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In 2018, Rodrigo Arrais Martins developed a Mixed Integer Linear Program model that was implemented 

in FICO Xpress software, in order to optimize the bus maintenance scheduling of a bus operating company 

with the goal of reducing its maintenance costs. The results obtained, though improving the company’s 

current schedule, were no great regarding the optimality of the solution and the computational time it took 

to reach it. The present dissertation searches a way to make improvements in those aspects. A parallel 

solving multiple model approach based on the Dantzig-Wolfe decomposition was first attempted, resulting 

in the impossibility to generate results. Then an alteration to the original model by introducing new 

restrictions, in order to guide the solver to the solution, was implemented. The results regarding 

computational time showed great enhancement to the original model, but the improvement in terms of 

optimality was scarce. Lastly, a heuristic approach, in which the problem was solved sequentially for one 

bus at a time, was developed. This model showed great improvements such in computational time as in 

optimality. Showing a reduction of 99.7% in computational time and 8.9% in maintenance costs. Both the 

heuristic approach and the alteration to the original model were validated through an illustrative example. 
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1. Introduction 

1.1. Context 

Public Transport has always been seen as a 

solution for the environmental problems 

surrounding the cities’ increasing pollution and 

urban congestion. As the Earth’s population 

grows, the urban population grows, at a rate of 

70% in four decades according to the United 

Nations, the urban population along, it is 

imperative that there are some changes in the 

way we move within our cities. The preference 

of the private car as the main mean of 

transportation poses a big part of the problem, as 

so, other alternatives should be looked for. The 

improvement and optimization of the public 

transports’ operations will play a key role in 

facing the changes caused by the urban 

concentration growth. Opportunities to use 

public transport as a lever towards the evolution 

of the use of energy in mobility are already being 

explored. The European Commission (EC, 2011) 

stated that "the objective for the next decade is to 

create a genuine single European transport area”. 

The focus of this dissertation is bus 

transportation, whose importance in urban 

mobility is undisputed. Lisbon as a city faces 

some challenges, such as a decrease in air quality 

and an increase in the number of cars in 

circulation each day. CARRIS bus operating 

company oversees the bus service in Lisbon and, 

according to the National Statistics Institute 2017 

Inquiry, it is responsible for around 10% of the 

city’s trips. With the purpose of improving its 

service, CARRIS bus operating company 

depends on the service provided by its 

maintenance department. This dissertation 

focuses exclusively on preventive maintenance.  

1.2. Research Objective 

The goal of this dissertation is to improve the 

decision model, able to minimize the cost of 

maintenance by bus companies, developed by 

Martins (2018); This is achieved by conducting 

several computational experiments with various 

approaches and trying different solving 

mechanisms, namely by restricting more the 

problem under analysis. In order to achieve this 

objective, three different methods were tried: The 

Dantzig-Wolfe decomposition, a heuristic 

approach and adding restrictions to the original 

problem. 

1.3.   Document Structure 

The present dissertation is structured in the 

following sections. In Section 2, a summary of 

the most relevant papers to this dissertation is 

presented. Section 3 gives an insight of the model 

developed by Martins (2018). In section 4, the 

experiments made to improve the previous 

models and its implementation and adaptations 

are discussed. In Section 5 its results are 

analysed. Section 6 provides the conclusions, 
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limitations and points out further improvements 

to the research conducted. 

2. Related work – State of the Art 

This dissertation follows the research conducted 

by Rodrigo Arrais Martins in 2018 and represents 

a continuation of his work. The research 

conducted in the present document also relies on 

his state of the art. This section will summarize 

the contribution of these articles and other 

relevant ones related to the computational 

experiments conducted in this dissertation. 

2.1 Bus maintenance and scheduling 

Haghani and Shafani (2002) focused on finding a 

way to respond to the problem of scheduling bus 

maintenance. Based on bus operation schedules, 

maintenance and inspection needs, their goal is 

to design the daily supervision for buses that 

should be inspected, mostly during their idle 

time, to reduce the number of hours the vehicle 

is out of service, i.e. reduce unavailability.  

Adonyi et al. (2013) developed a solution for the 

bus maintenance planning problem in public 

transportation (Adonyi, et al., 2013). In their 

model, it is ensured that there are enough buses 

available for the scheduled service and that 

maintenance and repair tasks can be applied in 

the bus's downtime during its service day. The 

model also manages to reduce maintenance costs 

because buses will only be repaired if required.  

Through a real-life crew scheduling problem of 

public bus transportation, Öztop et al. (2017) 

studied the ideal number of crewmember drivers 

to perform a specific set of tasks with minimal 

cost. The most relevant point of this paper is the 

presentation of two constraints: i) drivers cannot 

exceed the maximum limit of total work time and 

ii) different crew capacities for different types of 

vehicle.  

2.2 Maintenance optimization in transports 

Sriram and Haghani (2003) studied how to 

minimize maintenance costs and how to 

minimize the cost associated with redistributing 

aircrafts to flights that were not originally 

intended. A mathematical formulation is used to 

solve the aircraft maintenance scheduling 

problem, as well as a heuristic method since it 

can obtain feasible solutions in a reasonable 

computing time. The main point is to analyse the 

possibility of performing maintenance during 

flight inactivity.  

Bazargan (2015) presented a maintenance 

optimization at a flight training school. A mixed-

integer linear programming (MILP) model was 

introduced to uncover a strategy that minimizes 

total maintenance cost during the planning period 

and increases aircraft availability. A plan with a 

smaller number of maintenance activities was 

tested, which, despite having a higher associated 

cost, obtained better availability indicators, and 

thus becoming the chosen solution.  

