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Abstract 

The traditional way of implementing network functions and network services does not make use of the 

flexibility, adaptability and interoperability offered by virtualized network infrastructures. Using these 

infrastructures, it is possible to scale network solutions better, because the resources are being used in the most 

efficient way possible by virtualizing the required resources. The technologies, tools and products associated 

with it can now, be a type of service and therefore automated using e.g. a data serialization language like YAML. 

Considering these developments, the ETSI elaborated an architectural framework, called ETSI MANO, which is 

used as a reference model for the creation of software that does the orchestration and management of virtualized 

network functions and network services. This architectural framework has three major components, the NFVO, 

the VNFM and the VIM that are essential for the management and operation of virtualized network functions 

and services systems. In this dissertation, an analysis and study of the technologies associated with the three 

major components of the ETSI MANO architectural framework are performed. Based on the study and analysis 

done, a symmetric redundant network functions and services system is built on a virtualized network 

infrastructure. For testing the system, it is deployed a VNF load balancer and two sites, where each site has two 

web servers. 
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Resumo 

O modo tradicional de implementação de funções e serviços de rede, não faz o uso devido da flexibilidade, 

adaptabilidade e interoperabilidade das infraestruturas em rede virtualizadas. Ao usar estas infraestruturas é 

possível melhorar a eficiência dos recursos usados nas soluções de rede, visto que os recursos usados são 

virtualizados. Os produtos, ferramentas e tecnologias associadas às funções e serviços de rede passam agora a 

serem tratados como serviços, podendo depois ser automatizados usando e.g. uma linguagem de serialização de 

dados como é a linguagem YAML. Considerando estes desenvolvimentos, o ETSI elaborou uma architectural 

framework denominada de ETSI MANO que é usada como modelo de referência para o desenvolvimento de 

software para a realização da orquestração e gestão de funções e serviços de rede virtualizados. Esta architectural 

framework é constituída por três blocos principais, o NFVO, o VNF e o VIM, essenciais para a gestão e 

operação dos sistemas de serviços e funções de rede. Nesta dissertação, é feita uma análise e estudo das 

tecnologias associadas com os três principais componentes da ETSI MANO architectural framework. Baseado 

no estudo e analise feitos, um sistema redundante de funções e serviços de rede é construído dentro duma 

infraestrutura de rede virtualizada. Para o teste deste sistema, é implementada uma função de rede de 

balanceador de carga e dois sítios, em que cada sítio é composto por dois servidores web. 
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1. Introduction 

The network infrastructures were only present in a “bare metal” from not long ago, while nowadays it is shifting 

to virtualized network infrastructures. The growing of these infrastructures is mainly due to their flexibility, 

adaptability and interoperability properties. The widespread age of “Cloud” models and virtualization contributes 

to be a standard when using the Internet. This project aims to study and test the technologies that exist for the 

orchestration and management of virtual network functions and services in a virtual network infrastructure 

environment using the solutions that are based on the ETSI MANO architectural framework [1]. This 

dissertation aims to analyse these solutions, and research simple scenarios where they will be tested in a simple 

network architecture solution. 

1.1. Motivation and Goals 

The design of traditional network infrastructures in the past was benchmarked for the minimal loss of latency, 

availability, throughput and the capacity to carry data, resulting in hardware and software that were developed 

and optimized using the criteria’s described before. With the increase of complexity and bandwidth usage on 

technologies such as streaming platforms, Internet of Things or by smartphones, there was a need to scale and 

expand the existing network infrastructure without increasing the costs too much. Unfortunately, the traditional 

infrastructure solution posed various bottlenecks in terms of hardware and software bringing companies and 

developers to find ways of removing those bottlenecks. This led to the concepts of virtualized network 

infrastructures and virtualized network functions. Having a VNF system fully customizable and define how the 

VNF system behaves, can be achieved using the ETSI MANO architectural framework. The ETSI MANO 

architectural framework is the reference framework that companies, developers and users adopted to develop 

solutions for their needs in this constant changeable world of virtualized network infrastructures. This 

dissertation describes and analyses the desired skills that are needed to learn more about the optimization of VNF 

deployment, orchestration and management on virtualized network infrastructures environments.   

