
A Spoken Goal-Oriented Dialogue System

for Service Robots

João Nuno Marcelino Barroca
joao.barroca@tecnico.ulisboa.pt

Universidade de Lisboa, Portugal

December 2019

Abstract

In recent years, researchers have been trying to develop conversational systems capable of under-
standing and speaking in natural language, so that humans can interact with them easily and more
naturally. Human-Computer dialogue systems, particularly goal-based dialogue systems, have been
the most important component in conversational systems, since they allow users to speak naturally in
order to accomplish tasks more efficiently. However, when deployed to production, a spoken dialogue
system may encounter a variety of difficulties, such as a large variation in the users of the system
and high noise environments. Thus, the dialogue system must be able to use statistical frameworks
to handle the uncertainty in both the speech recognition and language understanding. In this work,
we develop a spoken goal-oriented dialogue system capable of dealing with such uncertainties, by
maintaining uncertainty about everything the user has said, and exploit the sequential nature of
dialogue to disambiguate in the presence of errors. In particular, we design three main components:
Natural Language Understanding (NLU), Dialogue State Tracking (DST) and Dialogue Management
(DM). Furthermore, we implement the developed dialogue system in a service robot and test the
complete system on a real world environment.

Keywords: Spoken Dialogue Systems, Natural Language Understanding, Dialogue State Tracking,
Dialogue Management, Human-Robot Interaction

1. Introduction

Robotics hold tremendous potential to benefit hu-
mans in all aspect of life. These benefits have been
widely demonstrated in industrial environments,
where automation and robotics have boosted the
efficiency and productivity of industries, while re-
ducing the costs in labor and production. Nowa-
days, due to technological advances, particularly in
the field of Artificial Intelligence, robots are starting
to be deployed and integrated into our daily envi-
ronment. Since, one of their main limitations is the
inability to communicate with humans in a natural
manner, the integration of robots into our daily lives
has triggered the need to enhance Human-Robot In-
teraction (HRI) with speech and natural language.

In recent years, researchers have been trying
to develop systems capable of understanding and
speaking in natural language, so that humans can
interact with them easily and more naturally. Those
systems do not necessary have to be integrated in
physical robots. In fact, conversational systems
such as virtual personal assistants are increasingly
becoming a part of daily life, with examples includ-

ing Apples Siri, Google Now, Nuance Dragon Go,
Xbox and Cortana from Microsoft, and numerous
start-ups [16]. Spoken goal-based dialogue systems,
have been the most important component in con-
versational systems, since they allow users to speak
naturally in order to accomplish tasks more effi-
ciently. A spoken dialogue system can be defined
as a computer system able to interact with humans
on a turn-by-turn basic, and in which spoken nat-
ural language interface plays an important part in
the communication [1]. They are widely demanded
in network information services, service, domestic
and social robots, and so on.

When exposed to the public, a spoken dialogue
system may encounter a variety of difficulties, such
as a large variation in the users of the system and
high noise environments. Therefore, the dialogue
system must be able to use statistical frameworks to
handle the uncertainty in both speech recognition
and language understanding. Statistical dialogue
systems are able to maintain uncertainty about ev-
erything the user has said, and exploit the sequen-
tial nature of dialogue to disambiguate in the pres-
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ence of errors [6].

This work aims at developing a spoken goal-
oriented dialogue system capable of dealing with
uncertainty in speech recognition, to be further im-
plemented in a service robot. To achieve this, we de-
signed three main components of a typical dialogue
system pipeline, namely the Natural Language Un-
derstanding (NLU), the Dialogue State Tracker
(DST) and the Dialogue Management (DM).

2. Previous Work

Traditionally, dialogue systems can be split into two
classes: the goal-driven or non-goal-driven dialogue
systems. The former represent the interaction be-
tween a human and a computer in a task-oriented
context, while the latter, usually called chatbots,
are related to chat communication.

First research in task-oriented dialogue systems
began in the early 1990s, when MIT (Massachusetts
Institute of Technology) developed an automatic
flight booking system [12]. Similar dialogue systems
were developed in the following decade: HMIHY
(How May I help You?), a spoken dialogue system
based on call routing [5], and JUPITER, a conver-
sational interface that allows users to obtain world-
wide weather information over the telephone using
spoken dialogue [18]. Non-goal-driven dialogue sys-
tems usually respond to user utterances without any
specific goal. ELIZA [15] might be the first chatbot,
and one of the first programs capable of attempting
the Turing test.

