
Incremental hypervolume calculation in d dimensions

Kyrylo Yefimenko
kyrylo.yefimenko@ist.utl.pt

Instituto Superior Técnico, Lisboa, Portugal

December 2019

Abstract

In this paper the problem of the calculation of hypervolume for a set of points for any dimension
d and its incremental variant are described. The IQHVII algorithm is presented for the incremental
case and is based on the QHV-II algorithm developed in [1] for non incremental case. This new
algorithm uses a datastructure of a form of a tree called quadtree to store the problem’s nondominated
points. This tree allows the calculation of the hypervolume to, possibly, be faster as there are no
dominated points. Additionally, the IQHVII algorithm is analysed theoretically and some experiments
are performed and presented.
Keywords: Hypervolume, Incremental Hypervolume Calculation, QHV, QHV-II, Quadtree, IQHVII

1. Introduction
Multi-objective optimization problems are of high
importance in a vast range of fields including engi-
neering, economics and management, and sciences
such as chemistry, biology and medicine. They con-
sist of optimizing several objectives at the same
time which are usually conflicting. More precisely,
the problem consists of finding the whole set of
Pareto optimal solutions in a feasible region in the
decision space D mapped to a feasible region in the
objective space O ⊂ Rd by d objective functions
which can be represented as f : D −→ O with
f(x) = (f1(x), . . . , fd(x)).

For a nontrivial multi-objective optimization
problem it is not an easy task to find the set of
Pareto optimal solutions, and so, a considerable
amount of time is used computing it. Therefore,
it is important to choose an efficient algorithm that
can compute the hypervolumes generated by differ-
ent sets of points and compare them quickly, thus
deciding which set is a better solution to the prob-
lem. The hypervolumes can be calculated in differ-
ent ways and, in this paper, we will use the hyper-
volume indicator method for those computations.

The hypervolume of a set of solutions measures
the size of the portion of objective space that is
dominated by those solutions collectively. Hyper-
volume encapsulates in a single unary value a mea-
sure of the spread of the solutions along the Pareto
front, as well as the closeness of the solutions to
the Pareto-optimal front, making it an adequate
metric for the problem. It also incorporates many
mathematical properties favourable for use in multi-
objective optimization problems. The exact calcu-

lation of the hypervolume is shown to be #P-hard1

and its approximation NP-hard in [2].

There are several non trivial algorithms for exact
and approximated hypervolume calculations and
the main focus of this paper is to study the QHV-II
algorithm’s incremental variant with the main idea
of calculating the final hypervolume without recal-
culating, fully or partially, the hypervolume of the
initial state.

2. Background

To tackle the problem of calculating the incremental
hypervolume correctly and rigorously, it is neces-
sary to have some fundamental definitions present.

2.1. Notation

In this paper, points are represented by lower case
letters and a d-dimensional point x is represented
as x = (x1, . . . , xd). A general point shall be repre-
sented by p. Sets are represented by capital letters
and a general set will be represented by S. We shall
also assume that n is the number of points and d
is the number of objectives. The hypervolume of a
box A is expressed as H(A).

2.2. Definitions

Multi-objective optimization problems are solved
by determining all efficient solutions in the decision
space and the corresponding nondominated points
in the objective space such that none of the objec-
tives can be improved in value without degrading
some of the other objective values. The concepts
necessary to understand the problem are defined

1#P is the analog of NP for counting problems.

1

below.

Definition 1 (Decision Space). The decision space
D of a multi-objective optimization problem is the
space containing the solutions to the problem.

Definition 2 (Objective Space). The objective
space O of a multi-objective optimization problem
is the space containing the evaluation of the solu-
tions to the problem.

Definition 3 (Feasible Region). The feasible region
of a decision space D is the set of all possible points
of a multi-objective optimization problem that sat-
isfy the problem’s constraints, potentially including
inequalities, equalities, and integer constraints. The
feasible region of the objective space O is the image
of the feasible region of a decision space given by
some function f : D −→ O.

To find the solutions to the multi-objective op-
timization problem the concepts of dominance and
strong dominance are used. These definitions are
also essential in the hypervolume calculation prob-
lem.

