
and thus, ∇T = ∆T for example. Since the heat
conduction and mass diffusion processes, interfere
with each other it is necessary to use phenomeno-
logical relations (64a,b) [2],

ẋq = −Γqq
∇T
T 2
− Γqj

∇µ
T
,

ẋj = −Γjq
∇T
T 2
− Γjj

∇µ
T
. (64a,b)

where Γqq and Γjj are due to the heat and mass
uncoupled case whereas Γqj and Γjq result from the
coupling between the heat flux and the chemical
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potential difference and the mass flux and temper-
ature difference.

The objective is to obtain the values for the phe-
nomenological coefficients, and literature on this
subject is scarce, and even scarcer when the sub-
ject involves two-phase flows. With this in mind,
the chosen approach to perform the calculations is
the direct use of the phenomenological equations,
where the heat related flow, ẋq, can not be assumed,
but the mass flow, ẋj , is going to be treated as the
water flow of a deluge system.

When ∆T = 0, eq. (64b) reduces to [6, 7, 8],

ẋj = −Γjj
∇µ
T
, (65)

where T is the mean temperature.

Similarly, when ∆µ = 0, from eq. (64b) [6, 7, 8],

ẋj = −Γqj
∇T
T 2

. (66)

Recalling eq. (50), when there is no mass flux
(51a), ~j = 0, it is obtained [6, 7, 8],

ẋQ = −

[
Γqq −

(Γqj)
2

Γjj

]
∇T
T 2

. (67)

Without mass flux the energy flux coincides with
the heat flux that is specified by Fourier’s law (51b)
[6, 9]. It was stated in the beginning of this section
that this method is an approximation since it only
takes into account the water phase instead of the
two-phase flow, therefore, the conductivity here will
be different from χ considered in eq. (51c) which
combines both phases.

ẋQ = −κ∇T, (68)

where, κ is the water thermal conductivity in the
spray system. Thus, substituting eq. (68) in eq. (67)
leads to an equation for Γqq,

κT 2 = Γqq −
(Γqj)

2

Γjj
. (69)

Through the Onsager’s reciprocal relations it is
finally obtained the following eqs. (70) to (72) for
the phenomenological coefficients,

Γjj = −ẋj
T

∇µ

[
kg · s ·K

m

]
, (70)

Γqj = −ẋj
T 2

∇T

[
kg ·K ·m

s

]
, (71)

Γqq = κT 2 +
(Γqj)

2

Γjj

[
kg ·m3 ·K

s3

]
, (72)

Γjj decreases with increasing temperature, in-
creases with water flow and when subject to concen-
tration variation, it increases with it. The Cayley-
Hamilton condition in eq. (47c) is satisfied as it was
mandatory. Γqj presents a negative value due to the
fact that the exterior temperature is higher than
the one from the system. This parameter decreases,
in absolute value, with increasing temperature and

increases with the mass flow. In the presence of
temperature variation, Γqq decreases with increas-
ing temperature and the same happens in regard
to concentration. The required condition from eq.
(47b) is achieved.

3.4. Water Thermal Conductivity
The water thermal conductivity, κ, is dependent of
the temperature and since the phenomenological co-
efficients are defined using a specific temperature,
the mean temperature, the thermal conductivity is
also defined for this variable to maintain the consis-
tency in the equations. After researching, various
models for water thermal conductivity were anal-
ysed and the choice for the most fitted model was
based on the error between the values obtained by
the models and experimental values available in the
literature. Equation (73a,b) from [10] is by far the
one with better results.

κ = A+BT + CT 1.5 +DT 2 + ET 0.5

[
W

m ·K

]
;

A = 0.5650285,

B = 0.0026363895,

C = −0.00012516934,

D = −1.5154918× 10−6,

E = −0.0009412945.

(73a,b)

3.5. Shear Viscosity
The shear viscosity, η, is crucial for the evaluation
of the viscous dissipation coefficient in eq. (34a), it
is thus necessary to obtain a formula for two-phase
flow and apply it to an air-water system. Once
again, as it was done previously for the thermal
conductivity, a research was conducted in order to
find the most suited model for this work specific
case.