The majority of modern task-based dialogue sys-
tems make use of the frame-based architecture, first
introduced in the GUS system for travel planing [2].
In a frame-based architecture, the system uses a
domain ontology, a knowledge structure represent-
ing the kinds of information the system can extract
from user utterances [7]. The ontology not only de-
fines one or more frames, each a collection of slots,
but also the possible values each slot can take. How-
ever, frame-based dialogue systems are not capable
of asking questions, giving orders, or making infor-
mational statements [7]. The dialogue-state archi-
tecture, like the GUS systems, is based on filling in
the slots of frames. Nevertheless, the dialogue-state
architecture has a different way of deciding what
to say next than the GUS systems. Simple frame-
based systems often just continuously ask questions
corresponding to unfilled slots, while the dialogue-
state based systems use a dialogue policy to decide
what to say.

The typical dialogue-state architecture consists of
the following components, arranged in a pipeline:
Automatic Speech Recognizer (ASR), Natural Lan-
guage Understanding (NLU), Dialogue State Track-
ing (DST), Dialogue Management (DM), Natural
Language Generation (NLG), and Text-to-Speech

(TTS). First, the computer needs to convert speech
into text and then extract task related information
from user utterances, which is done by the ASR and
NLU, respectively. Second, the computer must be
able to control the process of a dialogue. Initially,
the DST estimates the state of the conversation,
and then the DM generates actions based on the
dialogue state. Finally, the computer needs to con-
vert the system output actions to natural language
sentences, and then to speech, which is the objective
of NLG and TTS. This architecture is represented
in Figure 1.

Figure 1: Dialogue-state architecture for dialogue
systems.

2.1. Natural Language Understanding
Natural Language Understanding (NLU) allows the
system to extract task related information from the
user utterances. Traditionally, this information is
extracted by three main NLU sub-tasks: domain
classification, intent detection and slot filling. Do-
main classification is responsible for determine the
domain of the conversation, while intent detection
is aimed at determine what is the general task or
goal that the user is trying to accomplish. Finally,
slot filling extracts semantic concepts, in particular
the slots and fillers that the user intends the system
to understand from their utterance [7].

In recent years, deep learning models have been
extensively explored in NLU, particularly, Recur-
rent Neural Networks (RNNs) and Long-Short
Term Networks (LSTMs) [11]. Prior work have also
shown that joint modeling the NLU tasks can ex-
ploit and model the dependencies between them and
improve the performance over independent models
[3]. In addition, enchanting those models with at-
tention mechanisms can help with long-range de-
pendencies [10].

However, recent breakthroughs in the NLP field
introduced a variety of unsupervised techniques for
training general purpose language models using a
large amount of unannotated text. Those pre-
trained models can be fine-tuned on NLP tasks,
yielding a significant improvement over training on
task-specific annotated data and reducing the time
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needed for training a specific model. One of those
pre-trained models, BERT (Bidirectional Encoder
Representations from Transformers) [4], has created
state-of-the-art models for a wide variety of NLP
tasks. Therefore, it triggered great interest in ex-
ploring the use of BERT in the natural language
understanding tasks. Chen et al. [3] proposed a
joint BERT-based model for both intent detection
and slot filing, achieving significant improvements
in both intent classification accuracy and slot fil-
ing F1, compared to the previous attention-based
joint models. Besides that, they also demonstrate a
large gain in the sentence-level semantic frame ac-
curacy on the Snips dataset, which include multiple
domains and has a large vocabulary, and therefore
showing the strong generalization capability of us-
ing a general purpose language model [3].

2.2. Dialogue State Tracking
Dialogue State Tracking (DST) refers to the task
of correctly estimating the state of the dialogue
[16]. This task is particularly difficult because of
the common ASR and NLU errors, which may cause
the system to misunderstand the user. At the same
time, the dialogue state tracking is the core of any
dialogue system, because the dialogue policy relies
on the estimated dialogue state to choose actions.

So far, three families of dialogue state tracking
algorithms have been widely explored and imple-
mented: hand-crafted rules, generative models, and
discriminative models. Williams et al.[16] give a
detailed review on the state-of-the-art in dialogue
state tracking, comparing a variety of models in
the Dialogue State Tracking Challenge (DSTC),
which represents the benchmark challenge for di-
alogue state tracking.