Definition 4 (Dominance [3]). Let x, y ∈ Rd de-
note two points. Then, x dominates y if and only if
x ≥ y and x 6= y (i.e., xj > yj for all j = 1, . . . , d
and xj > yj for at least one j). This type of domi-
nance is also called weak dominance.

Definition 5 (Strong Dominance [3]). Let x, y ∈
Rd denote two points. Then, x strongly dominates
y if and only if x > y (i.e., xj > yj for all j =
1, . . . , d).

To find the best solution to a multi-objective
problem we must compare several possible solutions
known as Pareto fronts and find the Pareto optimal
front. The Pareto optimal front of an optimiza-
tion problem is a set of points such that there is
no other possible set that would improve the solu-
tion. More precisely, for the hypervolume calcula-
tion problem we have that the Pareto optimal front
is a set of points of the objective space O which
are not dominated by any other point. For exam-
ple, if we consider the point p in Figure 1 we no-
tice that the points b and c are dominated by p
because bx 6 px ∧ by 6 py and cx 6 px ∧ cy 6 py,
respectively. On the other hand, the points a, d
and e are not dominated by p because ay > py,
dx > px and ex > px, respectively. It is worth
noting that as ay > py and ax < px, no point domi-
nates other point and so they are said to be incom-
parable. Thus, the Pareto dominance relation does
not establish a total order. In this case, the Pareto
optimal front is the set {a, p, d, e}, as no other com-
bination of points will have a larger hypervolume
and therefore improve the solution.

Figure 1: Example of a possible setup in 2 dimen-
sions.

For a nontrivial multi-objective optimization
problem no single solution exists that simultane-
ously optimizes each objective. In that case, the
objective functions are said to be conflicting, and
there exists a (possibly infinite) number of Pareto
optimal solutions.

Definition 6 (Efficient Point [3]). Consider a de-
cision space D, an objective space O and a function
f : D −→ O. Then a point p ∈ D is said to be effi-
cient if there is no q ∈ D such that f(q) dominates
f(p).

It is worth noting that a nondominated point p in
the objective space is always an image of an efficient
solution to the problem in the decision space, thus
is part of the Pareto optimal solution.

To compare several possible solutions of a multi-
objective optimization problem the hypervolume in-
dicator can be used. It is a set measure that com-
putes the hypervolume of the dominated portion of
the objective space bounded by a reference point.
The calculated volume later helps in comparing
Pareto fronts to decide which one is an optimal so-
lution to the problem. Based on all the definitions
above we can now formally define this metric [4]:

Definition 7 (Hypervolume Indicator). The hyper-
volume indicator H(S) of a set S ⊂ Rd can be de-
fined as the hypervolume of the space that is domi-
nated by the set S and is bounded by the reference
point r ∈ Rd:

H(S) = λ

(⋃
x∈S

[r, x]

)
, (1)

2

where λ(S) is the Lebesgue measure of a set S and
[r, x] is the d-dimensional hyperoctant consisting of
all points that are weakly dominated by the point x
but not weakly dominated by the reference point and
can be represented as [r, x] = {y ∈ Rd : r ≤ y ∧ y ≤
x}.

For example, if we consider the Figure 1 with
S = {a, b, c, d, e} ⊂ R2 and r = (0, 0), then the area
represented by H is the hypervolume of S, that is
H(S). For sets, we say that the set A is a better
solution than the set B if H(A) > H(B).

The hypervolume contribution of a point is based
on hypervolume indicator and is defined as follows:

Definition 8 (Hypervolume Contribution). The
hypervolume contribution, also know as exclusive
hypervolume contribution, of a point p ∈ Rd to a
set S ⊂ Rd is:

H(p, S) = H(S ∪ {p})−H(S\{p}). (2)

In Figure 1, the area denoted by E is the
hypervolume contribution of p to the set S =
{a, b, c, d, e}.

Definition 9 (Inclusive Hypervolume). The inclu-
sive hypervolume of a point p ∈ Rd is the hypervol-
ume defined by p and the reference point, ignoring
all other points.