The main goals of this dissertation are to research the technologies, products and tools used on virtualized 

network infrastructures, and how the VNFs instantiation is done in the present and what is the near future for 

VNF management and orchestration on virtualized network infrastructures. For this, a virtualized network 

infrastructure is deployed to test the most documented and developed VNF placement technology that is low on 

resource utilization, reliable, secure and is part or fully automatable considering the available hardware at the 

time of implementation of the system solution. Several virtualization and high virtualization models (containers 

and virtual machine) are analysed, tested and compared. 
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1.2. Document structure 

The document structure is as follows. This chapter introduces the theme of the project as well the motivation, 

goals and the structure of the report. Chapter two reviews the existing concepts and technologies for the 

virtualized network infrastructures and for the VNF instantiation, orchestration and management solutions that 

exist nowadays. Chapter three describes the architecture and the developed prototype for testing and validation 

of the architecture. Chapter four describes the tests that were performed. Chapter five provides some conclusion 

thoughts for the future work and the work done in the research and writing of this report. The additional sections 

are used for the references used in the elaboration of this dissertation report and project and to show the 

configuration files that were used for the implementation and evaluation of this dissertation.    
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2. State of the art 

The limitations of network infrastructures such as flexibility, scalability, manageability and interoperability 

limitations makes companies and developers design new software and hardware that defines how the virtualized 

network infrastructures are deployed and configured to support the use of virtual network functions and 

services. This brings new challenges such as multivendor implementations of VNFs, managing, monitoring and 

configuring the life cycles and interactions of VNFs, as well the hardware resource allocations of VNFs and the 

interaction with the billing and operational support systems. Those challenges lead for the creation of an 

architectural framework also known as the ETSI NFV architectural framework, which defines a reference model 

for virtual network functions and services that are orchestrated and managed on a virtualized network 

infrastructure. 

 

2.1. ETSI NFV architectural framework  

The European telecommunications standards institute network functions virtualization architectural framework is 

based on a complete separation of hardware and software criteria, where network functions deployment must be 

automated and scalable and the control of the network functions operational parameters is done by monitoring 

and controlling the state of the network [2]. This framework is structured by three high level blocks such as the 

VNFs, the NFVI and the NFV MANO blocks. The NFVI block is the foundation for this architectural 

framework where it offers the hardware and software responsible for the virtualization process of the virtual 

instances. The VNFs block uses the resources of the NFVI block to develop software that implements virtualized 

network functions and services. The NFV MANO block is on its own a separate architectural framework that is 

responsible for the orchestration and management of the VNFs and NSs resources. The following figure 

illustrates the ETSI NFV architectural framework: 

 

Figure 1: ETSI NFV architectural framework 

Resourced from [2]  
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The NFV MANO block is also called the ETSI MANO architectural framework where it is a reference model to 

developers to create software to manage and orchestrate VNFs and NSs. The next sections and subsections 

describe in a more detailed manner the ETSI MANO architectural framework and all the relevant technologies 

that are used nowadays to accomplish what the ETSI MANO architectural framework proposes.  
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2.2. ETSI MANO block 

The ETSI MANO block decouples computation, storage and networking from the software that implements NFs 

by creating new entities such as, the VNFs, NFVI, PNFs, NSs, VNFFGs and VLs. The ETSI MANO 

architectural framework is responsible for managing the NFVI and orchestrate the resources for the NFs and 

VNFs. The resources that are considered are mainly CPU, memory, network components (subnets, ports, etc.) 

and storage. With this, it is important to define VNFs management functions based on operations such as the, 

instantiation, scaling, updating or upgrading and terminating of VNFs or NSs. These operations are 

accomplished by the creation of template files that use a template language such as TOSCA which is described in 

more detail in the following subsection.  

The ETSI MANO architectural framework architecture is presented in the figure below: 

 

Figure 2: ETSI MANO framework 

Resourced from [1] 

 

The main blocks of the ETSI MANO architecture are: 

 

▪ The NFVO is responsible for the resources allocated to the VIM and the lifecycle management of the 

NSs. 