2.3. Dialogue Management
Conventional dialogue systems typically maintain a
single hypothesis for the dialogue state, effectively
making the assumption that the state is known
[6]. A variety of frameworks have been proposed
to choose the best action to perform, taking into
account the single state [8], [9]. These approaches
introduce some advantages, such as bootstrapping,
and an easy way of incorporating context knowl-
edge. However, none of them suggest a way of learn-
ing which actions should be taken. More recently
approaches for dialogue systems allows to main-
tain a probability distribution over states instead of
tracking a single state hypothesis, and thereby in-
clude details of the uncertainty in the user inputs.
Thus, a more theoretically well-founded framework
is to cast the problem as a partially observable
Markov decision process (POMDP). We direct the
reader to Young et al. [17] for a detailed review of
formulating dialogue as a POMDP.

Nowadays, the state-of-the-art approach is to use

Reinforcement Learning (RL), in which the dialogue
system is seen as a conversational agent, and the di-
alog system responses are interpreted as the agent
actions . Thus, RL allows the agent to learn an op-
timal policy which can map the state of a dialogue
conversation to a system response.

3. Problem Description and Solution

This thesis aims at developing a spoken goal-
oriented dialogue system, which can be defined as
a computer system able to interact with humans
on a task oriented context. Our goal-oriented di-
alogue system is designed based on the dialogue-
state architecture. In a dialogue-state architecture,
the system uses a domain ontology D, which rep-
resents the kinds of information the system can ex-
tract from the users. The ontology defines one or
more frames, each a collection of slots, s, and de-
fines the values, v, that each slot can take. The set
of slots specifies what the system needs to know,
and the filler of each slot is constrained to values
that the slot can take.

3.1. Domestic Domain

The dialogue system will be implemented in a ser-
vice robot, operating in a domestic environment.
In a domestic environment, a robot must perform a
variety of domestic/service tasks. One of the first
problems the robot must solve is to discover which
task it is being asked to perform and, hence, a slot
of the utmost importance should be of the type in-
tent. The second problem the robot must solve is
to fill the slots of the task. Hence, other two impor-
tant slots the system must fill are the source and
destination. As the names suggest, these slots
hold information about the beginning and ending
of a specific task, respectively. Finally, three more
slots are defined: the object, the person and the
what-to-say slots, which refer to the object and
the person involved in the task, and the latter refers
to what the robot must say.

3.1.1 GPSR and SciRoc

In order to evaluate the performance of service
robots, there are two international robotics compe-
titions, RoboCup and European Robotics League
(ERL), which have benchmark challenges. One of
these challenges is General Purpose Service Robots
(GPSR), in which the robot is ordered to perform
some domestic tasks. Table 1 gives a brief descrip-
tion of the GPSR tasks. Recently, another project
was created to support the ERL tournament in the
context of smart cities. The SciRoc challenge fo-
cus on smart shopping and is divided in a series of
episodes. In one of these episodes, the robot assists
people in a coffee shop, and takes care of customers,
by taking orders and bringing objects to and from
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customers’ tables. Table 2 describes the task of the
SciRoc coffee shop challenge. The developed dia-
logue system is design for the GPSR task. How-
ever, it has been tested in the SciRoc coffee shop
challenge, with a few modifications.

Table 1: Tasks and respective description for the
GPSR challenge.

Task Description

Motion Moves to some place

Meet Meets a person

Grasp Grabs an object

Place Places an object

Follow Follows a person to a location

Tell Tells something to someone

Find Looks for an object or person

Guide Guides a person to a location

Take
Takes an object from some place to

another or gives it to someone

Table 2: Task and respective description for the
SciRoc coffee shop challenge.

Task Description

Order
Order three items (objects) from the

coffee shop menu

3.2. Natural Language Understanding
Traditional natural language understanding (NLU)
models perform three different sub-tasks: domain
classification, intent detection and slot filing. How-
ever, when implemented in a dialogue system
pipeline, the NLU must also be able to identify the
dialogue act type, d-type, which will help the di-
alogue system to extract some information about
dialogue specific actions. Therefore, besides intent
detection and slot filing, our NLU model will also
perform the dialogue act type classification of the
user utterances. The domain classification will be
ignored, since our dialogue system will be imple-
mented in a single-domain domestic environment.