2.3. Relevant Hypervolume Problems

There is a quite rich list of hypervolume related
problems beyond the classic hypervolume calcula-
tion and incremental case problems. Several of
them [4] are referenced in this section and the goal
will be to study the UpdateHypervolume problem
which is the incremental case. For all the problems
below, S represents a set of points which are usually
nondominated points, although this characteristic is
not mandatory. If q ∈ S is dominated, it has a null
contribution to S, but if it is dominated by a single
point p ∈ S, then the contribution of p to S will be
lower than if q /∈ S. Thus, this property is relevant
for some problems.

Problem 1 (Hypervolume). Given a set of points
S ⊂ Rd and a reference point r ∈ Rd, compute the
hypervolume indicator of S, that is, H(S).

Problem 2 (OneContribution). Given a set of
points S ⊂ Rd, a reference point r ∈ Rd and a point
p ∈ Rd, compute the hypervolume contribution of p
to S, that is, H(p, S).

Problem 3 (AllContributions). Given a set of
points S ⊂ Rd and a reference point r ∈ Rd, com-
pute the hypervolume contributions H(p, S) for all
points p ∈ S to S.

Problem 4 (LeastContributor). Given a set of
points S ⊂ Rd and a reference point r ∈ Rd, find a
point p ∈ S with minimal hypervolume contribution
to S.

Problem 5 (UpdateHypervolume). Given a set of
points S ⊂ Rd, a reference point r ∈ Rd, the value
of H(S) and a point p ∈ Rd, compute:

• Incremental: H(S ∪ {p}) = H(S) +H(p, S),
if p /∈ S.

• Decremental: H(S \ {p}) = H(S)−H(p, S),
if p ∈ S.

Problem 6 (UpdateAllContributions). Given a set
of points S ⊂ Rd, a reference point r ∈ Rd, the value
of H(q, S) ∀q ∈ S and a point p ∈ Rd, compute:

• Incremental: H(q, S ∪ {p}) = H(q, S) −
H(p, q, S) for all q ∈ S and also H(p, S), where
p /∈ S.

• Decremental: H(q, S \ {p}) = H(q, S) +
H(p, q, S), where p ∈ S.

All the problems are related in some way and
most of them are solvable by solving one or more
of the other problems. Thus, the state-of-the-art
algorithms frequently exploit these relations. For
instance, the UpdateHypervolume problem can be
solved by computing either Hypervolume for the
set S ∪ {p} or OneContribution of p to S. On the
other hand, the Hypervolume problem can be solved
by computing a sequence of UpdateHypervolume,
recreating the set S by adding its points one by
one.

3. QHV
Quick Hypervolume (QHV) developed in [5] is an
exact hypervolume calculation algorithm for a d-
dimensional space and is a major contribution to
the state-of-the-art. It is a divide and conquer al-
gorithm, based on QuickSort, over a set of points S
and can be defined in 3 main steps:

1. Select a pivot point. The point is processed and
excluded from the following recursive calls.

2. Divide the space using axis parallel hyper-
planes according to the pivot and classify
points and their projections into the new space
regions. This step generates 2d subproblems.

3. Recursively solve each of the subproblems and
add up the hypervolumes.

More precisely, the idea of QHV is to, first, select
a pivot p such that p is not dominated by any other
point. This could be done by comparing all points
which would yield O(n2)-time. A better way is to
compute the inclusive hypervolume for each point

3

Figure 2: Dividing the 2-dimensional region at pivot
p. The new regions are labeled by binary numbers.
The point z is the reference point and the point o
is there just for the visualization and is not part of
the set of points the hypervolume is calculated for.

and pick the point with largest hypervolume as a
pivot in O(n)-time. The next step is to divide the
space at pivot p. The hyperoctants generated by
this step are labeled by binary strings of length d.
If a hyperoctant is labeled by a string s then if si =
0, it contains all points q ∈ Rd such that qi < pi
and if si = 1 then it contains all points q ∈ Rd
such that qi > pi. Considering the Figure 2, when
dividing the space at p, the 11 quadrant is always
empty and can be ignored in recursive calls. Also,
the 00 quadrant is completely full and equals to
the inclusive hypervolume of p leaving us with 01
and 10 quadrants for the conquer procedure. These
facts can be generalized for a d-dimensional space,
that is, the hyperoctant 1d is always empty and
0d is always equal to the inclusive hypervolume of
p ∈ Rd and all other hyperoctants are considered
for the recursive calls. Finally, the algorithm uses
the conquer technique and, recursively, applies the
steps to all hyperoctants but 0d and 1d. QHV also
includes a subroutine to discard dominated points
from each generated hyperoctant which makes the
recursive computations faster.

