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Resumo

Nos últimos anos, os investigadores têm tentado desenvolver sistemas automáticos de conversação

capazes de interagir com os utilizadores de forma fácil e natural. Estes sistemas baseiam-se, essen-

cialmente, na utilização de língua natural, ou seja, fala utilizada na comunicação entre seres humanos

no dia-a-dia, permitindo assim uma interação mais eficiente entre o computador e o utilizador. Estes

tipos de sistemas são extremamente utilizados em serviços de informação de rede, e em robôs domés-

ticos, de serviço e sociais. Quando implementados no mundo real, uma grande variedade de fatores

pode contribuir para uma degradação no seu desempenho. Alguns dos principais fatores são a elevada

variedade no modo como os utilizadores falam e interagem com o sistema, e o elevado ruído encon-

trado em determinados ambientes. Assim, este tipo de sistemas de conversação deve ser capaz de

lidar com a incerteza no reconhecimento de fala e compreensão do que o utilizador diz, explorando a

natureza sequencial do diálogo para desambiguar tais incertezas. Nesta dissertação, desenvolvemos

um sistema de diálogo capaz de lidar com essas incertezas. Em particular, projetamos três compo-

nentes essenciais que constituem este tipo de sistemas: um componente de compreensão de língua

natural, um componente de seguimento do estado do diálogo e um componente de gestão do diálogo.

Além disso, implementamos o sistema de diálogo desenvolvido num robô de serviço, testando o seu

funcionamento em ambientes do mundo real.

Palavras-chave: Sistemas de Diálogo, Compreensão de Língua Natural, Seguimento do

Estado do Diálogo, Gestão do Diálogo, Interação entre Humanos e Robôs
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Abstract

In recent years, researchers have been trying to develop conversational systems capable of understand-

ing and speaking in natural language, so that humans can interact with them easily and more naturally.

Human-Computer dialogue systems, particularly goal-based dialogue systems, have been the most

important component in conversational systems, since they allow users to speak naturally in order to

accomplish tasks more efficiently. They are widely demanded in network information services, service,

domestic and social robots, among others. When deployed to production, a spoken dialogue system

may encounter a variety of difficulties, such as a large variation in the users of the system and high

noise environments. Thus, the dialogue system must be able to use statistical frameworks to handle the

uncertainty in both speech recognition and language understanding. In this thesis, we develop a spoken

goal-oriented dialogue system capable of dealing with such uncertainties, by maintaining uncertainty

about everything the user has said, and exploit the sequential nature of dialogue to disambiguate in the

presence of errors. In particular, we design three main components: Natural Language Understanding

(NLU), Dialogue State Tracking (DST) and Dialogue Management (DM). Furthermore, we implement the

developed dialogue system in a service robot and test the complete system on a real world environment.

Keywords: Spoken Dialogue System, Goal-Oriented Dialogue System, Natural Language Un-

derstanding, Dialogue State Tracking, Dialogue Management, Human-Robot Interaction
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Chapter 1

Introduction

1.1 Motivation

Robotics hold tremendous potential to benefit humans in all aspect of life. These benefits have been

widely demonstrated in industrial environments, where automation and robotics have boosted the effi-

ciency and productivity of industries, while reducing the costs in labor and production. Nowadays, due

to technological advances, particularly in the field of Artificial Intelligence, autonomous robots are start-

ing to be deployed and integrated into our daily environment. Autonomous robots are artificial agents

whose capacities of perception, planning and action in the physical world allow them to autonomously

achieve their goals. However, one of their main limitations is the inability to communicate with humans

in a natural manner. Language is the mark of humanity and sentience, and conversation or dialog is the

most fundamental and specially privileged arena of language [1]. Indeed, since we are born, language

is one of our most important learnings. Essentially, it is the primary means through which humans have

the ability to communicate and interact with one another. Therefore, the integration of robots into our

daily lives has triggered the need to enhance Human-Robot Interaction (HRI) with speech and natural

language.

In recent years, researchers have been trying to develop systems capable of understanding and

speaking in natural language, so that humans can interact with them easily and more naturally. Those

systems do not necessary have to be integrated in physical robots. In fact, conversational systems

such as virtual personal assistants are increasingly becoming a part of daily life, with examples includ-

ing Siri, Google Now, Alexa and Cortana [2]. Human-Computer dialogue systems, particularly spoken

goal-oriented dialogue systems, have been the most important component in conversational systems,

since they allow users to speak naturally in order to accomplish tasks more efficiently. They are widely

demanded in network information services, service, domestic and social robots, among others.

When exposed to the public, a spoken dialogue system may encounter a variety of difficulties, such

as a large variation in the users of the system (e.g. users usually have different ways of speaking), and

high noise environments. Therefore, the dialogue system must be able to use statistical frameworks

to handle the uncertainty in both speech recognition and language understanding. Statistical dialogue
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systems are able to maintain uncertainty about everything the user has said, and exploit the sequential

nature of dialogue to disambiguate in the presence of errors [3].

1.2 Objectives

This thesis aims at developing a spoken goal-oriented dialogue system capable of dealing with the

uncertainty in speech recognition. A goal-oriented dialogue system can be defined as a computer

system able to interact with humans on a task-oriented context. The main objectives of this work can be

summarized as:

1. Develop a spoken goal-oriented dialogue system.

(a) The developed dialogue system must be able to deal with the uncertainty in the speech recog-

nition.

(b) The dialogue system must be capable to use the sequential nature of the dialogue to disam-

biguate in the presence of errors.

2. Implement the dialogue system in a service robot and test the complete system.

1.3 Approach

Briefly, once a spoken dialogue system receives an audio signal, this signal is processed by a speech

recognizer to give a probabilistic distribution over words [3]. Then, the dialogue system attempts to

understand these words and how they affect the current state of the dialogue. Finally, it generates the

system responses based on the dialogue state. Typically, this task is achieved by three different com-

ponents: the Natural Language Understanding (NLU) extracts semantic information from the hypothesis

recognized by the speech recognition; the Dialogue State Tracker (DST) takes this semantic information

and computes the new state of the dialogue; the Dialogue Manager (DM) uses the dialogue state to

generate the system responses.

Although a traditional spoken dialogue system is composed of more components, we consider that

designing only the previous three components, together with an Automatic Speech Recognizer (ASR),

provides a baseline framework for developing more complex dialogue systems.

In addition, we need a dialogue system capable of dealing with the uncertainty in speech recognition.

Thus, the developed ASR must be able to recognize multiple hypothesis, and the DST must be capable

of tracking multiple hypothesis and maintain beliefs over dialogue states.

Furthermore, the dialogue system must be able to use the sequential nature of dialogue to disam-

biguate in the presence of errors. Therefore, the developed DM must be capable of generating system

responses for requesting more information from the users, or asking for clarifications.

Finally, we implement the dialogue system in a service robot and test the complete system on a real

world environment.
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1.4 Thesis Outline

To answer all challenges stated in this chapter, the structure adopted in this work follows the scheme

presented in Figure 1.1.

Figure 1.1: Thesis outline diagram.
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Chapter 2

Background

This chapter gives an overview of some relevant background theory. It starts with a description about

some probability and information theory concepts. In the following sections, there are described some

machine learning principles, including artificial neural networks. Finally, it is explained how words can be

represented, such that computers are able to represent and understand their semantics. If the reader is

already familiar with the previous concepts, feel free to jump to the next chapter. However, we strongly

recommend the reading of the following sections: Transformer (2.3.2) and Vector Representation of

Words (2.4).

2.1 Probability and Information Theory

Probability theory is a mathematical framework for representing uncertain events [4]. Although there are

many definitions regarding probability theory, all of them share the idea that, to be able to reason in the

presence of uncertainty, we need to both represent uncertain statements and quantify their uncertainty,

as well as use a set of axioms to derive new uncertain statements. For example, consider a robot in a

non deterministic environment, with known location. Even though the initial location is exactly known,

when the robot performs a certain action, it may lead to different outcomes (due to its non deterministic

environment). How can the robot be able to reason and determine its location in such uncertainty? First,

we need to represent the robot’s location using a probability distribution over all the possible locations,

commonly called belief. This allows us to not only represent the location of the robot, but also quantify

the uncertainty of a specific location (the probabilities represent the degree of belief, with 1 indicating

absolute certainty that the robot is in that position and 0 indicating absolute certainty that the robot is not

in that position). Imagine now that the robot moves forward. We need to be able to update the probability

distribution that represents the robot’s location, taking into account the action performed. The previous

example demonstrates a practical application of probability theory applied to a specific robotics problem.

However, in fact, nearly all activities require some ability to reason in the presence of uncertainty

[4]. Goodfellow et al. justifies this affirmation by enumerating three possible sources of uncertainty: the

inherent stochasticity of a system being modeled, the incomplete observability of a environment, and
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the incomplete modeling of a system.

Despite steady progress over the last few decades in speech recognition technology, the process

of converting conversational speech into words still incurs word error rates in the range 15%˘30% in

many real-world operating environments [5]. Therefore, conversation systems, which interpret spoken

commands, should be able to deal with the uncertainty of the input observations, and hence must require

the ability to reason in the presence of such uncertainties.

2.1.1 Information Theory

Information theory is a branch of applied mathematics that revolves around quantifying how much infor-

mation is present in a signal [4]. It was originally proposed to find fundamental limits on signal processing

and communication operations [6].

Self-information

The basic intuition behind information theory is that the occurrence of an unlikely event represents

more information than the occurrence of a likely event [4]. To formalize this intuition, we quantify the

information in such a way that: likely events should have low information contents, and, in contrast,

less likely events should have higher information content [4]. Therefore, a fundamental measure of

information theory is self-information, which allows us to determine the information content of an event

x ∈ X [7]:

I(x) = − logP (x) (2.1)

where log is the natural logarithm, with base e. Therefore, the units of self-information is nats, which

means that one nat is the amount of information gained by observing an event with probability 1
e . By ana-

lyzing the Equation 2.1, we can easily verify that an event with high probability will hold a low information

content, while an event with low probability will hold an higher information content.

Entropy

Another key quantity of information theory is entropy, which represents the expected amount of informa-

tion in an event x ∈ X drawn from a probability distribution P (X) [7]:

H(x) = Ex∼P [I(x)] = −Ex∼P [logP (x)] (2.2)

In other words, the entropy quantifies the amount of uncertainty in an entire probability distribution.

Kullback-Leibler Divergence

If we extend the notion of entropy to two probability distributions, P (x) and Q(x), and measure the

relative entropy of P (x) with respect to Q(x), we can calculate the information gain of one probability

with respect to the other. This measure is known as Kullback-Leibler divergence (KL divergence), and
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can be defined as [7]:

DKL(P ||Q) = Ex∼P [logP (x)]− Ex∼P [logQ(x)]

=

linearity of expectation︷ ︸︸ ︷
Ex∼P [logP (x)− logQ(x)]

= Ex∼P log

[
P (x)

Q(x)

] (2.3)

The KL divergence between two distribution is always non-negative, or zero if the two distributions are

equal.

Cross-Entropy

Another quantity that is closely related to the KL divergence is the cross-entropy, which can be defined

as follows [7]:

H(P ;Q) = −Ex∼P [logQ(x)] (2.4)

We can manipulate the previous equation, by adding and subtracting Ex∼P [logP (x)]:

H(P ;Q) = −Ex∼P [logP (x)] + Ex∼P [logP (x)]− Ex∼P [logQ(x)]

= −Ex∼P [logP (x)]︸ ︷︷ ︸
H(P )

+Ex∼P [logP (x)− logQ(x)]︸ ︷︷ ︸
DKL(P ||Q)

(2.5)

where the term −Ex∼P [logP (x)] represents the entropy of the probability distribution P (x) and the term

Ex∼P [logP (x) − logQ(x)] represents the KL divergence of P (x) with respect to Q(x). Thus, we can

represent the cross-entropy as [7]:

H(P ;Q) = H(P ) +DKL(P ||Q) (2.6)

2.2 Machine Learning

In this section we will introduce some fundamental general machine learning concepts. A machine

learning algorithm is an algorithm that is able to learn from data [4]. Traditionally, when developing a

computer program to perform a specific task, the developer would need to first acquire some knowledge

about the task, and then develop all the logic and specific instructions for the program to be able to

perform the task. In machine learning, the developer designs the program as a mathematical model

capable of inferring the task knowledge from data.

2.2.1 Maximum Likelihood Estimation

The most common way to design a machine learning algorithm is to use the principle of maximum

likelihood estimation (MLE). The MLE model can be defined as a function pmodel(x; θ) that maps an

input x to a probability using a set of parameters θ [7]. Thus, the objective of MLE is to learn the
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parameters θ that best approximate the probability of our model pmodel(x; θ) to the real data distribution,

pdata(x). In other words, MLE seeks to maximize the likelihood of the data under the configuration of

the model [7], and can be defined as:

θ̂MLE = argmax
θ

pmodel(X; θ) = argmax
θ

n∏
i=1

pmodel(xi; θ) (2.7)

Since usually many of the probabilities can take on values close to 0, and for a large number of samples

n, the previous product of probabilities can lead to underflow, which results in a less precise estimation

of the model. This can be solved by using log-probabilities, replacing the product operation with a sum

[7]:

θ̂MLE = argmax
θ

n∑
i=1

log pmodel(xi; θ) (2.8)

We can divide the previous equation by the total number of samples, n, to obtain an expectation with

respect to the distribution of the data pdata(x) [7]:

θ̂MLE = argmax
θ

1

n

n∑
i=1

log pmodel(xi; θ) = argmax
θ

Ex∼pdata
[log pmodel(xi; θ)] (2.9)

Rather than maximizing the likelihood of the data, MLE may also be seen as minimizing the dissimilarity

between the data distribution, pdata, and the model distribution pmodel, which is measured by the KL

divergence [7]:

DKL(pdata||pmodel) = Ex∼pdata
[log pdata(x)− log pmodel(xi; θ)] (2.10)

If we look at the previous equation, we note that the left term, log pdata(x), is only a function of the

data, and hence, minimizing the KL divergence can only be achieved by minimizing the right term,

pmodel(xi; θ), since it is the only term dependent on the model parameters. Minimizing a negative term

is just the same as maximizing the term, so this objective is the same as the MLE objective:

θ̂MLE = argmin
θ
−Ex∼pdata

[log pmodel(xi; θ)]︸ ︷︷ ︸
H(pdata;pmodel)

(2.11)

Furthermore, this objective is also the same as minimizing the cross-entropy between the data distribu-

tion, pdata, and the model distribution, pmodel:

θ̂MLE = argmin
θ

H(pdata; pmodel) (2.12)

Cross-entropy is a common loss in machine learning and the objective function that is most commonly

used in neural networks.
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2.2.2 Gradient Descent

Gradient descent is an efficient iterative optimization method for minimizing an objective function J(θ).

Essentially, gradient descent updates the parameters θ in the opposite direction of the gradient ∆θJ(θ)

of the function J(θ). These updates are done using Equation 2.13:

θ = θ − η ·∆θJ(θ) (2.13)

where η is the learning rate that determines the magnitude of the updates. Particularly, each parameter

θi is updated by its partial derivative with respect to J(θ), ∂
∂θi
J(θ), which is the i-th element of the

gradient:

θi = θi − η ·
∂

∂θi
J(θ) (2.14)

A good choice for the learning rate hyper-parameter represents one of the most important settings

when training a model (see Figure 2.1), because it controls the convergence of the algorithm.

(a): Too low. (b): Just right. (c): Too high.

Figure 2.1: Effect of the learning rate on the gradient descent optimization. A small learning rate (left) requires
many updates before reaching the minimum. The "optimal" learning rate (midle) swiftly reaches the minimum point.
A learning rate too large (right) causes drastic updates that lead to divergent behaviours.