▪ The VNFM is responsible for the lifecycle management of the VNF instances, where it can manage 

only a VNF instance or multiple VNF instances. 

▪ The VIM is responsible for the management and control of the NFVI in terms of the network, storage 

and compute resources.  
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▪ The Data Repositories are responsible for the storage of the templates for the VNFs and NSs. Also 

holds information about the resources and instances that are being used.  

 

The ETSI MANO illustrates also that the NSs as the relation between VNFs and PNFs and defines the elements 

that a NS relates to, which are depicted in the following figure: 

 

Figure 3: NSs elements and ETSI MANO records and descriptors 

Resourced from [1] 

 

As shown in figure 3, NSs can contain information about the VNFs, Physical network functions, Virtual Links 

and Virtual Network Function Forwarding Graphs and with this information create network forwarding paths to 

be used on E2E virtualized network services. The ETSI MANO architectural framework instantiation input 

parameters are used as descriptors which are grouped in a catalogue and therefore translated to records in a 

runtime context when the virtual instances are deployed. The descriptors are written in the TOSCA language and 

have information about the network itself, such as the topology, network path, resource requirements for the 

elements of the network and the physical elements. The records have not only the information given by the 

descriptors, but also additional runtime information such as CPU, network or disk usage. 

2.2.1. TOSCA and YAML 

TOSCA[3] or Topology and Orchestration Specification for Cloud Applications  is a template language based on 

the data serialization and markup language YAML (Ain't Markup Language) that describes the virtualized 
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network functions or services nodes and the relations between them. In fact, TOSCA is a service template 

language that describes virtualized network infrastructures workloads as a topology template, meaning that is 

basically a graph of node templates modelling the components and the relations between them. An example of a 

VNFD written in TOSCA is depicted on Annex A. The VNFD example is from a NFVO and VNFM software 

called Tacker, which describes a VNF topology with three node types, a VDU, a VL and a CP, each with 

different capabilities and requirements. The capabilities describe the resources that each node will be deployed 

with and the requirements describe the virtual networks that are associated with each VNF.  

The YAML language is a data serialization and markup language where integrates and builds concepts from a lot 

of other languages, e.g. Python, JSON, Ruby, C and XML. YAML language indentation-based scoping is similar 

to Python language where the indentation facilitates the inspection of the data structures. YAML language literal 

style leverages this by enabling formatted text to be cleanly mixed within an indented structure without 

troublesome escaping. YAML also allows the use of traditional indicator-based scoping similar to the JSON 

language.  

YAML language core type system is based on the requirements of agile languages such as Perl, Python, and 

Ruby. YAML directly supports both collections (mappings, sequences) and scalars. Support for these common 

types enables programmers to use their language’s native data structures for YAML manipulation, instead of 

requiring a special document object model. YAML language foremost design goals are human readability and 

support for serializing arbitrary native data structures [4].  
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2.3. VIMs block 

The virtualized infrastructure managers block has the responsibility to supervise the virtual infrastructure of a 

network function virtualization solution. In summary the VIM is a key component of any ETSI MANO 

architecture, and the following subsections describe some of the most developed solutions that exist nowadays 

for virtualized infrastructure managers. 

2.3.1. The OpenStack platform 

The OpenStack platform is an open source project that aims to be a cloud operating system that manages and 

deploys the network, storage and computing resources of a complete virtualized infrastructure over a set of 

hardware resources. The following figure details the conceptual architecture of the OpenStack elements 

(services) [5]: 

 

Figure 4: Conceptual architecture of the OpenStack elements 

Resourced from [6] 

These elements or projects can be classified has essential projects and additional projects and are explained in 

more detail on the subsections below. 

The growth of the Internet and hardware infrastructures network solutions implies new challenges for operators 

to manage, configure and launch on demand new services using the resources for them as efficient as possible. 

OpenStack is an excellent solution for that matter because it offers virtualization of compute, storage, 

networking and many other resources. Each component in OpenStack manages a different resource that can be 

virtualised for the end user. Separating each of the resources that can be virtualized into separate components 

makes the OpenStack architecture very modular. OpenStack can be divided into four groups: Control, 

Networking, Compute and Storage. The Control tier runs the Application Programming Interfaces (API) 

services, web interface, database, and message bus. The Networking tier runs network service agents for 

networking. The Compute tier is the virtualization hypervisor, with services and agents to handle virtual 
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machines. The Storage tier manages block (Volumes; partitions) and object (containers; files) storage for the 

Compute instances. All the components use a database and/or a message bus [7]. 