Pour et al. (2017) proposed a hybrid framework 

that uses feasible solutions generated by 

Constraint Programming, and then uses a mixed-

integer programming approach to optimize those 

solutions. The objective function guarantees the 

minimization of the number of business days to 

complete the plan, all tasks are completed within 

the planning horizon and the minimization of the 

penalty associated with assigning workers a task 

on non-consecutive days.  

Martins (2018), developed a MILP model that 

tried to optimize the maintenance costs of a 

single Lisbon depot from a bus operating 

company. The model featured restrictions related 

to the crew availability, bus availability and 

maintenance line availability. The model also 

focused in bus availability as a major decision 

factor. Finally, it provided a bus maintenance 

schedule that was able to outperform the system 

already used by that company. The results of this 

work were used as a comparison basis for the 

present document, and the model itself was the 

object of the study here conducted. 

2.3 Computational Models 

Colombani & Heipcke (2011), describe several 

examples of sequential and parallel solving of 

multiple models with FICO Xpress software and 

Mosel language. The examples showcase 

concurrent execution of several instances of a 

model, the (sequential) embedding of a sub-

model into a master, and the implementation of 

decomposition algorithms (Dantzig-Wolfe and 

Benders decomposition). This article was studied 

to identify possible approaches to improve the 

model developed by Martins (2018). 

3. The Martins’ Model 

In this section the model developed by Martins 

(2018) is described. 

3.1 Indexes 

 

𝑏 bus 

𝑐 competence 

𝑑 day 

𝑚 maintenance type 

𝑡 time period 

𝑣 vehicle type 
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𝑤 worker 

3.2 Sets 

 

𝐵 set of buses 

𝐶 set of competences 

𝐷 set of days 

𝑀 set of maintenance types 

𝑇 set of time periods 

𝑉 set of vehicle types 

𝑊 set of workers 

𝑇𝑂𝑏  set of time periods in which 

maintenance activities cannot occur for bus 𝑏 

(e.g. time periods for operation)  

𝑇𝑀𝑏 set of time periods in which 

maintenance activities can occur for bus 𝑏 (e.g. 

time periods for maintenance) 

3.3 Parameters  

 

𝑐𝑐𝑤 competence of worker 𝑤 

𝑐𝐷𝑤  daily cost of worker type 𝑤  

𝑔𝑏𝑚𝑣𝑐  amount of work that bus 𝑏 needs to 

perform maintenance type 𝑚, in vehicle type 𝑣, 

with competence c  

𝑛𝑤𝑐 number of workers with competence c 

𝑣𝑏 vehicle type of bus 𝑏 

𝑐𝑈 bus unavailability cost 

𝑛𝑑 number of days 

𝑛𝑚𝑙 number of maintenance lines 

𝑛𝑡 number of time periods 

𝑛𝑤 number of workers 

𝑛𝑠𝑙 number of special lines (exclusive to 

articulated buses) 

𝑛𝑡𝑑 number of time periods in a day 

𝐿 large number 

3.4 Decision variables 

 

𝑥𝑏𝑚𝑡𝑤 =

{
 
 

 
 
1  if the maintenance type m is 
    performed on bus b at time t
by the worker  w                  

0   otherwise                                 

 

 

𝑦𝑤𝑑 = {
1   if worker w is assigned at day d 

  
0   otherwise                                          

  

 

𝑧𝑏𝑡 = {

1   if  bus unit b in under                  
maintenance at time unit t   

  
0   otherwise                                        

  

 

𝑧𝑏𝑑 = {

1   if  bus b in under                             
maintenance at day d                

  
0   otherwise                                           

  

 

 

3.5 Objective function 

Minimize ∑ ∑𝑐𝐷𝑤
𝑑∈𝐷𝑤∈𝑊

. 𝑦𝑤𝑑 +∑∑𝑐𝑈. 𝑧𝑏𝑑
𝑑∈𝐷𝑏∈𝐵

                                                                                                (1)    

Subject to: 

𝑧𝑏𝑡 = 0,       ∀ 𝑏 ∈  𝐵, 𝑡 ∈ 𝑇𝑂𝑏                                                                                                                                    (2) 

𝑥𝑏𝑚𝑡𝑤 = 0,      ∀ 𝑏 ∈  𝐵,𝑚 ∈ 𝑀, 𝑡 ∈ 𝑇𝑂𝑏 , 𝑤 ∈  𝑊                                                                                                (3) 

∑ ∑ 𝑥𝑏𝑚𝑡𝑤
𝑚∈𝑀𝑏∈𝐵

  ≤ 1,      ∀ 𝑡 ∈  𝑇, 𝑤 ∈ 𝑊                                                                                                                (4) 

𝐿 ∗ [1 + (𝑥𝑏𝑚𝑡𝑤 −  𝑥𝑏𝑚(𝑡−1)𝑤) ]  ≥  ∑ 𝑥𝑏𝑚𝑡0𝑤
𝑡0∈ 𝑇𝑀𝑏∶(𝑡0>𝑡) 

, ∀ 𝑏 ∈ 𝐵,𝑚 ∈ 𝑀, 𝑡 ∈ 𝑇\{𝑛𝑡}, 𝑤 ∈ 𝑊    (5) 
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∑ ∑ ∑ 𝑥𝑏0𝑚𝑡𝑤
𝑤∈𝑊: 𝐶𝐶𝑤=𝑐𝑚∈𝑀𝑏0∈𝐵