2.3 Artificial Neural Networks

Neural networks have become the tool choice of natural language processing in recent years [7]. In this

section, we will give an overview of some fundamental concepts about neural networks. Neural networks

can be seen as a composition of linear functions, interleaved with non-linear functions, that map an input

vector of features x to an output vector y. Traditionally, neural networks have more than one layer. The

last layer of the network is usually called output layer, while non-output layers are referred to as hidden

layers. The simplest neural network model is the multilayer perceptron (MLP), which consists of only

one hidden layer and the output layer:

h = σ1(W1x + b1)

y = softmax(W2h + b2)
(2.15)

where W 1, b1 and W 2, b2 are the weights and biases of the first hidden layer and output layer, respec-

tively, σ1 is the activation function of the first hidden layer, h is the hidden state of the network, and
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softmax(·) is the activation function of the output layer, defined by:

f(z) =
ez∑N
i=0 e

zi
(2.16)

Usually, most of the models use neural networks with more than one hidden layer. As stated before,

a neural network can be seen as a sequence of linear and non-linear transformations. Since linear

functions are not able to deal with non-linear problems, the expressiveness of neural networks mainly

comes from its non-linear activation functions [7]. There are several types of activation functions. Tra-

ditionally, the output layer of a neural network uses either a softmax or a sigmoid activation functions.

Furthermore, two more activation functions, hyperbolic tangent and rectified linear unit, are widely used

in neural networks, particularly in the hidden layers. Nwankpa et al. performs a survey on the existing

activations functions used in deep learning applications [8].

2.3.1 Training Neural Networks

As stated before, neural networks apply a sequence of linear and non-linear transformations along

the hidden layers. Intuitively, when a neural network is trained on a specific dataset, it learns how to

"transform" the input features so that, in the final hidden layer, those features are represented in such

way that the output layer can easily use the new feature representation to perform the required task. In

order to perform this representation learning, the neural network must be able to learn from the training

data.

Back-propagation

Training a neural network consists in minimizing the loss function defined. This minimization can be

achieved by using gradient descent. As described in Section 2.2.2, gradient descent techniques use the

gradient of an objective function to update the parameters of a model. As neural networks consist of

multiple layers, calculating the gradient of the loss function with regard to the parameters in non-trivial. To

achieve this, we use a dynamic programming algorithm known as back-propagation. Back-propagation

relies on the chain rule to compute the derivatives of the loss function with regard to the parameters. It

starts by calculating the derivative of the loss function with regard to the output and each of the hidden

layers, until it reaches the input layer. Then, after computing all the derivatives, the parameters of the

network are updated.

Stochastic Gradient Descent

The typical gradient descent technique used in neural networks for updating the parameters is the

Stochastic Gradient Descent (SGD). In SGS, the parameters are updated for each training sample.

θ = θ − η ·∆θJ(θ;x(i); y(i)) (2.17)

where x(i) and y(i) define the input feature vector and label, respectively, for the i-th training sample.
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Adam

Adaptive Moment Estimation, or Adam, is an algorithm for first-order gradient-based optimization of

stochastic objective functions, based on adaptive estimates of lower-order moments [9]. Essentially, it

is a modified stochastic gradient descent method that computes adaptive learning rates. The algorithm

leverages the power of adaptive learning rates methods to find individual learning rates for each param-

eter. As the name suggests, Adam uses estimations of first and second order moments of the gradient

to adapt the learning rate for each weight of the neural network.

2.3.2 The Transformer

Recurrent neural networks (RNNs) [10], in particular Long-Short Term Memory networks (LSTMs) [11]

and bidirectional LSTMs (BiLSTMs) [12], have been the typical network architecture for processing lan-

guage sequentially. Reading one word at a time, this forces RNNs to perform multiple steps to make

decisions that depend on words far away from each other. In addition, this sequential nature of RNNs

also makes it more difficult to fully take advantage of modern hardware.

In 2017, Google researchers proposed a novel network architecture called the Transformer, a model

based solely on attention mechanisms, dispensing with recurrence and convolutions [13].

Like many SEQ2SEQ models, the transformer’s baseline structure relies on an encoding and decoding

components. The encoding component is a stack of 6 encoders, each one broken down into two sub-

layers. The first is a multi-head self-attention mechanism, and the second is a simple, position-wise

fully connected feed-forward network [13]. The decoder component is a stack of 6 decoders, which

have the same two sub-layers as the encoders. In addition, the decoder inserts a third sub-layer, which

performs multi-head attention over the output of the encoder stack [13]. A residual connection followed

by a layer-normalization is employed around each of the sub-layers for both the encoders and decoders,

which help training deep neural networks. The Transformer architecture can be seen of Figure 2.2.

Self-Attention

One of the core components of the Transformer is the self-attention, which enables the model to produce

contextualized representations of the inputs. An attention function can be described as mapping a query

and a set of key-value pairs to an output [13]. The first step in calculating self-attention is to create three

vectors from each of the encoder’s input vectors. Therefore, for each input xi, we create the query, qi,

the key, ki and the value ,vi, vectors, by multiplying the input vector by three matrices, W q,W k,W v,

that we trained during the training process.

qi = W qxi

ki = W kxi

vi = W vxi

(2.18)

The second step in calculating self-attention is to calculate a score that reflects how each input
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Figure 2.2: Transformer [13].

attends to the others. Thus, for each input xi, we compute the score si,j which is the dot product

between its query vector qi and the key vector kj of all the other inputs, including itself.

si,j = qi · kj (2.19)

The third and forth steps are to divide the scores by the square root of the dimension of the key

vectors,
√
dk, which leads to more stable gradients, and then pass the result through a softmax operation

to normalize the scores.

si,j = softmax(
si,j√
dk

) (2.20)

Finally, we multiply each value vector by the softmax score and sum up the weighted value vectors

to produce the output of the self-attention layer zi, which corresponds to a contextualized representation

of the input vector xi.
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zi =

L∑
j=1

si,jvj (2.21)

where L is the input length.

Although the vector representation is easier for understanding the self-attention mechanism, the

attention function is computed on a set of queries simultaneously (for all inputs), packed together into a

matrix Q. The keys and values are also packed together into matrices K and V . Thus, the matrix of

outputs is computed as [13]:

Attention(Q,K,V ) = softmax(
QKT

√
dk

)V (2.22)

Multi-Head Attention

In reality, instead of performing a single attention function, the Transformer uses a mechanism called

multi-head attention, which allows the model to jointly attend to information from different representation

subspaces at different positions [13]. Each attention head will compute an output value for the input to-

ken. Then, the multiple outputs from the different attention heads are concatenated and again projected,

resulting in the final output value. Equation 2.23 describes the computations using multi-head attention

[13].

MultiHead(Q,K,V ) = Concat(head1, ...,headh)WO

where headi = Attention(QWQ
i ,KWK

i ,V W V
i )

(2.23)

where WQ
i , WK

i and W V
i are the query, key and value matrices correspondent to the ith attention head,

and WO are the parameters of the final projection layer. Figure 2.3 shows the computational graphs of

both the dot-product and multi-head attention.

The transformer uses multi-head attention in self-attention layers, both in the encoder and decoder

components. The self-attention layers of the encoder component enable the model to produce contex-

tualized representations of the inputs. In addition, the self-attention layers of the decoder component

allow each position in the decoder to attend to what has already been decoded up to, and including, that

position. Finally, the multi-head attention is also used in encoder-decoder attention layers, to allow the

decoder to attend over all position in the input sequence. Intuitively, the Transformer uses the encoder

component to extract contextualized representations of the input sequence. Then, it uses the decoder

component to decode the input sequence, attending to both the contextualized representation of the

input sequence, and also the contextualized representation of what has already been decoded.

Positional Embeddings

The transformer does not contain any recurrence or convolution. Therefore, we need a way for the model

to make use of the order of the input sequence, and hence we must inject some information about the
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Figure 2.3: In the left, it is represented the scaled dot-product attention. In the right, the multi-head attention, which
consists of several attention layers running in parallel [13].

relative or absolute position of the tokens in the sequence. The solution is to fuse positional embeddings

with the input embeddings. Since the positional embeddings have the same dimension as the input

embeddings, this fusion can be achieved by adding them. The positional embeddings make use of

sinusoidal functions of different frequencies that allow the model to easily attend by relative positions.

A main advantage of using sinusoidal signals (i.e. relative position) is the possibility to extrapolate to

sequence lengths longer than the ones seen during training.

2.4 Vector Representation of Words

The majority of image and audio processing systems work with rich, dense, high-dimensional datasets

encoded as vectors (e.g. individual raw pixels or power spectral density coefficients for image and audio

data, respectively). However, in natural language processing, the datasets are traditionally composed of

words (or characters) which are treated as unique and discrete symbols. This representation provides

no useful information to the system regarding the relationship between words, and leads to data sparsity,

since the words’ vocabulary is usually very large, whatever the language is. Therefore, more data may

be needed to successfully train statistical models. The solution is to use high-dimensional vectors as

features to represent words.

A long tradition in computational linguistics has shown that textual information provides a good ap-

proximation to word meaning, since semantically similar words tend to have similar contextual distribu-

tions [14]. Distributional Semantics is a research area that develops and studies methods for quantifying

and categorizing semantic similarities between linguistic items, based on their distributional properties in

large samples of language data. Traditionally, these methods use distributional semantic models, which

state that the meaning of a word can be inferred from its distribution in text. These models dynamically
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build semantic representations in the form of high-dimensional vectors through a statistical analysis of

the contexts in which words occur, and apply geometric techniques to these vectors to measure the

similarity in meaning of the corresponding words [15].

Count-based vs. Predictive Methods

Methods based on distributional semantic models can be split into two categories: count-based and

predictive methods (also called neural models or embeddings). The former compute the statistics of

how often some word co-occurs with its neighbor words in a large text corpus, and then map these

count-statistics down to a small, dense vector for each word. The predictive methods directly try to

predict a word from its neighbor words using neural models, whose parameters are used as learned

small, dense, embedding vectors.

Baroni et al. [15] has shown that predict-based models outperform the count-based models by testing

multiple methods based on both approaches on a variety of benchmark tasks (semantic relatedness,

synonym detection, concept categorization, selectional preferences and analogy), and using a corpus

composed of 2.8 billion tokens constructed by concatenating ukWaC, the English Wikipedia, and the

British National Corpus.

One of the first neural models was introduced by Bengio et al. [16], which consists of a feed-forward

neural network, with a linear projection layer and a non-linear hidden layer, that predicts the next word

given a sequence of previous words. Essentially, the idea of this approach is to associate to each word

a distributed feature vector, then express the joint probability function of word sequences in terms of

the feature vectors of these words in the sequence, and, finally learn simultaneously the word feature

vectors and the parameters of that probability function.

WOR2VEC

Following the previous work, Mikolov et al. [17] proposed a new model for learning distributed represen-

tations of words that try to minimize the computational complexity, named WORD2VEC. For this model,

two different architectures were purposed, the Continuous Bag-of-Words (CBOW) and Skip-gram. Both

architectures are similar to the previous described feedforward neural network, but with the non-linear

hidden layer removed, since it is the major cause of the computational complexity [17]. In addition, the

projection layer is shared for all words, i.e. the input word feature vectors are averaged in the projection

layer, and therefore the order of words in the history does not influence this projection (hence the name

bag-of-words). The two models are represented in Figures 2.4 and 2.5.

The major difference between them is that the CBOW predicts the current word based on the con-

text, while the skip-gram predicts the context given the current word. Although simpler, they are able

to compute very accurate high-dimensional word vectors, since they can be trained on a much larger

dataset [17]. Following their previous work, Mikolov et al. presented some extensions and techniques

that improve both the quality of the vectors and the training speed, such as the subsampling of frequent

words, the hierarchical softmax, and negative sampling [18]. In this work, they also demonstrate that the
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Figure 2.4: Continuous Bag-of-Words (CBOW) model.
[17] Figure 2.5: Continuous Skip-gram model. [17]

learned representations of words and phrases exhibit a linear structure that makes precise analogical

reasoning possible using simple vector arithmetics. For example, we can use the learned vector repre-

sentations to tell if words are similar, or opposites, or that a pair of words like "Stockholm" and "Sweden"

have the same relationship between them as "Cairo" and "Egypt" have between them.

GloVe

Previous work have shown that predict-based methods outperform count-based methods across a range

of tasks [15]. However, Pennington et al. argue that both classes of methods are not dramatically

different at a fundamental level, since they both exploit the underlying co-occurrence statistics of the

corpus [19]. Nevertheless, the efficiency with which the count-based methods capture global statistics

can be advantageous, and therefore they developed a model that uses the major benefit of counting data

while simultaneously capturing the meaningful linear structures prevalent in prediction-based models.

In contrast with the previous WORD2VEC model, GloVe (Global Vectors) directly uses the words co-

occurrence statistics to capture the global statistics of the corpus. Thus, since it is able to capture both

global and local statistics of the corpus, it performs better than previous models on word analogy, word

similarity and named entity recognition tasks [19].

ELMo

Although powerful, WORD2VEC and GloVe still hold some limitations. For each word, there is associated

one and only one feature vector, no-matter what is the context in which this word appears. To solve this

problem, Peters et al. presented the first contextualized word-embeddings, ELMo (Embeddings from

Language Models) [20]. Instead of using a fixed embedding for each word, ELMo looks at the entire

sentence before assigning a representation for each word. Those representations are learned functions
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of the internal state of a deep bidirectional language model (biLM) pre-trained on a large text corpus[20].

Figure 2.6: ELMo uses the concatenation of independently trained left-to-right and right-to-left LSTMs to generate
features for downstream tasks. [21]

ELMo uses a bidirectional LSTM (see Figure 2.6) trained to predict the next word in a sequence of

words, a task called language modeling. The contextual representation of each word is the concatena-

tion of the left-to-right and right-to-left representations obtained from each LSTM. Therefore, it extracts

context-sensitive features from a left-to-right and a right-to-left language model. ELMo provided a signif-

icant step torwards pre-training in the context of NLP, since it can be trained on a massive text corpus,

and then used as a component in other models that need to handle language.

OpenAI GPT

The release of the Transformer (see Section 2.3.2), and the results it achieved on tasks such as machine

translation, triggered their use as replacement to LSTMs. In addition to dealing better with long-term

dependencies, their architecture is better suited for taking advantage of modern hardware.

In 2018, Radford et al. [22] introduced the Generative Pre-Trained Transformer (GPT), which achieved

strong natural language understanding through generative pre-training and discriminative fine-tuning.

This model uses the Transformer decoders, slightly modified, and is trained on a language modeling

task, using a very large unlabeled text corpus (an unsupervised pre-training procedure). Then, the

model can be adapted to a supervised task, and fine-tuned on the labeled data. In contrast with ELMo,

which is a feature-based approach (i.e. it is used as feature extractor) , the OpenAI GPT is a fine-tuning

approach, since the model is pre-trained on a language modeling task and then the model parameters

are fine-tuned on a specific discriminative task.

BERT

Although the OpenAI GPT can increase performance in discriminative tasks using a pre-trained model,

it is only able to extract features based on left context. ELMo has already demonstrated that using both

left and right context can yield better word representations. Thus, in 2019, Devlin et al. introduced a new

language representation model called BERT (Bidirectional Encoder Representations from Transformers)
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[21]. Both the OpenAI GPT and BERT architectures are shown is Figures 2.7 and 2.8, respectively.