Recent state-of-the-art models for the main NLP
tasks are based on pre-trained general purpose lan-
guage models. Because of the lacking of real-world
labeled data for our task, we have decided to build a
model based on a pre-trained general purpose lan-
guage model, namely BERT, and exploit its gen-
eralization capability. The model architecture of
BERT is a multi-layer bidirectional Transformer en-
coder based on the original Transformer[13], which
consists of 12 encoder layers. The base version1

1BERT developers released two model architectures:
BERT base and BERT large.

uses vectors with a size of 768 and the multi-head
attention mechanisms are composed of 12 heads.
BERT takes the input representation of words as
a concatenation of WordPiece, positional, and seg-
ment embeddings. In addition, a special classifica-
tion embedding, [cls], is inserted as the first to-
ken to provide a context-dependent representation
of the full input sentence, h[cls].

We formalize the dialogue act type classifica-
tion and intent detection as classification problems,
while the slot filing task is considered as a sequence
labeling task. Sequence labeling requires aligned
data. Therefore we need to do aligned labeling in
order to provide an alignment between the words in
the input utterance and the target semantics, which
can be achieved by using BIO tags. Table 3 repre-
sents and example of sequence labeling using BIO
tags.

Table 3: Sequence labeling using BIO tagging. In
this example, the slots are: per(person)=”me”,
obj(object)=”book”.

Tokens Bring me a book
Labels o b-per o b-obj

We developed three independent models. Both
dialogue type classification, intent detection and
slot filing models are composed of a pre-trained En-
glish uncased BERT-base model, stacked with a
classifier layer (linear layer + softmax). However,
in the dialogue type classification and intent detec-
tion we classify the whole sentence, while in slot
filing we classify each word of the input sentence.
Both type of models are represented in Figures 2
and 3.

Figure 2: Classification model used for dialogue
type classification and intent detection.
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Based on the hidden state of the first special to-
ken [CLS], denoted h[cls], both the dialogue act
type and intent are predicted as:

yd = softmax(W dhd
[cls] + bd) (1)

yi = softmax(W ihi
[cls] + bi) (2)

where W d, bd and W i, bi are the weights and bi-
ases associated with the classifier layer, and hd

[cls],

hi
[cls] are the hidden state representations of the

special token [cls], for the dialogue act type and
the intent, respectively.

Figure 3: Sequence labeling model used for slot fil-
ing.

In addition, each model will have an independent
learning objective, which is to maximize the con-
ditional probability P (yd|x) and P (yi|x), respec-
tively. The models are fine-tuned end-to-end via
minimizing the cross-entropy loss.

For slot filling, as a sequence labeling task, we
need the final hidden states for the tokens repre-
senting each of the input words, denoted hx =
(h1,h2, ...,hN ). We then feed each of the hidden
representation into a softmax layer, yielding a label
for each token, ysn, n ∈ 1...N , where N is the total
number of tokens.

ysn = softmax(W shs
n + bs) (3)

where W s and bs represent the weights and biases
of the classifier layer of the slot filing model, and hs

n

is the hidden state representation of the n-th input
token.

The objective if formulated as:

P (ys|x) =

N∏
n=1

P (ysn|x) (4)

and the learning objective is to maximize the con-
ditional probability P (ys|x). Similar to the previ-
ous models, the slot filing model is fine-tuned end-
to-end via minimizing the cross-entropy loss.

3.3. Dialogue State Tracker

For the dialogue state tracker (DST), we chose to
use a rule-based method, since we had no dialogue
data for this particular domain, to train a statistical
model. In addition, we also wanted a dialogue state
tracker capable of tracking multiple hypothesis and
maintain a belief over dialogue states. A particular
rule-based method, that achieved significant results
in the DSTC benchmark tasks, is a generic DST
that maintains beliefs over user goals, particularly
over individual slot-value pairs, based on a few sim-
ple domain independent rules [14]. These rules use
basic heuristic operations, which are derived from
some probabilistic mathematics.