2.3.1.1. Essential OpenStack projects 

The essential projects are the projects that an OpenStack platform cannot operate without. The essential projects 

to deploy an OpenStack installation are [8]: 

• Nova project manages and provisions virtual machines running on hypervisor nodes [9]. 

• Neutron project provides network connectivity between the interfaces of OpenStack services [10]. 

• Glance project is a registry service that is used to store resources such as virtual machine images and 

volume snapshots [11]. 

• Keystone project is a centralized service for authentication and authorization of OpenStack services and 

for managing users, projects, and roles [12]. 

And some advisable but not mandatory projects to add to an OpenStack installation as they facilitate the usage of 

the OpenStack platform [8]: 

• Horizon project is a web browser-based dashboard that is used to manage OpenStack services [13]. 

• Swift project allows users to store and retrieve files and arbitrary data [14]. 

• Ceilometer project provides measurements of cloud resources [15]. 

• Heat project is a template-based orchestration engine that supports automatic creation of resource stacks 

[16]. 

• Cinder project manages persistent block storage volumes for virtual machines [17]. 

A high-level overview of the described projects is depicted on the figure below: 

 

Figure 5: High-level overview of the OpenStack essential projects 

Resourced from [8] 

 

All the services communicate with each other by APIs and the AMQP. 
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2.3.1.2. Relevant OpenStack additional projects 

The additional OpenStack projects are software tools that are developed as a side project to add some new 

features / services to the OpenStack platform. The most important ones for the scope of this dissertation are: 

• Octavia and Octavia dashboard projects that aim to be a load balancer as service project and a GUI of 

Octavia project that can manage a fleet of virtual machines, containers, or bare metal servers on demand 

[18] [19].  

• DevStack project is a compilation of scripts to quickly bring up a complete and updated version of the 

OpenStack platform hosted on a bare metal or virtual machine [20].   

• Diskimage-builder project is a tool for automatically building customized operating-system images to 

be used in clouds and other environments, producing cloud-images in all common formats (qcow2, vhd, 

raw, etc), bare metal file-system images and ram-disk images [21]. 

• Kolla project is a provider of production-ready containers and deployment tools for operating 

OpenStack clouds that are scalable, fast, reliable, and upgradable using community best practices [22]. 

• Magnum project makes container orchestration engines such as Docker Swarm, Kubernetes, and 

Apache Mesos available as first class resources in OpenStack. Magnum uses Heat OpenStack project to 

orchestrate an operating system image which contains Docker and Kubernetes and runs that image in 

either virtual or bare metal machines in a cluster configuration [23]. 

• Kuryr-kubernetes and Kuryr are OpenStack containers networking projects that enables native Neutron-

based networking in Kubernetes. With Kuryr-kubernetes it is now possible to choose to run both 

OpenStack VMs and Kubernetes Pods on the same Neutron network [24].  

• Kata containers project aims to “deliver standard implementation of lightweight virtual machines that 

feel and perform like containers but provide the workload isolation and security advantages of virtual 

machines” [25]. 

The architectures of the last two additional projects of the list above, are described in more detail by the figures 

below: 

 

Figure 6: Kuryr architecture 

Resourced from [26] 

Kuryr uses the libnetwork API to map and create Neutron objects. By doing this, the solutions that Neutron 

provides (security groups, NAT services and floating IP´s) for networking can be used by containers networking. 
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Figure 7: Kata containers architecture 

Resourced from [27] 

Kata containers elements include an Hypervisor to create virtual machines where containers will run, an Agent 

(kata-agent) for managing containers and processes in the guest machine, an open container initiative (OCI) 

compatible container runtime (kata-runtime) that handles all commands and launches instances, a Proxy entity 

that offers access to the virtual machine agent to multiple instances and runtime clients associated with the 

virtual machine, and a container process (kata-shim) that the container process reaper can monitor. 