≤ 𝑛𝑤𝑐, ∀ 𝑏 ∈ 𝐵, 𝑐 ∈  𝐶, 𝑡 ∈ 𝑇𝑀𝑏                                                                  (6) 

∑ ∑ ∑ 𝑥𝑏0𝑚𝑡𝑤
𝑤∈𝑊𝑚∈𝑀𝑏0∈𝐵

≤  𝑛𝑤, ∀ 𝑏 ∈ 𝐵, 𝑡 ∈ 𝑇𝑀𝑏                                                                                            (7) 

∑ ∑ 𝑥𝑏𝑚𝑡𝑤
𝑤∈𝑊: 𝐶𝐶𝑤=𝑐𝑡 ∈ 𝑇𝑀𝑏

 ≥  𝑔𝑏𝑚𝑣𝑐 , ∀ 𝑏 ∈ 𝐵, 𝑐 ∈  𝐶,𝑚 ∈  𝑀, 𝑣 ∈ 𝑉                                                      (8) 

1 − (∑ 𝑥𝑏𝑚𝑡𝑤
𝑤∈𝑊∶(𝐶𝐶𝑤=3)

 ) +   ∑ 𝑥𝑏𝑚𝑡𝑤
𝑤∈𝑊∶(𝐶𝐶𝑤 ≠ 3) 

  ≤  𝐿 ∗ (1 −∑ 𝑥𝑏𝑚𝑡𝑤
𝑤∈𝑊∶(𝐶𝐶𝑤=3)

 )   

∀ 𝑏 ∈  𝐵, 𝑡 ∈  𝑇𝑀𝑏 , 𝑚 = 3                                                                                                                                    (9.1) 

1 − (∑ 𝑥𝑏𝑚𝑡𝑤
𝑤∈𝑊∶(𝐶𝐶𝑤=3)

 ) +   ∑ 𝑥𝑏𝑚𝑡𝑤
𝑤∈𝑊∶(𝐶𝐶𝑤 ≠ 3) 

  ≤  𝐿 ∗ (1 −∑ 𝑥𝑏𝑚𝑡𝑤
𝑤∈𝑊∶(𝐶𝐶𝑤=3)

 ),   

∀ 𝑏 ∈  𝐵, 𝑡 ∈  𝑇𝑀𝑏 , 𝑚 = 4                                                                                                                                    (9.2) 

∑ 𝑥𝑏𝑚𝑡𝑤
𝑚 ∈𝑀 

 ≤  𝑧𝑏𝑡  ,    ∀ 𝑏 ∈ 𝐵, 𝑡 ∈ 𝑇𝑀𝑏 , 𝑤 ∈ 𝑊                                                                                          (10) 

∑  𝑧𝑏0𝑡
𝑏0∈𝐵

 ≤  𝑛𝑚𝑙 ,    ∀ 𝑏 ∈ 𝐵, 𝑡 ∈  𝑇𝑀𝑏                                                                                                           (11) 

∑ ∑ 𝑥𝑏0𝑚𝑡𝑤
𝑚∈𝑀∶(𝑉𝑉𝑏0=2) 𝑏0∈𝐵

 ≤  𝑛𝑠𝑙 ,    ∀ 𝑏 ∈ 𝐵, 𝑡 ∈ 𝑇𝑀𝑏 , 𝑤 ∈ 𝑊                                                      (12.1) 

∑ ∑ 𝑥𝑏0𝑚𝑡𝑤
𝑚∈𝑀∶(𝑉𝑉𝑏0≠ 2) 𝑏0∈𝐵

 ≤  𝑛𝑚𝑙 − 𝑛𝑠𝑙  ,    ∀ 𝑏 ∈  𝐵, 𝑡 ∈  𝑇𝑀𝑏 , 𝑤 ∈ 𝑊                                     (12.2) 

𝑥𝑏𝑚𝑡𝑤  ≤  𝑦𝑤𝑑  , ∀ 𝑏 ∈ 𝐵,𝑚 ∈  𝑀,𝑤 ∈ 𝑊, 𝑑 ∈ 𝐷, {𝑡 ∈ 𝑇𝑀𝑏 ∶   𝑛𝑡𝑑. (𝑑 − 1) + 1 ≤ 𝑡 ≤ 𝑛𝑡𝑑. 𝑑}            (13) 

𝑧𝑏𝑡  ≤  𝑧𝑑𝑏𝑑  , ∀ 𝑏 ∈ 𝐵, 𝑑 ∈ 𝐷, { 𝑡 ∈  𝑇𝑀𝑏 ∶    𝑛𝑡𝑑. (𝑑 − 1) + 1 ≤ 𝑡 ≤ 𝑛𝑡𝑑. 𝑑 }                                   (14) 

𝑥𝑏𝑚𝑡𝑤 = {0, 1}       ∀ 𝑏 ∈  𝐵,𝑚 ∈  𝑀, 𝑡 ∈  𝑇, 𝑤 ∈ 𝑊                                                                                          (15) 

𝑦𝑤𝑑 = {0, 1}      ∀ 𝑤 ∈  𝑊, 𝑑 ∈ 𝐷                                                                                                                           (16) 

𝑧𝑑𝑏𝑑 = {0, 1}      ∀ 𝑏 ∈ 𝐵, 𝑑 ∈ 𝐷                                                                                                                             (17) 

𝑧𝑏𝑡 = {0, 1}        ∀ 𝑏 ∈ 𝐵, 𝑡 ∈ 𝑇                                                                                                                               (18) 

