TECNICO
LISBOA

Symmetric redundancy of network functions and services on

virtualized network infrastructures

Frederico André Dias Januario Santana

Thesis to obtain the Master of Science Degree in
Telecommunications and Informatics Engineering

Supervisor: Prof. Fernando Henrique Corte-Real Mira da Silva

Examination Committee

Chairperson: Prof. Ricardo Jorge Fernandes Chaves
Supervisor: Prof. Fernando Henrique Corte-Real Mira da Silva

Member of the Committee: Prof. Rui Jorge Morais Tomaz Valadas

October 2019

iii

Abstract

The traditional way of implementing network functions and network services does not make use of the
flexibility, adaptability and interoperability offered by virtualized network infrastructures. Using these
infrastructures, it is possible to scale network solutions better, because the resources are being used in the most
efficient way possible by virtualizing the required resources. The technologies, tools and products associated
with it can now, be a type of service and therefore automated using e.g. a data serialization language like YAML.
Considering these developments, the ETSI elaborated an architectural framework, called ETSI MANO, which is
used as a reference model for the creation of software that does the orchestration and management of virtualized
network functions and network services. This architectural framework has three major components, the NFVO,
the VNFM and the VIM that are essential for the management and operation of virtualized network functions
and services systems. In this dissertation, an analysis and study of the technologies associated with the three
major components of the ETSI MANO architectural framework are performed. Based on the study and analysis
done, a symmetric redundant network functions and services system is built on a virtualized network
infrastructure. For testing the system, it is deployed a VNF load balancer and two sites, where each site has two

web servers.

Keywords

VNFs, NSs, orchestration, management. ETSI NFV framework

iv

Resumo

O modo tradicional de implementagdo de fungdes e servigos de rede, ndo faz o uso devido da flexibilidade,
adaptabilidade e interoperabilidade das infraestruturas em rede virtualizadas. Ao usar estas infraestruturas ¢é
possivel melhorar a eficiéncia dos recursos usados nas solu¢des de rede, visto que os recursos usados sio
virtualizados. Os produtos, ferramentas e tecnologias associadas as fungdes e servigos de rede passam agora a
serem tratados como servigos, podendo depois ser automatizados usando e.g. uma linguagem de serializa¢ao de
dados como ¢ a linguagem YAML. Considerando estes desenvolvimentos, o ETSI elaborou uma architectural
framework denominada de ETSI MANO que ¢ usada como modelo de referéncia para o desenvolvimento de
software para a realizagdo da orquestragdo e gestdo de fungdes e servigos de rede virtualizados. Esta architectural
framework ¢ constituida por trés blocos principais, o NFVO, o VNF e o VIM, essenciais para a gestio e
operagdo dos sistemas de servigos e funcdes de rede. Nesta dissertacdo, ¢ feita uma analise ¢ estudo das
tecnologias associadas com os trés principais componentes da ETSI MANO architectural framework. Baseado
no estudo e analise feitos, um sistema redundante de fung¢des e servicos de rede é construido dentro duma
infraestrutura de rede virtualizada. Para o teste deste sistema, ¢ implementada uma funcdo de rede de

balanceador de carga e dois sitios, em que cada sitio ¢ composto por dois servidores web.

Palavras-Chave

VNFs, NSs, orquestracdo, gestdo, ETSI NFV framework

vi

vii

Acknowledgments

I would like to thank Professor Fernando Mira da Silva for his help, patience, encouragement and persistence to
make this dissertation project possible.

I am so grateful to my mom for the support and encouragement throughout these years to keep helping me fulfil
my dreams as an engineer.

To my closest friends, i would like to thank you for being what you are, a friend for the good and bad times in
life.

viii

ix

Table of Contents

P Y 0 153 (= Lo AT iv
[(=1 0] 4 Lo JR N Vi
X o] 3 T 1TV (=T Fe 4 1= o | PP PPPPPPN viii
L] =X T 020 Y1 (=Y o 1 €= X
LiSt Of fIgUIES ...ttt sttt et e e s bbb e e e s annneeas xii
I ESY T A =1 o] (=Y Xiii
LiSt OF ACIONYIMS ..ottt ettt e bbbt e e s bbbt e e skt et e e s tb b et e s bbn e e e s nbbeeesnnneeas XV
P 141 4o Yo [V T oY o TR 18
1.1, Motivation and GOaISoiiiiiiiiiiee e e e e e e e e s e 18

L2 B Lo Lot Ul a1=Y o A=Y 1 (U 1 (0 (= N 19

2 -1 (o) i 1 2 LXK L 20
2.1. ETSI NFV architectural frameWOrKcouuuuiiiiiiiiiiieeee et s 20

2.2, ETSIMANO DIOCKcoiiiiitiiii ettt e e ettt s e e e e e s e e et e e e e e s enabab e eeas 23
2.2.1. TOSCA AN YAML ..ottt 24

PR VA 11V [0 o] (o Yo TR 27
2.3.1. The OpenStack platformi..........coiiiiiiiii e 27

G I (| o 1= 1 4 =1 (TS 30

PG TR TR B 1o 1o) (=] TR 32

2.4, NFVOS @nd VINFMS DIOCKS.....cceueiiiiieeeeee ettt et e e e e e e s e e e e eeenas 33
2. L. O M e 33

24,2, CORD e 34

P B T O [18 o [Y PP RR PR 36

244, OPEN BAON ...ttt e 37

P T IF- (1 (= (O 37

B T N (o] o 11 (= o3 U = 39
3. Implementation ... 40
3.1.1. Management server deployment and configurationcccccooviiiiiiieieieee i, 40

3.1.2. DevStack and Tacker projects deployment and configurationcccccoeeeuvneeee. 41

3.1.3. sBackend and frontend VNFs deployment and configurationccccccoeviunneee. 43

L Y 7 1 LU E- 1410 Y o (T 45

g N 1Y (= T 45

4. 1.1, TeSIS 110 Bt 45

O 1) O OSSR 46

O T =) SRR 46

5. CONCIUSION ...ttt e et e et e e e bt e e e e e e e n et e e e nbe e e e 48
5.1, FUIUIME WOTK ...ttt ettt e s bt e e e s e e e e s annnee s 48
REFEIEINCES ...ttt e st e s bbb e e e s b e e e s nbn e e e s aaene s 50
Annex A — VNFD example file...........c..ooooiiii e 53
Annex B — Vagrant virtual machine configurationfile........................cccooiii 54
Annex C — DevStack project configuration fileccoiii 55
Annex D — OpenStack platform configuration fileccccccccc i, 56
Annex E — OpenStack VIM descriptor filecoooiiiiiiii e 58
Annex F — Kubernetes VIM descriptor file ... 58
Annex G — OpenStack backend descriptorfileccccooiiii 59
Annex H — Kubernetes web server descriptor fileocoo 60
Annex | — Configuration script files for the load balancer and web servers................................. 61
Annex J — Python script used fortests 1t0 3 ... 63

Xi

List of figures

Figure 1: ETSI NFV architectural frameworkoiiiiiiiiiiiiii e 20
Figure 2: ETSI MANO frameWOTKvvviiiiiiiiiiiiiiiiie et e s e e e e 23
Figure 3: NSs elements and ETSI MANO records and deSCIiPtOrS.........uuuururererermrnrnrnrniniernrnrnnnrnrnrnrnnnnnnnnnnnne 24
Figure 4: Conceptual architecture of the OpenStack elementseuuurereiereieimiiiminii . 27
Figure 5: High-level overview of the OpenStack essential Projectsuururerermrmmmrmrmmmrnrrininiererernrnrnrnnnn. 28
Figure 6: KUryr arChItECtUIEceiiieiiiiiiiiii ettt e et e e e s e e e e e e e e s e bbb e e e e e e e e s annnreees 29
Figure 7: Kata containers arcChiteCtUreoeueiiiiiuiiiiiiei ettt e e e e e e e e e e s enenees 30
Figure 8: Kubernetes arChiteCturevveiiiieiiiiiiiei ittt e e e e e e e e e e eneee s 31
Figure 9: Kubernetes cluster example architecture with 1 master and 2 worker nodeseeveveveverennnnnnnns 32
Figure 10: DOCKET QTCRItECTUTE ..eeieeiiiieiiiiieeee e ettt e ettt e e e ettt e e e e e s e e bbb e e e e e e e s e anbnbbe e e e e e e e s annnbeees 33
Figure 11: OSM AICRITECLUIEveeeieeiiiiiiiieiee e e e e ettt e e e e e s bbbttt e e e e e sab bbb e e e e e e s e anabb e e e e e e e e s e anbnbbeeeeeeeeeannnreees 34
Figure 12: ONOS @rCRItECTUIEeeieeiiiieiiiiiie e e ettt ettt e e e e et b et e e e e s e s bbb e e e e e e e e e anbnbbeeeaeeeesannnreees 35
Figure 13: Cloudify Manager architeCtlreuvveiieieiiiiiiiiiir et e e e e s e 36
Figure 14: Open Baton archit@CtUIEciiiiiiriiiieie it e e e e e e e 37
Figure 15: Tacker architecture and WOrKfIOW.............ooiiiiiiiiiiiiiicce e 38
Figure 16: Project arChiteCtUIe.ciiieeiieiiieee ettt e e e s e e e e e s e e e e e e s 39
Figure 17: Implementation PRASESuveeeieieeiiitiieiit e e e e st e e e s e e e e e s e st r e e e e e s e an e n e e e e e e e s aannnnees 40
Figure 18: Distribution of GET requests with four Web SETVErSoccriiiiiiiiiiiiiie e 45
Figure 19: Distribution of GET requests with five Web SEIVETScoccuriiiiiiiiiiiiiiieece e 46

xii

List of Tables

Table 1: Summary table of the evaluation LESTS........uuuiiiiiiiiiiirieii e 45
Table 2: Requests time With fOUT WED SEIVETSuvviiiiiiiiiiiiiiiiieie e 46
Table 3: Requests time With fIVe WEeD SEIVEIS.......uuuiiiiiiiiiiiiiiiiiie e e e e e 46

Xiii

Xiv

List of Acronyms

ETSI MANO

ETSI

YAML

NFVO

VNFM

VIM

VNF's

NFVI

NFV MANO

OBSS

ETSI NFV

NFV

E2E

VNFFGs

NFs

PNFs

NSs

VLs

TOSCA

CPU

VNFD

NSD

VNFFGD

VLD

PNFD

European Telecommunications Standards Institute Management and Orchestration
European Telecommunications Standards Institute

Ain't Markup Language

Network Functions Virtualization Orchestrator

Virtual Network Functions Manager

Virtual Infrastructure Manager

Virtual Network Functions

Network Functions Virtualization Infrastructure

Network Functions Virtualization Management and Orchestration
Operational and Billing Support System