2.3.2. Kubernetes 

Kubernetes is an open source solution for managing and orchestrating containers. The architecture type is client-

server, where it has one or more master servers that controls and defines how the worker nodes should act and 

react to the master node. Kubernetes infrastructure is based in five different principles such as pods, services, 

volume, namespaces and deployment. Pods and Volume are the storage units of Kubernetes, where it stores all 

information related to the containers and the data of each Pod respectively, Services are a logical set of pods and 

acts as a gateway to the exterior, allowing (client) pods to send requests to the service without needing to keep 

track of which physical pods make up the service, Namespaces are based in the Linux namespaces, where here it 

is a virtual cluster (a single physical cluster can run multiple virtual ones) intended for environments with many 

users, and finally the Deployment is normally done via a deployment file in the YAML language which describes 

the configuration and state of pods.  

The next figure presents the Kubernetes architecture: 
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Figure 8: Kubernetes architecture 

Resourced from [28] 

 

 

An example of the workflow (with a single master server and two worker servers) of Kubernetes is depicted in 

the following figure: 

 



32 

 

 

Figure 9: Kubernetes cluster example architecture with 1 master and 2 worker nodes 

Resourced from [29] 

The master node provides Kubernetes with cluster control, making global choices for the cluster and deciding 

what to do when a cluster event is detected, it has a central management entity (kube-apiserver), a distributed 

key value storage (etcd), a scheduler that helps optimizing resource utilization (kube-scheduler) and a controller  

that regulates the state of the Kubernetes or manages the cloud provider (kube-controller-manager or cloud-

controller-manager).  

The worker node has a service daemon (kubelet) responsible for taking pod specifications and health checks, a 

proxy service daemon (kube-proxy) responsible for the networking in the worker node and a container runtime 

(Docker) that is the software that will run the containers on the Pod. Kubernetes has also some useful features 

(addons) like a DNS Server, a Web UI, a Container Resource Monitoring and a Cluster-level Logging that can 

make the life easier on the administrator of the Kubernetes platform.  

Kubernetes has become in the last few years the standard container orchestration platform, mainly because of the 

performance gain by using containers over virtual machines and the high availability of the applications running 

on the containers is provided by the use of container replicas quotas and the health container checks.  

 

2.3.3. Docker 

Docker is a client-server application (like Kubernetes), that leverages the technologies of namespaces, control 

groups, union file formats and container formats. The Docker engine is defined as follows: 
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Figure 10: Docker architecture 

Resourced from [30] 

Docker is composed by a docker daemon (dockerd) that manages the Docker objects (images, containers, 

networks and volumes) and the communication with other Docker daemons to manage Docker images, a Docker 

Client that consists of a REST API and CLI (Docker command or a Docker client) being used to interact with the 

Docker daemon, a Docker registry for the storage of Docker images (default one being Docker Hub) and a 

Docker object or objects that can be images, containers or services.  

Docker is a fast and consistent delivery system of applications because of the use of containers and being a light 

program to run offers great scaling, a fast deployment system and the amount of work uses less resources in 

opposition of using virtual machines. 

 

2.4. NFVOs and VNFMs blocks 

The network functions virtualization orchestrator and the virtualized network functions manager blocks are 

normally bundled together in a software suite but have different responsibilities that need to be attended to. The 

NFVO is responsible for overlooking the instantiation, scaling, updating and terminating network services. The 

VNFM is responsible for overlooking the instantiation, scaling, updating and terminating of virtual network 

functions.  

The next subsections describe the most developed and documented software solutions for the implementation 

and configuration of NFVOs and VNFMs. 

2.4.1.  OSM 

Open source MANO is a project that is run by the ETSI foundation, adhering to the ETSI MANO architecture 

framework on their management and orchestration proposal. The OSM architecture is depicted below: 
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Figure 11: OSM architecture 

Resourced from [31]  

As seen in figure ten OSM has three major components: 

• SO that is responsible for the service orchestration, provisioning, deploying, querying and the storage 

of the virtual network definitions and network services catalogues. 

•  RO that is responsible for the resources provision of networking services over a virtualized network 

infrastructure. 