Figure 2.7: OpenAI GPT uses a left-to-right Transformer
for learning token representations. [21]

Figure 2.8: BERT uses a bidirectional Transformer for
learning token representations. [21]

In contrast with the other language models, BERT is designed to pre-train deep bidirectional repre-

sentations from unlabeled text by jointly conditioning on both left and right context. This is achieved by

using the Transformer encoders, instead of using the decoders like OpenAI GPT. However, the Trans-

former encoders would allow each word to indirectly see itself in a multi-layered context. Therefore,

they developed a new training objective, called the masked language model (MLM). The MLM randomly

masks some of the input tokens, and the objective is to predict the masked token based on both left and

right context [21]. In addition to the masked language model, they also introduced a next sentence pre-

diction task, to train text-pair representations, which helps the model boosting performance in question

answering (QA) and natural language inference (NLI) tasks [21]. In summary, BERT has advanced the

state-of-the-art for eleven NLP tasks, and hence may represent one of the most important breakthroughs

in the NLP field. Figure 2.9 shows a simple representation of the BERT-BASE model1.

Figure 2.9: BERT-base model. Figure 2.10: Encoder sub-layers.

The model architecture of BERT is a multi-layer bidirectional Transformer encoder [23]. Particularly,

it consists of 12 encoder layers, each one containing two sub-layers: self-attention and fully connected

feed-forward layers (see Figure 2.10). Actually, these encoder layers are very similar to those on the

Transformer, presented in Section 2.3.2. The only difference is that, while the Transformer uses vectors

with a size of 512 and 8 self-attention heads, BERT (BASE version) uses vectors with a size of 768

and the self-attention is composed of 12 heads. BERT takes the input representation of words as a
1Two versions of BERT were released, the BERT-BASE and BERT-LARGE.
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concatenation of WordPiece embeddings [24] with 30,000 token vocabulary, positional embeddings with

supported sequence length up to 512 tokens, and the segment embedding. In addition, a special token,

representing a classification embedding, denoted [CLS] (for classification), is inserted as the first token

in the input sentence sequence, which enables the model to provide a context-dependent representation

of the full input sentence, h[CLS].

Transfer Learning

Traditionally, there are two main paradigms for the adaptation of pre-trained models: feature extraction

and fine-tuning [7]. In feature extraction, the pre-trained model’s parameters are frozen and the features

are used in the downstream model, similar to classic feature-based approaches. Alternatively, the pre-

trained model’s parameters can be fine-tuned on a new task [7]. Although feature extraction may be

computationally cheaper (as features only need to be computed once), fine-tuning a pre-trained model

allows us to adapt a general-purpose representation to many different tasks [7].
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Chapter 3

State of the Art

This chapter describes the state of the art in dialogue systems. First, we give a brief overview of spo-

ken dialogue systems theory, particularly their main types, strategies and architecture. In the following

sections, we give a deeper description of some previous work related to Automatic Speech Recognition

(ASR), Natural Language Understanding (NLU), Dialogue State Tracking (DST) and Dialogue Manage-

ment (DM).

3.1 Spoken Dialogue Systems

A spoken dialogue system can be defined as a computer system able to interact with humans on a turn-

by-turn basic, and in which spoken natural language interface plays an important part in the communi-

cation [25]. Traditionally, they can be split into two classes: the goal-driven or non-goal-driven dialogue

systems. The former represent the interaction between a human and a computer in a task-oriented

context, while the latter, usually called chatbots, are related to chat communication.

First research in task-oriented dialogue systems began in the early 1990s, when MIT (Massachusetts

Institute of Technology) developed an automatic flight booking system with the support of DARPA (De-

fense Advanced Research Projects Agency) [26]. Similar dialogue systems were developed in the fol-

lowing decade: HMIHY (How May I help You?), a spoken dialogue system based on call routing [27],

JUPITER, a conversational interface that allows users to obtain worldwide weather information over the

telephone using spoken dialogue [28], and a travel plan making system DARPA communicator [29].

Non-goal-driven dialogue systems usually respond to user utterances without any specific goal.

ELIZA [30] might be the first chatbot, and one of the first programs capable of attempting the Turing

test. Created in MIT Artificial Intelligence Laboratory, ELIZA simulated conversation by using a pattern

matching and substitution methodology that gave users an illusion of understanding on the part of the

program, but had no built in framework for contextualizing events [31].

Although there is a discrimination between goal-driven and non-goal-driven dialogue systems, its

border is not strict. When we think of human interaction in any task-oriented scenario (e.g. flight book-

ing), it is natural for any customer to chat with the human service staff while performing the required
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task. Thus, a good dialogue system should be able to chat with users while helping them performing a

certain task or achieving a specific goal [32]. Recently, some personnel assistant systems have been

developed, such as Siri, Cortana, Google Now/Home, Alexa, among others. These systems are able to,

not only perform certain requested tasks, but also maintain chat conversations with users.

Furthermore, the dialogue systems can also be implemented in physical systems, such as service

and social robots. A service robot is a robot whose goal is to help humans, by giving them assistance

in a wide range of tasks [33], while social robots are more concerned with social interactions and rela-

tionships with humans. Both type of robots require some form of human-robot interaction, and therefore

make use of dialogue systems to enhance this interaction. One example of a social robot in which the

human-robot interaction abilities are fundamental is Gasparzinho or MOnarCH, Multi-Robot Cognitive

Systems Operating in Hospitals [34]. Gasparzinho interacts and plays with hospitalized children, acting

as a robot companion. An identical robot, the mbot, is used by a robotics team from Instituto Superior

Técnico, SocRob@Home, for scientific competitions. However, unlike Gasparzinho, mbot is a service

robot that must perform a variety of domestic tasks.

One can also classify dialogue systems based on their dialogue strategy. A dialogue system can

implement three different strategies: system-initiative, user-initiative, or mixed-initiative. In a system-

initiative dialogue, the system has the full control of the dialogue flow by asking all the questions, and

the user is only able to answer. On the other hand, in a user-initiative system the user makes all the

requests and the system only answers. Finally, a mixed-initiative dialogue combines the advantages of

the former two strategies. This combined strategy allows the user to take over control of the dialogue

by asking questions or by giving more information than has been asked for, while, at the same time,

enables the system to make proposals and help the user to reach his goal.

The majority of modern task-based dialogue systems make use of the frame-based architecture,

first introduced in the GUS system for travel planing [35]. In a frame-based architecture, the system

uses a domain ontology, a knowledge structure representing the kinds of information the system can

extract from user utterances [1]. The ontology not only defines one or more frames, each a collection of

slots, but also the possible values each slot can take. Briefly, a frame-based architecture tries to fill the

required slots for a specific task during the conversation.

However, frame-based dialogue systems are not capable of asking questions, giving orders, or mak-

ing informational statements [1]. For example, if the system cannot understand what a user said, it

may need to ask clarification questions. The dialogue-state architecture, also called information-state

architecture, like the GUS systems, is based on filling in the slots of frames. However, the dialogue-state

architecture has a different way of deciding what to say next than the GUS systems. Simple frame-based

systems often just continuously ask questions corresponding to unfilled slots, while the dialogue-state

based systems use a dialogue policy to decide what to say.

The typical dialogue-state architecture consists of the following components, arranged in a pipeline:

Automatic Speech Recognizer (ASR), Natural Language Understanding (NLU), Dialogue State Tracking

(DST), Dialogue Management (DM), Natural Language Generation (NLG), and Text-to-Speech (TTS).

First, the computer needs to convert speech into text and then extract task related information from user
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utterances, which is done by the ASR and NLU, respectively. Second, the computer must be able to

control the process of a dialogue. Initially, the DST estimates the state of the conversation, and then the

DM generates actions based on the dialogue state. Finally, the computer needs to convert the system

output actions to natural language sentences, and then to speech, which is the objective of NLG and

TTS. This architecture is represented in Figure 3.1.

Figure 3.1: Dialogue-state architecture for dialogue systems.

3.2 Automatic Speech Recognition

Automatic Speech Recognition (ASR) enables the recognition and translation of speech (audio) into text

by computers and it is the first component in a dialogue system’s pipeline. Therefore, ASR takes a

key role in the full pipeline system because the errors accumulated in this process will be propagated

to downstream tasks. Nevertheless, this thesis do not focus on the ASR module itself. It is rather

concerned with understanding its output, since it will be used by the downstream systems such as

Natural Language Understanding (NLU) or/and Dialogue State Tracking (DST).

Essentially, the ASR component assigns a posterior probability to the words of an utterance given its

acoustics [3]. A typical form of the ASR output is a N-best list of hypothesis with corresponding proba-

bilities or confidence scores. Although simple, this approach holds a clear limitation: it approximates the

full probability distribution over all sentences with just the top N most probable. Typically the variations

in the top hypothesis involve mostly minor differences in articles and other short function words, with the

result that many of the top hypothesis have the same meaning [3]. This means that the words with low

probability are likely to be omitted from the N-best list altogether, constraining the full ASR hypothesis.

An alternative approach is to use word lattices or word confusion networks, which provide a more

informative summary of the words’ distribution, without pruning the lower scoring words as in the N-best

list [3]. Both word lattices or word confusion networks are directed graphs that encode possible word

sequences, represented by paths from the start to the end node. Each edge of the graph gives not

only information about word relationships, but also the probability weightings, which allows for the cal-
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culation of the probability of a path. Although identical, word confusion networks are more restricted in

their structure. In contrast with word lattices, each edge that connects two nodes can only hold a set

of mutually exclusive word hypothesis. A graphic representation of both three structures can be seen in

Figure 3.2.

Figure 3.2: Structures that summarize the posterior distribution over sentences found by ASR component ([1], as
cited in [3]). The N-best list provides a list of N hypotheses ranked by probabilities. Word lattices and word confusion
networks provide a directed graph which represents word relationships. However, word confusion networks are
more restricted in their structure because each edge can only hold a set of mutually exclusive word hypothesis.

3.3 Natural Language Understanding

Natural Language Understanding (NLU), also called Spoken Language Understanding (SLU), allows

the system to extract task related information from the user utterances. Traditionally, this information is

extracted by three main NLU sub-tasks: domain classification, intent detection and slot filling [1]. Domain

classification, as the name suggests, is responsible for determining the domain of the conversation.

Although this task may be unnecessary for single-domain dialogue systems, the modern and standard

approaches comprise multiple domains. The following task, intent detection or intent classification, is
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aimed at determine what is the general task or goal that the user is trying to accomplish. Finally, we

need to do slot filling, of which the aim is to extract semantic concepts, in particular the slots and fillers

that the user intends the system to understand from their utterance [1].

One major difference among methods for NLU is whether they internally label sequences at the word

level (a task usually referred as sequence labeling), or label the entire sequence (sentence classification)

[3]. Intent detection is a classification problem that predicts the intent label yi. Traditionally, slot filling

is a sequence labeling task that tags the input word sequence x = (x1, x2, ..., xT ) with the slot label

sequence y = (y1, y2, ..., yT ) [23]. However, the slot filling task can also be decomposed into simple

classification problems for each slot. For example, given a slot si ∈ S, we want to predict the slot label

yisi for all slots S = (s1, s2, ..., sS).

Initially, many natural language understanding systems used semantic template grammars to extract

semantic concepts from the user utterances [3]. A particular example is TINA, a system for spoken lan-

guage applications from MIT, developed in 1992, which integrates key ideas from context-free grammars,

Augmented Transition Networks (ATN), and the unification concept [36]. However, grammar-based ap-

proaches tend to not generalize well and, in addition, they rely heavily on human expertise and effort

to develop the grammar templates [33]. Thus, methods that comprise statistical approaches are best

suited for the natural language understanding task.

Statistical methods for NLU are generally split into two categories: generative and discriminative

models. Generative models learn a joint probability distribution P (x, y) between the input x and the

labels y. Next, they use Bayes’ rule to calculate the conditional probability distribution P (y|x), which

is then used to assign labels to input examples [3]. Discriminative models directly learn the conditional

probabilities of the labels given a feature representation of the input utterance, P (y|x). In contrast with

generative models, discriminative models do not make independence assumptions over the feature set

and hence it is easy to include arbitrary potentially useful features [3]. For this reason, discriminative

models can significantly outperform generative models in NLU tasks [37].

Common discriminative approaches for NLU have been using Support Vector Machines (SVMs) as

discriminative classifiers [38], and Conditional Random Fields (CRF) to do sequential labeling on input

sentences [39].

In recent years, there has been some work applying neural networks to NLU. Particularly, Recurrent

Neural Networks (RNNs) and Long-Short Term Networks (LSTMs) have been the state-of-the-art for

both intent classification and slot filing tasks [33, 40]. Prior work has also shown that joint modeling

the intent classification and slot filing tasks can exploit and model the dependencies between them

and improve the performance over independent models and, besides that, using models with attention

mechanism can help with long-range dependencies [41]. Thus, attention-based joint learning methods

were proposed and achieved state-of-the-art performance for intent classification and slot filing task [23].

However, recent breakthroughs in natural language processing have changed the state of the art in

the NLP field. Usually, there is a lack of human-labeled data for the majority of NLP tasks, resulting in

poor generalization capability [23]. To address this problem, a variety of unsupervised techniques were

proposed for training general purpose language models using an enormous amount of unannotated
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text (see Section 2.4). These pre-trained models can be fine-tuned on NLP tasks, yielding a significant

improvement over training on task-specific annotated data and reducing the time needed for training a

specific model.

Chen et al. [23] proposed a joint BERT-based model for both intent detection and slot filing, achieving

significant improvements in both intent classification accuracy and slot filing F1, compared to the previ-

ous attention-based joint models. Besides that, they also demonstrate a large gain in the sentence-level

semantic frame accuracy on the Snips dataset, which include multiple domains and has a large vocab-

ulary, and therefore showing the strong generalization capability of using a general purpose language

model.

3.4 Dialogue State Tracking

In a spoken dialogue system, dialogue state tracking refers to the task of correctly inferring the state

of the conversation, such as the user’s goal, given all of the dialogue history up to that turn [2]. This

task is particularly difficult because of the common ASR and NLU errors (the process of converting

conversational speech into words still incurs word error rates in the range 15%− 30% in many real-world

operating environments [5]), which may cause the system to misunderstand the user. At the same time,

the dialogue state tracking is the core of any dialogue system, because the dialogue policy relies on the

estimated dialogue state (or distribution over dialogue states) to choose actions.

So far, three families of dialogue state tracking algorithms have been widely explored and imple-

mented: hand-crafted rules, generative models, and discriminative models.

3.4.1 Hand-crafted Rules

Primarily, the research on state tracking used hand-crafted rules. In its earliest form, these approaches

considered only the 1-best NLU result and tracked a single hypothesis for the dialogue state. Hence,

these type of systems reduce the dialogue state tracking problem to a single update rule F (s, ũ′) = s′

that maps from an existing dialogue state s and the 1-best NLU result ũ′ to a new dialogue state s′ [2].

The MIT JUPITER weather information, a rule-based model, maintained a set of state variables which

were updated using hand-designed rules in a dialogue control table [28]. The Information State Update

approach, another rule-based model, used hand-written update rules to track a rich data structure called

information state [42].

One shortcoming of tracking only a single hypothesis for dialogue state is the inability to make use

of the full ASR/NLU N -best lists. Therefore, these models lack the benefits of tracking multiple dialogue

states suggested by Pulman, who proposed modeling dialogue as a conversational game accounting

for uncertainty using probabilistic frameworks [43]. Thus, more recent approaches to dialogue state

tracking using hand-designed rules, compute scores for all dialogue states suggested by the whole

ASR/NLU N -best lists, resulting in a posterior distribution over possible states [44–46].

Hand-crafted rule-based dialogue state trackers do not require any data to implement. Thus, there
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is no data-driven model to import when implementing this type of systems in real-world applications,

which is a benefit for bootstrapping. In addition, rules also provide developers an accessible method to

incorporate knowledge of the dialogue domain [47].

However, a crucial limitation in these type of systems is that rules’ formula parameters are not directly

derived from real dialogue data, so they require careful tuning and optimization. This limitation motivates

the use of data-driven techniques, which automatically set parameters in order to maximize accuracy

[2].