European Telecommunications Standards Institute Network Functions virtualization
Network Functions Virtualization

End-to-End

Virtualized Network Functions Forwarding Graphs

Network Functions

Physical Network Functions

Network Services

Virtual Links

Topology and Orchestration Specification for Cloud Applications
Central Processor Unit

Virtual Network Functions Descriptor

Network Service Descriptor

Virtual Network Functions Forward Graph Descriptor

Virtual Link Descriptor

Physical Network Functions Descriptor

XV

NSR

VNFFGR

VLR
VNFR
PNFR
VDU
CP
VL
AMQP
APIs
VMs
OSM
SO
RO
VCA
CORD
ONOS
SDN
RAM
GB
LBaaS
XaaS
Ul
CLI

GUI

Network Services Record

Virtual Network Functions Forward Graph Descriptor
Virtual Link Record

Virtual Network Functions Record
Physical Network Functions Record
Virtual Data Unit

Connection Point

Virtual Link

Advanced Message Queuing Protocol
Application Programming Interfaces
Virtual Machines

Open Source MANO

Service Orchestrator

Resource Orchestrator

VNF Configuration and Abstraction
Central Office Re-architected as a Datacenter
Open Network Operating System
Software Defined Networking
Random Access Memory

Giga Bytes

Load Balancer as a Service
Everything as a Service

User Interface

Command Line Interface

Graphical User Interface

xXvi

XVvii

1. Introduction

The network infrastructures were only present in a “bare metal” from not long ago, while nowadays it is shifting
to virtualized network infrastructures. The growing of these infrastructures is mainly due to their flexibility,
adaptability and interoperability properties. The widespread age of “Cloud” models and virtualization contributes
to be a standard when using the Internet. This project aims to study and test the technologies that exist for the
orchestration and management of virtual network functions and services in a virtual network infrastructure
environment using the solutions that are based on the ETSI MANO architectural framework [1]. This
dissertation aims to analyse these solutions, and research simple scenarios where they will be tested in a simple

network architecture solution.

1.1. Motivation and Goals

The design of traditional network infrastructures in the past was benchmarked for the minimal loss of latency,
availability, throughput and the capacity to carry data, resulting in hardware and software that were developed
and optimized using the criteria’s described before. With the increase of complexity and bandwidth usage on
technologies such as streaming platforms, Internet of Things or by smartphones, there was a need to scale and
expand the existing network infrastructure without increasing the costs too much. Unfortunately, the traditional
infrastructure solution posed various bottlenecks in terms of hardware and software bringing companies and
developers to find ways of removing those bottlenecks. This led to the concepts of virtualized network
infrastructures and virtualized network functions. Having a VNF system fully customizable and define how the
VNF system behaves, can be achieved using the ETSI MANO architectural framework. The ETSI MANO
architectural framework is the reference framework that companies, developers and users adopted to develop
solutions for their needs in this constant changeable world of virtualized network infrastructures. This
dissertation describes and analyses the desired skills that are needed to learn more about the optimization of VNF

deployment, orchestration and management on virtualized network infrastructures environments.

The main goals of this dissertation are to research the technologies, products and tools used on virtualized
network infrastructures, and how the VNFs instantiation is done in the present and what is the near future for
VNF management and orchestration on virtualized network infrastructures. For this, a virtualized network
infrastructure is deployed to test the most documented and developed VNF placement technology that is low on
resource utilization, reliable, secure and is part or fully automatable considering the available hardware at the
time of implementation of the system solution. Several virtualization and high virtualization models (containers

and virtual machine) are analysed, tested and compared.

18

1.2. Document structure

The document structure is as follows. This chapter introduces the theme of the project as well the motivation,
goals and the structure of the report. Chapter two reviews the existing concepts and technologies for the
virtualized network infrastructures and for the VNF instantiation, orchestration and management solutions that
exist nowadays. Chapter three describes the architecture and the developed prototype for testing and validation
of the architecture. Chapter four describes the tests that were performed. Chapter five provides some conclusion
thoughts for the future work and the work done in the research and writing of this report. The additional sections
are used for the references used in the elaboration of this dissertation report and project and to show the

configuration files that were used for the implementation and evaluation of this dissertation.

19

2. State of the art

The limitations of network infrastructures such as flexibility, scalability, manageability and interoperability
limitations makes companies and developers design new software and hardware that defines how the virtualized
network infrastructures are deployed and configured to support the use of virtual network functions and
services. This brings new challenges such as multivendor implementations of VNFs, managing, monitoring and
configuring the life cycles and interactions of VNFs, as well the hardware resource allocations of VNFs and the
interaction with the billing and operational support systems. Those challenges lead for the creation of an
architectural framework also known as the ETSI NFV architectural framework, which defines a reference model
for virtual network functions and services that are orchestrated and managed on a virtualized network

infrastructure.

2.1. ETSI NFV architectural framework

The European telecommunications standards institute network functions virtualization architectural framework is
based on a complete separation of hardware and software criteria, where network functions deployment must be
automated and scalable and the control of the network functions operational parameters is done by monitoring
and controlling the state of the network [2]. This framework is structured by three high level blocks such as the
VNFs, the NFVI and the NFV MANO blocks. The NFVI block is the foundation for this architectural
framework where it offers the hardware and software responsible for the virtualization process of the virtual
instances. The VNFs block uses the resources of the NFVI block to develop software that implements virtualized
network functions and services. The NFV MANO block is on its own a separate architectural framework that is
responsible for the orchestration and management of the VNFs and NSs resources. The following figure
illustrates the ETSI NFV architectural framework:

Virtualized Network F ions (VNFs)
VNF #2 VNF #1 VNEN3 | . dobeee
(NAT) (FW) (RTH)
NFV Management and
= Orch tion (MANO)

Network Functions Virtualization Infrastructure (NFVI)

;vurquompute| l Virtual Storage] |vnua|Nslwom f--u-»u-

Virtualizabon Layer

Computing and Storage Hardwars | I Network Hardware

Figure 1: ETSI NFV architectural framework

Resourced from [2]

20

The NFV MANO block is also called the ETSI MANO architectural framework where it is a reference model to
developers to create software to manage and orchestrate VNFs and NSs. The next sections and subsections
describe in a more detailed manner the ETSI MANO architectural framework and all the relevant technologies

that are used nowadays to accomplish what the ETSI MANO architectural framework proposes.

21

2.2. ETSI MANO block

The ETSI MANO block decouples computation, storage and networking from the software that implements NFs
by creating new entities such as, the VNFs, NFVI, PNFs, NSs, VNFFGs and VLs. The ETSI MANO
architectural framework is responsible for managing the NFVI and orchestrate the resources for the NFs and
VNFs. The resources that are considered are mainly CPU, memory, network components (subnets, ports, etc.)
and storage. With this, it is important to define VNFs management functions based on operations such as the,
instantiation, scaling, updating or upgrading and terminating of VNFs or NSs. These operations are
accomplished by the creation of template files that use a template language such as TOSCA which is described in

more detail in the following subsection.
The ETSI MANO architectural framework architecture is presented in the figure below:

L]
! '
:]
s H
"
V 054/B%% T |l WF Orcha strator JIF V03 - :
] : 1
]
' | : Or-Vnfm :
' :] —+ —+ —— o '
i ! ! : i '
] I y
1 ' (]
1 : ! NS | VNF -1 NFV | NFVI '
: —_— : Catalogue | Catalogue Instances | Resources]
' ; 1 ! '
' ' 1 TEn i
1 : 1
-+ Ve-Vnfm-am 1
1 H |
! " VNF '
H , " Manager (VNFM) :
] —
1 SR [! N R]
(] Ve-Vnfm-vn! I
: VNF 1 L Vi-Vnfm '
I 1 1
1 1 i
! - VnNf : Dr-Vi 1
1 " Virtualised]
') NE-Vi Infrastructure | :
Ld NFVI + { Manager I '
| VIV]
| NFV-MANO
S —r——y - W R SR SO]
@& Execution reference points | Otherreference points —mfom Main NFV reference points

Figure 2: ETSI MANO framework

Resourced from [1]

The main blocks of the ETSI MANO architecture are:

= The NFVO is responsible for the resources allocated to the VIM and the lifecycle management of the
NSs.

= The VNFM is responsible for the lifecycle management of the VNF instances, where it can manage
only a VNF instance or multiple VNF instances.

= The VIM is responsible for the management and control of the NFVI in terms of the network, storage

and compute resources.

23

= The Data Repositories are responsible for the storage of the templates for the VNFs and NSs. Also

holds information about the resources and instances that are being used.

The ETSI MANO illustrates also that the NSs as the relation between VNFs and PNFs and defines the elements

that a NS relates to, which are depicted in the following figure:

Network Service

T
'
: ====> Reforonces o
1

Network
Forwarding
Path

w0 [nem
a1} 4
E VNFFGD | VNFFOR
S g i—
2]
2. b=
.E g Lo << VLR
33 E. dgmed
=<
T || &
g o L i
wE il \‘R] §
g3 §
]
7 ' s
PNFD PHER z
|
= =

Figure 3: NSs elements and ETSI MANO records and descriptors

Resourced from [1]

As shown in figure 3, NSs can contain information about the VNFs, Physical network functions, Virtual Links
and Virtual Network Function Forwarding Graphs and with this information create network forwarding paths to
be used on E2E virtualized network services. The ETSI MANO architectural framework instantiation input
parameters are used as descriptors which are grouped in a catalogue and therefore translated to records in a
runtime context when the virtual instances are deployed. The descriptors are written in the TOSCA language and
have information about the network itself, such as the topology, network path, resource requirements for the
elements of the network and the physical elements. The records have not only the information given by the

descriptors, but also additional runtime information such as CPU, network or disk usage.

2.2.1. TOSCA and YAML

TOSCA[3] or Topology and Orchestration Specification for Cloud Applications is a template language based on
the data serialization and markup language YAML (Ain't Markup Language) that describes the virtualized

24

network functions or services nodes and the relations between them. In fact, TOSCA is a service template
language that describes virtualized network infrastructures workloads as a topology template, meaning that is
basically a graph of node templates modelling the components and the relations between them. An example of a
VNFD written in TOSCA is depicted on Annex A. The VNFD example is from a NFVO and VNFM software
called Tacker, which describes a VNF topology with three node types, a VDU, a VL and a CP, each with
different capabilities and requirements. The capabilities describe the resources that each node will be deployed

with and the requirements describe the virtual networks that are associated with each VNF.