The objective function (1) is composed of two 

components: i) the crew maintenance costs, 

denoted by O1 in equation 19; and ii) the buses’ 

unavailability costs, denoted by O2 in equation 

20. These two components are daily costs, and 

thus, by minimizing the days to perform 

maintenance activities, the minimization of the 

objective function is achieved. These two 

components are explained in detail: 

O1  =  ∑ ∑  𝑐𝐷𝑤 ∗ 𝑦𝑤𝑑  
𝑑𝜖𝐷𝑤𝜖𝑊 

                 (19) 

The parameter 𝑐𝐷𝑤  corresponds to the daily cost 

of each worker 𝑤. However, this value can 

change accordingly to the type of function 
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involved and the years of experience of the 

worker. Thus, crew maintenance costs E 

(Equation 19) can be expressed as the sum of all 

preventive maintenance costs performed by 

every worker/employee at every day period until 

the end of the activities. As mentioned before, 

𝑦𝑤𝑑 is a binary decision variable that indicates 

whether the worker 𝑤 is assigned on day d (it is 

equal to one) or not (it is equal to zero). 

O2  =   ∑  ∑   𝑐𝑈
𝑑𝜖𝐷𝑏𝜖𝐵

∗  𝑧𝑏𝑑                      (20) 

The 𝑐𝑈 corresponds to the cost associated with 

unavailability of buses and it is also an input, but 

unlike 𝑐𝐷𝑤 , it is assumed to be constant for all 

buses. Note that assuming that 𝑐𝑈 is constant 

simplifies the problem as the importance of each 

bus may change with its type, capacity, service, 

demand and route satisfaction. In fact, there are 

also other factors that may influence the value of 

𝑐𝑈, such as the loss of revenues, impacts on 

passenger’s perceived satisfaction and reliability, 

regulatory penalties and even opportunity costs. 

Therefore, these factors make the quantification 

of term 𝑐𝑈 (in Equation 20) challenging. 

Nevertheless, as stated by the maintenance 

director of the bus operating company, "we 

prefer to make vehicles available in viable and 

safety conditions for daily operations", and thus 

a high value for parameter 𝑐𝑈 should be 

assumed, and it should express the sum of all the 

unavailability costs per bus unit, for each day out 

of its regular service. As mentioned before, 𝑧𝑏𝑑 

is a binary decision variable that indicates 

whether the bus, b, is assigned on day d (it is 

equal to one), or not (it is equal to zero). 

In order to facilitate understanding of the 

constraints, it was decided to divide them into 

four groups: i) management constraints; ii) crew 

and competences/skills constraints; iii) 

maintenance yard constraints; and iv) general 

constraints. The division is intended to facilitate 

understanding, though some constraints could be 

assigned to two or even three groups.  

i. Management constraints: 

Constraint (2) ensures that no bus is under 

maintenance during the regular service/operation 

time. Constraint (3) indicates that no 

maintenance activity 𝑚, no bus 𝑏, and no worker 

𝑤 can be scheduled during the regular 

service/operation time, i.e. there is no 

maintenance at any time of regular 

service/operation. Constraint (4) states that all 

workers at any given time can only perform a 

task at a time. 

ii. Crew and competences constraints  

Constraint (5) ensures that when a bus is under 

maintenance the same worker performs his/her 

task in consecutive time units, i.e. maintenance 

tasks cannot be split. Constraint (6) indicates 

that, for all maintenance times, the number of 

assigned workers with a specific skill (𝐶𝐶𝑤 = 𝑐) 

must be lower or equal than the number of 

workers with that skill (𝑛𝑤𝑐). Constraint (7) 

bounds the number of workers assigned in order 

to stay lower or equal to the limit number 

capacity (𝑛𝑤). Constraint (8) guarantees, for any 

bus b and maintenance m, that the total 

maintenance time for a type of worker is at least 

equal to the amount of scheduled maintenance 

work (𝑔𝑏𝑚𝑣𝑤) for this type of worker. 

Constraints (9.1 and 9.2) are identical and 

specific. These restrictions mean that when a bus 

is carrying out maintenance of type 𝑚 = 3 (9.1) 

or type 𝑚 = 4 (9.2), workers of type 𝑤 = 3 must 

labour alone until they finish, i.e. they must work 

without the presence of any other type of worker. 

iii. Constraints related to the maintenance 

yard 

Constraint (10) states that if any maintenance 

assignment is made, the bus must remain in the 

maintenance depot for the time t needed to 

complete the task. Constraint (11) imposes that, 

for all maintenance times, the number of buses in 

the depot is lower or equal to the number of 

maintenance lines (𝑛𝑚𝑙). Constraint (12.1) 

ensures that the number of maintenance activities 

assigned to buses of type two (𝑉𝑉𝑏 = 2) cannot 

exceed the number of available maintenance 

lines (𝑛𝑠𝑙) capable of receiving that type of 

vehicle. For instance, if 𝑛𝑠𝑙 = 1, it means that 

there is only one line that can be used by the bus 

of that type, i.e. there can only be one bus of type 

two (𝑉𝑉𝑏 = 2) in maintenance at a time. 

Constraint (12.2) limits for all the buses that are 

not of type two (VVb ≠  2), the number of 

available lines for maintenance activities as 

𝑛𝑚𝑙 − 𝑛𝑠𝑙, i.e. the difference between the total 

number of maintenance lines and the number of 

available maintenance lines capable of receiving 

buses of type two. 

iv. General constraints 

Constraint (13) states the relation between 

 𝑥𝑏𝑚𝑡𝑤  and 𝑦𝑤𝑑 decision variables, as there is a 

conversion from hours to days that must be made, 

with the purpose of determining the schedules of 

the workers per day, which are needed in the 

objective function, namely in component O1. 