•  VCA that is responsible for the configuration of the virtual network functions using Juju charms.  

The configuration files of NSDs and VNFDs are written using the TOSCA language. OSM uses these templates 

to instantiate network function or services and the necessary resources associated with them. OSM also supports 

a good variety of virtualized infrastructure managers such as OpenStack or OpenVIM [32] and the deployment 

of network functions virtualization services in multiple virtualized infrastructure managers. 

2.4.2. CORD 

In its beginning, central office re-architected as a datacentre was a simple project used by the open network 

operating system project which is an open source SDN controller for building next-generation SDN/NFV 

solutions controller. But CORD became a greater project and was separated and run by the Open Networking 

Foundation. The main objective of CORD is to “combine the technologies of NFV, SDN and the “elasticity of 

commodity clouds to bring datacentre economics and cloud agility to the Telco Central Office”[33]. CORD 

components are shown in the following figure: 
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Figure 12: ONOS architecture 

Resourced from [34] 

CORD is composed by five important components: 

• Kubernetes platform where CORD run all control panel elements. 

•  Platform that is a Kubernetes environment with an ONOS, XOS [35], Kafka [36] and a collection of 

logging and monitoring micro-services. 

• Profile is a combination of services such as VNFs, access services or cloud services. 

•  Workflow being a component of a Profile where describes the business logic and state machine for one 

of the access technologies contained in the Profile.  

• BoM that is the hardware bill of materials defined for each Kubernetes pod.  

CORD is installed as a collection of Docker containers in a Kubernetes cluster where Helm[37] is used, which is 

a packaged manager for Kubernetes. TOSCA templates are used for the configuration and provisioning of a 

running system of ONOS where XOS (a model-based platform for assembling, controlling, and composing 

services) is used for developers to run their applications on CORD. 
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2.4.3.  Cloudify 

Cloudify is a cloud orchestration and management framework, adhering to the ETSI MANO architecture 

framework that facilitates how applications and services are modelled and automated in their life cycle. That 

includes the deployment, monitoring of applications, detecting and resolving issues that may occur while 

running such applications. The cloudify architecture is depicted below: 

 

Figure 13: Cloudify Manager architecture 

Resourced from [38] 

The three major components of Cloudify are: 

• Cloudify Manager being the brain of the cloudify environment to manage and deploy applications 

where the deployment is done using the “blueprints” that are TOSCA based templates files that can 

instantiate a service or application in the system. 

• Cloudify Agents used to manage the running applications by using plugins. 

• Cloudify Console being the command line tool that Cloudify uses to communicate with the Cloudify 

Manager.  

The Cloudify Manager can use a CLI or GUI for communication and is composed by a Nginx web server that 

has the function of a proxy server and file server, the Gunicorn and Flask elements where Gunicorn and Flask 

provide the Cloudify REST service, a PostgreSQL database that provides the main database where it stores the 

application’s model and the indexing logs’ and events’ storage, a Logstash element that is used by Cloudify to 

pull log and event messages from RabbitMQ and index them in a  PostgresSQL database, a RabbitMQ element 

that is used to queue deployment tasks, logs, events and metrics, a Riemann element that is an event stream 

processor used primarily for monitoring, a Pika element that is the communication agent programmed in Python 
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of the AMQP protocol and the InfluxDB that is a database used to pull metrics from RabbitMQ and to store 

them. 

2.4.4.  Open Baton 

Open Baton is an extensible and customizable framework that adhered to the ETSI MANO architecture 

framework. It uses TOSCA templates to deploy and configure services and applications. The main components 

of Open Baton are depicted in the figure below: 

 

Figure 14: Open Baton architecture 

Resourced from [39] 

Open Baton elements are, a NFVO that is ETSI MANO compliant, a VNFM and a Generic Element 

Management System to manage VNFs and VNFDs, a Juju VNFM Adapter in order to deploy Juju Charms, a 

driver mechanism supporting different type of VIMs, a Docker VNFM and VIM driver for instantiating 

containers on top of Docker Engine, a powerful event engine based on a pub/sub mechanism for the dispatching 

of the lifecycle events execution, an autoscaling engine which can be used for automatic runtime management of 

the scaling operations of your VNFs, a fault management system which can be used for automatic runtime 

management of faults which may occur at any level, a network slicing engine which can be used to ensure a 

specific QoS for your NSs, a monitoring plugin integrating Zabbix as monitoring system, a marketplace useful 

for downloading VNFs compatible with the Open Baton NFVO and VNFMs and a set of libraries (in Java, Go 

and Python) which could be used for building your own VNFM. 