The YAML language is a data serialization and markup language where integrates and builds concepts from a lot
of other languages, e.g. Python, JSON, Ruby, C and XML. YAML language indentation-based scoping is similar
to Python language where the indentation facilitates the inspection of the data structures. YAML language literal
style leverages this by enabling formatted text to be cleanly mixed within an indented structure without
troublesome escaping. YAML also allows the use of traditional indicator-based scoping similar to the JSON

language.

YAML language core type system is based on the requirements of agile languages such as Perl, Python, and
Ruby. YAML directly supports both collections (mappings, sequences) and scalars. Support for these common
types enables programmers to use their language’s native data structures for YAML manipulation, instead of
requiring a special document object model. YAML language foremost design goals are human readability and

support for serializing arbitrary native data structures [4].

25

2.3. VIMs block

The virtualized infrastructure managers block has the responsibility to supervise the virtual infrastructure of a
network function virtualization solution. In summary the VIM is a key component of any ETSI MANO
architecture, and the following subsections describe some of the most developed solutions that exist nowadays

for virtualized infrastructure managers.

2.3.1. The OpenStack platform

The OpenStack platform is an open source project that aims to be a cloud operating system that manages and
deploys the network, storage and computing resources of a complete virtualized infrastructure over a set of
hardware resources. The following figure details the conceptual architecture of the OpenStack elements

(services) [5]:

Provides auth Monitor Provides Ul
Registers hadoop Boots data processing [
images in instances via Assigns jobs
to
Saves data or job
Nova binary in
Provision
Fetchs images Stores Ocr“ﬁgtesrtsravlgs
via images in e
Boots database] <
N instances via Provides images
Registers guest Swift
images in
[o
Provision VMs Provides ___ pacqyps

(y volumes to i‘umfs in
o >{ Nedtron Provides network Backups

connection for databases in

Provision, operation
and management

Provides PXE
network for

Orchestration

Figure 4: Conceptual architecture of the OpenStack elements
Resourced from [6]

These elements or projects can be classified has essential projects and additional projects and are explained in

more detail on the subsections below.

The growth of the Internet and hardware infrastructures network solutions implies new challenges for operators
to manage, configure and launch on demand new services using the resources for them as efficient as possible.
OpenStack is an excellent solution for that matter because it offers virtualization of compute, storage,
networking and many other resources. Each component in OpenStack manages a different resource that can be
virtualised for the end user. Separating each of the resources that can be virtualized into separate components
makes the OpenStack architecture very modular. OpenStack can be divided into four groups: Control,
Networking, Compute and Storage. The Control tier runs the Application Programming Interfaces (API)
services, web interface, database, and message bus. The Networking tier runs network service agents for

networking. The Compute tier is the virtualization hypervisor, with services and agents to handle virtual

27

machines. The Storage tier manages block (Volumes; partitions) and object (containers; files) storage for the

Compute instances. All the components use a database and/or a message bus [7].

2.3.1.1. Essential OpenStack projects

The essential projects are the projects that an OpenStack platform cannot operate without. The essential projects

to deploy an OpenStack installation are [8]:

¢ Nova project manages and provisions virtual machines running on hypervisor nodes [9].

e Neutron project provides network connectivity between the interfaces of OpenStack services [10].

e Glance project is a registry service that is used to store resources such as virtual machine images and

volume snapshots [11].

e Keystone project is a centralized service for authentication and authorization of OpenStack services and

for managing users, projects, and roles [12].

And some advisable but not mandatory projects to add to an OpenStack installation as they facilitate the usage of

the OpenStack platform [8]:

e Horizon project is a web browser-based dashboard that is used to manage OpenStack services [13].

e Swift project allows users to store and retrieve files and arbitrary data [14].

e Ceilometer project provides measurements of cloud resources [15].

e Heat project is a template-based orchestration engine that supports automatic creation of resource stacks

[16].

e Cinder project manages persistent block storage volumes for virtual machines [17].

A high-level overview of the described projects is depicted on the figure below:

{ DASHBOARD SERVICE

— tes stack
§ pmem————- » HAT (i ORCHESTRATION SERVICE
H NS
i
|
! i [I |
i
v v vy vy i vy vy
KEYSTONE NEUTRON CNDER NOvA GLANCE SWIFT CEILOMETER
O S— L
o ’) ‘ | = F—)
Q - __J |
IDENTITY OPENSTACK BLOCK COMPUTE IMAGE OBJECT TELEMETRY
SERVICE NETWORKING STORAGE SERVICE STORAGE STORAGE SERVICE

SERVICE SERVICE SERVICE SERVICE

-

‘ storage ¢ ore: es

| Network connectivit
Collect

Figure 5: High-level overview of the OpenStack essential projects

Resourced from [8]

All the services communicate with each other by APIs and the AMQP.

28

2.3.1.2. Relevant OpenStack additional projects

The additional OpenStack projects are software tools that are developed as a side project to add some new

features / services to the OpenStack platform. The most important ones for the scope of this dissertation are:

e Octavia and Octavia dashboard projects that aim to be a load balancer as service project and a GUI of
Octavia project that can manage a fleet of virtual machines, containers, or bare metal servers on demand
[18][19].

e DevStack project is a compilation of scripts to quickly bring up a complete and updated version of the
OpenStack platform hosted on a bare metal or virtual machine [20].

e Diskimage-builder project is a tool for automatically building customized operating-system images to
be used in clouds and other environments, producing cloud-images in all common formats (qcow2, vhd,
raw, etc), bare metal file-system images and ram-disk images [21].

e Kolla project is a provider of production-ready containers and deployment tools for operating
OpenStack clouds that are scalable, fast, reliable, and upgradable using community best practices [22].

e Magnum project makes container orchestration engines such as Docker Swarm, Kubernetes, and
Apache Mesos available as first class resources in OpenStack. Magnum uses Heat OpenStack project to
orchestrate an operating system image which contains Docker and Kubernetes and runs that image in
either virtual or bare metal machines in a cluster configuration [23].

e Kuryr-kubernetes and Kuryr are OpenStack containers networking projects that enables native Neutron-
based networking in Kubernetes. With Kuryr-kubernetes it is now possible to choose to run both
OpenStack VMs and Kubernetes Pods on the same Neutron network [24].

e Kata containers project aims to “deliver standard implementation of lightweight virtual machines that
feel and perform like containers but provide the workload isolation and security advantages of virtual

machines” [25].

The architectures of the last two additional projects of the list above, are described in more detail by the figures

B :.EI::IAE'IP'\INORK) NEUTRON API
4 — mmmms) | NEUTRON
docker

LIBNETWORK REMOTE DRIVER
ovs L2
Agent

below:

Any
Neutron
Plugin

Figure 6: Kuryr architecture
Resourced from [26]

Kuryr uses the libnetwork API to map and create Neutron objects. By doing this, the solutions that Neutron

provides (security groups, NAT services and floating IP’s) for networking can be used by containers networking.

29

@m aeontoiners ‘ Hota Shim vz

Virtual Machine Process C
act

Kubernetes 10 Container Container
emdispe l Gommana Exec

Container

m o

Kernel

Additional isolation with a lightweight VM
and individual kernels

Hypervisor VSOCK Socket
Isolation by namespaces, cgroups with shared kemel

Figure 7: Kata containers architecture
Resourced from [27]

Kata containers elements include an Hypervisor to create virtual machines where containers will run, an Agent
(kata-agent) for managing containers and processes in the guest machine, an open container initiative (OCI)
compatible container runtime (kata-runtime) that handles all commands and launches instances, a Proxy entity
that offers access to the virtual machine agent to multiple instances and runtime clients associated with the

virtual machine, and a container process (kata-shim) that the container process reaper can monitor.

2.3.2. Kubernetes

Kubernetes is an open source solution for managing and orchestrating containers. The architecture type is client-
server, where it has one or more master servers that controls and defines how the worker nodes should act and
react to the master node. Kubernetes infrastructure is based in five different principles such as pods, services,
volume, namespaces and deployment. Pods and Volume are the storage units of Kubernetes, where it stores all
information related to the containers and the data of each Pod respectively, Services are a logical set of pods and
acts as a gateway to the exterior, allowing (client) pods to send requests to the service without needing to keep
track of which physical pods make up the service, Namespaces are based in the Linux namespaces, where here it
is a virtual cluster (a single physical cluster can run multiple virtual ones) intended for environments with many
users, and finally the Deployment is normally done via a deployment file in the YAML language which describes

the configuration and state of pods.

The next figure presents the Kubernetes architecture:

30

N
./‘°H -

al
(enmund

i
rtoray

Kubernetes Architecture

Image Registry

Node 1

Kubernetes Master

API Server Scheduler

Kubernetes
Master

Figure 8: Kubernetes architecture

Resourced from [28]

An example of the workflow (with a single master server and two worker servers) of Kubernetes is depicted in

the following figure:

31

kubectl

Worker node

Master node
kubelet kube-proxy
4 | |
Pod ,L Pod l¢ docker
¥

APl server

F
fe=

controller-manager
{replication, namespace,
serviceaccounts, ...)

‘ scheduler ‘

Worker node

kubelet kube-proxy

Pod l Pod J} daocker

= |

-

Figure 9: Kubernetes cluster example architecture with 1 master and 2 worker nodes
Resourced from [29]

The master node provides Kubernetes with cluster control, making global choices for the cluster and deciding
what to do when a cluster event is detected, it has a central management entity (kube-apiserver), a distributed
key value storage (etcd), a scheduler that helps optimizing resource utilization (kube-scheduler) and a controller
that regulates the state of the Kubernetes or manages the cloud provider (kube-controller-manager or cloud-
controller-manager).

The worker node has a service daemon (kubelet) responsible for taking pod specifications and health checks, a
proxy service daemon (kube-proxy) responsible for the networking in the worker node and a container runtime
(Docker) that is the software that will run the containers on the Pod. Kubernetes has also some useful features
(addons) like a DNS Server, a Web Ul, a Container Resource Monitoring and a Cluster-level Logging that can
make the life easier on the administrator of the Kubernetes platform.

Kubernetes has become in the last few years the standard container orchestration platform, mainly because of the
performance gain by using containers over virtual machines and the high availability of the applications running

on the containers is provided by the use of container replicas quotas and the health container checks.

2.3.3. Docker

Docker is a client-server application (like Kubernetes), that leverages the technologies of namespaces, control

groups, union file formats and container formats. The Docker engine is defined as follows:

32

(Client}————— [DOCKER_HOST

docker build - ,)—I Docker daemon
7z =
N .-

=~ R -
docker UL 1 | (Gontainers}— ¥, (images}——

docker run —f

Qa8

Figure 10: Docker architecture
Resourced from [30]

Docker is composed by a docker daemon (dockerd) that manages the Docker objects (images, containers,
networks and volumes) and the communication with other Docker daemons to manage Docker images, a Docker
Client that consists of a REST API and CLI (Docker command or a Docker client) being used to interact with the
Docker daemon, a Docker registry for the storage of Docker images (default one being Docker Hub) and a

Docker object or objects that can be images, containers or services.