Each turn, the dialogue system executes an ac-
tion and receives an observation, which is an N-
best list of user acts (or dialogue acts). First, the
user acts with more than one slot-value pairs will be
split into single slot-value user acts. Then, the user
acts with the same slot-value pairs will be merged
across the N-best list by summing their confidence
scores, yielding marginal confidence scores for in-
dividual slot-value representations. Finally, the di-
alogue state tracker will use the single slot-value
user acts to update the current dialogue state using
a set of heuristic rules. Let Pt(u, s, v) denote the
marginal confidence score for a user dialogue act
u(s = v) at turn t. Then, the belief bt(s, v) for the
slot-value pair (s, v) is updated as [14]:

• Rule 1: If u = inform, then bt(s, v) = 1− (1−
bt−1(s, v))(1− Pt(u, s, v)).

In addition, we also consider the effects of certain
system actions on the belief updates as well. Let
a(h) be one of the system actions performed in turn
t, where h stands for a set of n slot-value arguments
taken by a, i.e. h = (s1, v1), ..., (sn, vn) [14].

• Rule 2: If a is an implicit or explicit confir-
mation action, confirm, and an affirm or
negate user act u is observed with confidence
score Pt(u):

– Rule 2.1: If u = affirm, then bt(si, vi) =
1− (1− bt−1(si, vi))(1−Pt(u)),∀(si, vi) ∈
h.

– Rule 2.2: If u = negate, then bt(si, vi) =
bt−1(si, vi)(1− Pt(u)),∀(si, vi) ∈ h.

Finally, we add another rule to restart the belief
for all slot-value hypothesis when a restart action is
requested by the user.
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• Rule 3: If a restart user act u is ob-
served with confidence score Pt(u) ≥ τR, then
bt(si, vi) = 0,∀(si, vi) ∈ D, where D is the do-
main ontology and τR is a restart thresh-
old.

3.4. Dialogue Manager
Similarly to dialogue state tracking, we have de-
cided to design the dialogue manager (DM) using a
rule-based approach. Briefly, the DM will compute
a task state, tt, and then use a set of hand-crafted
rules to choose the next system’s action. This task
state is computed using a set of task templates, de-
fined in a task ontology, T .

Consider the dialogue state at turn t, st =
(bt(s1, v1), ..., bt(sM , vM )), where M denotes the to-
tal number of slot-value pairs, and a system re-
sponse dialogue act generated in the same turn,
dat = a(h), where a denotes the dialogue act type
and h = (s1, v1), ..., (sk, vk) is a set of k slot-value
arguments taken by a.

First, the dialogue manager verifies if the dia-
logue state contains a value for the intent slot. If
not, the system cannot know the user’s goal. There-
fore, it must ask for that specific slot, generating the
system response dialogue act request(intent).

• Rule 1: if (intent, v) @ st, then dat = a(h) =
request(intent).

On the other hand, when the dialogue state
contains a value for the intent slot (e.g. in-
tent=take), but its confidence is lower than a
slot threshold, τs, then the system generates
the dialogue act, confirm(intent=take).

• Rule 2: if (s = intent, v) ∃ st, with
bt(s = intent, v) ≤ τs, then dat = a(h) =
confirm(intent, v).

Otherwise, if the dialogue state has a value for
the intent slot and is confidence enough about it,
it chooses the task templates related to that spe-
cific intent. Each task template has a set of re-
quired slots, sreq (i.e. slots required to perform that
specific task), and also a task confidence score ct.
In this case, the DM starts filling the task tem-
plates, using the slot-value pairs in the dialogue
state. For each task template, the DM searches
in the dialogue state for the slot-value pairs whose
slot belongs to the required slots of the task, i.e.
(s, v) ∈ st, s ∈ sreq. If the confidence score of those
slot-value pairs is greater than the slot thresh-
old, bt(s, v) > τs, the slot-value pairs are added to
the task template. In addition, for each slot-value
pair added to the task template, the task confidence
is updated as cti = cti−1 · bt(s, v). The initial task
confidence score is the confidence score of the intent
slot, ct0 = bt(intent, v).

In the end, at each turn t, we have a set of task
templates related to a specific task, defined by the
intent slots in the dialogue state. Each of these
task templates contains slot-value pairs extracted
from the dialogue state, whose slots are required to
perform that specific task, and a task confidence
score. Finally, the DM chooses the task template
which contains lesser unfilled required slots. If there
are two task templates with the same number of
unfilled required slots, the one with the higher con-
fidence score is chosen. Finally, the task state, tt,
is computed using the chosen task template.