Constraint (14) states the relation between 𝑧𝑏𝑡 
and 𝑧𝑑𝑏𝑑 decision variables, as there is a 

conversion from hours to days that must be made, 

with the purpose of determining the schedules of 

buses per day, which are needed in the objective 
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function, namely in component O2. Finally, 

constraint (15) states that 𝑥𝑏𝑚𝑡𝑤 is a binary 

variable for all bus units, maintenance activities, 

time units and workers; constraint (16) states that 

𝑦𝑤𝑑 is a binary variable for all workers and days 

units; constraint (17) states that 𝑧𝑏𝑑 is a binary 

variable for all bus and days units and constraint 

(18) states that 𝑧𝑏𝑡 is a binary variable for all bus 

and time units. 

4. Computational Experiments 

Besides the computational experiments analysed 

in this document, an experiment with the 

Dantzig-Wolfe decomposition was also 

conducted. Due to its unfeasibility it is not 

analysed. 

 

4.1 Heuristic approach 

This heuristic approach is highly based in the 

Martins’ model. The great difference is that 

instead of solving one large ILP, it solves various 

smaller problems. However, instead of solving 

each smaller problem in a parallel way, this 

heuristic approach solves them sequentially. The 

heuristic. This section will focus on the 

computational changes from the Martins’ model, 

the model. 

This approach resides on solving the problem for 

one bus at a time, locking the solution of the 

previous bus, i.e. the problem is solved for bus 1, 

the time periods occupied the solution for bus 1 

are withdrawn from the solution possibilities of 

the next bus and so on, until the problem is solved 

for all the buses. 

Major computational changes come from: i) the 

introduction of a new set that dictates the order in 

which the buses are solved; ii) the introduction of 

a loop that annexes the buses orderly to the B set, 

solves and saves the solution to the problem; and 

iii) a new constraint that prevents a next bus from 

overwriting or substituting previous buses’ 

allocations.  

i) The new set 𝐺𝑏𝑁𝐵𝑢𝑠 is defined, with values equal 

to the bus numbers and where 𝑖 is the index that 

defines the order, i.e. 𝐺𝑏1 is the first bus the 

problem is solved for. It can be defined manually 

by the user or decision maker, or by using a 

criteria for choosing the order. The order criteria 

defined was based on the amount of work needed 

for that bus.  

ii) Using the “repeat” function of the Mosel 

language a loop where a new variable called 

𝑁𝐵𝑢𝑠 is created with the value of one and 

increased by one at each iteration. This variable 

is then used to annex a new bus to the set 𝐵, being 

𝐺𝑏𝑁𝐵𝑢𝑠 added to that set. The problem 

formulated by Martins (Martins 2018) is now a 

procedure and not the only problem. At the end 

of the procedure the solution found is added to a 

new set 𝑃𝑟𝑜𝑝_𝑥𝑏𝑚𝑡𝑤. This procedure happens 

within the loop, and it stops when the number of 

iterations (𝑁𝐵𝑢𝑠) is equal to the number of buses 

present in the problem. 

iii) Finally, a new constraint was added: 

𝑃𝑟𝑜𝑝𝑥𝑏𝑚𝑡𝑤 = 𝑥𝑏𝑚𝑡𝑤 , ∀ 𝑏 ∈ 𝐵\{𝐺𝑏𝑁𝐵𝑢𝑠}, 𝑚 ∈

 𝑀, 𝑡 ∈  𝑇, 𝑤 ∈ 𝑊                                              (21)                
This restriction states that every solution already 

obtained must keep the same value, and thus 

preventing the new solutions to be allocated to 

those time slots.  

4.2 Introducing New Restrictions Approach 

This approach that was tried is even more similar 

to the original one than the previous one. It is a 

small variation of Martins’ formulation (2018), 

in which new restrictions are introduced to 

reduce the number of variables and nodes of the 

original problem. These new restrictions are 

based on characteristics that an optimal solution 

have. 

 

 

New restrictions: 

∑∑𝑧𝑑𝑏𝑑
𝑑∈𝐷𝑏∈𝐵

 =  𝑁𝐵                                                                                                                                                  (22) 

 

∑ ∑ 𝑥1𝑚10𝑤
𝑤∈𝑊𝑚∈𝑀

≥ 1                                                                                                                                                (23) 

∑ ∑ 𝑥4𝑚34𝑤
𝑤∈𝑊𝑚∈𝑀

≥ 1                                                                                                                                                (24) 

∑ ∑ 𝑥12𝑚58𝑤
𝑤∈𝑊𝑚∈𝑀

≥ 1                                                                                                                                               (25) 
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∑ 𝑧𝑑3𝑑1
𝑑1∈𝐷:𝑑1≤𝑑

 ≥  𝑧𝑑6𝑑 , ∀ 𝑑 ∈ 𝐷                                                                                                                 (26) 

∑ 𝑧𝑑9𝑑1
𝑑1∈𝐷:𝑑1≤𝑑

 ≥  𝑧𝑑10𝑑 , ∀ 𝑑 ∈ 𝐷                                                                                                               (27) 

∑ 𝑧𝑑5𝑑1
𝑑1∈𝐷:𝑑1≤𝑑

 ≥  𝑧𝑑11𝑑 , ∀ 𝑑 ∈ 𝐷                                                                                                               (28) 