Docker is a fast and consistent delivery system of applications because of the use of containers and being a light
program to run offers great scaling, a fast deployment system and the amount of work uses less resources in

opposition of using virtual machines.

2.4. NFVOs and VNFMs blocks

The network functions virtualization orchestrator and the virtualized network functions manager blocks are
normally bundled together in a software suite but have different responsibilities that need to be attended to. The
NFVO is responsible for overlooking the instantiation, scaling, updating and terminating network services. The
VNFM is responsible for overlooking the instantiation, scaling, updating and terminating of virtual network

functions.

The next subsections describe the most developed and documented software solutions for the implementation

and configuration of NFVOs and VNFMs.

24.1. OSM

Open source MANO is a project that is run by the ETSI foundation, adhering to the ETSI MANO architecture

framework on their management and orchestration proposal. The OSM architecture is depicted below:

33

50: Service Orchestrator
RO: Resource Orchestrator
WCA: VNF Configuration and Abstraction

OS5M scope

v
yhr =
Compute Node VN Centroller
Fy Intra-DC
| Switeh : Controller
B 2
)
_‘(H- — e o Opeav | |
| compute Node'—| VNF | Controller
e W) e
L switen | Controller

Figure 11: OSM architecture
Resourced from [31]

As seen in figure ten OSM has three major components:

e SO that is responsible for the service orchestration, provisioning, deploying, querying and the storage
of the virtual network definitions and network services catalogues.

e RO that is responsible for the resources provision of networking services over a virtualized network
infrastructure.

e VCA that is responsible for the configuration of the virtual network functions using Juju charms.

The configuration files of NSDs and VNFDs are written using the TOSCA language. OSM uses these templates
to instantiate network function or services and the necessary resources associated with them. OSM also supports
a good variety of virtualized infrastructure managers such as OpenStack or OpenVIM [32] and the deployment

of network functions virtualization services in multiple virtualized infrastructure managers.

24.2. CORD

In its beginning, central office re-architected as a datacentre was a simple project used by the open network
operating system project which is an open source SDN controller for building next-generation SDN/NFV
solutions controller. But CORD became a greater project and was separated and run by the Open Networking
Foundation. The main objective of CORD is to “combine the technologies of NFV, SDN and the “elasticity of
commodity clouds to bring datacentre economics and cloud agility to the Telco Central Office”[33]. CORD

components are shown in the following figure:

34

[Solution

1
Workflow | OPERATOR DEFINED WORKFLOW] i
|

It
| [
]
]
! L)
(ACCESS \‘
]
1 . X0S ONOS !
| Profile DEVICES :
. [CONTROL SW] [SERVICES][APPS] | BoM
P N
i)
]
| LOGGING & !
: Platform [MUNTDRING] [KAFKA] [XO0S][ONOS]:
|
" |

Figure 12: ONOS architecture
Resourced from [34]

CORD is composed by five important components:

e Kubernetes platform where CORD run all control panel elements.

e Platform that is a Kubernetes environment with an ONOS, XOS [35], Kafka [36] and a collection of
logging and monitoring micro-services.

e Profile is a combination of services such as VNFs, access services or cloud services.

e Workflow being a component of a Profile where describes the business logic and state machine for one
of the access technologies contained in the Profile.

e BoM that is the hardware bill of materials defined for each Kubernetes pod.

CORD is installed as a collection of Docker containers in a Kubernetes cluster where Helm[37] is used, which is
a packaged manager for Kubernetes. TOSCA templates are used for the configuration and provisioning of a
running system of ONOS where XOS (a model-based platform for assembling, controlling, and composing

services) is used for developers to run their applications on CORD.

35

2.4.3. Cloudify

Cloudify is a cloud orchestration and management framework, adhering to the ETSI MANO architecture
framework that facilitates how applications and services are modelled and automated in their life cycle. That
includes the deployment, monitoring of applications, detecting and resolving issues that may occur while

running such applications. The cloudify architecture is depicted below:

CLOUDIFY MANAGEMENT ENVIRONMENT

[MODFLING DATA]
................. . i
H el H : H [wernics paTaanse gl
\ ! ' ! H |
; ! I i ! !

Figure 13: Cloudify Manager architecture

Resourced from [38]

The three major components of Cloudify are:

e Cloudify Manager being the brain of the cloudify environment to manage and deploy applications
where the deployment is done using the “blueprints” that are TOSCA based templates files that can
instantiate a service or application in the system.

e Cloudify Agents used to manage the running applications by using plugins.

e Cloudify Console being the command line tool that Cloudify uses to communicate with the Cloudify

Manager.

The Cloudify Manager can use a CLI or GUI for communication and is composed by a Nginx web server that
has the function of a proxy server and file server, the Gunicorn and Flask elements where Gunicorn and Flask
provide the Cloudify REST service, a PostgreSQL database that provides the main database where it stores the
application’s model and the indexing logs’ and events’ storage, a Logstash element that is used by Cloudify to
pull log and event messages from RabbitMQ and index them in a PostgresSQL database, a RabbitMQ element
that is used to queue deployment tasks, logs, events and metrics, a Riemann element that is an event stream

processor used primarily for monitoring, a Pika element that is the communication agent programmed in Python

36

of the AMQP protocol and the InfluxDB that is a database used to pull metrics from RabbitMQ and to store

them.

2.4.4. Open Baton

Open Baton is an extensible and customizable framework that adhered to the ETSI MANO architecture
framework. It uses TOSCA templates to deploy and configure services and applications. The main components

of Open Baton are depicted in the figure below:

N

Netwoek Seevices (of elicos] ' [+] SOK

Usar Taals

: L
| . l: OPEN BATON
g o || { S riassssac-ressasec-ssssssar-sesssse-

RabhbilMo { !

[ocker |1 1

Juiji
NI—‘M
a:lapnar

Multzitz NFVI | NFV MANO

Figure 14: Open Baton architecture
Resourced from [39]

Open Baton elements are, a NFVO that is ETSI MANO compliant, a VNFM and a Generic Element
Management System to manage VNFs and VNFDs, a Juju VNFM Adapter in order to deploy Juju Charms, a
driver mechanism supporting different type of VIMs, a Docker VNFM and VIM driver for instantiating
containers on top of Docker Engine, a powerful event engine based on a pub/sub mechanism for the dispatching
of the lifecycle events execution, an autoscaling engine which can be used for automatic runtime management of
the scaling operations of your VNFs, a fault management system which can be used for automatic runtime
management of faults which may occur at any level, a network slicing engine which can be used to ensure a
specific QoS for your NSs, a monitoring plugin integrating Zabbix as monitoring system, a marketplace useful
for downloading VNFs compatible with the Open Baton NFVO and VNFMs and a set of libraries (in Java, Go
and Python) which could be used for building your own VNFM.

2.45. Tacker

Tacker is an OpenStack additional project for NSs an VNFs orchestration and management adhering to the ETSI
MANQO architectural framework. It has a generic NFVO and VNFM to deploy network services and virtual

network functions providing E2E solutions.

The next figure shows how Tacker workflow and architecture are:

37

Horizon Tacker Architecture cu

h o2 hV4
API
. (WSGlI, extension /plugin framework) "

NFV Catalog
e 1] oo | EE
1l 1
:__ﬁb._l :X_Fft_;r_’__' Validation
_ ___NNO__ VNFM
i JORCA i o i Management Monitori
|__ Worlow _ || FwdGraph | |) ool Josca D"m"‘
¢~ " Network ~ ™) (~ “Service ~
e BENCR Erlp =
__lpstances_ _/ __(SEC)._. Instsnces

Infra Driver
(Heat, Keystone)

Tacker Workflow NFVO/0SS/BSS | mz
i

Gul || cu

5600-vRouter
Tacker

HEAT NFVO | VNFM / VNFFG API VEPEYNE
DPI VNF
= FW VUNF
monitoring 1
6 N
NFy| TenantZ ‘ e]L IEI

(computeinetmoristorsge) Tenant Network

VNFD
catalog

Figure 15: Tacker architecture and Workflow

Resourced from [40]

Tacker has three fundamental components:

e Network Functions Virtualization Catalog that contains the VNF, NS and VNF Forwarding Graph
descriptors.

e Virtualized Network Functions Manager (VNFM) that creates, updates, deletes and monitors VNFs.

[]

Network Functions Virtualization Orchestrator (NFVO) that optimizes resource checks and allocation
of VNFs. The NFVO can orchestrate VNFs, throughout multiple VIMs or Sites and can create a service
function chain between VNFs by using a VNF Forwarding Graph Descriptor.

Tacker can be deployed and configured manually or using the additional OpenStack projects DevStack or Kolla.
Tacker only supports currently as VIMs the OpenStack and Kubernetes platforms.

38

3. Architecture

The architecture is to deploy and test a system that encompasses one of each of the three main blocks of the
ETSI MANO architectural framework presented on chapter two of this dissertation report. The proposed

architecture solution will have the following entities:

e A frontend network with one VNF acting as a Load Balancer.

e A backend network with two web servers.

e The backend network will have replicated sites (one and two).

e Two virtualized infrastructure managers installed on the different sites.

e A client to connect and test the system functionalities.

The architecture is depicted below:

VNF
Load Balancer

Client

Site 1 — OpenStack VIM Site 2 — Kubernetes VIM

Web Server Web Server Web Server Web Server
1 2 1 2

Figure 16: Project architecture

The system workflow starts by the users connecting to the system via a VNF acting as a load balancer that will
redirect traffic depending on the load balancing algorithm that was selected, connecting the users to the sites on
the backend network. Each site will have two web servers that will be used for testing the load balancer and the

sites functionalities, e.g. handling HTTP requests.

The orchestration and management of the global system will be done via a management server. The management
server is configured using the necessary software researched in chapter two of this dissertation report and some

extra tools that will be described in the next subsection.

The ideal scenario will be that, the servers on site one and the VNF acting as load balancer will be hosted on

virtual machines, as for the servers on site two will be hosted on containers. The process of being hosted by

39

virtual machines and containers is also important to test, analyse and compare how different these host

virtualization techniques are in terms e.g. resource utilization.

The proposed architecture is a heavy system to deploy and the available hardware is limited, so the
implementation takes all that in consideration by building the system with the minimal resources necessary not

compromising the proposed architecture.