3.4.2 Generative Models

Generative models try to learn how the data was generated, by specifying a joint probability distribution

P (x, y) over input features x and label sequences y. Then, they use the learned model to predict unseen

data. Generative models suggest that dialogue can be modeled as a Bayesian network that relates the

dialogue state s to the system action a, the (true, unobserved) user action u, and the ASR/NLU result

ũ [2]. When the last system action and ASR/NLU results are observed, a distribution over possible

states (commonly called belief ) can be estimated by applying Bayesian inference. Equation 3.1[48]

demonstrates one of the possible variants of belief state update.

b′(s′) = η
∑
u′

P (ũ′|u′)P (u′|s′, a)
∑
s

P (s′|s, a)b(s) (3.1)

where b(s) is the previous probability distribution over states, b′(s′) is the (updated) probability distribu-

tion over states being estimated, P (ũ′|u′) is the probability of the user taking action ũ′ given the (true,

unobserved) user action u′, P (u′|s′, a) is the probability of the user taking action u′ given the true dia-

logue state s′ and system action a, P (s′|s, a) is the probability of the dialogue changing to state s′ given

the previous dialog state s and systema action a, and η is a normalizing constant.

Early approaches to generative models for dialogue state tracking enumerated all possible dialogue

states, and then used variants of Equation 3.1 to score them [49, 50]. However, it is trivial that enumer-

ating all possible dialogue states in intractable, particularly given that these systems usually have to run

in real time and the number of states can be considerable large.

Thus, two approximations have been done. First, by maintaining a beam of candidate dialogue

states [51–54], the state-space of the dialogue state tracking problem is greatly reduced. Second,

further factorizations of Equation 3.1 can be performed, assuming conditional independence between

components of the dialogue state, [55, 56], and thereby reducing the complexity of the dialogue state

tracking problem.

Although these approximations enable generative models to operate in real time, they impose other

constraints. While the N -best approach enables to model all dependencies but with an incomplete

distribution, the factoring approach can only handle a limited number of dependencies but can model

the complete distribution [5].

In end-to-end evaluations, generative approaches have been shown to outperform hand-crafted rules

[56]. However, in generative models all dependencies between features must be explicitly modeled,
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which requires an impractical amount of data. Hence, generative models usually make independence

assumptions which are invalid, or important features of dialogue history have to be ignored, which intro-

duce a violation of the Markov assumption, resulting in poor estimates [2]. Together, these issues have

triggered interest in discriminative models.

3.4.3 Discriminative Models

Discriminative models try to model the conditional probability P (y|x) of the label sequences y given the

observations x directly from the data. In contrast with generative models, discriminative approaches

for dialogue state tracking compute scores for dialogue states with discriminatively trained conditional

models of the form b′(s′) = P (s′|f ′), where f ′ are features extracted from ASR, NLU, and dialogue

history [2]. Thus, these type of models can incorporate a large amount of arbitrary potentially useful

features and can be optimized directly for prediction accuracy.

Williams [57] analyzed fundamental weaknesses in the formulation of statistical dialogue systems as

generative models, suggesting that discriminative models could achieve better performance for belief

state update. Indeed, as mentioned above, generative models learn the joint probability and can get

wrong assumptions of the data distribution, in contrast with discriminative models which try to model

directly the conditional probability.

The first presentation of a discriminative model for state tracking used a hand-written rule to enumer-

ate a set of dialogue states to score [58]. By considering the top S1 NLU hypothesis from the current

turn, top S2 hypothesis from the previous turn, the top S3 hypothesis from the turn before that, and an

additional state hypothesis s̄ which account for the situation when none of the hypothesis is correct, it

is possible to get a fixed number classes k = S1 + S2 + S3 + 1. Standard multiclass logistic regression

classification is then applied, in which one weight is estimated for every (class, feature) pair [58].

Subsequent work was done using some variations of the previous approach. Metallinou et al. [59]

modified the logistic regression model to learn a single weight for each feature, which allows an arbitrary

number of hypothesis to be scored, since the number of weights no longer increases with the number of

hypothesis. Williams [60] applied a ranking algorithm which has the ability to construct conjunctions of

features. Henderson et al. [61] applied a deep neural network as a classifier.

The majority of discriminative models encode the dialogue history in the features, to learn a simple

classifier. However, there are other approaches which explicitly model dialogue as a sequential process.

Conditional Random Fields (CRFs) can be used to determine the most likely dialogue state conditioned

on the entire sequence [62]. Henderson et al. [63] used Recurrent Neural Networks (RNNs) that use the

ASR/NLU results as inputs and output a distribution over dialogue states. This work is also notable for

operating directly on ASR results only, mapping them to the dialogue state. By using high-dimensional

inputs (n-grams), with all the information, instead of inputs with a select few informative features, it avoids

the need for an explicit semantic representation, and the possibility of information loss at the NLU stage

[63].

All the previous approaches require in-domain dialogue labeled data for training. However, when a
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small amount of labeled data exists for the target domain, multi-domain learning can be applied [64]. If

no labeled data exists, it is possible to use unsupervised learning adaptation from a base model for a

related domain [65]. This technique tries to find points in the dialogue where a state component value

is assigned a high score. Then it treats that predicted value as label, and adjust model parameters to

try to predict that label earlier in the dialogue. This approach allows generic slot tracking model to be

adapted to a specific slot for which labeled data does not exist.

3.4.4 Dialogue State Tracking Challenge

The literature provides numerous methods for dialogue state tracking. However, direct comparisons be-

tween those methods have not been possible because each author used different domains and system

components. Moreover, there has not been a standard task or methodology for evaluating dialogue state

tracking, which limited the progress in this area [2].

In 2013, Williams et al. [66] organized the first dialogue state tracking challenge (DSTC1) series,

which introduced the first benchmark task and evaluation framework for dialogue state tracking, as well

as labeled dialogue data.

The DSTC aimed at understanding which existing methods for dialogue state tracking have a better

performance, encourage new work that advances the state-of-the-art, and examine which evaluation

metrics are appropriate for dialogue state tracking.

Ever since, two more series of the dialogue state tracking challenge (DSTC2, DSCT3) were per-

formed [67, 68], and, together, the three instances yield significant work on dialogue state tracking, such

as new techniques and a standard set of evaluation metrics.

In particular, the DSTC series has triggered three key advances: the transition from generative mod-

els to discriminative models (the DSTC series have illustrated the weaknesses in generative models that

degraded accuracy, such as the inability to handle a large amount of features); the development of dis-

criminative sequential models for dialogue state tracking (unlike simple stationary classifiers, sequential

models take as input a set of features at each turn, avoiding the need to encode the dialogue history

in the features); the development of models which use the ASR results as input directly (by providing

direct access to the raw input signal, they have the potential to provide further improvements in accuracy,

which was demonstrated in the DSTC series).

3.5 Dialogue Management

Dialogue Management (DM) can be defined as controlling the flow of the conversation, deciding which

action the system should take at each point of the dialogue. The dialogue management must, thereby,

be able to choose the best action for a specific dialogue state. In addition, the dialogue management

should also be responsible for applying a certain dialogue strategy (see Section 3.1).

Conventional dialogue systems typically maintain a single hypothesis for the dialogue state, effec-

tively making the assumption that the state is known [3]. A variety of frameworks have been proposed to
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choose the best action to perform, taking into account the single state. Approaches based on flow-charts

(with nodes representing states and actions, and arcs representing user inputs) [69], and systems that

use logical inference and planning [70].

Although the previous approaches introduce some advantages, such as bootstrapping, and an easy

way of incorporating context knowledge, none of them suggest a way of learning which actions should

be taken. Casting the problem as a Markov decision process (MDP) allows the learning of an action se-

lection model. However, more recently approaches for dialogue systems allows to maintain a probability

distribution over states instead of tracking a single state hypothesis, and thereby include details of the

uncertainty in the user inputs. Thus, a more theoretically well-founded framework is to cast the problem

as a partially observable Markov decision process (POMDP).

The POMDPs approach also assumes that dialogue evolves as a Markov process, i.e. starting in

some initial state s0, each subsequent state is modeled by a transition probability p(st|st−1, at−1) [5].

However, the state st is not directly observable reflecting the uncertainty in the interpretation of user

utterances; instead, at each turn, the system regards the output of the natural language understanding

(NLU) as a noisy observation ot of the user input with probability p(ot|st) [5]. Hence, two probability

functions need to be estimated - the transition and observation probability functions - which can be done

by a suitable stochastic model, usually called dialog model. A stochastic model is a tool for estimating

probability distributions of potential outcomes by allowing for random variation in one or more inputs over

time.

Nowadays, the state-of-the-art approach is to use Reinforcement Learning (RL), in which the dia-

logue system is seen as a conversational agent, and the dialog system responses are interpreted as

the agent actions. Thus, RL allows the agent to learn an optimal policy which can map the state of a

dialogue conversation to a system response. However, usually this approach requires the use of a user

simulator to interact with the conversational agent.
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Chapter 4

Problem Description and Solution

In this chapter, we first give a brief problem description, where we formalize our problem based on the

dialogue-state architecture. Then we give a brief description of the tasks the robot must be able to per-

form, particularly in the context of two robotics competitions. In the following sections, we will describe

the models and algorithms used in the automatic speech recognizer (ASR), the natural language under-

standing (NLU), the dialogue state tracker (DST) and the dialogue manager (DM), including a description

of the implemented dialogue state machine (DSM) that will control the dialogue flow. Finally, we explain

the dialogue system implementation in the robot.

4.1 Problem Description

This thesis aims at developing a spoken goal-oriented dialogue system, which can be defined as a

computer system able to interact with humans using speech and natural language, on a task oriented

context. Our goal-oriented dialogue system is designed based on the dialogue-state architecture (recall

Section 3.1). In a dialogue-state architecture, the system uses a domain ontology D, which represents

the kinds of information the system can extract from the users. The ontology defines one or more frames,

each a collection of slots, s, and defines the values, v, that each slot can take. The set of slots specifies

what the system needs to know, and the filler of each slot is constrained to values that the slot can take.

Furthermore, dialogue systems that make use of a dialogue-state architecture use a custom data

structure, called DIALOGUE ACT, which represents an utterance in the context of conversational dialogue.

A DIALOGUE ACT can be defined as a shallow representation of the semantics of either a user’s utterance

or the system’s prompt [3]. Multiple formats have been proposed and are used for representing dialogue

acts [71]. In this thesis, we adopt the formalization used in the Cambridge University Dialogue Systems

group [3]. Thus, a DIALOGUE ACT consists of two components: a dialogue act type, D-TYPE, and a set

of slot bindings, X. In their implementation, they define three types of slot bindings:

• Bound slots: slots bound to values, s = v,

• Negated bound slots: slots bound to values and negated, s 6= v,
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• Unbound slots: slots not bound to any value, s.

However, we will only use two types of slot bindings: the bound slots and unbound slots. The negated

bound slots are usually defined for systems that are able to deal with the denial of a certain value for a

slot, which is not implemented in our dialogue system.

Tables 4.1 and 4.2 define the adopted dialogue act types and the correspondent slot bindings set for

user acts and system acts, respectively.

Table 4.1: Description of dialogue act types and slot bindings for user actions.

Restrictions on X Act Type Description

X must be empty.

ACK A back-channel such as "okay".
AFFIRM Replying affirmatively to the last system response.
BYE Saying good-bye.
HELP Asking for help
NEGATE Replying negatively to the last system response.
REPEAT Requesting the system to repeat the last response.
RESTART Requesting the system to restart.
THANKYOU Saying thank you.

X must contain only
bound slots.

INFORM

The user is informing the system about the value of
a specific slot.
For example, INFORM(INTENT=TAKE, OBJECT=BOOK)
might correspond to "take a book".

Table 4.2: Description of dialogue act types and slot bindings for system prompts.

Restrictions on X Act Type Description

X must be empty.
HELLO Giving a welcome message to begin the dialogue.
REPEAT Asking the user to repeat himself.
BYE Giving a goodbye message to finish dialogue.

X must only contain
bound slot(s).

CONFIRM
Confirming that the user goal has the slot-value pair(s)
in the bound slots set.

X must only contain
unbound slots.

REQUEST
Requesting for more information about a specific slot
in the unbound slots set.

4.1.1 Domestic Domain

Our goal-oriented dialogue system will be implemented in a service robot, operating in a domestic

environment. In a domestic environment, a robot must perform a variety of domestic/service tasks. One

of the first problems the robot must solve is to discover which task it is being asked to perform and,

hence, a slot of the utmost importance should be of the type INTENT. This slot holds the information

about the user’s intention. The second problem the robot must solve is to fill the slots of the task. Hence,

other two important slots the system must fill are the SOURCE and DESTINATION. As the names suggest,
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these slots hold information about the beginning and ending of a specific task, respectively. Finally, three

more slots are defined: the OBJECT, the PERSON and the WHAT-TO-SAY slots, which refer to the object

and the person involved in the task, and the latter refers to what the robot must say. A brief summary of

the slots defined in the domestic domain ontology can be seen on Table 4.3.

Table 4.3: Slots defined in a domestic domain ontology.

Slot Description Example of values

INTENT
the type of task the user wants the robot

to perform (intention of the user)
TAKE; FIND; ORDER;

ANSWER; PLACE

SOURCE the start of the task BEDROOM; KITCHEN

DESTINATION the end of the task BATHROOM; KITCHEN

OBJECT the object involved in the task BOOK; COKE

PERSON the person involved in the task ME; PETER

WHAT-TO-SAY what the robot must say WEATHER;DATE

GPSR

In order to evaluate the performance of service robots, there are two international robotics competitions,

RoboCup and European Robotics League (ERL), which have benchmark challenges to evaluate how

well a robot can perform tasks in a domestic environment. One of these challenges is General Purpose

Service Robots (GPSR), in which the robot is ordered to perform domestic tasks such as taking an object

to a person or guiding a person to a certain destination. Table 4.4 gives a brief description of the GPSR

tasks. As example, consider the user utterance "take the book from the table", whose correspondent

slots and fillers are: INTENT=TAKE, OBJECT=BOOK, SOURCE=TABLE.

Table 4.4: Tasks and respective description for the GPSR challenge.

Task (INTENT) Description Slots

Motion Moves to some place PERSON; SOURCE; DESTINATION

Meet Meets a person PERSON; DESTINATION

Grasp Grabs an object OBJECT; SOURCE

Place Places an object OBJECT; DESTINATION

Follow Follows a person to a location PERSON; DESTINATION

Tell Tells something to someone WHAT-TO-SAY; PERSON

Find Looks for an object or person OBJECT; PERSON

Guide Guides a person to a location PERSON; SOURCE; DESTINATION

Take
Takes an object from some place to

another or gives it to someone
OBJECT; PERSON; SOURCE; DESTINATION
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SciRoc

Recently, another project was created to support the ERL tournament in the context of smart cities.

This project is called SciRoc, and the challenges focus on smart shopping and are organized in a

series of episodes. In one of these episodes, the robot assists people in a coffee shop, and takes

care of customers, by taking orders and bringing objects to and from customers’ tables. Table 4.5

describes the task of the SciRoc coffee shop challenge. As example, consider the user utterance "I

would like a cappuccino, a sandwich and a bottle of water", whose correspondent slots and fillers are:

INTENT=ORDER, OBJECT=CAPPUCCINO, OBJECT=SANDWICH, OBJECT=WATER.

Table 4.5: Task and respective description for the SciRoc coffee shop challenge.

Task (INTENT) Description Slots

Order Order three items (objects) from the coffee shop menu OBJECT

4.2 Approach

Recall the typical pipeline of a dialogue-state architecture (Figure 3.1). First the automatic speech

recognition (ASR) receives the user’s speech command as input and outputs an N-best list of recognized

hypothesis, each one composed of the text utterance and its correspondent confidence score. Table 4.6

shows an example of a 5-best list of recognized hypothesis, in the context of the GPSR challenge.