It is true that the assessment of the most trust-
worthy model should rely on errors formulations,
however in this case there is no experimental data
directly related to the two-phase viscosity. The
two-phase viscosity models can be divided into two
groups, the first one is suitable for materials in
which the thermal conductivity of the continuous
phase is higher than the thermal conductivity of the
dispersed phase, meaning that the heat flow would
avoid the dispersed phase and the dominant phase
would be the liquid [11]. Whereas the second group
expresses the opposite, the dominant phase is the
gas and the heat flow would involve this phase as
much as possible [11]. Having this explanation in
mind it is possible to relate the first group of viscosi-
ties as the one most suitable for the present flow,
more specifically the Cicchitti et al. [12] model pre-
sented in eq. (74),

ηm = x ηl + (1− x) ηg [Pa · s] . (74)

where x is the mass-quality and the subscripts l and
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g correspond to liquid and gas, respectively. It is
important to note that ηm, satisfies an important
limiting condition (75) related to the mass quality.
[11]. {

x = 0, ηm = ηg

x = 1, ηm = ηl
(75)

3.5.1. Gas viscosity

With respect to air viscosity the commonly used eq.
(76a,b) refers to Sutherland’s Law [13, 14] and when
compared with other theoretical equations and with
known viscosity values it presents the lowest per-
centage of error in all the temperature intervals
studied.

ηg = η0g

(
T

T0

)3/2
T0 + S

T + S
;

η0g = 1.716× 10−5 [Pa · s],
T0 = 273 K,

S = 110.4 K,

(76a,b)

where η0 is a known viscosity at a known tempera-
ture T0.

3.5.2. Liquid viscosity

The calculation of water viscosity is not so clear
from the literature as that from air, hence some for-
mulas were analysed in order to find the one most
suitable for our purpose. Similarly to water viscos-
ity, a comparison between the models and experi-
mental values was made and the percentage of error
calculated, the formula that proved to be the most
appropriate is expressed in eq. (77a,b), which is
derived from experimental values, valid within the
273.15 and 643 K temperature range and is given
in centipoise1 [15].

log10 ηl = A+
B

T
+ CT +DT 2 [cP],

A = −10.2158,

B = 1.7925× 103,

C = 1.7730× 10−2,

D = −1.2631× 10−5.

(77a,b)

While the gas viscosity increases with temperature,
the liquid viscosity decreases with increasing tem-
perature in an exponential way.

3.6. Bulk Viscosity

In liquids and gases, molecules have translational,
rotational and vibrational degrees of freedom.
Whilst the shear viscosity is associated with the
translational motion, the bulk viscosity ζ concerns
to the relaxation of both rotational and vibrational
degrees of freedom [16]. It is defined a bulk viscosity
formula only for the water phase due to the scarcity
of theoretical models and experimental results for a

11 cP = 1× 10−3 Pa·s

two-phase flow.

There are three possible experimental techniques
to measure the bulk viscosity, the Brillouin spec-
troscopy, laser transient grating spectroscopy and
acoustic spectroscopy, being this last one the most
accurate method [16]. Holmes et al [17] made an ex-
periment using acoustic spectroscopy to study the
water bulk viscosity temperature dependence. With
the experimental results obtained it was developed
a model (78a,b) able to fit the data.

ζ = A exp (−BT ) [Pa · s] ,{
A = 5.091712× 10−3,

B = 2.545425× 10−2.
(78a,b)

After examining the results obtained it is possi-
ble to observe that the bulk viscosity has a big-
ger value than the dynamic viscosity. In fact it
is approximately three times larger than its shear
counterpart throughout the experimental temper-
ature range. While the water takes values on the
order of 10−3, the air bulk viscosity is on the or-
der of magnitude of 10−5 [18], substantiating the
initial assumption of considering the water as the
predominant phase for viscosity.

3.7. Computational Implementation

After the theoretical implementation it is necessary
to implement the chosen formulas and perform the
respective calculations, obtaining the necessary re-
sults. To do that with the highest degree of con-
fidence a mathematical tool was developed on the
Matlab software. It is important to emphasize
that the code implemented is used only as tool, de-
veloped with the intent of comparing the results
obtained with the existent data in the literature,
calculate the error between them and hence vali-
date the formulas implemented and obtain a graphic
representation of the various results and equations.
Multiple Matlab functions were developed, each
one responsible for a specific area of calculation.

4. Results

4.1. Acoustic Attenuation

The components of the acoustic damping, (33) and
(34a,b), were parametrized by the Doppler shifted
frequency, ω2, in a way of easing the reading of the
graphical results.

ϑ1 =
ε1

ω2 =
(γ − 1)

2
χ

2p0γ2R

[
m2 · s ·mol

kg

]
, (79)

ϑ2 =
ε2

ω2 =
1

2p0γ

(
ζ +

4

3
η

)
[s] , (80)

ϑ3 =
ε3

ω2 =
γ − 1

2p0γ2RT0
ξ0β

[
m2 · s ·mol

kg

]
. (81)

ϑ = ϑ1 + ϑ2 + ϑ3
[
m2 · s ·mol

]
, (82)
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4.2. Thermal Damping
The thermal damping is proportional to the ther-
mal conductivity (79), thus the results reproduce
the same behaviour, with a different, smaller, or-
der of magnitude mainly due to the division by the
exterior pressure. In fig. 1 the thermal attenua-
tion decreases with the increasing of temperature,
due to the fact that with increasing temperature
the energy of thermal motion loosens the molecules
decreasing the attraction forces which induces a de-
creasing in the conductivity and hence in the atten-
uation. The variation of the thermal attenuation
concerning to concentration (fig. 2) is a portrait of
the behaviour of chemical potential, since the ther-
mal conductivity also has components derived from
mass diffusion, thus decreasing with increasing con-
centration.