∑ ∑ ∑ 𝑥𝑏𝑚𝑡𝑤
𝑤 ∈ 𝑊𝑚 ∈ 𝑀𝑏 ∈ 𝐵

 ≥  ∑ ∑ ∑ 𝑥𝑏𝑚𝑡−1𝑤
𝑤 ∈ 𝑊𝑚 ∈ 𝑀𝑏 ∈ 𝐵

, ∀ 𝑡 ∈ 𝑇: 10 > 𝑡 ≤ 17                                         (29) 

∑ ∑ ∑ 𝑥𝑏𝑚𝑡𝑤
𝑤 ∈ 𝑊𝑚 ∈ 𝑀𝑏 ∈ 𝐵

 ≥  ∑ ∑ ∑ 𝑥𝑏𝑚𝑡−1𝑤
𝑤 ∈ 𝑊𝑚 ∈ 𝑀𝑏 ∈ 𝐵

, ∀ 𝑡 ∈ 𝑇: 34 > 𝑡 ≤ 41                                         (30) 

∑ ∑ ∑ 𝑥𝑏𝑚𝑡𝑤
𝑤 ∈ 𝑊𝑚 ∈ 𝑀𝑏 ∈ 𝐵

 ≥  ∑ ∑ ∑ 𝑥𝑏𝑚𝑡−1𝑤
𝑤 ∈ 𝑊𝑚 ∈ 𝑀𝑏 ∈ 𝐵

, ∀ 𝑡 ∈ 𝑇: 58 > 𝑡 ≤ 65                                         (31) 

∑ ∑ ∑ 𝑥𝑏𝑚𝑡𝑤
𝑤 ∈ 𝑊𝑚 ∈ 𝑀𝑏 ∈ 𝐵

 ≥  ∑ ∑ ∑ 𝑥𝑏𝑚𝑡−1𝑤
𝑤 ∈ 𝑊𝑚 ∈ 𝑀𝑏 ∈ 𝐵

, ∀ 𝑡 ∈ 𝑇: 82 > 𝑡 ≤ 89                                         (32) 

∑ ∑ ∑ 𝑥𝑏𝑚𝑡𝑤
𝑤 ∈ 𝑊𝑚 ∈ 𝑀𝑏 ∈ 𝐵

 ≥  ∑ ∑ ∑ 𝑥𝑏𝑚𝑡−1𝑤
𝑤 ∈ 𝑊𝑚 ∈ 𝑀𝑏 ∈ 𝐵

, ∀ 𝑡 ∈ 𝑇: 106 > 𝑡 ≤ 113                                    (33) 

∑ ∑ 𝑥𝑏𝑚𝑡𝑤
𝑚 ∈ 𝑀𝑏 ∈ 𝐵

 ≥ 𝐿 × ∑ ∑ 𝑥𝑏𝑚𝑡𝑤−1
𝑚 ∈ 𝑀𝑏 ∈ 𝐵

, ∀ 𝑡 ∈ 𝑇, 𝑤 ∈ 𝑊:  𝐶𝐶𝑤 = 1 ∩ 𝑤 > 1                            (34) 

𝑦𝑤−1  ≤ 𝑦𝑤 , ∀ 𝑑 ∈ 𝐷,𝑤 ∈ 𝑊:  𝐶𝐶𝑤 = 1 ∩ 𝑤 > 1                                                                                     (35) 

∑ ∑ ∑ xbmtw
𝑤 ∈ 𝑊𝑚 ∈ 𝑀

 

𝑏 ∈ 𝐵

≥  𝐿 × ∑ ∑ ∑ ∑ xbmtw
𝑡 ∈ 𝑇:𝑡≤24w ∈ W𝑚 ∈ 𝑀

 

𝑏 ∈ 𝐵

, 𝑡 = 34                                                (36) 

∑ ∑ ∑ xbmtw
𝑤 ∈ 𝑊𝑚 ∈ 𝑀

 

𝑏 ∈ 𝐵

≥  𝐿 × ∑ ∑ ∑ ∑ xbmtw
𝑡 ∈ 𝑇:25≤𝑡≤48w ∈ W𝑚 ∈ 𝑀

 

𝑏 ∈ 𝐵

, 𝑡 = 58                                          (37) 

∑ ∑ ∑ xbmtw
𝑤 ∈ 𝑊𝑚 ∈ 𝑀

 

𝑏 ∈ 𝐵

≥  𝐿 × ∑ ∑ ∑ ∑ xbmtw
𝑡 ∈ 𝑇:49≤𝑡≤72w ∈ W𝑚 ∈ 𝑀

 

𝑏 ∈ 𝐵

, 𝑡 = 82                                           (38) 

∑ ∑ ∑ xbmtw
𝑤 ∈ 𝑊𝑚 ∈ 𝑀

 

𝑏 ∈ 𝐵

≥  𝐿 × ∑ ∑ ∑ ∑ xbmtw
𝑡 ∈ 𝑇:73≤𝑡≤96w ∈ W𝑚 ∈ 𝑀

 

𝑏 ∈ 𝐵

, 𝑡 = 106                                        (39) 

∑ 𝑧𝑑b𝑑−1
𝑏 ∈ 𝐵

 ≤ 𝐿 × ∑ 𝑧𝑑b𝑑
𝑏 ∈ 𝐵

, ∀ 𝑑 ∈ 𝐷: 𝑑 > 1                                                                                           (40) 

∑ 𝑦w𝑑−1
𝑤 ∈ 𝑊

 ≤ 𝐿 × ∑ 𝑦w𝑑
𝑤 ∈ 𝑊

, ∀ 𝑑 ∈ 𝐷: 𝑑 > 1                                                                                           (41) 

Restriction (22) states that all the buses are 

assigned to only one day 

Restrictions (23) to (25) make sure that the three 

buses with the greatest need in terms of amount 

of work are scheduled in different days (which 

day is irrelevant) i.e. 𝐵𝑢𝑠 1 is scheduled for 

𝑑𝑎𝑦 1 which starts at 𝑡𝑖𝑚𝑒 𝑝𝑒𝑟𝑖𝑜𝑑 10. 