Table 4.6: Example of a 5-best list of recognized hypothesis.

Hypothesis Confidence

bring me a book from the tv table 0.994
bring me the book from the tv table 0.992

bring me a book from the table 0.976
bring me the book from the table 0.974

bring me that book from the tv table 0.971

Then, the natural language understanding (NLU) extracts the relevant information from each of the

recognized hypothesis, and for each hypothesis outputs a user act.

Recalling the 5-best hypothesis of the example in table 4.6. The correspondent user acts are repre-

sented in table 4.7. Note that, for each user act, there are marginal confidence scores corresponding

to the dialogue act type, D-TYPE, and for each of the slot-value pairs presented in X. In the following

sections we will discuss how these confidence scores are computed.

After extracting the relevant information from the user’s utterances, the following component of the

dialogue system’s pipeline, dialogue state tracker (DST), uses each of the user acts in the N-best list

to compute a belief over dialogue states. This means that the dialogue state may have more than one

value for a certain slot. Following the previous examples (tables 4.6 and 4.7), the resulting expected

dialogue state is represented in table 4.8. The confidence scores associated with each slot-value pair
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Table 4.7: Example of a 5-best list of user acts.

User acts

INFORM(INTENT=TAKE, OBJECT=BOOK, PERSON=ME, SOURCE=TV TABLE)
INFORM(INTENT=TAKE, OBJECT=BOOK, PERSON=ME, SOURCE=TV TABLE)

INFORM(INTENT=TAKE, OBJECT=BOOK, PERSON=ME, SOURCE=TABLE)
INFORM(INTENT=TAKE, OBJECT=BOOK, PERSON=ME, SOURCE=TABLE)

INFORM(INTENT=TAKE, OBJECT=BOOK, PERSON=ME, SOURCE=TV TABLE)

will also be discuss in the further sections.

Table 4.8: Dialogue state example.

Slot-value pairs Confidence

INTENT=TAKE 1.0
OBJECT=BOOK 1.0

PERSON=ME 1.0
SOURCE=TV TABLE 0.7

SOURCE=TABLE 0.3

Finally, the dialogue management (DM) checks if the dialogue state holds all the required information

to perform a certain task, and if it is confident enough about that information. If not, it generates a system

act (system response), which is also defined as a DIALOGUE ACT, and the dialogue continues.

4.3 Automatic Speech Recognizer

Figure 4.1: Architecture of the Automatic Speech Recognizer (ASR). First, the ASR starts recording audio and
streaming it to the Google Cloud Speech Recognition, until it gets an end-of-speech signal. Then, it retrieves the
final speech transcriptions.

First, we had to design an Automatic Speech Recognizer (ASR) capable of recognizing multiple

hypothesis, and output a probability distribution over words. We achieved this by using the Google
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Speech Recognition API to request an N-best list of transcriptions.

Figure 4.1 shows the architecture of the ASR component. Essentially, the ASR starts recording

audio and streaming it to the Google Cloud Speech Recognition. When it gets an end-of-speech signal,

which means the user has stopped talking, the ASR retrieves the final transcriptions as an N-best list of

hypothesis, containing the text transcriptions and their correspondent confidence score.

4.4 Natural Language Understanding

Traditional natural language understanding (NLU) models perform three different sub-tasks: domain

classification, intent detection and slot filing. However, when implemented in a dialogue system pipeline,

the NLU must also be able to identify the dialogue act type, D-TYPE, which will help the dialogue system

to extract some information about dialogue specific actions. For example, when the dialogue system

asks for some type of confirmation, the NLU must be able to recognize if the user confirms or denies it.

Thus, besides the intent detection and slot filing sub-tasks, our NLU model will also perform the dialogue

act type classification of the user utterances. The domain classification sub-task will be ignored, since

our dialogue system will be implemented in a single-domain domestic environment.

In Section 3.3, we have seen that the recent state-of-the-art models for the main NLP tasks are based

on pre-trained general purpose language models. Because of the lacking of real-world labeled data for

our task, we have decided to build a model based on BERT, and exploit its generalization capability.

Initially, we considered both the dialogue act type classification, intent detection, and slot filing tasks

as multiple classification problems. Considering the input token sentence x = (x1, ..., xN ), the model

predicts a label for the dialogue act type yd and for the intent yi, but it also predicts a label for every

slot in our domain ontology ysi ,∀si ∈ D. This means that the domain ontology holds complete infor-

mation about each slot, specifically all its possible values (labels), v. The model uses the pre-trained

English uncased BERT-base model to output a context-dependent semantic representation of the input

sentence, h[CLS]. Then, multiple classifier layers (linear layer + softmax) with a size of 768, all sharing

the BERT output, are used to predict the dialogue act type, the intent, and the multiple slots. Figure 4.2

shows the architecture of the implemented model.

Based on the hidden state of the first special token [CLS], denoted h[CLS], the dialogue act type,

intent, and slots are predicted as:

yd = softmax(W dh[CLS] + bd) (4.1)

yi = softmax(W ih[CLS] + bi) (4.2)

ysi = softmax(W sih[CLS] + bsi),∀si ∈ D (4.3)

where W d, bd, W i, bi and W si , bsi are the weights and biases associated with the classifier layer for
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Figure 4.2: Joint multi-task classification model for natural language understanding. First, BERT outputs a context-
dependent semantic representation of the input token sentence, h[CLS]. Then, multiple classifier layers use these
features to predict the labels for each task, yd, yi, and ysi , ∀si ∈ D. Adapted from [21].

the dialogue act type, the intent, and the multiple slots, respectively.

By jointly modeling the three tasks, we enable the model to exploit the relationships between them,

but we also reduce the computational cost of using a single individual model for each slot (the number

of models increase with the number of slots). The objective is formulated as:

P (yd, yi, ys1 , ..., ysS |x) = P (yd|x)P (yi|x)

S∏
i=1

P (ysi |x) (4.4)

where S is the total number of slots in our domain ontology. The learning objective is to maximize

the conditional probability P (yd, yi, ys1 , ..., ysS |x), and, hence, the model is finetuned end-to-end via

minimizing the cross-entropy loss (recall Equation 2.12).

One advantage of the previous approach is that, as we are considering the slot filing as multiple

classification problems, the possible values for each slot are well defined in the knowledge base of the

system. For example, consider the user says "bring me my computer". The model will assign the slot

OBJECT with the value COMPUTER. However, the user could also say "bring me my laptop" and the

model will also assign the slot OBJECT with the value COMPUTER (instead of LAPTOP). This means that

when the model understands an object, it is easy to identify it in the system’s knowledge base, which

represents a significant simplification for the following pipeline components of the dialogue system, as

we will see in the next sections.

However, this also holds a clear limitation. Usually, the model will not generalize well to unseen

values in the training data. For example, if the model has never seen the word laptop during training, it
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will not know that the word is associated with the label COMPUTER. Hence, the model may not be able

to correctly classify this slot. In addition, the model will not scale well, i.e. if we want to introduce a new

value for a certain slot, we have to modify the number of labels in the classification task and retrain the

model.

Therefore, we decided to change the implementation of the natural language understanding model.

We continue to consider the dialogue act type classification and intent detection as classification prob-

lems, but the slot filing task is now considered as a sequence labeling task. Sequence labeling requires

aligned data. Therefore we need to do aligned labeling in order to provide an alignment between the

words in the input utterance and the target semantics. BIO tags provide a method of aligning spans of

a sequence with labels [3]. Short for begin, inside, outside, this is a common tagging format for tagging

tokens. The B-prefix before a tag indicates that the tag is the beginning of a sequence, and an I-prefix

before the tag indicates that the tag is inside a sequence. An O-tag indicates that a token does not

belong to any sequence. Table 4.9 represents an example of sequence labeling using BIO tags.

Table 4.9: Sequence labeling using BIO tagging. In this example, the slots are: PER(person)="me",
OBJ(object)="book", and SRC(source)="living room table".

Tokens Bring me a book from the living room table

Labels O B-PER O B-OBJ O O B-SRC I-SRC I-SRC

First, we developed three independent models, instead of jointly modeling the tasks. We chose not

to implement a joint model because the computational complexity of increasing the slots for slot-filing as

a sequence labeling task is less significant compared to the implementation as a classification task (it

increases the number of labels, but we do not need to have a single model for each slot). Both dialogue

type classification, intent detection and slot filing models are composed of a pre-trained English uncased

BERT-BASE model stacked with a classifier layer. However, in the dialogue type classification and intent

detection we classify the whole sentence, while in slot filing we classify each word of the input sentence.

Both type of models are represented in Figure 4.3.

Since both dialogue act type classification and intent detection are still being considered as classifi-

cation tasks, they are predicted using the equations 4.1 and 4.2. However, note that the hidden state of

the first special token [CLS], denoted h[CLS], is now different for both dialogue act type and intent models,

since they are now being independently modeled. Thus, each of the models will have an independent

learning objective, which is to maximize the conditional probabilities P (yd|x) and P (yi|x), respectively.

The models are finetuned end-to-end by minimizing the cross-entropy loss (recall Equation 2.12).

For slot filling, as a sequence labeling task, we need the final hidden states for the tokens rep-

resenting each of the input words, denoted hx = (h1,h2, ...,hN ). We then feed each of the hidden

representation into a softmax layer, yielding a label for each token, ysn, n ∈ 1...N , where N is the total

number of tokens.

ysn = softmax(W shn + bs) (4.5)
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Figure 4.3: Classification and sequence labeling models used for dialogue type classification, intent detection and
slot filing. Adapted from [21].

where W s and bs represent the weights and biases of the classifier layer of the slot filing model.

The objective if formulated as:

P (ys|x) =

N∏
n=1

P (ysn|x) (4.6)

and the learning objective is to maximize the conditional probability P (ys|x) by minimizing the cross-

entropy loss (recall Equation 2.12).

Figure 4.4 shows the NLU architecture. When the NLU receives the hypothesis from the speech

recognition, it first performs some text pre-processing of the text transcriptions and then, using the NLU

models described earlier, it predicts the dialogue act type, the intent and the slot-values. After that,

it uses the grounding model to ground the predicted slot-values to the entities that are known to the

system. The grounding model will be explained further, in section 4.4.1. Finally, after the predictions, the

NLU computes a list of user acts (to each of the transcribed hypothesis corresponds a single user act).

Before proceeding to the grounding model description, we need to first explain how the user acts

are formed. Consider an N -best list of transcribed hypothesis, hn = (h1, ..., hN ). Let hi be the i-th

hypothesis of the list, whose text transcription is ui, and confidence score is cui . First, we compute a

probability distribution over the N hypothesis, pun = (pu1 , ..., p
u
N ), using a softmax operation:

pun =
exp(cun)∑N
i=1 exp(cui )

(4.7)

yielding a probability pui for each hypothesis hi in the N -best list. As seen earlier, for each hypothesis’

utterance transcription ui, the NLU model will predict the dialogue act type, yd, the intent, yi, and a slot

label for each input token n, ysn. Those predictions are performed using a softmax operation in the final

layer of the model, and, hence, to each NLU prediction will also correspond a confidence score. Thus,

there will be a dialogue act type confidence score cd, an intent confidence score ci, and a slot confidence

score for each input token n, csn.
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Figure 4.4: Architecture of the Natural Language Understanding (NLU). Each time the NLU receives a list of
recognized hypothesis, it uses the NLU models to predict the dialogue act type, the intent and the slot-value pairs
for each hypothesis. After that, it uses the grounding model to ground the slot-values to the entities known to the
system. Finally it computes the user acts.

Each user act is composed of a dialogue act type, an intent and slot-value pairs. Let dui be the

user dialogue act corresponding to the i-th recognized hypothesis, hi. The user dialogue act will be

composed of a dialogue act type ydi , and an intent yii , with confidence scores c̄di = cdi · pui and c̄ii = cii · pui ,

respectively, i.e. the confidence scores of the NLU predictions will be normalized by the probability of

the recognized hypothesis. Besides that, the user act can also have one or more slot-value pairs. After

the slot labeling, each token n of the input sentence will be assign a label ysn. However, since what we

need is a slot-value pair, each time a token n is labeled with a certain slot s, we will consider that the

token n is the value of that slot. Let xn be the n-th token of the i-th transcribed hypothesis hi. If that

token is assigned with a slot label s, the user dialogue act dui will have the slot-value pair (s, v = xn),

with confidence score c̄s,vi = csn ·pui . Recall that the slot labeling task is performed using aligned labeling.

Thus, there may be the case where a slot-value is composed of more than one token. In this situation,

the slot-value pair will be composed of the concatenation of the l tokens that are labeled with slot s, and,

hence, (s, v = xn ⊕ ...⊕ xn+l), with confidence score c̄s,vi =
∏l−1
i=0 c

s
n+i · pui .

4.4.1 Grounding

The sequence labeling model described in the previous section enables a better generalization for the

slot filing task, since it is usually able to classify a word with the correct label, even without seeing it

during training. However, we need to ground the words labeled by the model to the system’s knowledge

base, i.e. to the entities that are known to the system. Returning to the previous example, if the user

says "bring me my computer", the sequence labeling model will assign the label OBJECT to the word

COMPUTER. On the other hand, if the user says "bring me my laptop", the model will label the word

LAPTOP as an OBJECT. However, both words share the same meaning. Besides that, will the system be

able to relate any of those words with the real entity (computer)? In the case of the first approach for

the NLU model, since we are dealing with the slot filing task as a classification problem, the labels are

defined to correspond directly to the entities in the knowledge base. However, for the second approach
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we need a way to relate the labeled words to the entities that the system knows.

A good approach is to define one or more names for each entity in the system’s knowledge base,

KB. Thus, to each entity e, will correspond a set of words that correctly describes that entity, Se. Then

we can use those words, we ∈ Se, to compare with the words labeled by the slot filing model. Although

one could compare the labeled word with all the names of the entities and check if they match, it is

usually intractable to define all possible names for all entities.

In Section 2.4 we have explained different techniques for representing words. Since some word

embeddings’ models represent words based on their semantic relationships, we can use the same idea

to develop a model that is able to recognize if two words are semantically related. Thus, we developed a

grounding model that is able to assign a confidence score between a certain word and an entity, which

represents their semantical relatedness. Let wk be the k-th word labeled by the slot filing model. First,

we extract their embedding vector, wk = Φ(wk), using the grounding model, which makes use of a

projection function Φ(.) of words into a multi-dimensional geometrical space [72]. Then, we compare

the embedding vector of the k-th word, wk, with the embedding vector of all the possible names for all

entities in the knowledge base, w = Φ(w),∀w ∈ Se,∀e ∈ KB. This comparison uses a GROUNDING

FUNCTION that computes the confidence score as the cosine similarity between the word vectors (words

with the same meaning will be closer in the multi-dimensional space of the embeddings). Given a word

wk, the GROUNDING FUNCTION of an entity e will be computed as:

g(wk, e) = max
w∈Se

sim(w,wk) = max
w∈Se

w ·wk

‖w‖‖wk‖
(4.8)

Finally, we sort the confidence scores, g(wk, e), and if the maximum score is bigger than a defined

GROUNDING THRESHOLD, τG, we assign that entity to the slot filing label. If not, the word will be assign

to no entity.

e = argmax
e∈KB

g(wk, e), g(wk, e) ≥ τG (4.9)

Since a lot of work has already been done in word embeddings training, we used pre-trained embed-

dings, particularly the GloVe embeddings trained on a large wikipedia corpus.