Figure 1: ϑ1 with temperature variation.

Figure 2: ϑ1 with concentration variation.

4.3. Viscous Damping
The viscous attenuation (80) depends only on the
viscosities and when combining the bulk and shear
effects the values obtained, on the order of 10−8

(fig. 3) are very small when comparing, for exam-
ple, with the thermal conductivity (1012) that is the
parameter on which the thermal damping depends,
hence it is neglected.

There is something to have in mind, while the
shear viscosity is calculated for a two-phase flow,

the bulk viscosity was evaluated only for the water
component, thus this component is being summed
to the entire range of viscosities, meaning it is also
being added when it should only exist air. This
effect is easily observed if attending to the black
filled curve, represented for a mass quality x = 0, a
pure air phase. While the shear viscosity on gases
increases with temperature, this is not observed,
instead it reproduces the behaviour of the liquid
phase, decreasing with increasing temperature since
when there is an increase the mean particles have a
greater thermal energy being more easy to overcome
the attractive forces that are binding them together,
implying a decreasing viscosity and so a decreasing
power of attenuation.

Figure 3: ϑ2 with temperature variation.

Figure 4: ϑ2 with mass quality variation.

The water presents a higher viscosity value than
the air, and so it is expected that when increasing
the mass quality, and thus the quantity of water in
the system the viscosity also increases leading to an
increase of the attenuation (fig. 4).

4.4. Mass Diffusion Damping

The very first result that is important to note in
the mass diffusion damping eq. (81) is that it has a
negative value, meaning that instead of contribut-
ing to the acoustic attenuation it will in fact have an
amplification effect, increasing the heat flux. The
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second result worth mentioning is that, since it de-
pends directly on the concentration it would be ex-
pected to have a variation regarding this parameter,
however as can be analysed in fig. 6 this does not
happen and the variation in concentration can ac-
tually be neglected. This effect is explained by the
fact that both terms, ξ and β cancel because of hav-
ing opposite gradients. The temperature variation
effect (fig. 5) reproduces the behaviour of the mass
diffusion cross-coefficient, it decreases with increas-
ing temperature in absolute value.

Figure 5: ϑ3 with temperature variation.

Figure 6: ϑ3 with concentration variation.

4.5. Total Damping
Te total damping consist of three components: the
thermal damping accounts the highest attenuation
by a large margin as concerns to the order of magni-
tude of the three dampings, being expected to dom-
inate the global attenuation. The viscous damping
presented the exact opposite, being the smallest at-
tenuation and can be neglected. The mass diffu-
sion damping has the opposite effect to attenuation,
meaning that is does not contribute to attenuate
but instead to amplification.

When analysing fig. 7 it is clear that the attenu-
ation with temperature variation is a reproduction
of the thermal damping, decreasing with increas-
ing temperature due to the thermal conductivity
effect, already established before. In fig. 8 it is
actually possible to see the reflection of the mass

diffusion amplification effect when attending to the
available zoom and comparing it with the one from
fig. 2, showing a slightly decrease in value.The mass
quality effect (fig. 9) is negligible since the viscous
attenuation is the only that depends on this pa-
rameter and the magnitude of this damping is in-
finitesimally small when compared with the thermal
damping. The effect of pressure, since it is present
in the denominator of the three components it is
approximately inversely proportional.

Figure 7: ϑ with temperature variation.

Figure 8: ϑ with concentration variation.

Figure 9: ϑ with mass quality variation.
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5. Conclusions
Concluding, the acoustic attenuation is dominated
by the thermal damping which means the heat
conduction irreversible process is the one with the
biggest impact, while the mass diffusion damping
has the opposite effect increasing the heat flux. In
what matters to the viscous part, it was established
in this work that the bulk viscosity actually presents
a bigger influence in the medium than its shear
counterpart. Nonetheless, this effect does not have
an influence in the final result due to the very small
magnitude when compared with the thermal damp-
ing. In a future work both the kinetic coefficients
and bulk viscosity must be improved in order to in-
clude the effects from the gas phase. The effects
from viscosity, vaporization and chemical reactions
that are not considered in the six fundamental equa-
tions must also be comprised.
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