4. QHV-II
QHV has been improved in [1] by changing the
way the space is divided into subproblems which
resulted in the QHV-II algorithm. Instead of split-
ting the region at the point p in 2d hyperoctants,
QHV-II splits it in d hyperoctants, thus generating
less subproblems, and is done the following way:

• H1 is defined by points s such that s1 > p1.

• . . .

• Hj is defined by points s such that sl 6 pl,
∀l = 1, . . . , j − 1 ∧ sj > pj .

The QHV-II algorithm has been implemented in
Kotlin which runs on Java Virtual Machine and
the implementation details and complexity analy-
sis follow. First, the implemented algorithm does
not remove the dominated points unless they are
dominated by the pivot in which case they are au-
tomatically removed in O(d)-time when the set of
points is iterated over while creating subproblems’
hyperoctants. Second, the implementation does not
use any other strategy to compute the hypervol-
ume when some base case of number of points in
a problem is reached, i.e., QHV-II is applied at ev-
ery stage of the hypervolume computation, be that
for a problem of 2 points or one of n > 2 points.
The pseudocode for the algorithm is presented as
Algorithm 1.

Algorithm 1 QHV-II

Input: Initial set of points S and the reference
point r which is 0 by default.

Output: Exact hypervolume of set S.

1: if S is empty then
2: return 0
3: end if
4: if S.size is 1 then
5: p← The only point of S.
6: return H({p})
7: end if
8: p← S’s pivot
9: hypervolume← H({p})

10: Split space in d hyperoctants at point p gener-
ating the set {H1, . . . ,Hd} with the respective
reference points {r1, . . . , rd}

11: for all Hl ∈ {H1, . . . ,Hd} do
12: Construct set Sl containing the points domi-

nating rl and if necessary projected onto Hl

13: hypervolume ← hypervolume +
QHV-II(Sl, rl)

14: end for
15: return hypervolume

4.1. Theoretical Best Case Analysis

For the best case, it is necessary that the points are
uniformly distributed by the subproblems, i.e., each
subproblem is generated with n/d points, where n is
the number of points in the current problem. The
algorithm behaves as follows. It receives a hype-
roctant, calculates the hypervolume generated by
the pivot in O(nd)-time and breaks the problem in
d subproblems with n/d points each which is also
done in O(nd)-time. Thus, the recurrence is as fol-
lows:

T (n) = O(nd) +O(nd) + dT (n/d) (3)

4

where T (n) is the time that the algorithm takes to
process n points. Solving the recurrence we get

T (n) = O(nd logd n) (4)

which is the time complexity of the QHV-II algo-
rithm for the best case.

In this scenario, no points are projected to the
subsequent subproblems and only the initial n
points are used during the algorithm’s execution.
Therefore, the total space necessary for this sce-
nario is O(n).

4.2. Theoretical Worst Case Analysis
The worst case occurs when each subproblem has
n−1 points associated to it. This happens when all
the points except the pivot are projected to all the
subproblems. The algorithm behaves as in the best
case, but this time each subproblem is generated
with n− 1 points. Hence, the recurrence is

T (n) = O(nd) +O(nd) + dT (n− 1) (5)

which, when solved, results in

T (n) = O(nd× dn−1) = O(ndn) (6)

which is the worst case time complexity for the
QHV-II algorithm.

In this case, at each iteration i, d subproblems
with n−1 points are created. Hence, the space nec-
essary to store all the points throughout the whole
procedure is composed by the space necessary to
persist the initial set of n points and the subsequent
d(n − i) points at each iteration. The whole space
complexity can be described by

O
(
n+

n∑
i=1

(n− i)d
)

= O(n) +O
(
d

n∑
i=1

(n− i)
)

= O(n) +O
(
d
n(n− 1)

2

)
= O(n) +O(dn2)

= O(dn2 + n).