3.1. Implementation

The implementation of the architecture is defined in three different phases that are depicted below:

1 2 3
Management server DevStack and Tacker projects Backend and Frontend
deployment and configuration deployment and configuration VNFs deployment and configuration
))
q q
Vagrant DevStack Tacker
Packer Ansible Octavia

OpenStack
Kubernetes

Figure 17: Implementation phases

The implementation starts with phase number one where a management server is deployed and configured to
host the DevStack and Tacker projects used on phase number two. Phase number two main objective is to deploy
and configure the DevStack and Tacker projects. Phase number three deploys and configures the backend and
frontend VNFs hosted on virtual instances (containers or virtual machines). The next subsections describe in

more detail how all the phases were processed.

3.1.1. Management server deployment and configuration

The main goal is to deploy a bare metal or virtual solution of a management server that consists on installing and
configuring the software of the virtual network infrastructure that is going to be used to deploy the architecture
solution described before. The first step is the most important one as encompasses the research of the software
and hardware requirements for the system architecture and choosing the right tools to deploy the management
server. The tools chosen were for a virtual solution of the management server, just because it is easier to test the
hardware requirements for the architecture solution as is a better modular solution than the bare metal solution,
e.g. if a virtual machine does not meet the right requirements it is faster to install and configure the hardware and
operating system on the virtual machine. The tools chosen to deploy the virtual solution to the management
server where, Packer [41] and Vagrant [42] that are tools respectively, to manage updated virtual images to be
used on virtual machines and to deploy those virtual images onto virtualization platforms such as VirtualBox or
QEMU. The problems that were encountered here were the time necessary to choose the right operating system
and the minimal hardware and software requirements to deploy the management server as it depends on phase
two of the implementation of the architecture solution. The operating system chosen was Ubuntu Server 16.04
with Ansible [43] and openstack-sdk packages installed with sixteen GB of RAM, five CPU cores and sixty GB
of disk. Annex B depicts the contents of a Vagrantfile, used by Vagrant and written in the Ruby language where

it defines the virtual machine configuration to be used for the management server.

40

3.1.2. DevStack and Tacker projects deployment and configuration

After the management server is up and running, it is time to the next phase where the DevStack and Tacker
OpenStack additional projects are deployed and configured. These projects were chosen based on the hardware
requirements of all the software researched for the ETSI MANO architectural framework blocks. For the VIM
block the project used for this was DevStack where it deploys a virtualized network infrastructure platform and

installs the OpenStack and Kubernetes VIMs. For the NFVO and VNFM blocks, the project used was Tacker.
The first step of using the DevStack project is meeting the following requirements:

e DevStack should be run as a non-root user with root enabled privileges.
e Having GitHub [44] and PIP [45] (package installer for Python) programs installed on the management

server used to deploy DevStack.

The next step involves using the GitHub program called git to download the repository of DevStack to a folder
and access the folder. When in the DevStack folder, the most important files to look for are the stack.sh, openrc
and local.conf files. The stack.sh is a bash script file that uses the information of the configuration local.conf file
to install and configure the OpenStack and Kubernetes VIMs. The openrc is also a bash script file used to load
the OpenStack environment variables to the management server so that OpenStack can be accessed and
managed. The configuration local.conf (Annex C) file that needs to be created by the user of the management
server is based from the local.conf.kubernetes [46] file, that can be accessed on the DevsStack GitHub site with

slight modifications. The relevant configurations options for the local.conf file are:

e The IPs and passwords for the services that will utilize that information such as, the OpenStack
database and network services.

e The IP range and network interface that is going to be used to give Internet connectivity to virtual
instances, e.g. virtual machines or containers.

o Enabling a log file, it is very important because if anything goes wrong, it is possible to search for
errors during installation.

e Enabling the use of the Kubernetes VIM and selecting the hyperkube [47] version to be installed. The
hyperkube version can be selected from google public hyperkube image repository[48].

e Enabling the necessary OpenStack services by using the enable plugin command tag. The OpenStack
services are then downloaded from a GitHub repository and automatically configured with the default
options. The customization of the services is done via proper tags and the tag availability depends if the

service has DevStack installation support.

After all the configuration is done, the file must be saved under the DevStack folder and then run the stack.sh
script. One problem that originated running the script, was when the management server has one network
interface and the login method to the management server is via SSH, it is necessary to run the script on a

separate virtual terminal by using the command screen.

The script is going to run a series of installations and configurations on the system, so it is not recommended to
run this script on a daily use operating system installation. This is one of the reasons why the management server

is a virtual machine described in the phase before. The script run time depends in the amount of services it must

41

install and configure, but the script at a fresh install of the operating system on the management server takes
about forty five minutes and the time decreases after the first run, to thirty minutes. At the end of the script the

output gives useful information such as:

e The time it took to install and configure the script.

e The default IP address used by the user of the management server to access, e.g. via browser the
OpenStack UL

e The users (admin and demo) that have relevant privileges to access the OpenStack platform.

e The version of OpenStack that was installed.

In this phase the most relevant problems that were faced were, the script stops working as of a bug on the
DevStack project as the association of the bridge br-ex (responsible for the routing of the external network to the
internal networks of the OpenStack platform) to the network interface of the management server removes the
DNS name resolution of the management server and when using a hyperkube version above version 15.0 the
installation of Kubernetes fails. These problems were solved by, using a GitHub repository commit version of

the DevStack project older than the one that was being used and using an older version of hyperkube.

This phase was the most time consuming because of all the configuration options that need to be learned and
tweaked to fulfil the needs of the architecture solution and the limitations of hardware resources that where
presented at the time of this phase implementation, e.g. the IST resources were so limited and overbooked, that

the private hardware resources must be upgraded so the architecture solution implementation could continue.

After this, it is necessary to configure the management server to create and have access to the virtual instances
that needed for the architecture solution implementation by loading the environment variables of the OpenStack
platform onto the management server and creating a SSH key to be able to access to the virtual instances. A

series of configurations need to be done the OpenStack platform each time the it is deployed:

e Changing the DNS nameserver IPs on all default OpenStack networks.

e Creating a router to access the virtual machines.

e Creating ports in the router to all default OpenStack networks.

e Adding SSH keys to the OpenStack platform to be able to access the virtual instances.
e Adding or changing the rules on the default OpenStack security groups.

e Adding new operating system images to the OpenStack platform.

A problem of time consumption happens when these configurations of the OpenStack platform occur and the
solution was using an automation tool such as Ansible [43], which is a Red Hat project that focuses on IT
automation, using YAML has a standard to create template files, that can deploy and modify virtualized network
infrastructures and their elements. The template file (also called ansible playbook) was created for configuration

steps described above and is depicted on Annex D.

Now that the system is fully configured, it is time to use the Tacker project. The first thing that needs to be done
is to register the OpenStack and Kubernetes VIMs onto tacker and for that it is necessary to create two YAML
files that have the information needed to register both VIMS. The information is slightly different in both files as

we can see in Annex E and Annex F. After the formulation and creation of the files it’s time to register the

42

VIMs onto Tacker via the OpenStack CLI or GUI, and depending on the commit version of Tacker, the
registration of the Kubernetes VIMs cannot work due to a bug on the code, so the GitHub branch used in Tacker
must be the master branch to fully pass these kind of problems, just because the branch is more often updated

than the other ones.

3.1.3. Backend and frontend VNFs deployment and configuration

With the VIMs registered, it is necessary to register the backend and frontend VNFs by making one or two
descriptor template files for each VIM. There are two ways to approach the configuration and deployment of the
frontend VNF, one can be done manually where it is used a descriptor template file and all the configuration for
the load balancer is done manually in terms of networking, failsafe protection and the software used for the load
balancer or two where it is used a OpenStack additional project described on chapter two called Octavia. The
Octavia project is a LBaaS where it shares the concept of XaaS[49], where anything can be called a service in a
virtualization system. The configuration selected was the second one because the way that Kubernetes works
with the OpenStack platform is by using the OpenStack networks via the kuryr-kubernetes project while the

access to the Kubernetes Pods is done via an ingress Octavia LBaaS project controller.

The backend template files for each VIM are different. Each template file has its own configuration options as
seen on Annex G and Annex H just because they use a different type of hardware and software virtualization
(containers or virtual machines) that have different options for configurations, e.g. on a Kubernetes template file
it is necessary to define a service type tag that can grant access from the external network to the application

running on the containers.
The configuration of the VNFs can be done by:

e A bash script, where for that is necessary to use a specific image built with the OpenStack additional
project diskimage-builder.

e Using a user_data tag on the template descriptor file, where configuration and installation commands
can simulate like it was a bash script file.

e Using the management server by running directly the bash script file with the SSH command.

These configuration options are well documented but the safer to use would be the third option, just because the
other two have problems with them. The first configuration option the diskimage-builder project has software
bugs where it only builds successfully images of the latest versions of the operating systems and when using
these images with Tacker the bash script does not run properly making the VNF unconfigurable. The second
configuration option is a good option, but the template file organization and length can become quite
unorganized and big due to inserting the bash script data onto the template descriptor file. In the third option the
template descriptor file and bash script file are separated, and the script file is loaded via SSH using the

management server for that matter.
The software tools used for the backend and frontend VNFs are:
e HAProxy software is used on the frontend VNFs, being the most documented, tested and versatile

load balancing software.

43

e NGINX and PHP software are used on the backend VNFs.

The configuration script bash files for the backend VNFs can be viewed on Annex I of this dissertation report.
The HAProxy software used on the frontend VNF is preinstalled with the Octavia OpenStack additional project
and it is configured as a HTTP load balancer with a load balancing round-robin algorithm. The load balancer is
also configured with a “health monitor” that checks the state of the backend servers. Layer seven policies that do
redirection based on the path that is entered on the browser can be configured also, giving extra security to the
backend servers. The backend VNFs will act as web servers that verify if the configurations on the load balancer

are working as intended.

After loading the configuration files onto the VNFs, it is time to test the architecture solution implementation. In
this phase the installation, deployment, connectivity and functionality are tested of the architecture solution. This

phase will be described in more detail on the next section of the report.

A problem occurred in this phase were that if a test fails and it is necessary to reboot the management server the
virtual network interfaces created by the DevStack OpenStack project does not persist over a system shutdown
or reboot, so the solution is to remove the configurations and installations done on the management server.
Gladly the DevStack developers thought of that and created two scripts called unstack.sh ¢ clean.sh. The
unstack.sh script stops all services associated with OpenStack and the clean.sh script cleans all configurations
and installations done by DevStack on the management server. After that it is necessary to run the stack.sh file

and to do all VNFs configuration and deployment.