4.5 Dialogue State Tracker

In Section 3.4, we gave a description about the state of the art in dialogue state tracking. We chose

to use a rule-based method, since we had no dialogue data for this particular domain to train a statisti-

cal model. In addition, we also wanted a dialogue state tracker capable of tracking multiple hypothesis

and maintain a belief over dialogue states. In the dialogue state tracking challenge (Section 3.4.4), a

particular rule-based method achieved significant results in the benchmark task. This generic dialogue

state tracker maintains beliefs over user goals based on a few simple domain independent rules, us-

ing basic heuristic operations [44]. These rules are directly applied to observable system actions (i.e.

the responses generated by the system) and partially observed user acts (i.e. the output of the NLU
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component), without using any knowledge from external sources [44].

The heuristic rules are derived from some basic probabilistic mathematics. Let P (X) denote the

probability of the occurrence of an eventX, and, hence, the probability ofX not occurring is P (¬X) = 1−

P (X). Accordingly, if X occurs two times, with independent probabilities P1(X) and P2(X), respectively,

then the overall probability of its occurrence is P (X) = 1−P1(¬X)P2(¬X) = 1− (1−P1(X))(1−P2(X))

[44]. The previous probability can be generalized to P (X) = 1 −
∏k
i=1 Pi(¬X) = 1 −

∏k
i=1(1 − Pi(X)),

given a sequence of k independent events, with the probability of X occurring in the i-th event being

Pi(X). Recursively, we can compute this quantity as [44]:

P t(X) = 1− (1− P t−1(X))(1− Pt(X)) (4.10)

where P t(X) denotes the value of P (X) after X occurring t times, and we let P 0(X) = 0.

Now, consider A to be a binary random variable. Suppose we know the prior probability of A being

true is Pr(X). If there is a chance where with probability P (B) we will observe an event B independent

of A, and we assume that if B happens, we must set A to false, then the probability of A still being true

will become P (A = true) = Pr(A)P (¬B) = Pr(A)(1− P (B)) [44].

Each turn, the dialogue system executes an action and receives an observation. The observation

is an NLU N-best list of DIALOGUE ACTS, and can either be a DIALOGUE ACT without taking any SLOT-

VALUE arguments (e.g. AFFIRM() or RESTART()) or an act presenting one or more SLOT-VALUE pairs (e.g.

INFORM(OBJECT=BOOK) or INFORM(OBJECT=BOOK, SOURCE=LIVING ROOM TABLE)).

The main goal of our dialogue state tracker is to track the beliefs over individual slot-value pairs, start-

ing with an initial belief b0 with null confidence scores for all the slot-value hypothesis. As stated in section

4.2, the dialogue state tracker (DST) component will receive an N-best list of user acts (DIALOGUE ACTS).

Each user act may contain one or more slot-value pairs, (si, vj), with their correspondent marginal con-

fidence scores, c(si,vj). First, in each turn, the dialogue acts which have more than one slot-value pairs

will be split into single slot-value dialogue acts. Then, the dialogue acts which have the same slot-value

pairs will be merged across the N-best list by summing their confidence scores, yielding the marginal

confidence scores for individual slot-value representations. Consider the following example:

INFORM(INTENT=TAKE, OBJECT=BOOK) (c(intent,take) = 0.7, c(object,book) = 0.6)
INFORM(INTENT=TAKE, OBJECT=COKE) (c(intent,take) = 0.3, c(object,coke) = 0.1)

After splitting-merging procedure, the user acts will become:

INFORM(INTENT=TAKE) c(intent,take) = 1.0

INFORM(OBJECT = BOOK) c(object,book) = 0.6

INFORM(OBJECT = COKE) c(object,coke) = 0.1

Then, the dialogue state tracker will use the single slot-value dialogue acts to update the current

dialogue state using a set of heuristic rules. Let Pt(u, s, v) denote the marginal confidence score for a

user dialogue act u(s = v) at turn t. Then, the belief bt(s, v) for the slot-value pair (s, v) is updated as

[44]:
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• Rule 1: If u = inform, then bt(s, v) = 1− (1− bt−1(s, v))(1− Pt(u, s, v)).

In addition, we also consider the effects of certain system actions on the belief updates as well. Let

a(h) be one of the system actions performed in turn t, where h stands for a set of n slot-value arguments

taken by a, i.e. h = (s1, v1), ..., (sn, vn) [44].

• Rule 2: If a is an implicit or explicit confirmation action, CONFIRM, and an AFFIRM or NEGATE user

act u is observed with confidence score Pt(u):

– Rule 2.1: If u = affirm, then bt(si, vi) = 1− (1− bt−1(si, vi))(1− Pt(u)),∀(si, vi) ∈ h.

– Rule 2.2: If u = negate, then bt(si, vi) = bt−1(si, vi)(1− Pt(u)),∀(si, vi) ∈ h.

Finally, we add another rule to restart the belief of all slot-value hypothesis when a restart action is

requested by the user.

• Rule 3: If a RESTART user act u is observed with confidence score Pt(u) ≥ τR, then bt(si, vi) =

0,∀(si, vi) ∈ D, where D is the domain ontology and τR is a RESTART THRESHOLD.

Recalling the previous example, the dialogue state that corresponds to the first turn t = 1 will be:

INTENT=TAKE b1(intent, take) = 1− (1− b0(intent, take))(1− c(intent,take)) = 1.0

OBJECT = BOOK b1(object, book) = 1− (1− b0(object, book))(1− c(object,book)) = 0.6

OBJECT = COKE b1(object, coke) = 1− (1− b0(object, coke))(1− c(object,coke)) = 0.1

Figure 4.5 shows the DST architecture. Essentially, each time the DST receives a list of user acts,

it splits and merges the user acts, yielding user acts with single slot-value pairs, and then applies the

previous described heuristic rules to update the dialogue state (i.e. the belief over individual slot-value

pairs).

Figure 4.5: Architecture of the Dialogue State Tracking (ASR). When the DST receives a list of user acts, it first
splits and merges the dialogue user acts, yielding single slot-value dialogue acts. Then, it uses these dialogue acts
to compute the dialogue state by applying heuristic rules.
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4.6 Dialogue Manager

The dialogue manager (DM) will control the flow of the conversation. Thus, it must decide which action

the system should take at each turn, based on the current dialogue state. As stated before, we did not

have any real world dialogue data for the dialogue system’s domestic domain, neither a user simulator

for training the dialogue manager using reinforcement learning. Thus, we decided to design the dialogue

manager based on some hand-crafted rules. Briefly, the dialogue manager will compute a task state,

tt, and then use the hand-crafted rules to choose the next system’s action. This task state is computed

using a set of task templates, defined in a task ontology, T .

Consider the dialogue state at turn t, st = (bt(s1, v1), ..., bt(sN , vN )), where N denotes the total

number of slot-value pairs, and a system response dialogue act generated in the same turn, dat = a(h),

where a denotes the dialogue act type and h = (s1, v1), ..., (sk, vk) is a set of k slot-value arguments

taken by a.

First, the dialogue manager will verify if the dialogue state contains a value for the INTENT slot. If not,

this means that the system cannot know the intention of the user, i.e. the type of task the user wants the

robot to perform. Thus, it must ask for that specific slot, generating the system response dialogue act

REQUEST(INTENT).

• Rule 1: if (intent, v) /∈ st, then dat = a(h) = REQUEST(intent), where a = REQUEST, and h =

(intent, NULL).

On the other hand, when the dialogue state contains a value for the INTENT slot (e.g. INTENT=TAKE),

but its confidence is lower than a SLOT THRESHOLD, τs, then the system will generate the dialogue act,

CONFIRM(INTENT=TAKE).

• Rule 2: if (s = intent, v) ∃ st, with bt(s = intent, v) ≤ τs, then dat = a(h) = CONFIRM(intent, v),

where a = CONFIRM, and h = (s = intent, v).

Otherwise, if the dialogue state has a value for the INTENT slot, and is confidence enough about it,

it will choose the task templates related to that specific INTENT. Each task template will have a set of

required slots, sreq, which are the slots required to perform that specific task, and also a task confidence

score ct. In this case, the DM will start filling the task templates, using the slot-value pairs in the dialogue

state. For each task template, the DM will search in the dialogue state for slot-value pairs whose slot is

in the required slots of the task, i.e. (s, v) ∈ st, s ∈ sreq. If the confidence score of those slot-value pairs

is bigger than the SLOT THRESHOLD, bt(s, v) > τs, their values will be added to the task template. In

addition, for each slot-value pair added to the task template, the task confidence score will be updated

as, cti = cti−1 · bt(s, v). The initial task confidence score will be the confidence score of the intent slot,

ct0 = bt(intent, v). In the end, at each turn t, we will have a set of task templates related to a specific

task, defined by the INTENT slots in the dialogue state. Each of these task templates contains slot-value

pairs extracted from the dialogue state, whose slots are required to perform that specific task, and a task

confidence score. Finally, the DM will choose the task template with the higher confidence score, and

compute the task state, tt.
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Thus, at each turn t, a task state composed of j slot-value pairs, tt = (s1, v1), ..., (sj , vj), with a certain

task confidence ct, will be computed. If the task confidence score is lower than a TASK THRESHOLD, τT ,

this means that the system is not entirely sure of all the information in the task state, and, hence, will

generate the system response dialogue act CONFIRM((s1, v1), ..., (sj , vj)).

• Rule 3: for tt = (s1, v1), ..., (sj , vj), if ct ≤ τT , then dat = a(h) = CONFIRM((s1, v1), ..., (sj , vj)),

where a = CONFIRM, and h = ((s1, v1), ..., (sj , vj)).

If the task confidence score is higher than the TASK THRESHOLD, then the DM will check if the task

state (task template) has all the required slots full-filled, i.e. if all the required information is presented. If

not, it must generate a system response dialogue act requesting one of the missing slots, REQUEST(s).

• Rule 4: for tt = (s1, v1), ..., (sj , vj), ct > τT , if sk ∈ sreq, sk /∈ tt then dat = a(h) = REQUEST(sk),

where a = REQUEST, and h = (sk, NULL).

Consider the following dialogue state as an example:

INTENT=TAKE b1(intent, take) = 1.0

OBJECT = BOOK b1(object, book) = 0.6

OBJECT = COKE b1(object, coke) = 0.1

First, the DM will check for the INTENT slot. Since the slot is presented in the dialogue state, with

a high confidence score, the system will retrieve the task templates related to the task TAKE. Con-

sider one of those templates as TAKE(OBJECT, SOURCE, DESTINATION), where the required slots are

the object, source and destination. Since there are two different slot-value pairs in the dialogue state

(OBJECT=BOOK), (OBJECT=COKE), and in both of them, the slot is a required slot of the task template,

two task templates will be computed. One of them is TAKE(OBJECT=BOOK, SOURCE, DESTINATION) and

the other is TAKE(OBJECT=COKE, SOURCE, DESTINATION). However, the first task template has a higher

confidence score, b1(intent, take) ·b1(object, book) = 1.0×0.6 = 0.6, compared with the second template

which has a confidence score of 0.1. Then, the task state is going to be TAKE(OBJECT=BOOK). Consid-

ering a task threshold τt = 0.8, the task confidence will be lower than this threshold, and, hence, the

dialogue system will generate a system response of the type CONFIRM(INTENT=TAKE, OBJECT=BOOK).

Now, consider that the user confirms the system response and, in the next turn, the dialogue state is

updated to:

INTENT=TAKE b1(intent, take) = 1.0

OBJECT = BOOK b1(object, book) = 1.0

OBJECT = COKE b1(object, coke) = 0.1

The task state will still be TAKE(OBJECT=BOOK, SOURCE, DESTINATION). However, it will have a

confidence score of 1.0, and since it is bigger than the TASK THRESHOLD, τT = 0.8, the system is

sure about the information. Nevertheless, the system does not have all the required information to

perform the task and, hence, it will generate a system response of the type REQUEST(SOURCE) or

REQUEST(DESTINATION).
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Figure 4.6 shows the DM architecture. When the DM receives the dialogue state, it first computes

the task state, and then apply the previously described rules and compute the system response.

Figure 4.6: Architecture of the Dialogue Manager (DM). When the dialogue state is published, the DM will first
compute the task state. Then, it applies the rules and computes the system response.

4.6.1 Dialogue State Machine

We have described how the dialogue manager (DM) will generate the system’s response, based on the

dialogue state. However, the DM is also responsible for controlling the flow of the conversation. There-

fore, we developed a dialogue state machine (DSM), which is capable of controlling all the components

of the dialogue system’s pipeline. The DSM architecture can be seen in figure 4.7.

The first state of the DSM is the DIALOGUE BEGIN. This state is responsible to begin the dialogue, by

generating an HELLO() message. The next state is the START RECOGNITION, where the state machine

will activate the recognition in the automatic speech recognition (ASR) node. Then, there will be a

transition for the WAIT FOR RECOGNITION state, where the state machine will be waiting for a recognition

from the ASR. In this state, there are two possible transitions. If there is a successful recognition, the

state will transit to the state DIALOGUE MANAGEMENT. However, if there is an unsuccessful recognition

(the ASR cannot recognize any hypothesis), or there is a timeout waiting for the recognition, the state

will transit to RECOGNITION FAILED. This state will just compute a REPEAT() system response and

continue to START RECOGNITION, unless there are N repeated failed recognitions, where the state will

return failure and transition to the DIALOGUE FAILURE. The number of maximum failed recognition is

a tune parameter of the dialogue system that can be changed. The DIALOGUE MANAGEMENT is the

core state of the machine. After a successful recognition by the ASR component, the natural language

understanding (NLU) and dialogue state tracker (DST) components will compute the user dialogue acts

and dialogue state, respectively. Then, the dialogue manager (DM) will compute the system’s response.

The DIALOGUE MANAGEMENT state will be waiting for the computed system’s response. Based on that

response, it will decide if the dialogue will continue, and transit to the DIALOGUE CONTINUE state, or will

finish and transit to the DIALOGUE END state. Besides that, the DIALOGUE MANAGEMENT can also return

failure if there is a timeout waiting for the system’s response, and transit to the DIALOGUE FAILURE state.
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Figure 4.7: Architecture of the Dialogue State Machine.

The normal operation of the state machine is expected to be DIALOGUE BEGIN → START RECOGNI-

TION → WAIT FOR RECOGNITION → DIALOGUE MANAGEMENT → DIALOGUE CONTINUE → ... until it has

all the required information for a task, and then→ DIALOGUE MANAGEMENT → DIALOGUE END.

4.7 Implementation

The developed dialogue system was implemented in the robot using ROS (Robot Operating System)

[73]. ROS is a framework for writing robot software. It provides hardware abstraction, low-level device

control (device drives), implementation of commonly used libraries and visualizers, message-passing

between processes, and package management. ROS systems are made up of many independent pro-

grams running simultaneously and communicating with one another by passing messages. Therefore,

ROS provides a loosely coupled structure that allows the creation of generic modules, which are orga-

nized as packages.

In our implementation, each component was designed as an individual ROS package, each of which

contains the code for each individual component, together with their specific models. Usually, we can

represent a ROS system using a graph, whose nodes represent the independent programs, and pro-

grams that communicate with one another are connected by edges (usually referred as topics). Figure
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4.8 shows the ROS graph for our dialogue system implementation. The Automatic Speech Recognizer

(ASR), Natural Language Understanding (NLU), Dialogue State Tracker (DST), and Dialogue Manager

(DM) are independent programs (nodes), which run simultaneously and communicate with one another

by sending messages. The Dialogue State Machine (DSM) is another program, which implements a

SMACH state machine for controlling some of the nodes, particularly the ASR and DM, enabling the

system to control the flow of the conversations.

Figure 4.8: ROS graph of the dialogue system implementation. The ROS system is composed of five nodes: Auto-
matic Speech Recognizer (ASR), Natural Language Understanding (NLU), Dialogue State Tracker (DST), Dialogue
Manager (DM), and Dialogue State Machine (DSM), running simultaneously and communicating with one another.