(7)

5. Quadtree
A quadtree is an hierarchical data structure with
a form of a tree and was first introduced by R. A.
Finkel and J. L. Bentley in [6] where it was used
to efficiently persist and retrieve two dimensional
points. It was later applied to the d−dimensional
optimization problems by W. Habenicht in [7] with
the main idea of using a quadtree to efficiently iden-
tify, persist and retrieve nondominated points.

Given the nature of the QHV-II algorithm and,
in particular, the way it partitions the space in sub-
problems guides us to believe that a quadtree would
seem an appropriate choice to store the problem’s

nondominated points. There are three core ideas
behind using a quadtree for the incremental hyper-
volume calculation problem: 1) the concept of suc-
cessorship; 2) the point insertion; and 3) the dis-
covery of dominated points. The first two ideas are
core for a normal quadtree which serves to store
any kind of points in some dimension d, whereas
the third idea shall be discussed in a context of a
domination free quadtree which is defined further.

Definition 10 (φ-successor). Let p, q ∈ Rd and φ ∈
{0, 1}d such that

φi =

{
1 if qi > pi

0 if qi < pi
,

then q is φ = φ1 . . . φd-successor of p.

The above definition is enough to construct a
quadtree from a set of points. The set is iterated
over and the points are inserted in the tree based on
their successorship relative to the points already in
the tree. This means that the order of the inserted
points matters when constructing a quadtree, i.e.,
two different insertion sequences might result in two
different quadtrees.

Given that there could be points which are 0 . . . 0-
and 1 . . . 1-successors of some other point, the idea
of having a quadtree consisting only of mutu-
ally nondominated points arises inevitably. This
quadtree would likely ease the hypervolume calcu-
lation process as we would no longer need to worry
about the dominated points which could appear in
large amounts.

Definition 11 (Domination Free Quadtree). A
quadtree is said to be domination free if and only
if it only contains mutually nondominated points if
and only if there are no 0 . . . 0- or 1 . . . 1-successors
in the quadtree.

6. IQHVII
The IQHVII algorithm has also been implemented
in Kotlin and uses a domination free quadtree to
store the nondominated points.

It is interesting to observe that to insert p into a
domination free quadtree with r as its root and p
being φ-successor of r we do not need to check every
single tree branch. The only places in the quadtree
where there might be points dominated by p are
the subtrees whose roots are r’s ψ-successors where
ψ has 0 in at least same positions as φ. Further-
more, the only places where there might be points
that dominate p are the subtrees whose roots are
r’s ψ-successors where each ψ has 1 in at least same
positions as φ.

The insertion algorithm presented as Algorithm
2 takes the ideas above into account when p is in-
serted. It first verifies if the quadtree is empty, and

5

if so, sets p as its root. Next, it searches through
the branches that might have points that dominate
p. This procedure is described in Algorithm 3 and
makes use of an auxiliary procedure Φ(a, b) which
computes φ-successorship of b relative to a. If there
is some point that dominates p, p is immediately
discarded. If the search is unsuccessful, i.e., there
are no such points, then the algorithm advances to
the next phase. It then scans the branches that
might have points dominated by p and, if there is
any, adds the tree whose root is that point to a sim-
ple list, treesToReinsert, so the point’s subtrees
can be reinserted, and removes it from the origi-
nal quadtree. The dominated point itself is added
to the dominatedPoints set which contains all the
points dominated by p. The procedure of finding
dominated points is presented as Algorithm 4.

Next, the treesToReinsert list is iterated over
and the points are reinserted into the quadtree.
Their removal and further reinsertion is necessary
because a point’s position in a tree is decided based
on the points already in that tree. Thus, by remov-
ing a dominated point, its children will be reinserted
relatively to a different set of points, potentially
altering the tree structure. Note that when rein-
serting those points, it is only necessary to check if
they are dominated by the newly inserted point p to
possibly discard them as p is the only point in the
structure that wasn’t yet compared to those points.

Algorithm 2 Insert into a domination free
quadtree (IDFQT)

Input: A quadtree T and a point p ∈ Rd.
Output: A boolean whether p was successfully

inserted or not.