44

4. Evaluation

The evaluation phase is the most important phase of all systems implementation, just because it validates all the
work that was done. It also detects if something is not running how it should be, by testing all the elements in the
system and giving out precious information to the administrator. With that information the administrator can
monitor and fix all the elements that are not corresponding to the normal behaviour. The next subsections

describe the tests performed on the architecture solution implementation.

4.1. Tests

The tests are divided on functional and performance tests. The tests validate if the functionality, failover and
scalability of the implemented solution are working as intended. The table below describes in a short manner

what tests were done on the implemented solution:

Test number Test short description
1 — functional test Verify VIMs and VNFs deployment
and configuration
2 — functional test Verify frontend and backend VNFs
connectivity
3 — functional test Verify frontend and backend VNFs
functionality
4 — functional test Verify frontend and backend VNFs
failover
5 — performance test Verify VNFs scalability

Table 1: Summary table of the evaluation tests

411. Tests1to3

The tests one to three are done via a Python script that is depicted on Annex J, where issues one hundred GET

requests to the VNF acting as load balancer and outputs the graph below:

Requests distribuition per web server

m

sitel-webl site2-webl sitel-web2 site2-web2
Web Servers

&

Requests

o

w

Figure 18: Distribution of GET requests with four web servers

45

The algorithm chosen for these tests is the round robin algorithm and as it is seen on the graph above, all the one
hundred requests are evenly distributed proving the web servers and load balancer functionality. The success of
the web servers and load balancer functionality also validates the frontend and backend VNFs connectivity (test

two) and the VIMs and VNFs deployment and configuration (test one).

4.1.2. Test4

Test four is where the frontend failover testing is done via a terminal command (openstack loadbalancer
failover name_of Ib) where it simulates with an interval of time a failover scenario that is performed on the
load balancer. The command initiates the failover by destroying the virtual machine that hosts the load balancer,
verifies that the load balancer no longer is available and performs the recoverability process of creating a new
virtual machine using the load balancer configuration metadata. The backend failover is tested by creating a
health monitor checker and shutting down a backend VNF virtual machine or container via the OpenStack CLI
or GUI and verifying that the load balancer becomes aware and do not forward HTTP traffic to that specific

virtual machine or container.

4.1.3. Test5s

Test 5 uses a scalability property on the VNFDs, where it defines how many replicas of a VM or container a
system can make. To test this the script on Annex J was slightly modified where it calculates the GET response
average time plus the computational time for each web server. The number of replicas was increased to three on

site 2 and the script outputs the following graph and times:

Requests distribuition per web server

200
175
15.0
125
"
2
3
5100
&
75
5.0
25

site2-web2 sitel-web2 site2-webl sitel-webl site2-web3
Web Servers

o
°

Figure 19: Distribution of GET requests with five web servers

sitel-web1 sitel1-web2 site2-web1 site2-web2

885ms 886ms 887ms 884ms

Table 2: Requests time with four web servers

sitel-web1 sitel-web2 site2-web1 site2-web2 site2-web3

847ms 847ms 847ms 846ms 846ms

Table 3: Requests time with five web servers

46

As it is seen on the graph above and tables, the time is reduced by forty milliseconds proving that the scalability performance

is relevant and is working as intended.

47

5. Conclusion

All the technologies described on chapter two are still being heavily developed and complementing their core
environment to using containers. Containers in comparison with virtual machines use less resources, meaning
better overall performance for the workflow of a VNF solution. Nevertheless, the use of virtual machines means
a better isolation for the adopted VNF solution that containers cannot deliver yet. That is why kata containers
enables the merge of virtual machines and containers by adding the good features described from both virtual

machines and containers.

The problems encountered while doing this dissertation were mainly, the documentation of the researched
technologies that needs improvement on explaining how some of the projects work and what certain aspects of
the projects do, e.g. to lost a lot of time searching for a solution when the installation script used by the DevStack
project stops working. Unfortunately, due to limitations on the hardware resources it was not possible to test all
the technologies described on chapter two and to scale the proposed architecture solution as it was intended. The
projects used on the implementation of the proposed architecture are still being heavily developed, and still need
optimization regarding merging the features of containers and virtual machines. Nevertheless, the
implementation of the architecture was successful and describes well what is the expectation for the future of

virtualized network functions and services.

5.1. Future work

For future work, if the resources permit, it is very important to implement and research other possible
architecture scenarios. For example, creating a multi VNF network service where it deploys different VNFs with
different networks graphs. With these virtual network graphs, it is possible to create virtual network paths and

selecting witch VNFs are associated with each virtual network path.

48

49

References

[1] NFV, “GS NFV-MAN 001 - VI1.1.1 - Network Functions Virtualisation (NFV); Management and
Orchestration,” 2014.

[2] “The Journey to Network Functions Virtualization (NFV) Era | The Evolution of Network Architecture |
InformIT.” [Online]. Available: http://www.informit.com/articles/article.aspx?p=2755705.

[3] “TOSCA-Simple-Profile-YAML-v1.1-csprd01 TOSCA Simple Profile in YAML Version 1.1
Specification URIs,” 2016.

[4] “YAML Ain’t Markup Language (YAML™) Version 1.2.” [Online]. Available:
https://yaml.org/spec/1.2/spec.html.

[5] “OpenStack Docs: Get started with OpenStack.” [Online]. Available: https://docs.openstack.org/install-
guide/get-started-with-openstack.html.

[6] “OpenStack Docs: Conceptual architecture.” [Online]. Available: https://docs.openstack.org/install-

guide/get-started-conceptual-architecture.html.

[7] D. Radez, OpenStack essentials : untangle the complexity of OpenStack clouds through this practical

tutorial. .

[8] “Chapter 1. Components Red Hat OpenStack Platform 9 | Red Hat Customer Portal.” [Online].
Available: https://access.redhat.com/documentation/en-

us/red_hat_openstack platform/9/html/architecture guide/components.

[9] “OpenStack Docs: OpenStack Compute (nova).” [Online]. Available:
https://docs.openstack.org/nova/latest/.

[10] “OpenStack Docs: Welcome to Neutron’s documentation!” [Online]. Available:

https://docs.openstack.org/neutron/latest/.

[11] “OpenStack Docs: Welcome to Glance’s documentation!” [Online]. Available:

https://docs.openstack.org/glance/latest/.

[12] “OpenStack Docs: Keystone, the OpenStack Identity Service.” [Online]. Available:
https://docs.openstack.org/keystone/latest/.

[13] “OpenStack Docs: Launch and manage instances.” [Online]. Available:

https://docs.openstack.org/horizon/latest/user/launch-instances.html.

[14] “OpenStack Docs: Welcome to Swift’s documentation!” [Online]. Available:

https://docs.openstack.org/swift/latest/.

50

[15]

[16]

[17]

(18]

[19]

[20]

(21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

“OpenStack Docs: Welcome to Ceilometer’s documentation!” [Online]. Available:

https://docs.openstack.org/ceilometer/latest/.

“OpenStack Docs: Welcome to the Heat documentation!” [Online]. Available:

https://docs.openstack.org/heat/latest/.

“OpenStack Docs: OpenStack Block Storage (Cinder) documentation.” [Online]. Available:
https://docs.openstack.org/cinder/latest/.

“OpenStack Docs: Octavia Documentation.” [Online]. Available:

https://docs.openstack.org/octavia/latest/.

“OpenStack Docs: Welcome to octavia-dashboard’s documentation!” [Online]. Available:

https://docs.openstack.org/octavia-dashboard/latest/.
“OpenStack Docs: DevStack.” [Online]. Available: https://docs.openstack.org/devstack/latest/.

“OpenStack Docs: Diskimage-builder Documentation.” [Online]. Available:

https://docs.openstack.org/diskimage-builder/latest/.

“OpenStack Docs: Welcome to Kolla’s documentation!” [Online]. Available:

https://docs.openstack.org/kolla/latest/.

“OpenStack Docs: Welcome to Magnum’s Developer Documentation!” [Online]. Available:

https://docs.openstack.org/magnum/latest/index.html.

“OpenStack Docs: Welcome to kuryr’s documentation!” [Online]. Available:

https://docs.openstack.org/kuryr/latest/.
“About Kata Containers | Kata Containers.” [Online]. Available: https://katacontainers.io/.

“Kuryr - Bringing Containers Networking to OpenStack Neutron - GalSagie.” [Online]. Available:
http://galsagie.github.i0/2015/08/24/kuryr-part1/.

“Learn | Kata Containers.” [Online]. Available: https://katacontainers.io/learn/..

“Kubernetes: An Overview - The New Stack.” [Online]. Available: https://thenewstack.io/kubernetes-an-

overview/.

“Introduction to Kubernetes Architecture.” [Online]. Available: https://x-team.com/blog/introduction-

kubernetes-architecture/.

“Docker overview | Docker Documentation.” [Online]. Available:

https://docs.docker.com/engine/docker-overview/.

“What is the best NFV Orchestration platform? A review of OSM, Open-O, CORD, and Cloudify |
Mirantis.” [Online]. Available: https://www.mirantis.com/blog/which-nfv-orchestration-platform-best-

review-osm-open-o-cord-cloudify/.
“OpenVIM installation (Release One) - OSM Public Wiki.” [Online]. Available:

51

[33]
[34]
[35]

[36]

[39]
[40]
[41]
[42]
[43]
[44]

[45]

[46]

[47]

[48]

[49]

https://osm.etsi.org/wikipub/index.php/OpenVIM installation_(Release One).

“Open CORD — CORD.” [Online]. Available: https://opencord.org/.

“Navigating CORD - CORD Guide.” [Online]. Available: https://guide.opencord.org/navigate.html.
“Introduction - XOS Guide.” [Online]. Available: https://guide.xosproject.org/.

“Kafka Integration - ONOS - Wiki.” [Online]. Available:
https://wiki.onosproject.org/display/ONOS/Kafka+Integration.

“Helm | Docs.” [Online]. Available: https://helm.sh/docs/.

“Overview of Open Source Components in Cloudify | Cloudify Documentation Center.” [Online].

Available: https://docs.cloudify.co/4.3.0/about/manager_architecture/components/.

“OpenBaton Documentation.” [Online]. Available: https://openbaton.github.io/documentation/.
“Tacker - OpenStack.” [Online]. Available: https://wiki.openstack.org/wiki/Tacker.
“Documentation - Packer by HashiCorp.” [Online]. Available: https://www.packer.io/docs/.
“Documentation - Vagrant by HashiCorp.” [Online]. Available: https://www.vagrantup.com/docs/.
“Ansible Documentation.” [Online]. Available: https://docs.ansible.com/.

“GitHub Guides.” [Online]. Available: https://guides.github.com/.

“pip - The Python Package Installer — pip 19.3.1 documentation.” [Online]. Available:
https://pip.pypa.io/en/stable/.