2.4.5.  Tacker 

Tacker is an OpenStack additional project for NSs an VNFs orchestration and management adhering to the ETSI 

MANO architectural framework. It has a generic NFVO and VNFM to deploy network services and virtual 

network functions providing E2E solutions.  

The next figure shows how Tacker workflow and architecture are: 
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Figure 15: Tacker architecture and Workflow 

Resourced from [40] 

Tacker has three fundamental components: 

• Network Functions Virtualization Catalog that contains the VNF, NS and VNF Forwarding Graph 

descriptors. 

•  Virtualized Network Functions Manager (VNFM) that creates, updates, deletes and monitors VNFs. 

•  Network Functions Virtualization Orchestrator (NFVO) that optimizes resource checks and allocation 

of VNFs. The NFVO can orchestrate VNFs, throughout multiple VIMs or Sites and can create a service 

function chain between VNFs by using a VNF Forwarding Graph Descriptor. 

Tacker can be deployed and configured manually or using the additional OpenStack projects DevStack or Kolla.  

Tacker only supports currently as VIMs the OpenStack and Kubernetes platforms. 
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3.  Architecture 

The architecture is to deploy and test a system that encompasses one of each of the three main blocks of the 

ETSI MANO architectural framework presented on chapter two of this dissertation report. The proposed 

architecture solution will have the following entities: 

• A frontend network with one VNF acting as a Load Balancer. 

• A backend network with two web servers. 

• The backend network will have replicated sites (one and two). 

• Two virtualized infrastructure managers installed on the different sites. 

• A client to connect and test the system functionalities.  

The architecture is depicted below: 

 

Figure 16: Project architecture 

The system workflow starts by the users connecting to the system via a VNF acting as a load balancer that will 

redirect traffic depending on the load balancing algorithm that was selected, connecting the users to the sites on 

the backend network. Each site will have two web servers that will be used for testing the load balancer and the 

sites functionalities, e.g. handling HTTP requests.  

The orchestration and management of the global system will be done via a management server. The management 

server is configured using the necessary software researched in chapter two of this dissertation report and some 

extra tools that will be described in the next subsection.  

The ideal scenario will be that, the servers on site one and the VNF acting as load balancer will be hosted on 

virtual machines, as for the servers on site two will be hosted on containers. The process of being hosted by 
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virtual machines and containers is also important to test, analyse and compare how different these host 

virtualization techniques are in terms e.g. resource utilization. 

The proposed architecture is a heavy system to deploy and the available hardware is limited, so the 

implementation takes all that in consideration by building the system with the minimal resources necessary not 

compromising the proposed architecture. 

3.1. Implementation 

The implementation of the architecture is defined in three different phases that are depicted below: 

 

Figure 17: Implementation phases 

The implementation starts with phase number one where a management server is deployed and configured to 

host the DevStack and Tacker projects used on phase number two. Phase number two main objective is to deploy 

and configure the DevStack and Tacker projects. Phase number three deploys and configures the backend and 

frontend VNFs hosted on virtual instances (containers or virtual machines). The next subsections describe in 

more detail how all the phases were processed. 