1: if T is empty then
2: root← p
3: return true
4: end if
5: if pointIsDominated(T, p) then
6: return false
7: end if
8: if treeShouldBeReinserted(T, p) then
9: treesToReinsert.append(T)

10: root’s children ← {}
11: root← p
12: end if
13: insertPoint(T, p)
14: return true

Next, the point p is inserted based on its φ-
successorship throughout the quadtree which is rep-
resented in Algorithm 5. After p’s insertion, the
trees in the treesToReinsert list are reinserted us-
ing the reinsertTree procedure which recursively
inserts the points of a tree into another tree.

During the whole insertion process several extra
dominated points are generated by mixing p with
each of the points it was compared to. To do so, the
MIX procedure is used. It takes two points a and b
and creates a new point which has the minimum of
each coordinate between the two points. The idea
behind the extra dominated points is that if a point
q is in the tree branch scanned by p and is not domi-
nated by p and p is q’s . . . 0 . . . 1 . . . -successor then q
has a value of at least one coordinate greater than
p’s meaning that the hyperoctant generated by p
will surely intersect the one generated by q, creat-
ing an extra dominated point. These extra domi-
nated points enable the ability of always performing
hypervolume calculations relatively to the original
reference point.

Finally the hypervolume of the points in
dominatedPoints list is calculated and subtracted
from the inclusive hypervolume of p. The resulting
hypervolume is then added to the total.

The whole described procedure of inserting a
point and calculating the new total hypervolume
is the IQHVII algorithm and is presented as Algo-
rithm 6.

Algorithm 3 Check if a point is dominated by
some other point in a tree (pointIsDominated)

Input: A quadtree T and a point p ∈ Rd.
Output: A boolean whether p is dominated by

some point in T or not.

1: if T is empty then
2: return false
3: end if
4: if root dominates p then
5: return true
6: end if
7: φ← Φ(root, p)
8: for all child ∈ root’s children do
9: childφ ← Φ(root, child.root)

10: if childφ has ones in the same positions as φ
then

11: if pointIsDominated(child, p) then
12: return false
13: end if
14: end if
15: end for
16: dominatedPoints.append(MIX(root, p))
17: return false

Given the triviality and lack of excitement the
scenario with no points in the domination free
quadtree brings to the table, the algorithm’s com-
plexity analysis was performed assuming that there
are n points already inserted in the quadtree with
the point r as its root.

6

Algorithm 4 Check if a tree should be reinserted
(treeShouldBeReinserted)

Input: A quadtree T and a point p ∈ Rd.
Output: A boolean whether T should be

reinserted or not.

1: if T is empty then
2: return false
3: end if
4: if p dominates root then
5: return true
6: end if
7: dominatedPoints.append(MIX(root, p))
8: for all child ∈ root’s children do
9: if treeShouldBeReinserted(child, p) then

10: treesToReinsert.append(child)
11: delete child from T
12: end if
13: end for
14: return false

Algorithm 5 Insert a point p into tree T (insert-
Point)

Input: A quadtree T and a point p ∈ Rd.

1: if T is empty then
2: root← p
3: return
4: end if
5: φ← Φ(root, p)
6: child← root’s child with Φ(root, child) = φ
7: if child does not exist then
8: child← quadtree with p as its root
9: else

10: insertPoint(child, p)
11: end if
12: return

Algorithm 6 IQHVII

Input: A domination free quadtree T , current
hypervolume H and a new point p ∈ Rd.

Output: The new total hypervolume.

1: inserted← IDFQT(T, p)
2: if inserted then
3: for all tree ∈ treesToReinsert do
4: reinsertTree(T, tree)
5: end for
6: return H − QHV-II(dominatedPoints) +

QHV-II({p})
7: end if
8: return H

6.1. Theoretical Best Case Analysis
The best case scenario occurs when there are no
branches in the quadtree that should be scanned for
points that might dominate the new point p and the
ones that might have points dominated by p, so no
points need to be reinserted. Hence, we can arrange
the n points in such manner that none of the points
belongs to any of those branches.

For instance, imagine that p is 10 . . . 0-successor
for r and all the r’s children are ψi-successors
where 0 < i 6 numberOfChildren and
numberOfChildren is given by

(d− 1)

(
d− 2

2

)
= (d− 1)

(d− 2)!

2(d− 4)!

=
(d− 1)!

2(d− 4)!

=
(d− 1)(d− 2)(d− 3)(d− 4)!