Thus, at each turn t, a task state composed of
j slot-value pairs, tt = (s1, v1), ..., (sj , vj), with
a certain task confidence ct, is computed. If
the task confidence score is lower than a task
threshold, τT , (i.e. the system is not entirely
sure of all the information in the task state), the
DM generates the system response dialogue act
confirm((s1, v1), ..., (sj , vj)).

• Rule 3: for tt = (s1, v1), ..., (sj , vj),
if ct ≤ τT , then dat = a(h) =
confirm((s1, v1), ..., (sj , vj)).

If the task confidence score is greater than the
task threshold, then the DM will check if the
task state (task template) has all the required slots
full-filled, i.e. if all the required information is pre-
sented. If not, it must generate a system response
dialogue act requesting one of the missing slots,
request(s).

• Rule 4: for tt = (s1, v1), ..., (sj , vj), ct >
τT , if sk ∃ sreq, sk /∈ tt then dat = a(h) =
request(sk).

4. Experiments and Analysis

In general, the main performance indicator for our
dialogue system is the NLU performance, since the
dialogue system relies entirely on the semantic in-
formation extracted by the NLU for computing the
dialogue state, and then uses the dialogue state to
generate responses. Thus, our analysis will be fo-
cused on the NLU models and their performance.

4.1. Natural Language Understanding
The major problem when developing the dialogue
system was the non-existence of any real data re-
lated to the tasks we want the robot to perform.
The adopted solution was to design our own data
generator to generate the training and test datasets.
However, for validating the model, we used the
available GPSR generator2, which is the official gen-
erator used in the GPSR competition. After gen-
erating the user utterances, they were manually la-
beled with intent labels and slot tags. Nevertheless,

2https://github.com/kyordhel/GPSRCmdGen
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for dialogue act type classification, we were not able
to generate any validation data, since the GPSR
generator only generates text commands which cor-
respond to a inform dialogue act type. The gener-
ated training, test, and validation sets contain 5000,
500, and 100 utterances, respectively. There are 11
slot labels, 10 dialogue act type labels, and 9 intent
labels.

4.1.1 Metrics

The evaluation of the models is based on some stan-
dard classification metrics: precision, recall and F1-
score. The precision of a model reflects how precise
the model is in identifying the true elements of a
class, while the recall indicates how many of the
relevant items are selected. Together, precision and
recall metrics are capable of characterizing the per-
formance of a classification model, since they can
evaluate the proportion of items of a specific class
that are being correctly predicted as belonging to
that class. Usually, the precision and recall metrics
can be represented together as the F1 score, which
computes their harmonic mean.

In addition, we also evaluate the model using the
auroc (Area Under the Receiver Operating Char-
acteristic curve), which is a performance measure-
ment commonly used in binary classification prob-
lems, and indicate how well the model is capable
of distinguishing between classes. We extend this
metric to a multi-class classification by using a one
vs all methodology.

4.1.2 Results

The NLU models use the English uncased BERT-
base model, which is pre-trained on a large corpus.
Traditionally, two main transfer learning techniques
can be chosen when using a pre-trained model. We
can use the pre-trained model as feature-extractor
or fine-tune it on the new task. We have decided to
compare both approaches, and compare their per-
formance.

Therefore, we trained both the intent detection
(classification task) and slot filing (sequence label-
ing task) models using both approaches, and for
each training epoch we evaluated the models on the
test set. We have decided not to analyze the dia-
logue act type classification model, since we already
have a classification task represented in the intent
detection analysis. Figure 4 shows the difference
between the performance of the slot filing model,
using the feature-extraction (EX) and fine-tuning
(FT) approaches. The results for the intent de-
tection model are not presented in this paper, but
are similar to the slot filing analysis. The results
were obtained by training the models several times
using different combinations of hyper-parameters.

Figure 4: Fine-tuning (FT, green) vs feature ex-
traction (EX, yellow) for slot filing.

It is clear that fine-tuning BERT during training
leads to a significant increase in models perfor-
mance, over the feature-extraction approach. Not
only the models are able to achieve a greater F1-
Score, but they also require a fewer number of train-
ing epochs. Intuitively, the fine-tuning approach en-
ables the adaptation of the pre-trained representa-
tions to get better features for the new tasks, which
may lead to a better overall performance.

After the previous analysis, we have decided to
implement the fine-tuning technique for training
the NLU models. For fine-tuning BERT, Devlin et
al.[4] keeps most model hyper-parameters the same
as in pre-training, with the exception of the batch
size, learning rate and number of training epochs.
Although task-specific, Devlin et al.[4] suggests a
range of possible values to work well across all tasks.