“kuryr-kubernetes/local.conf.sample at master - openstack/kuryr-kubernetes - GitHub.” [Online].

Available: https://github.com/openstack/kuryr-kubernetes/blob/master/devstack/local.conf.sample.

“kubernetes/cluster/images/hyperkube at master - kubernetes/kubernetes.” [Online]. Available:

https://github.com/kubernetes/kubernetes/tree/master/cluster/images/hyperkube.

“Container Registry - Google Cloud Platform.” [Online]. Available:
https://console.cloud.google.com/gcr/images/google-containers/GLOBAL/hyperkube-
amd64?gcrimageListsize=30&pli=1.

R. C. Garcia and J.-M. Chung, “XaaS for XaaS: An evolving abstraction of web services for the
entrepreneur, developer, and consumer,” in 2012 IEEE 55th International Midwest Symposium on

Circuits and Systems (MWSCAS), 2012, pp. 853-855.

52

Annex A — VNFD example file

1 tosca_definitions_version: tosca_simple_profile_for_nfv_1_0_0

2 description: Sample VNFD template mentioning possible values for each node.
3 metadata:

4 template_name: sample-tosca-vnfd-template-guide

5 topology_template:

6 node_templates:

7

type: tosca.nodes.nfv.VDU.Tacker
capabilities:

nfv_compute:
properties:
mem_page_size: [small, large, any, custom]
cpu_allocation:
cpu_affinity: [shared, dedicated]
thread_allocation: [avoid, separate, isolate, prefer]
socket_count: any integer
core_count: any integer
thread_count: any integer
numa_node_count: any integer
numa_nodes :
node@: [id: >=0, vcpus: [host CPU numbers], mem_size: >= OMB]

properties:

image: Image to be used in VDU
flavor: Nova supported flavors
availability_zone: available availability zone
mem_size: in MB
disk_size: in GB
num_cpus: any integer
metadata:
entry_schema:
config_drive: [true, false]
monitoring_policy:
name: [ping, noop, http-ping]
parameters:
monitoring_delay: delay time
count: any integer
interval: time to wait between monitoring
timeout: monitoring timeout time
actions:
[failure: respawn, failure: terminate, failure: log]
retry: Number of retries
port: specific port number if any
config: Configuring the VDU as per the network function requirements
mgmt_driver: [default=noop]
service_type: type of network service to be done by VDU
user_data: custom commands to be executed on VDU
user_data_format: format of the commands
key_name: user key

artifacts:

VNFImage:
type: tosca.artifacts.Deployment.Image.VM
file: file to be used for image

type: tosca.nodes.nfv.CP.Tacker
properties:

management: [true, false]
anti_spoofing_protection: [true, false]
type: [sriov, vnic]

order: order of CP within a VDU
security_groups: list of security groups

requirements:

- virtuallLink:

node: VL to link to
- virtualBinding:

node: VDU to bind to

type: tosca.nodes.nfv.VL
properties:

network_name: name of network to attach to
vendor: Tacker

53

Annex B — Vagrant virtual machine configuration

file

1 # -*- mode: ruby -*-
2 # vi: set ft=ruby :

4 Vagrant.configure("2") do |config|

5 config.vm.define "osmgmt" do |mgmt_config|

6

7 mgmt_config.vm.box = "ubuntu-16.04-qgemu"
8 mgmt_config.vm.hostname = "osmgmt"

9 mgmt_config.vm.provider "libvirt" do |lv|
10 lv.memory = "16384"

11 lv.cpus = 10

12 end

13 mgmt_config.vm.provision "shell", path: "copyfile.sh"
14 end

15 end

54

Annex C — DevStack project configuration file

[[local|localrc]]

Customize the following HOST_IP based on your installation
HOST_IP=192.168.121.115
SERVICE_HOST=192.168.121.115
MYSQL_H0ST=192.168.121.115
RABBIT_HOST=192.168.121.115
GLANCE_HOSTPORT=192.168.121.115:9292
10 ADMIN_PASSWORD=12secret34

11 DATABASE_PASSWORD=12secret34

12 RABBIT_PASSWORD=12secret34

13 SERVICE_PASSWORD=12secret34

14 IP_VERSION=4

15 SERVICE_VERSION=4

AW N =

L oo,

17 ## Neutron options

18 #Q_USE_SECGROUP=True

19 FLOATING_RANGE="192.168.121.0/24"

20 IPV4_ADDRS_SAFE_TO_USE="10.0.1.0/22"

21 Q_FLOATING_ALLOCATION_POOL=start=192.168.121.240,end=192.168.121.254
22 PUBLIC_NETWORK_GATEWAY="192.168.121.1"

23 PUBLIC_INTERFACE=eth@

24

2 R I A
26 # Customize the following section based on your installation
27

28

29 # Pip

30 PIP_USE_MIRRORS=False

31 USE_GET_PIP=1

32

33 #0FFLINE=False

34 #RECLONE=True

35

36 # Logging

37 LOGFILE=$DEST/logs/stack.sh.log

w
@

VERBOSE=True
ENABLE_DEBUG_LOG_LEVEL=True
ENABLE_VERBOSE_LOG_LEVEL=True

BB W
=2

42 # Neutron ML2 with OpenVSwitch
43 Q_PLUGIN=m12
44 Q_AGENT=openvswitch

46 # Disable security groups
47 Q_USE_SECGROUP=False
48 LIBVIRT_FIREWALL_DRIVER=nova.virt.firewall.NoopFirewallDriver

50 # Enable heat, networking-sfc, barbican and mistral
51 enable_plugin heat https://opendev.org/openstack/heat
52 enable_plugin networking-sfc https://opendev.org/openstack/networking-sfc
53 enable_plugin barbican https://opendev,org/openstack/barbican
4 enable_plugin mistral https://opendev.org/openstack/mistral

56 # Ceilometer

57 #CEILOMETER_PIPELINE_INTERVAL=300

58 enable_plugin ceilometer https://opendev.org/openstack/ceilometer
59 enable_plugin aodh https://opendev.org/openstack/aodh

61 # Tacker
62 enable_plugin tacker https://opendev.org/openstack/tacker

64 enable_service n-novnc

65 enable_service n-cauth

66

67 disable_service tempest

68

69 # Enable kuryr-kubernetes, docker, octavia

70 KUBERNETES_VIM=True

71 enable_plugin kuryr-kubernetes https://opendev.org/openstack/kuryr-kubernetes
72 enable_plugin octavia https://opendev.org/openstack/octavia

73 enable_plugin devstack-plugin-container https://opendev.org/openstack/devstack-plugin-container
74 KURYR_K8S_CLUSTER_IP_RANGE="10.0.0.0/24"

75 KURYR_HYPERKUBE_VERSION="v1.14.6"

76

77 [[post-config|/etc/neutron/dhcp_agent.ini]]

78 [DEFAULT]

79 enable_isolated_metadata = True

80

81 [[post-config|$0CTAVIA_CONF]]

82 [controller_worker]

83 amp_active_retries=9999

=

~

F~

[«

55

Annex D — OpenStack platform configuration file

» # file: openstack-setup.ynl

- name: Update Openstack/DeuStack Infrastructure
hosts: localhast

tasks:
& # defines the subnet (addressing} for the Lb-mgnt network tncluding DNS
1 - os_subnet:
19 slate: present

1 network_name: 1b-momt-net
12 name: b-mgnt-subnet

JE] cidri 192.168.0.0/24

1 enable_dhep: True
dns_nameservers:

- 8.8.4.4
register: subnet_lb-mamt
- debug:
20 ## var: subnet lb-mgnt

22 # defines the subnet [addressing} for the netd network including DHS.

23 0s_subnet:
24 state: present
network_name: netd
2% name: subneto
2 cidr: 19.10.0.0/24
28 enable_dhcp: True
29 dns_naneservers:
30 - 8.8.8.8
5 - B.8.4.4
register: subnel subnetg
33 # - debug:
var: subnet_subnet®

36 # defines the subnet (addressing) for the netl network including DNS
- os_subnet:
state: present
network _name: net1
name: subnetl
4 cldri 16.10.1.0/24
a2 enable_dhcp: True
3 dns_nameservers:
- 8.8.5.8
- 8.8.4.4
register: subnet_subnetl
- debug:
4 var: subnet_subnetl

defines the subnet {addressing) for the netl network including DNS
- os_subnet:

state: present

network_name: net_ugnt

name: subnet mgmt

cidr: 192.168.120.0/24

enable_dhep: True

dns_nameservers:

- 8.8.8.8
- 8.8.4.4
register: subnet_mgnt
- debug:
var: subnet_mgnt

creating a router connecting the frontend to the external {public) network
- os_router:
state: present
name: wrdnz
network: public
interfaces:
~ b-mgnt-subnet
- subnet®
- subnetl
3 - subnet_ngnt.
register: vr_ext
- debugs
var: vr_ext

creating a key pair for passwordless remate ssh
os_keypair:
8 state: present
81 name: ansible-key
public_key_file: /hamefvagrant/. ssh/id_rsa.pub
register: kp
- debug:
t var: kp

- name: Create a new security group allowing amy TCMP
os5_security group_rule:
security_group: default
protocol: icmp
remote_ip_prefix: 0.0.0.8/0
creating security graup Rule for SSH
- name: Create a new security group allowing any 55H connection
05_security_group_rule:
security group: default
protacol: tcp
9. pert_range_min: 22
98 port_range_max: 22
]
0

“

remote_ip_prefix: 0.0.9.6/6

00 # creating security growp Rule for HTTP port 80

01 - name: Create a new security rule allowing normal web connection
02 os_secur ity group_rule:

03 security_group; default

o4 protocel: tep

port_range min: 80

part_range_max: 80

remote_ip_prefix: 0.0.9.6/0

creating security group Rule for secure HTTP port 443

- name: Create a new security rule allowing secure web connection
o5_security_group_rule:

1 security_group: default

4

12 protocol: Lep

13 port_range_min: 443

14

15

16 # Uplead an image from a local Tile named cirres-0.3.0-x86_64-disk.ing

17 - os_image
8 name: ubuntu-16.04
container_format: bare
disk_format: geow2
state: present
filename: /vagrant/config/os_images/xenial-server-cloudimg-and64-diskl.ing
is_public: yes
Upload an image from a local Tile named cirros-0.3.0-x86_64-disk.ing
- os_image:
name: ubuntu-18.04
container_format: bare
disk_format: qcou2
state: present
! filename: fuagrant/config/os_images/bianic-server-clouding-amd6a. ing
31 is_public: yes

57

Annex E — OpenStack VIM descriptor file

0o O U & WK

auth_url: 'http://192.168.121.115/identity’
username: admin

password: 1l2secret34

project_name: admin

domain_name: Default

user_domain_name: Default
project_domain_name: Default

cert_verify: 'False'