2(d− 4)!

=
(d− 1)(d− 2)(d− 3)

2
.

(8)

Additionally, none of ψi has one in the first position
and each of the ψi has one in at least some other
position. This setup allows p being compared only
to r and its children and inserted immediately into
the r’s 10 . . . 0 branch. Hence, the time p takes to
compare itself to the root r and its children is

O(d) +O
(
d

(d− 1)(d− 2)(d− 3)

2

)
= O(d+ d4).

(9)

The insertion procedure also generates one dom-
inated point which is the result of mixing r with
p. The hypervolume of this point is calculated us-
ing QHV-II is O(d)-time and the hypervolume of
p is calculated identically. The arithmetic opera-
tions done on these hypervolumes are performed in
O(1)-time. Therefore, the final time complexity is

O(d+ d4) +O(d) +O(d) = O(d+ d4 + 2d)

= O(3d+ d4).
(10)

The space complexity for the best case is O(dn)-
space to persist the quadtree and O(d)-space to
persist the generated dominated point, totalling to
O(d(n+ 1)).

6.2. Theoretical Worst Case Analysis
The worst case scenario occurs when the new point
p dominates the quadtree’s root r and all the points
should be reinserted. As the IQHVII first checks
if p is dominated by some point in the quadtree,
we can arrange all the n points in such manner
that p must first be compared to the n points and
only then reinsert the dominated tree. This whole

7

procedure would result in the following. It would
take O(dn)-time for comparisons done when scan-
ning the branches for points which might dominate
p and O(d(n − 1))-time to mix each point with p
to generate n− 1 extra dominated points which we
will consider to be mutually nondominated for the
worst case scenario. When the n − 1 points would
be reinserted, each of them would be compared to
p to verify if it is dominated by p, taking another
O(d(n − 1))-time. The reinsertion of the points is
straight forward and it is not necessary to check
for dominated points or points that dominate the
reinserting point as the only new point in the dom-
ination free quadtree is p. Hence, in the worst case
scenario, the reinsertion of n− 1 points would take
O(dn)-time. To compute the hypervolume of the n
dominated points QHV-II would take O(ndn)-time
in the worst case. The inclusive hypervolume of p
can be computed in O(d)-time and the arithmetic
operations between the hypervolume values can be
executed in O(1)-time. This whole procedure has
the total time complexity of

O(2dn) +O(2d(n− 1)) +O(ndn) +O(d)

= O(d(4n− 1)) +O(ndn)

= O(n(4d+ dn)).

(11)

In this scenario O(dn)-space is necessary to store
the initial points in the domination free quadtree,
O(dn)-space for the generated dominated points
and O(dn)-space for the points to be reinserted, to-
talling to O(3dn)-space complexity.

7. Results
Both of the implemented algorithms were experi-
mentally tested on a machine with 2.3GHz Intel
Core i5 processor and 8GB of RAM memory. The
algorithms were ran against the same input de-
scribed in [8] and, also, compared to the execution
times of the WFG algorithm described in [9].

The IQHVII tests were executed in the following
manner. Given a dataset of n points, the last point
is removed and QHV-II is run computing the initial
hypervolume of n−1 points. During this procedure,
the n− 1 points are inserted into a domination free
quadtree. Next, the IQHVII algorithm is ready to
be tested, and the n-th point is inserted and the
hypervolume is updated. The time it takes to insert
the n-th point and to update the hypervolume is the
IQHVII’s total execution time.

It can be seen that, in all of the scenarios that
have been tested, the WFG algorithm behaves much
better than the implemented QHV-II. From the
theoretical analysis this outcome was expected as
QHV-II has worse time complexity than WFG.
Nonetheless, there are several technical issues that
could have impacted the performance of QHV-II.
First, it was implemented in Kotlin using object

Figure 3: IQHVII vs. QHV-II vs. WFG for a de-
generate dataset in 5 dimensions.

Figure 4: IQHVII vs. QHV-II vs. WFG for a de-
generate dataset in 6 dimensions.

oriented programming paradigm instead of using a
language like C for a more optimized performance
and memory managing. And second, the imple-
mented algorithm was not optimized to run some
other algorithm for subproblems, which were small
enough, in order to achieve faster execution times
in those cases.