Restrictions (26) to (28) define the order in which 

the buses that are due to the same maintenance 

activities and are the same type of vehicle, and 

therefore are interchangeable, are scheduled. The 

goal is to, instead of letting the model test and 

decide which goes first, decide for the model, 

avoiding that step, and in this way, reducing 

enormously the size of potential feasible 

solutions to test. 

Restrictions (29) to (33), one for each day, define 

that the model should assign the work starting 

from the beginning of the day.  

In restriction (34) the workers with capacity 

 𝐶𝐶𝑤 = 1 are being assign in a predefined order, 

again saving computational time. 
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In restrictions (35) a second worker 𝑤 with 

competence 𝑐 is only assigned on day 𝑑 if the 

previous worker 𝑤 with competence 𝑐 is already 

assigned on that day 𝑑; 

In restrictions (36) to (39) there are only 

activities assigned for a determined day if the 

previous day already has activities 

In restrictions (40) and (41), a bus 𝑏 (…) or a 

worker 𝑤 (…) is only assigned to day d, if it was 

already assigned for the previous day. 

 

5. Results and discussion 

In this section an analysis of the results obtained 

in both the approaches is executed by comparing 

them to the ones obtained by Martins (2018). A 

review of the analysis done by Martins (2018) to 

his results showed that when the model for run 

with a 𝑐𝑈 greater than 250 𝑚𝑜𝑛𝑒𝑡𝑎𝑟𝑦 𝑢𝑛𝑖𝑡𝑠, 

despite the objective value being higher, the 

optimization of the problem promised a better 

allocation of the elements. As in the heuristic 

approach an update of the 𝑐𝑈 was made to 

260 𝑚𝑜𝑛𝑒𝑡𝑎𝑟𝑦 𝑢𝑛𝑖𝑡𝑠 in the solver, although the 

result exhibited was adapted to 

100 𝑚𝑜𝑛𝑒𝑡𝑎𝑟𝑦 𝑢𝑛𝑖𝑡𝑠, it was deemed relevant to 

provide an analysis cadent of the same adaptation 

to the Martins model (2018). Therefore, the 

results from the model ran for 𝑐𝑈 equal to 260 

and 275 𝑚𝑜𝑛𝑒𝑡𝑎𝑟𝑦 𝑢𝑛𝑖𝑡𝑠, the best looking of 

the ones Martins (2018) tested, were included in 

this analysis. Those results were examined with 

the 100 𝑚𝑜𝑛𝑒𝑡𝑎𝑟𝑦 𝑢𝑛𝑖𝑡𝑠’ adaptation. 

Firstly, an analysis of the final solution, 

computational time and optimality gap is 

conducted, followed by an analysis of the weight 

of the cost components. After that statistics 

regarding the bus unavailability, the days in 

which maintenance activities were assign, and 

the total working days of each type of worker, are 

presented. Lastly, the money loss in working 

hours vs paid hours is evaluated. 

Table 1 - Objective value, computational time and 

optimality gap analysis 

Model 

Objec

tive 
Value 

(cU=1

00, 
adapte

d) 

Impr

ov to 
Origi

nal 

Com

p 
Time 

(s) 

Impr

ov to 
Origi

nal 

Optima

ility 

gap 

Impr

ov to 
Origi

nal 

Martins 2520 - 
1100
3.9 

- 21.20% - 

Restrict

ions 
2510 

0.40

% 

1287

.5 

88,30

% 
16.14% 

5.06

% 

Martins 

(cU=26

0) 

2465 
2.18

% 

7373

.1 

33.00

% 
12.11% 

9.09

% 

Martins 

(cU=27
5) 

2295 
8.93

% 

6840

.6 

37.83

% 
5.16% 

16.04

% 

Heuristi

c 
2295 

8.93

% 
36.7 

99.67

% 
- - 

From Table 8 it is observed that both the 

Heuristic approach and the Martins (𝑐𝑈 = 275) 

present the best solution to the problem with a 

value of 2295 𝑚𝑜𝑛𝑒𝑡𝑎𝑟𝑦 𝑢𝑛𝑖𝑡𝑠. The optimality 

gap from Martins (𝑐𝑈 = 275) suggests that this 

solution is close to optimal, and since the 

Heuristic approach presents the same value it is 

fair to assume that this applies to it too. This 

value represents an improvement of 8.93% from 

the original model and the optimality gap is 

reduced by 16.04%. 

But where the Heuristic approach comes as an 

isolated champion in the computational time 

category, an astonishing reduction of 99.67% 

representing a value of 36.7 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 makes this 

approach the most efficient one. It is important to 

notice that both the approaches developed in this 

dissertation presented great reductions in 

computational time even when compared with 

adapted Martins models. This was one of the 

main goals of this research. 

It is also relevant that both the 𝑐𝑈 adaptations of 

the Martins model (2018) present better solutions 

than the original one. 