NLU and Grounding models

Initially, we implemented the first version of the NLU models in tensorflow [74]. However, when we

changed the approach for the NLU models, we decided to switch to pytorch [75], since we consider

it easier for making modifications on pre-trained models, and customizing our own models. We imple-

mented the grounding model using the gensim library [76]. Furthermore, all the developed code was

done using Python.
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Chapter 5

Results

In this chapter we discuss the quantitative results for the natural language understanding model. We

will compare the performance of the model using two different transfer learning techniques: feature-

extraction and fine-tuning, and then we will show the training, evaluation and validation results for the

different models. Furthermore, we evaluate the complete dialogue system by analyzing real case conver-

sations between the dialogue system and a user. In addition, we also demonstrate the main limitations

of our implementation. Finally, we show some real conversations from the SciRoc2019 competition,

where the dialogue system was implemented in a service robot.

5.1 Natural Language Understanding

The major problem when developing the dialogue system was the non-existence of any real data related

to the tasks we want the robot to perform. The adopted solution was to design our own data generator to

generate the training and test datasets. However, for validating the model, we used the available GPSR

generator1, which is the official generator used in the GPSR test of the RoboCup@Home competition.

After generating the user utterances, they were manually labeled with intent labels and slot tags. Never-

theless, for dialogue act type classification, we were not able to generate any validation data, since the

GPSR generator only generates text commands which correspond to a INFORM dialogue act type. The

generated training, test, and validation sets contain 5000, 500, and 100 utterances, respectively. There

are 11 slot labels, 10 dialogue act type labels, and 9 intent labels.

5.1.1 Metrics

The evaluation of the models was based on some standard classification metrics: precision, recall and

F1-score.
1https://github.com/kyordhel/GPSRCmdGen
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Precision

In a classification task, the precision for a class is the number of true positives divided by the total

number of elements predicted as belonging to that class:

PRECISION =
tp

tp+ fp
(5.1)

where tp denotes the true positives (i.e. the number of items correctly predicted as belonging to the

class) and fp the false positives (i.e. the items that were incorrectly predicted as belonging to the class).

Thus, precision reflects how precise the model is in identifying the true elements of a class, and, hence,

a perfect precision model is a model that, when predicts an item as belonging to a certain class, those

predictions are always right. However, the precision is not enough to evaluate the performance of a

classification model. The model can have a perfect precision, but there may be a significant number of

items that should be labeled as belonging to that class and are being classified as not belonging to the

class (false negatives). Thus, we need to introduce the recall metric.

Recall

Recall indicates how many relevant items are selected, i.e. measures the proportion of the actual posi-

tives that are correctly classified as such. It is computed as the number of true positives divided by the

total number of relevant elements (elements that in reality belong to the class):

RECALL =
tp

tp+ fn
(5.2)

where fn denotes the false negatives.

F1-Score

Together, the precision and recall metrics are capable of representing the performance of a classification

model, since they can evaluate the proportion of items of a class that are correctly being predicted as

belonging to that class. Usually, the precision and recall metrics can be represented together as the F1

score, which computes their harmonic mean.

F1 = 2 · PRECISION · RECALL

PRECISION + RECALL
(5.3)

Micro and Macro Averages

Since we are dealing with multi-class classification, we need to compute the average of the previous

metrics. We can use both micro or macro-averages, which compute slightly different things. A macro-

average computes the metric independently for each class and then take the average, i.e. this type

of average treats all classes equally. The micro-average aggregates the contributions of all classes to

compute the average metric.
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Consider the following multi-class classification system with four classes and the following evaluation

results:

• Class A: 1tp and 1fp

• Class B: 10tp and 90fp

• Class C: 1tp and 1fp

• Class D: 1tp and 1fp

First, we compute the precision for each class individually, yielding PRECISIONA = PRECISIONC =

PRECISIOND = 0.5, whereas PRECISIONB = 0.1. If we compute a macro-average, then the resulting

precision will be PRECISION = 0.5+0.1+0.5+0.5
4 = 0.4, whereas a micro-average will compute PRECISION =

1+10+1+1
2+100+2+2 = 0.123. These are quite different values for precision. Intuitively, in the macro-average, the

higher precision of classes A, C and D is contributing to maintain the overall precision. While technically

true, this value may be misleading since there is a high number of items that are not properly classified,

which contribute only 1/4 towards the average, in spite of constituting 94.3% of the test data. The micro-

average will adequately capture this class imbalance, and bring the overall precision down.

ROC curve

Traditionally, when we need to visualize the performance of a binary classification problem, we can use

ROC (Receiver Operating Characteristics) curve. A ROC curve is a probability curve that represents

the performance of a classification model at different classification thresholds. This curve plots two

parameters: true positive rate (TPR), also called recall, and false positive rate (FPR). The false positive

rate can be defined as:

fpr =
fp

fp+ tn
(5.4)

, where fp denotes the false negatives, and tn the true negatives.

We can extend this metric to a multi-class classification by using a one vs all methodology. Consid-

ering N number of classes, we plot N curves where each class is classified against all the others.

AUROC

The Area Under the Receiver Operating Characteristics (AUROC) measures the area underneath the

ROC curve. Thus, AUROC provides an aggregate measure of performance across all classification

possible thresholds, and hence represents a degree or measure of separability. Intuitively, it tells how

much the model is capable of distinguishing between classes. A model with an excellent measure of

separability will have an AUC near to the 1, while a model with no class separation at all will have an

AUC near 0.5.

For a multi-class classification problem, since we will have N ROC curves (one per class), we can

calculate the AUROC for each curve, and then compute the average.
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5.1.2 Results

The NLU models uses the English uncased BERT-BASE model, which is composed of 12 layers, hidden

states with a size of 768, and 12 self-attention heads. BERT is pre-trained on BooksCorpus (800M

words) and English Wikipedia (2500M words) [23]. In Section 2.4, we have seen that we can use a

pre-trained model both as feature-extractor or fine-tune it on a new task. We have decided to compare

both approaches, and compare their performance.

Fine-tuning vs. Feature Extraction

Therefore, we trained both the intent detection (classification task) and slot filing (sequence labeling

task) models using both approaches, and for each epoch we evaluated the models on the test set. We

have decided not to analyze the dialogue act type classification model, since we already have a classi-

fication task represented in the intent detection analysis. Figure 5.1 shows the difference between the

performance of the slot filing model, using the feature-extraction (EX) and fine-tuning (FT) approaches.

The results for the intent detection model are presented in Chapter A (Figure A.1). The results were

obtained by training the models several times using different combinations of hyper-parameters. It is

clear that fine-tuning BERT during training leads to a significant increase in models performance, over

the feature-extraction approach. Not only the models are able to achieve a greater F1-Score, but they

also require a fewer number of training epochs.

Figure 5.1: Fine-tuning (FT, green) vs feature extraction (EX, yellow) for slot filing.

BERT was pre-trained on both a mask language modeling (MLM), and a next sentence prediction

(NSP) tasks, to learn context-representations for each input token and for a special token, [CLS], used

for sentence classification. The fine-tuning approach can achieve a significantly better performance,

because it can adapt the pre-trained representations to get better features for the new tasks.
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After the previous analysis, we have decided to implement the fine-tuning technique for training the

NLU models. For fine-tuning BERT, Devlin et al. [21] keeps most model hyper-parameters the same

as in pre-training, with the exception of the batch size, learning rate and number of training epochs.

Therefore, we will keep both the dropout probability and warm-up proportion at 0.1. In addition, we will

use input sequences with a maximum sequence length of 15, and we will use Adam [9] as optimizer. The

learning rate, batch size and number of training epochs are task-specific, but Devlin et al. [21] suggests

the following range of possible values to work well across all tasks:

• Batch size: 16, 32.

• Learning rate: 5e-5, 3e-5, 2e-5.

• Number of epochs: 3, 4.

Hyper-parameter Search

Since fine-tuning is typically very fast, it is reasonable to run an exhaustive search over the above

parameters. Thus, we train the models using combinations of the previous hyper-parameters, for a

maximum number of epochs of 15, and for each epoch we save the correspondent model, and run the

evaluation on the test set.

Figure 5.2: Performance results for the slot filing model using different learning rates (lr). (Green, lr = 2e−5);
(Yellow, lr = 3e−5); (Purple, lr = 5e−5)

Figure 5.2 shows the performance of the slot filing model for different learning rates. The results

for the intent detection model are presented in Appendix A (Figure A.2). We verify that fine-tuning

the model using a learning-rate of 3e−5 (yellow) yields a better performance for both the slot filing and

intent detection models. For the batch size, Figure 5.3 shows that a batch size of 16 results in a better

performance for the slot filing model. Again, the results for the intent detection model are presented in
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Appendix A (Figure A.3). For the intent detection model, in contrast with slot filing, a batch size of 32

results in a better performance.

Figure 5.3: Performance results for the slot filing model using different batch sizes (bs). (Green, bs = 16); (Yellow,
bs = 32)

After exhaustive searching over the previous parameters, we have decided to use the following hyper-

parameters:

• Dropout rate: 0.1.

• Warm-up proportion: 0.1.

• Maximum sequence length: 15.

• Learning rate: 3e-5.

• Batch size: 16 (slot filing) and 32 (intent detection and dialogue act type classification)

• Number of epochs: 15, but saving a model for each epoch and running an evaluation over the test

set on each epoch.

In addition, we also train the models multiple times, using a random parameters’ initialization with

different seeds. The training and validation results will be shown further.

Dialogue Act Type Classification

First, we trained the dialogue act type classification model. Figure 5.4 shows the evaluation performance

of the model during training.

It is trivial to see that the model is able to predict the data really easy, with a perfect F1 score after

the first epoch. Intuitively, these results may be explained because of the BERT pre-training. BERT
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Figure 5.4: Dialogue act type classification model evaluation on test set during training

represents the input sentence as a context-dependent feature vector. Since BERT was already pre-

trained on a large text corpus, it only needs some slightly adaptations on the pre-trained representations

for the final classifier layer to be able to easily split the different classes.

As referred earlier, we were not able to generate a validation set for validating the dialogue act type

classification model. However, several tests were performed to check the model’s performance, where

we tested different type of user commands and checked the model’s predictions. Since usually the user

commands reflecting confirmations, negations, repetitions, and greetings are fairly simple, the model

was able to correctly identify the different dialogue act types of user commands.

Intent Detection

Next, we trained the intent detection model. Similarly to the dialogue act type classification model, this

model was also able to achieve really good results after only one epoch (see Figure 5.5).

In contrast with the dialogue act type classification, for intent detection we were able to validate the

model on a validation dataset. As referred before, this validation data was generated using the official

GPSR command generator, and then manually labeled with the different intent types. The validation

results are shown on Table 5.1 and Figure 5.6. Table 5.1 shows that the model is performing really well,

with an overall F1 score of 97.1%. However, it is also clear that the intent labels TAKE and GUIDE are

the cases where the model is performing worse, with an F1 score of 94.1% and 89.7%, respectively. A

deeper analysis of the validation dataset indicates that the problem could be related to the fact that both

TAKE and GUIDE commands can be represented with the verb take, e.g. "take the book from the table"

and "take John to the living room". However, by analyzing the model predictions on the validation set,

we verified that the model was capable of distinguish between both types of intents, taking into account
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Figure 5.5: Intent detection model evaluation on test set during training.

that a TAKE intent command is usually highly correlated with an OBJECT, while a GUIDE intent command

is correlated with a PERSON. Intuitively, this means that the self-attention mechanism from BERT is able

to model these correlations. Nevertheless, since the validation set is generated using a more complex

generator than the training and test sets, it contains more general and unusual commands, such as "take

the pointing right person to the kitchen cabinet" or "escort the sitting person to the bathroom". We noted

that, in both this specific commands, and others similar to them, the model was not capable of labeling

them as a GUIDE intent, because it was not interpreting "the pointing right person" as a word sequence

describing a PERSON.

Figure 5.6 shows the ROC curve. For every class, the AUROC is 1.0 (or real close to 1.0), which means

that the model has an excellent measure of separability.
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Figure 5.6: ROC curve for the intent detection model performance
on validation data using a one vs all methodology. Classes with an
AUROC of 1.0 are omitted for visualization.

Table 5.1: Validation results for the intent de-
tection.

Precision Recall F1

TELL 1.0000 1.0000 1.0000

FIND 1.0000 1.0000 1.0000

GO 1.0000 1.0000 1.0000

TAKE 0.9412 0.9412 0.9412

GUIDE 0.9286 0.8667 0.8966

FOLLOW 1.0000 1.0000 1.0000

ANSWER 1.0000 1.0000 1.0000

PLACE 1.0000 1.0000 1.0000

Micro Average 0.9770 0.9659 0.9714

Macro Average 0.9765 0.9659 0.9710

Slot Filing

Finally, we trained the last model, the slot filing model, whose evaluation results are shown on Figure

5.7. After the first/second epochs, the model is already performing really well. We saved the model

correspondent to the 10th epoch (purple), since it is when the F1 score stabilizes.

Figure 5.7: Slot filing model evaluation on test set during training.

Next, we validated the model, yielding the results represented on Table 5.2 and Figure 5.8. Table

5.2 shows that the model is having some difficulty labeling the words that correspond to the slot WHAT-

TO-TELL. Usually, in the user commands that ask the robot to tell something, the sequence of words
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that indicate what the robot must say have an high length. For example, consider the command "please

tell me the day of the month". To the slot WHAT-TO-TELL, must correspond the value "the day of the

month", which has a length of 5. However, the model predicts this by labeling each word individually,

using BIO tagging, i.e. the word sequence ("the", "day", "of", "the", "month") must be predicted with

labels (B-WHAT_TO_TELL, I-WHAT_TO_TELL, I-WHAT_TO_TELL, I-WHAT_TO_TELL, I-WHAT_TO_TELL).

Sometimes, the model is predicting the label B-WHAT_TO_TELL instead of I-WHAT_TO_TELL, which is

causing the performance degradation, since the model considers them as different labels. In addition,

we can also verify that the slot PERSON has a lower recall compared with the model overall performance.

This is due to the same problem described in the intent detection model, with user utterances similar to

"take the pointing right person to the kitchen cabinet", where the model is not predicting the tokens with

the label PERSON, and hence the recall drops. Figure 5.8 shows that the slot filing model also has an

excellent measure of separability.

Figure 5.8: ROC curve for the slot filing model performance on vali-
dation data using a one vs all methodology. Classes with an AUROC
of 1.0 are omitted for visualization.

Table 5.2: Slot filing model results on valida-
tion data.

Precision Recall F1

PERSON 0.9792 0.8704 0.9216

OBJECT 0.9444 1.0000 0.9714

SOURCE 1.0000 0.9355 0.9667

DESTINATION 0.9577 1.0000 0.9784

WHAT-TO-TELL 0.9000 0.9000 0.9000

Micro Average 0.9639 0.9492 0.9565

Macro Average 0.9650 0.9492 0.9558

Overview

When we designed our own data generator for both dialogue act type classification, intent detection and

slot filing, we did not analyze the grammars that the official GPSR command generator (which was used

for the validation set) was using, since we wanted the validation set to be composed of different and

more complex user commands. Thus, the grammars that compose our generator are far more simple.

Table 5.3 shows a summary of the training, test and validation results for both the three models. When

evaluated on the test set, the models achieve really good results, which was already expected since

they were evaluated on a dataset generated with the same generator of the training set. However, the

validation set allowed us to check if the model was not over-fitting to the training data. The results

on the validation set are still very good, showing that the model is performing and generalizing well.

However, the validation data cannot be seen as a representation of the real world data distribution.
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Thus, the validation of the NLU models on a real world dataset would represent a better indicator for the

performance and generalization capability of the model.

Table 5.3: NLU model results.