For the IQHVII’s case, it is clear that IQHVII is
much faster than QHV-II, so we can freely conclude
that it would be better to add a new point, calculate
its exclusive hypervolume and add it to the total hy-
pervolume using IQHVII rather than to recalculate
completely the hypervolume using QHV-II. Never-
theless, IQHVII ran a little slower than WFG.

8. Conclusions

The results of the theoretical analysis of the in-
cremental implementation of the QHV-II algorithm

8

Figure 5: IQHVII vs. QHV-II vs. WFG for a de-
generate dataset in 7 dimensions.

Figure 6: IQHVII vs. QHV-II vs. WFG for a de-
generate dataset in 8 dimensions.

Figure 7: IQHVII vs. QHV-II vs. WFG for a de-
generate dataset in 9 dimensions.

Figure 8: IQHVII vs. QHV-II vs. WFG for a ran-
dom dataset in 6 dimensions.

Figure 9: IQHVII vs. QHV-II vs. WFG for a ran-
dom dataset in 7 dimensions.

Figure 10: IQHVII vs. QHV-II vs. WFG for a
random dataset in 8 dimensions.

9

Figure 11: IQHVII vs. QHV-II vs. WFG for a
random dataset in 9 dimensions.

show that it is faster to compute the hypervolume
of a set of points to which a new point p has been
added by computing p’s exclusive hypervolume and
adding it to the total hypervolume instead of recom-
puting the whole hypervolume using the QHV-II
algorithm. The experimental results confirmed the
theoretical analysis and showed that the IQHVII
algorithm outperforms QHV-II. Although it mostly
ran slower than WFG, the difference was slight and
the reasoning could be the difference between the
programming languages both algorithms were im-
plemented in and the optimization levels each of
them suffered.

8.1. Future Work
There are quite a few ideas for the future work
on the incremental implementation of the QHV-
II algorithm. It would be interesting to see if the
IQHVII algorithm can efficiently generate mutually
nondominated points dominated by the new point
p and study whether calculating the hypervolumes
relative to a point different from the original refer-
ence point is possible. Both of these ideas have the
potential to reduce the size of the problem of cal-
culating the hypervolume of points dominated by
p. Also, it would be very interesting to compare an
implementation which would allow adding n new
points at a time with the case of updating the hy-
pervolume n times using IQHVII. Finally, it would
be great to see the IQHVII algorithm implemented
in a language like C, optimized for some base cases
and ran using parallel threads.

References
[1] Andrzej Jaszkiewicz. Improved quick hypervol-

ume algorithm. CoRR, abs/1612.03402, 2016.

[2] Karl Bringmann and Tobias Friedrich. Approx-
imating the least hypervolume contributor: Np-

hard in general, but fast in practice. Theoretical
Computer Science, 425:104 – 116, 2012. The-
oretical Foundations of Evolutionary Computa-
tion.

[3] José Rui Figueira. Slides das aulas de Comple-
mentos de Investigação Computacional. 2018.
MEGI, IST, Lisboa.

[4] Andreia P. Guerreiro and Carlos M. Fonseca.
Computing and updating hypervolume con-
tributions in up to four dimensions. IEEE
Trans. Evolutionary Computation, 22(3):449–
463, 2018.

[5] L. M. S. Russo and A. P. Francisco. Quick hy-
pervolume. IEEE Transactions on Evolutionary
Computation, 18(4):481–502, Aug 2014.

[6] R. A. Finkel and J. L. Bentley. Quad trees a
data structure for retrieval on composite keys.
Acta Informatica, 4(1):1–9, Mar 1974.

[7] W. Habenicht. Quad trees, a datastructure for
discrete vector optimization problems. In Pierre
Hansen, editor, Essays and Surveys on Multi-
ple Criteria Decision Making, pages 136–145,
Berlin, Heidelberg, 1983. Springer Berlin Hei-
delberg.

[8] Data sets used for computational experiments.
www.wfg.csse.uwa.edu.au/hypervolume.

[9] L. While, L. Bradstreet, and L. Barone. A
fast way of calculating exact hypervolumes.
IEEE Transactions on Evolutionary Computa-
tion, 16(1):86–95, Feb 2012.

10