Annex F — Kubernetes VIM descriptor file

oy Ul B W N =

~J

o0

auth_url: "https://192.168.121.115:6443"
username: "admin"

password: "admin"

project_name: "default"

ssl_ca_cert: "--—--—- BEGIN CERTIFICATE-----
HASH KEY

————— END CERTIFICATE-----"

58

Annex G — OpenStack backend descriptor file

1 tosca_definitions_version: tosca_simple_profile_for_nfv_1_0_0

2 metadata:

3 template_name: site-backend-tosca-vnfd-for-vnfc
4

5 topology_template:

6 node_templates:

7 VDU1:

8 type: tosca.nodes.nfv.VDU.Tacker
9 properties:

10 name: sitel-webl

11 image: ubuntu-18.04

12 flavor: ds512M

13 mgmt_driver: noop

14 key_name: ansible-key

15 config: |

16 param0@: keyl

17 paraml: key2

18

19 CP1:
20 type: tosca.nodes.nfv.CP.Tacker
21 properties:
22 ip_address: 10.10.0.12
23 management: true
24 anti_spoofing_protection: false
25 requirements:
26 - virtualLink:
27 node: VL1
28 - virtualBinding:
29 node: VDUl
30 VDU2:

shil type: tosca.nodes.nfv.VDU.Tacker
32 properties:

33 name: sitel-web2

34 image: ubuntu-18.04

35 flavor: ds512M

36 mgmt_driver: noop

37 key_name: ansible-key

38 config: |

39 param@: keyl
40 paraml: key2
41
42 CpP2:
43 type: tosca.nodes.nfv.CP.Tacker
44 properties:
45 ip_address: 10.10.0.13
46 management: true
47 anti_spoofing_protection: false
48 requirements:
49 - virtuallLink:

50 node: VL1

51 - virtualBinding:

52 node: VDU2

53

54 VL1:

55 type: tosca.nodes.nfv.VL

56 properties:

57 network_name: net@

58 vendor: Tacker

59

Annex H — Kubernetes web server descriptor file

1 tosca_definitions_version: tosca_simple_profile_for_nfv_1_0_0
2 description: A sample containerized backend VNF

3

4 metadata:

5 template_name: backendvnf-container-tosca-vnfd
6

7 topology_template:
8 node_templates:

9 VDUL:

10 type: tosca.nodes.nfv.VDU.Tacker
11 properties:

12 namespace: default

13 mapping_ports:

14 - "80:80"

15 service_type: LoadBalancer
16 vnfcs:

17 front_end:

18 num_cpus: 0.5

19 mem_size: 512 MB

20 image: nginx

21 ports:

22 - "go"

23 policies:

24 - SP1:

25 type: tosca.policies.tacker.Scaling
26 targets: [VDU1]

27 properties:

28 min_instances: 1

29 max_1instances: 3

30 target_cpu_utilization_percentage: 40

Annex I — Configuration script files for the load

balancer and web servers

1 #!/bin/bash
2 #loabalancer configuration

4 export DEBIAN_FRONTEND=noninteractive

sudo timedatectl set-timezone Europe/Lisbon
export ip_v4="hostname -I | cut -d' ' -f1°

sudo tee <<EQOF /etc/hosts =/dev/null
127.0.0.1 localhost $HOSTNAME
10.10.0.12 sitel-webl

10.10.0.13 sitel-web2

160.10.1.12 site2-webl

10.10.1.13 site2-web2

The following lines are desirable for IPv6 capable hosts
::1 ip6-localhost ip6-loopback
fe00::0 ip6-localnet

=)

ff00::0 ip6-mcastprefix
o 1 ip6-allnodes
ff02::2 ip6-allrouters
ff02::3 ipb-allhosts

EOF

sudo tee <<EOF /etc/haproxy/haproxy.cfg >/dev/null

global

28 # log 127.0.0.1 local2

29

0 # chroot /var/1ib/haproxy
pidfile /var/run/haproxy.pid
maxconn 4000
user root

4 # group root
daemon

17 # # turn on stats unix socket
38 # stats socket /var/lib/haproxy/stats level admin
defaults
mode http
log global
option httplog
optien dontlognull
option http-server-close
option forwardfor except 127.0.0.0/8
option redispatch
retries 5]
timeout http-request 10s
timeout queue Im
timeout connect 10s
timeout client Im
timeout server im
timeout http-keep-alive 10s
timeout check 10s
maxconn 3000

frontend http_front
bind *:80
stats enable
stats uri /stats
acl db_manage_sitel-webl path -i -m beg /sitel-webl-mandbs
use_backend mandbs_sitel-webl if db_manage_sitel-webl
acl db_manage_sitel-web2 path -i -m beg /sitel-web2-mandbs
use_backend mandbs_sitel-web2 if db_manage_sitel-web2
acl db_manage_site2-webl path -i -m beg /site2-webl-mandbs
use_backend mandbs_site2-webl if db_manage_site2-webl
acl db_manage_site2-web2 path -1 -m beg /site2-web2-mandbs
use_backend mandbs_site2-web2 if db_manage_site2-web2
default_backend http_back

g

backend http_back
balance roundrobin
server sitel-webl 10.10.0.12:80 check
server sitel-web2 10,10.0.13:80 check
server site2-webl 10.10.1.12:80 check
server site2-web2 10.10.1.13:80 check

backend mandbs_sitel-webl
server sitel-webl 10.10.0.12:80 check

backend mandbs_sitel-web2
server sitel-webl 10.10.0.13:80 check

backend mandbs_site2-webl
server site2-webl 10.10.1.12:80 check

backend mandbs_site2-web2
server sitel-webl 10.10.1.13:80 check
EOF

]
*

sudo systemctl restart haproxy

61

1 #1/bin/bash

2 #uebserver configurartion

3

4 # export DEBTAN_FRONTEND=naoninteractive

5

6 # sudo timedatectl set-timezone Furope/Lisbon
7 # host="$hostname

8 # uri='suri’

9 # ip_vd="hostname -I | cut -
10 # export HYSQL ROOT_PASSWORD
1

12 # sudo apt-get install nginx

13

14 # sudo tee =<FOF /etc/hosts =/dev/null
127.8.0.1 localhost $HOSTNAME

N
‘12secretis’

The following lines are desirable for IPvG capable hosts
i1 ipb-lecalhest ipb-loapback

fe00::0 ip6-localnet

1fe0::0 ip6-mcastprafix

782::1 ip6-allnodes

ff82::2 ip6-allrouters

1702::3 ipé-allhosts

EOF

sudo tee <<EOF /etc/nginx/nginx.conf =/dev/null
user Wwwi-data;

worker processes 13
pid Jvar/run/nging. pid;
worker_rlimit_nofile 102

events {
worker_connections 5123

nttp {

include /ete/nging/mine. types;
detault_type application/octet-stream;
tep_nopush "on";
tep_nodelay "on”;

#heepalive timeout "65';

access_log */var/log/nginx/access.log";
errer_log "/var/leg/nginx/error.log";
server_tokens off;

a9 # types_hash_max_size 2048;

1# # https://philio.me/backend-server-host-name-as-a-custom-header—with-nginx/
add_header X-Backend-Server $host;

disable cache used for testing
add_header Cache-Control private;
add_header Last-Modified ™';
sendfile off;

expires off;

etag off;

o R o b

include /ete/nginx/conf.d/*.conf;
include /etc/nging/sites-enabled/*;
63
64
65
66 # sudo tee <<EOF fetc/ngink/sites-available/default >/dev/null
67 # server {

B
4R

68
Boo# listen 86

70 # server_name $HOSTHAME;

718 raot fusr/share/nginx/himl;

728 index index.php index.html index.htm;

e
location / {

try_files suri Suris =404;
}

error_page 404 /404, html;
error_page 500 502 503 504 /SOx.html;
locatien = /58x.html {

Foot /usr/share/nginx/ntmi;
F
pass the PHP scripts to Fast(GL server
#

location ~ \.php3 {

include snippets/fastcgi-php.conf;

#

With php-fpm {or other unix sockets):
fastegi_pass unix:/run/php/php?.2-fpm.sock;
With php-cgi {or other tcp sockets):

Tastegi_pass 127.0.0.1:9000;

}

deny access to .htaccess files, if Apache's document root
concurs with nginx's one

#
location ~ /\.ht {
deny all;

+
¥

EOF

sudo tee <<EOF fusr/share/nginx/html/index.php =fdev/null
<html=

<heads

=title=Symmetric redundancy network solutions Projecte/titles
</head=

<heads

sstyles

div.a {

text-align: center;

</styles
</head=
<body=
<div class=!
<h1=Symnetric redundancy network solutions for the OpenStack platform</hl=
<p=Served by SHOSTNAME</p>
<poServer 1P $ip_vd</p>

<pme?php echo "Server date is: " . datel"Y-m-d"];7me/ps
<p=<7php echo "Server time is: " . datef"h:iisa");7=</p=
</div=
22 # </body>
3 # </htals
124 # EOF
125
126 # sudo sed i 's/jcgi.fix_pathinfo=1/cgl. Fix_pathinfo=8/' fetc/php/7.2/Tpm/php.ini
-

128 # sudo systemctl restart php?.2-fpm
129 # sudo systemctl restart nginx

62

Annex J — Python script used for tests 1 to 3

W o~V e WN =

e el e =]
2wWN =

15

53}

46
47
48

import requests

import matplotlib.pyplot as plt
import timeit

from collections import defaultdict

requests_list = []
requests_time_list = []
res = defaultdict(list)

for 1 in range(100):
r = requests.get('http://192.168.121.254")
requests_list.append(r.content.decode("utf-8").rstrip())
requests_time_list.append((r.content.decode("utf-8").rstrip(), r.elapsed.total_seconds()))

for item, time in requests_time_list:
res[item].append(time)

¢ =dict((x,requests_list.count(x)) for x in set(requests_list))
t = [(k, sum(v)) for k, v in res.items()]
print(t)

#x-coordinates of left sides of bars
left = [5, 10, 15, 20, 25]

heights of bars
height = c.values()

labels for bars
tick_label = [list(c.keys())[0], list(c.keys())[1], list(c.keys())[2], list(c.keys())[3],
list(c.keys())[4]]

plotting a bar chart
plt.bar(left, height, tick_label = tick_label,
width = 0.8, color = ['red', 'green'])

naming the x-axis

plt.xLlabel('Web Servers')

naming the y-axis

plt.ylabel('Requests")

plot title

plt.title('Requests distribuition per web server')

function to show the plot
plt.show()

exit

63