Since fine-tuning is typically very fast, it is rea-
sonable to run an exhaustive search over the above
parameters. Therefore, we have trained the models
using combinations of different hyper-parameters,
and random parameters’ initializations using differ-
ent seeds, for a total number of 15 epochs3. The
training and validation results will be shown fur-
ther.

First, we trained the dialogue act type classifica-
tion model. Figure 5 shows the performance of the
model on the test set during training. It is trivial to
see that the model is able to predict the data really
easy, with a perfect F1 score after the first epoch.
Intuitively, this results may be explained because
of the BERT pre-training. BERT represents the
input sentence as a context-dependent feature vec-
tor. Since BERT was already pre-trained on a large
text corpus, it only needs some slightly adaptations
on the pre-trained representations for the final clas-
sifier layer to be able to easily split the different

3Each epoch, we save the model and run an evaluation on
the test set.
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Figure 5: Dialogue act type classification model
evaluation on test set during training

classes.
As referred earlier, we were not able to gener-

ate a validation set for validating the dialogue act
type classification model. However, several tests
were performed to check the model’s performance,
where we tested different type of user commands
and checked the model’s predictions. Since usually
the user commands reflecting confirmations, nega-
tions, repetitions, and greetings are fairly simple,
the model was able to correctly identify the differ-
ent dialogue act types of user commands.

Next, we trained the intent detection model.
Similarly to dialogue act type classification, this
model was also able to achieve really good results
after only one epoch (see Figure 6).

Figure 6: Intent detection model evaluation on test
set during training.

In contrast with the dialogue act type classifica-
tion, for intent detection we were able to validate
the model on a validation dataset. As referred be-
fore, this validation data was generated using the
official GPSR command generator, and then man-
ually labeled with the different intent types. The
validation results are shown on Table 4 and Figure

7.

Table 4: Validation results for the intent detection.

Precision Recall F1
tell 1.0000 1.0000 1.0000
find 1.0000 1.0000 1.0000
go 1.0000 1.0000 1.0000

take 0.9412 0.9412 0.9412
guide 0.9286 0.8667 0.8966
follow 1.0000 1.0000 1.0000
answer 1.0000 1.0000 1.0000
place 1.0000 1.0000 1.0000

Micro Average 0.9770 0.9659 0.9714
Macro Average 0.9765 0.9659 0.9710

Table 4 shows that the model is performing re-
ally well, with an overall F1 score of 97.1%. How-
ever, it is also clear that the intent labels take and
guide are the cases where the model is performing
worse, with an F1 score of 94.1% and 89.7%, respec-
tively. A deeper analysis of the validation dataset
indicates that the problem could be related to the
fact that both take and guide commands can be
represented with the verb take, e.g. ”take the book
from the table” and ”take John to the living room”.
However, by analyzing the model predictions on the
validation set, we verified that the model was ca-
pable of distinguish between both types of intents,
taking into account that a take intent command
is usually highly correlated with an object, while
a guide intent command is correlated with a per-
son.

Figure 7: roc for the intent detection model perfor-
mance on validation data using a one vs all method-
ology. Classes with a auroc of 1.0 are omitted for
visualization

Intuitively, this means that the self-attention
mechanism from BERT is able to model these cor-
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relations. Nevertheless, since the validation set is
generated using a more complex generator than the
training and test sets, it contains more general and
unusual commands, such as ”take the pointing right
person to the kitchen cabinet”. We noted that, in
this specific command and others similar to it, the
model was not capable of labeling them as a guide
intent, because it was not interpreting ”the point-
ing right person” as a word sequence describing a
person.

Figure 7 shows the roc curve. For every class,
the auroc is 1.0 (or real close to 1.0), which means
that the model has an excellent measure of separa-
bility.

Finally, we trained the last model, the slot filing
model, whose training results are shown on Figure
8. After the first/second epochs, the model is al-
ready performing really well. We saved the model
correspondent to the 10th epoch (purple), since it
is when the F1 score stabilizes. Next, we validated
the model, yielding the results represented on Table
5 and Figure 9.

Figure 8: Slot filing model evaluation on test set
during training.

Table 5: Slot filing model results on validation data.