Task
Precision Recall F1

Train Test Val Train Test Val Train Test Val

Dialogue act type

classification
1.0000 1.0000 - 1.0000 1.0000 - 1.0000 1.0000 -

Intent detection 1.0000 1.0000 0.9765 1.0000 1.0000 0.9659 1.0000 1.0000 0.9710
Slot filing 0.9984 0.9941 0.9650 0.9990 0.9894 0.9492 0.9987 0.9916 0.9558

5.2 Dialogue System

After training and validating the natural language understanding model, and since the other developed

components are rule-based, we decided to analyze the complete dialogue system, rather than analyzing

each component individually. To analyze the entire dialogue system, we will show some real conversa-

tions between a user and the system. Note that our developed dialogue system does not contain a

Natural Language Generation (NLG) component (recall the typical dialogue-state architecture described

in Section 3.1). Thus, we hard-coded some text responses, regarding the system dialogue acts gener-

ated by the Dialogue Manager (DM).

This first example of conversation highlights the advantage of using a dialogue system that tracks

multiple recognition hypothesis. In this first example, the user wants the robot to bring him an apple from

the kitchen cabinet. Table 5.4 represents the conversation between the user and the dialogue system.

Table 5.4: First conversation example.

SYSTEM Hello. How can I help you?
USER Bring me an apple.
SYSTEM From where?
USER From the kitchen cabinet.
SYSTEM Do you want me to deliver you an apple from the kitchen cabinet?
USER Yes.
SYSTEM Ok, I will do it.

We can verify that the dialogue system was capable of easily handling the conversation, requesting

more information about the task, and asking for a confirmation. However, let us take a deeper look

on the internal states of the system. Figure 5.9 shows the output of the dialogue system components

for the first turn of the conversation. Note that the confidence scores are rounded to the first decimal

place. Looking at the ASR output, we can see that the 1-best recognized hypothesis is "bring me an

airport", which is not what the user said. However, since our dialogue system is looking for the first 5

best hypothesis, it is still able to extract the correct information from the other hypothesis, particularly

from the second one, which corresponds to the correct speech command transcription.
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The NLU output holds the information extracted from each of the recognized hypothesis. Although

they contain some user acts with the incorrect value for slot OBJECT, such as airport and air pump, the

grounding model will parse those values and check if they represent entities that exist in the system’s

knowledge base. Since not, the DST did not consider them as relevant and only tracked the correct

OBJECT value, apple, in the dialogue state.

Figure 5.9: First dialogue turn of the first conversation example. The dialogue system begins the conversation by
generating an HELLO() message. Then, the user asks the robot to bring him an apple. The dialogue system is
able to successfully recognize all the information presented in the command, and generates the system response
REQUEST(SOURCE), since it needs the SOURCE slot to complete the task.

The previous example highlights the robustness of our spoken dialogue system against noise in

the speech recognition. In contrast with conventional dialogue systems, which consider only the 1-

best ASR/NLU result and track a single hypothesis for the dialogue state, our approach is still able

to understand the user speech command, even with ASR hypothesis that do not correspond to that

command. Furthermore, the previous conversation also highlights the advantage of using a grounding

model. Although the NLU predicts the values airport, air pump and apple as objects, the knowledge

base of the system does not contain any entities that can be described by the names airport and air

pump. Therefore, the dialogue system will filter the airport and air pump values, and will only consider

apple as an object in the dialogue state.

Now, consider the following example, in which the user asks the robot to do same task. Table 5.5

represents the conversation between the user and the dialogue system.

Although the conversation seems similar to the previous example, the dialogue system is not capable

of handling the conversation after the second turn, and therefore cannot perform the task. Again, let us

take a deeper look on the internal states of the system. Figure 5.10 shows the output of the dialogue

system components for the second turn of this second conversation.

By looking at the ASR output, we verify that the hypothesis are similar to each other, and correspond
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Table 5.5: Second conversation example.

SYSTEM Hello. How can I help you?
USER Bring me an apple.
SYSTEM Where is the apple?
USER It is on the kitchen cabinet.
SYSTEM Where is the apple?
USER On the kitchen cabinet.
SYSTEM Where is the apple?
... ...

Figure 5.10: Second turn of the second conversation example. After requesting the source, REQUEST(SOURCE),
the dialogue system receives a user speech utterance indicating the kitchen cabinet as the location of the apple.
Although, due to the NLU bad performance, the dialogue system cannot fill the SOURCE slot, and thus will request
it again.

to the real user utterance. However, when looking at the NLU output, we see that the NLU is assigning

the values kitchen cabinet and kitchen to the DESTINATION slot, while it should be assigning those values

to the SOURCE slot. Thus, since in the following turns the user continues to use similar utterances, the

dialogue system will enter an "infinite" loop because it does not recognize the SOURCE slot and will

continue to request it.

The dialogue state tracking (DST) component used in our dialogue system is based on simple and

generic heuristic rules, which rely entirely on the believability of the NLU hypothesis. Therefore, although

our dialogue system may be more robust to speech recognition errors, it is still limited by the NLU

performance. This NLU limitation is, mainly, due to the fact that the NLU models are only using the

user utterances as input features. Intuitively, we could counteract such limitation by using the previous

system responses as input features, together with the user utterances.
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5.3 SciRoc Competition

The previous examples of conversations highlight some advantages of our dialogue system implemen-

tation over more simple approaches. However, they were produced in a simulation environment by the

dialogue system designers. Thus, we needed a way to test the complete system in a real world scenario.

The SciRoc 2019 competition, held in Milton Keynes, provided this opportunity. The dialogue system

was implemented on the robot used for this competition. However, some minor modifications had to be

made, since the task was slightly different from the typical GPSR tasks, which took approximately two

days to be done. In addition to test the complete system, this competition also enabled us to check if

our NLU models are, indeed, generalizing well.

In the SciRoc task, the robot must be able to serve customers in a coffee shop, and therefore rec-

ognize their orders. Each table, with one or more customers, can order three different items. Thus, for

each table, the robot must annotate the orders, composed of three different objects. The slot filing model

was already capable of recognizing objects, hence it was not necessary to modify the NLU component.

However, we needed to change the domain ontology to incorporate the items in the coffee shop menu,

so that the grounding model could recognize them. In addition, we needed to change the task ontol-

ogy to include a task ORDER template, so that the dialogue management could use this task template to

compute the task state and generate the system responses. Finally, since our intent detection model has

not been trained to recognize ORDER commands, we did not use it. On the other hand, when computing

the user dialogue acts, we force the NLU model to always classify the INTENT with the label ORDER, with

a confidence score of 1.0.

Next, we will show an example of a real conversation2 from the SciRoc competition, in which the

robot was able to successfully take an order from a customer in a coffee shop environment. Table 5.6

shows the conversation between the user and the dialogue system.

Table 5.6: SciRoc first conversation example.

SYSTEM Hello. Today in the menu we have (...). What would you like to order?
USER I would like one cappuccino, one water, one crisps.
SYSTEM Your order is water, cappuccino and tyrell crisps?
USER Correct.
SYSTEM Your order is water, cappuccino and tyrell crisps?
USER Yes.
SYSTEM Good choice. I will get it right away.

We verify that the dialogue system is able to successfully take the order. However, in the second

turn of the conversation, although the user has explicitly confirmed the order, the system generated the

confirmation again. Similarly to the previous examples, let us take a look on the internal states of the

dialogue system. Figure 5.11 shows the output of the dialogue system components for the second turn

of the conversation.

By looking at the ASR output, we verify the existence of an hypothesis with a complete opposite

2A video of the full conversation is available at https://youtu.be/FGTSXI_By7s
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Figure 5.11: Second dialogue turn of the SciRoc trial example. After generating a confirmation action, the system
receives an affirmation user utterance. However, some noise in the speech recognition makes it recognize an
hypothesis representing a negation. The negative effect of this hypothesis counteracts the positive effect of the
affirmation. Therefore, the system remains unsure about the information and generates the confirmation action
again.

effect of the real speech utterance. This negative effect will propagate to the downstream components

of the dialogue system, which prevents the dialogue system to increase its confidence on the task infor-

mation (i.e. the slots that are presented on the confirmation action). Therefore, the system generates a

confirmation action again.

This conversation example from the SciRoc competition demonstrates another limitation of the di-

alogue system. In the DST implementation, we made the rules for our belief tracker as generic as

possible, to ensure the generality of the component. However, in practice, it is reasonable to use more

detailed rules to address additional phenomena in a particular system [44]. Thus, one way to overcome

the previous limitation is to introduce one or more rules that are able to disambiguate when a list of user

acts contains both AFFIRM() and NEGATE() hypothesis.

Table 5.7 contains another example from the SciRoc competition, in which the user ordered one item

on each turn. The dialogue system was able to always recognize the item asked each turn. However,

we were not able to get any video records of this example.

In summary, during the trials, the dialogue system was able to take the orders from the customers.

This reflects the good generalization capability from the NLU models, particularly the slot filing model,

which is able to label multiple objects in the same utterance, without even seeing this type of sentences

during training (the training data is composed of sentences that contain at most one object). Besides

that, it is also capable of labeling objects that were not part of the training data. However, during

some of the trials, the internet connection was significantly slow. Since our dialogue system needs to

connect to the Google cloud to use the speech recognition, most of the times this connection would
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Table 5.7: SciRoc second conversation example.

SYSTEM Hello. Today in the menu we have (...). What would you like to order?
USER I want a wrap.
SYSTEM Besides the wrap, what do you want more?
USER An espresso.
SYSTEM Besides the espresso and the wrap, what do you want more?
USER A smoothie.
SYSTEM Your order is espresso, smoothie and wrap?
USER Yes.
SYSTEM Good choice. I will get it right away.

take a really long time, activating the timeout of the WAIT FOR RECOGNITION state in the dialogue state

machine (recall Section 4.6.1). Therefore, in some of the trials, the dialogue system was not able to

operate normally because it was consistently getting timeouts in the speech recognition, leading to

dialogue failures. However, the robot was still able to complete the task because, when the dialogue

state machine returns a DIALOGUE FAILURE state, the robot launches a menu in the screen in which the

customers can select their orders.
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Chapter 6

Conclusions

In this chapter we describe the main achievements and contributions of our work. Furthermore, we also

discuss a few limitations of our system. Finally, we refer some modifications and future work that can

improve or complement our work.

6.1 Achievements

The first main contribution of this work is the development of an NLU component, which takes advantage

of using a state-of-the-art pre-trained language model, BERT (Bidirectional Encoder Representations

from Transformers). BERT is pre-trained on a large corpus, and then fine-tuned on our specific tasks.

Therefore, our NLU models can be trained faster and using a smaller number of training samples. In

addition, these models also yield a better performance and generalization capability, since they are

making use of transfer learning techniques, which are shown to allow our models to generalize better

[7]. Another contribution, still related to the NLU component, is the development of a grounding model.

This model enables the NLU to assign the labels predicted by the slot filing model to entities that are

known to the system. This way, the NLU can interpret the instructions taking into account grounded

information [33].

Another main contribution of this work is the implementation of a dialogue state tracking (DST) com-

ponent. The DST is based on a simple and generic rule-based belief tracker, which maintains beliefs

over marginal representations of user goals [44]. Although simple, this is a core component of the

dialogue system, since it enables the system to track multiple hypothesis and maintain beliefs over dia-

logue states. At the same time, it is also a crucial component, because the dialogue policy relies on the

estimated dialogue state to choose actions.

The final major contribution is the design of a dialogue management (DM) module. The DM uses

hand-crafted rules to map dialogue states to system actions. Thus, this component enables the dialogue

system to generate responses to request more information from the users or ask for clarifications. In

addition, this module is also composed of a dialogue state machine (DSM), which controls the flow of

the conversation.
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The main purpose of this work was to develop a spoken goal-oriented dialogue system capable of

dealing with the uncertainty in the speech recognition. By implementing a speech recognizer capable

of recognizing multiple hypothesis, and designing a DST capable of tracking multiple hypothesis for the

dialogue state, we are able to deal with such uncertainties, which makes our system robust to errors in

speech recognition. In addition, the DM enables the dialogue system to exploit the sequential natural

of dialogue to disambiguate in the presence of errors, by asking for clarifications and requesting more

information from the users.

As final remark, we were able to test the dialogue system in a real world environment. We imple-

mented the system in a robot that participated in the SciRoc 2019 competition, held in Milton Keynes.

The robot had to serve customers in a coffee shop environment, and hence one of its main tasks was to

take orders from customers using speech interaction. In general, our dialogue system handled most of

the conversations and was able to successfully take the orders.

6.2 Current Limitations and Future Work

In general, the developed spoken dialogue system performs well in simple environments, where most

of the entities are known and can be defined in the knowledge base of the system. Nevertheless, it

is still restricted by the NLU performance, since it relies entirely on the semantic information extracted

by the NLU for computing the dialogue state. Although performing and generalizing well, the NLU still

holds some limitations, particularly because the models were trained using generated datasets and not

real world data. Besides that, we are only using the user utterances as input features for the models.

Including some system actions from previous dialogue turns in the features may help overcoming some

of those limitations. Another modification that could improve the NLU performance is to jointly model the

dialogue act type classification, intent detection and slot filing tasks. By jointly modeling the three tasks,

we enable the model to exploit the relationships between them. Finally, we can also explore the use of

a structured predictor in the slot filing model. Since this model is performing sequence labeling, the use

of a structured predictor such as a conditional random field (CRF) can help modeling the relationships

between the predictions. However, there are some previous works, particularly Chen et al. [23], which

explored the use of structured predictors for intent detection and slot filing, using BERT. They have

shown that there is no improvement in performance by combining BERT with CRF. Intuitively, this is

probably due to the self-attention mechanism in Transformer, which may have successfully modeled the

label structures [23].

Another limitation of our dialogue system is the inability to disambiguate between concurrent hypoth-

esis, i.e. when the system receives a list of user acts with hypothesis that are usually mutually exclusive

(e.g. AFFIRM() and NEGATE()), it must be able to decide which of the hypothesis is more probable and

discard the other one. This can be achieved by introduced more detailed rules in the DST.

In our system, both the dialogue state tracking (DST) and dialogue management (DM) are simple

rule-based components, designed for an initial dialogue system installation. Using our dialogue system,

we are now able to collect real world conversations. This dialogue dataset can then be used to train
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statistical discriminative models for DST. Furthermore, the dialogue dataset can be used to design a

user simulator, so we can train a DM using a reinforcement learning approach.

In summary, the following topics are recommended for future work:

• Build a dataset with real world user commands for this particular domain.

• Explore the jointly modeling of the dialogue act type classification, intent detection and slot filing

tasks.

• Explore structured prediction, by combining BERT with a conditional random field (CRF).

• Include the dialogue system responses as input features for the NLU model, jointly with the user

utterances.

• Include the influence of phonetic similarity, jointly with the semantic similarity, in the grounding

model [72].

• Modify the DST to include more detailed rules to address additional phenomena.

• Build a dataset with real world conversations for this particular domain, using the developed dia-

logue system.

• Use a dataset of real world conversations to train a statistical discriminative model for dialogue

state tracking (DST).

• Design a user simulator to train a dialogue management (DM) model using reinforcement learning.
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Appendix A

Intent Detection Results

This appendix contains the results for the analysis of the intent detection model. Figure A.1 shows the

performance of the intent model using two different transfer learning paradigms: feature-extraction and

fine-tuning. Figures A.2 and A.3 show the performance of the model using different hyper-parameter

configurations.

A.1 Fine-tuning vs. Feature-Extraction

Figure A.1: Fine-tuning (FT, green) vs feature extraction (EX, yellow) for intent detection.
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A.2 Hyper-parameters Comparison

Figure A.2: Performance results for the intent detection model using different learning rates (lr). (Green, lr = 2e−5);
(Yellow, lr = 3e−5); (Purple, lr = 5e−5)

Figure A.3: Performance results for the intent detection model using different batch sizes (bs). (Green, bs = 16);
(Yellow, bs = 32)
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