Table 2 - Cost component weight analysis 

Cost 
Com

pone

nt 

Martins 
Restrict

ions 

Martins 

(cU=26
0) 

Martins 

(cU=27
5) 

Heuristi

c 

Va

lu
e 

% 

tot
al 

Va

lu
e 

% 

tot
al 

Va

lu
e 

% 

tot
al 

Va

lu
e 

% 

tot
al 

Va

lu
e 

% 

tot
al 

𝑂1 
11
20 

44.

4

% 

12
10 

48.

2

% 

10
85 

45.

5

% 

99
5 

43.

4

% 

99
5 

43.

4

% 

𝑂2 
14
00 

55.

6

% 

13
00 

51.

8

% 

13
00 

54.

5

% 

13
00 

56.

6

% 

13
00 

56.

6

% 

Regarding the cost components, considering the 

analysis performed by Martins (2018), an 

increasing of the 𝑂2  component’s weigh should 

evolve with the increase of the solution’s 

optimality. This is not visible in Table 9 from the 

Martins model (2018) to the Restrictions 

approach, this is due to a leap from 

14 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑏𝑢𝑠𝑒𝑠 (one is repeated) to 13, this 

is evident in Table 10. Although, from the 

Restrictions approach forward it is possible to 

identify the evolution described above. It is also 

interesting to notice that the 𝑂2 component plays 

a heavier role in all these models. 
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Table 3 - Bus availability and worker assignment 

In Table 10 it is evidenced the leap addressed 

above. The information provided allows an 

understanding of effects of the optimization, by 

the number of days and the work days by 

competence it is possible to observe that the best 

solutions present a more compact scheduling. It 

is also noticeable that if a new restriction to the 

restriction model, imposing that the solution only 

had four days, was added, a better solution could 

be achieved. 

After analysing all these results, it is concluded 

that the heuristic approach is superior to all the 

other studied models and is by far superior when 

compared to the original model, presenting great 

improvements in relation to it, especially 

regarding computational time.  

6. Conclusions and Further Research 

6.1 Conclusions 

The main objective of the present dissertation 

was to optimize in terms of computational time, 

optimality gap and final solution, the model 

created in 2018 by Martins, on the bus 

maintenance scheduling and applied to the Carris 

case study. As stated in before, previous results 

in Martins (2018), though satisfying and ground 

breaking, still exhibited a large margin for 

improvement. The reported optimality gap of 

20.15% after a computational time of 13 ℎ𝑜𝑢𝑟𝑠 

is far from being ideal, and the present research 

work had the challenge to try to improve the 

computational time, optimality gap and final 

solution. 

The initial idea was to work with parallel solving 

mechanisms in order to save computational time. 

The implementation of this model was a long 

process and was not possible to validate it for 

neither the illustrative example nor the real case. 

After this conclusion, two different approaches 

were proposed. The first one used a heuristic 

approach and restructured the Martins’ model 

(2018) in a way that it would reduce the amount 

of free decision variables and combinations to 

test. The second one consisted of introducing 

new constraints to Martins’ model (2018) based 

on characteristics of the optimal solution that 

could be expected a priori. Both these new were 

validated for an illustrative example and for the 

real case study, achieving a better final solution 

in a shorter computational time than Martins’ 

original model.  

6.2 Limitations 

There are a few limitations that should be 

discussed in this work. The three conducted 

approaches presented limitations of their own. 

One of them, though could, actually, improve the 

optimality gap and computational time, is far 

from ideal. Other has some limitations regarding 

programming, which made it impossible to be 

validated. And the last one has no way to prove 

its optimality.  

One important limitation with the approach of 

introducing more constraints is the fact that it 

relies completely on the experience of the 

maintenance planners and knowledge. 

Nevertheless, the spirit and arguments behind the 

creation of additional constraints can be adapted 

to other problems. Another limitation of this 

approach is that there are options that are 

disregarded which could represent a better 

solution than the one found.  

The heuristic approach presents a big limitation, 

which is to know whether the solution found is 

optimal. Contrary to all the other approaches 

(except for the restrictions’ one) there is no 

mechanism that guarantees the optimality, or not, 

of the solution. 

6.3 Further Research 

There are several ways in which further research 

on this topic can be pursued.  

Regarding the “introducing new restrictions 

approach” approach, other directions for further 

research would be adding restrictions to the 

reformulated model. There are obviously a lot of 

possibilities here. Improvements to this approach 

should be pursued if the research is related with 

this exact same case study. Otherwise, it might 

still work, but would have to be adapted 

specifically to the characteristics of the solution 

to the problem under analysis.  

Regarding the heuristic approach, it is imperative 

that a mechanism to verify the optimality of the 

solution is implemented. An idea would be to try 

different types of iterative approaches to 

optimize the previous result. 

Also, the model developed using the Dantzig-

Wolfe decomposition can potentially be 

modified in order to be feasible. The bus 

Aproach 

Number of 

times the 
buses are 

unavailabl

e 

Numbe
r of 

Days 

Number of work 

days by 

competence 

me
c 

(3) 

lu

b 

el

e 

b

w 

Martins 14 5 12 5 4 5 

Restriction
s 

13 5 13 5 5 5 

Martins 

(cU=260) 
13 5 12 5 5 5 

Martins 
(cU=275) 

13 4 11 4 4 4 

Heuristic 13 4 11 4 4 4 
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operating company operates other depots in the 

Lisbon area, and an implementation of the 

parallel solving mechanisms, including the 

Dantzig-Wolfe, could be more advantageous and 

less complex in terms of adaptations. An 

interesting way to decompose the problem would 

be by depot.  
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