Precision Recall F1
person 0.9792 0.8704 0.9216
object 0.9444 1.0000 0.9714
source 1.0000 0.9355 0.9667

destination 0.9577 1.0000 0.9784
what-to-tell 0.9000 0.9000 0.9000
Micro Average 0.9639 0.9492 0.9565
Macro Average 0.9650 0.9492 0.9558

Table 5 shows that the model is having some dif-
ficulty labeling the words that correspond to the
slot what-to-tell. Usually, in the user commands
that ask the robot to tell something, the sequence of

words that indicate what the robot must say have
an high length. For example, consider the com-
mand ”please tell me the day of the month”. To
the slot what-to-tell, must correspond the value
”the day of the month”, which has a length of 5.
However, the model predicts this by labeling each
word individually, using BIO tagging. Sometimes,
the model is predicting the label B-what to tell
instead of I-what to tell, which is causing the
performance degradation, since the model consid-
ers them as different labels. In addition, we can also
verify that the slot person has a lower recall com-
pared with the model overall performance. This is
due to the same problem described in the intent de-
tection model, with user utterances similar to ”take
the pointing right person to the kitchen cabinet”,
where the model is not predicting the tokens with
the label person, and hence the recall drops. Sim-
ilar to the intent detection model, Figure 9 shows
the slot filing model also has an excellent measure
of separability.

Figure 9: roc curve for the slot filing model perfor-
mance on validation data using a one vs all method-
ology. Classes with an auroc of 1.0 are omitted for
visualization.

The previous results show that, when evaluated
on the test set, the models achieve really good re-
sults, which was already expected since they were
evaluated on a dataset generated with the same gen-
erator of the training set. However, the validation
set allowed us to check if the model was not over-
fitting to the training data (since it has been gen-
erated using the official GPSR generator). The re-
sults on the validation set are still very good, which
shows that the model is performing and generaliz-
ing well. Nevertheless, the validation data cannot
be seen as a representation of the real world data
distribution. Thus, the validation of the NLU mod-
els on a real world dataset would represent a better
indicator for the performance and generalization ca-
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pability of the model.

4.2. SciRoc

After developing the dialogue system, we imple-
mented it on a service robot that was used to com-
pete in the SciRoc coffee shop task, where the robot
must be able to serve customers in a coffee shop, and
therefore recognize their orders. For each table, the
robot must annotate the orders, composed of three
different objects. In summary, during the trials, the
dialogue system was able to take the orders from
the customers4. This reflects the good generaliza-
tion capability from the NLU models, particularly
the slot filing model, which is able to label multiple
objects in the same utterance, without even seeing
this type of sentences during training. In addition,
it is also capable of labeling objects that were not
part of the training data. Furthermore, the DST
and DM were able to track multiple recognized hy-
pothesis and use the sequential nature of the dia-
logue to request more information from the users or
confirm some of the orders.

5. Conclusions

The main purpose of this work was to design a spo-
ken goal-based dialogue system capable of dealing
with the uncertainty in speech recognition. This
objective is achieved by three main contributions:
an NLU component which takes advantage of using
BERT to exploit its great performance and gen-
eralization capability; a DST capable of tracking
multiple recognized hypothesis and maintain beliefs
over slot-value pairs; a DM that generate responses
based on the dialogue state, which enables the sys-
tem to use the sequential nature of dialogue to dis-
ambiguate in the presence of errors. As final re-
mark, we were able to test the dialogue system in
a real world environment where, in general, it was
capable of handling most of the conversations and
was able to successfully take the orders.

5.1. Current Limitations and Future Work

In general, the developed spoken dialogue system
performs well in simple environments. Neverthe-
less, it is still restricted by the NLU performance,
since it relies entirely on the semantic information
extracted by the NLU for computing the dialogue
state. Although performing and generalizing well,
the NLU still holds some limitations, particularly
because the models were trained using generated
datasets and not real world data. In addition, in-
cluding the system actions from previous dialogue
turns in the input features, together with the user
utterances, may help overcoming some of those lim-
itations. Jointly modeling the three tasks would
also enable the model to exploit the relationships

4A video of a real conversation from the competition is
available at https://youtu.be/FGTSXI By7s

between the tasks, increasing the performance. Fi-
nally, the use of a structured predictor in the slot
filing model, such as a conditional random field
(CRF), can help modeling the relationships between
the labels.
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