3.1.1. Management server deployment and configuration 

The main goal is to deploy a bare metal or virtual solution of a management server that consists on installing and 

configuring the software of the virtual network infrastructure that is going to be used to deploy the architecture 

solution described before. The first step is the most important one as encompasses the research of the software 

and hardware requirements for the system architecture and choosing the right tools to deploy the management 

server. The tools chosen were for a virtual solution of the management server, just because it is easier to test the 

hardware requirements for the architecture solution as is a better modular solution than the bare metal solution, 

e.g. if a virtual machine does not meet the right requirements it is faster to install and configure the hardware and 

operating system on the virtual machine. The tools chosen to deploy the virtual solution to the management 

server where, Packer [41] and Vagrant [42] that are tools respectively, to manage updated virtual images to be 

used on virtual machines and to deploy those virtual images onto virtualization platforms such as VirtualBox or 

QEMU. The problems that were encountered here were the time necessary to choose the right operating system 

and the minimal hardware and software requirements to deploy the management server as it depends on phase 

two of the implementation of the architecture solution. The operating system chosen was Ubuntu Server 16.04 

with Ansible [43] and openstack-sdk packages installed with sixteen GB of RAM, five CPU cores and sixty GB 

of disk. Annex B depicts the contents of a Vagrantfile, used by Vagrant and written in the Ruby language where 

it defines the virtual machine configuration to be used for the management server.  
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3.1.2. DevStack and Tacker projects deployment and configuration  

After the management server is up and running, it is time to the next phase where the DevStack and Tacker 

OpenStack additional projects are deployed and configured. These projects were chosen based on the hardware 

requirements of all the software researched for the ETSI MANO architectural framework blocks. For the VIM 

block the project used for this was DevStack where it deploys a virtualized network infrastructure platform and 

installs the OpenStack and Kubernetes VIMs. For the NFVO and VNFM blocks, the project used was Tacker.  

The first step of using the DevStack project is meeting the following requirements: 

• DevStack should be run as a non-root user with root enabled privileges.  

• Having GitHub [44] and PIP [45] (package installer for Python) programs installed on the management 

server used to deploy DevStack.  

The next step involves using the GitHub program called git to download the repository of DevStack to a folder 

and access the folder. When in the DevStack folder, the most important files to look for are the stack.sh, openrc 

and local.conf files. The stack.sh is a bash script file that uses the information of the configuration local.conf file 

to install and configure the OpenStack and Kubernetes VIMs. The openrc is also a bash script file used to load 

the OpenStack environment variables to the management server so that OpenStack can be accessed and 

managed. The configuration local.conf (Annex C) file that needs to be created by the user of the management 

server is based from the local.conf.kubernetes [46] file, that can be accessed on the DevsStack GitHub site with 

slight modifications. The relevant configurations options for the local.conf file are: 

• The IPs and passwords for the services that will utilize that information such as, the OpenStack 

database and network services.  

• The IP range and network interface that is going to be used to give Internet connectivity to virtual 

instances, e.g. virtual machines or containers.  

• Enabling a log file, it is very important because if anything goes wrong, it is possible to search for 

errors during installation.  

• Enabling the use of the Kubernetes VIM and selecting the hyperkube [47] version to be installed. The 

hyperkube version can be selected from google public hyperkube image repository[48]. 

• Enabling the necessary OpenStack services by using the enable_plugin command tag. The OpenStack 

services are then downloaded from a GitHub repository and automatically configured with the default 

options. The customization of the services is done via proper tags and the tag availability depends if the 

service has DevStack installation support.  

After all the configuration is done, the file must be saved under the DevStack folder and then run the stack.sh 

script. One problem that originated running the script, was when the management server has one network 

interface and the login method to the management server is via SSH, it is necessary to run the script on a 

separate virtual terminal by using the command screen.  

The script is going to run a series of installations and configurations on the system, so it is not recommended to 

run this script on a daily use operating system installation. This is one of the reasons why the management server 

is a virtual machine described in the phase before. The script run time depends in the amount of services it must 
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install and configure, but the script at a fresh install of the operating system on the management server takes 

about forty five minutes and the time decreases after the first run, to thirty minutes. At the end of the script the 

output gives useful information such as: 

• The time it took to install and configure the script. 

• The default IP address used by the user of the management server to access, e.g. via browser the 

OpenStack UI. 

• The users (admin and demo) that have relevant privileges to access the OpenStack platform. 

• The version of OpenStack that was installed. 

In this phase the most relevant problems that were faced were, the script stops working as of a bug on the 

DevStack project as the association of the bridge br-ex (responsible for the routing of the external network to the 

internal networks of the OpenStack platform) to the network interface of the management server removes the 

DNS name resolution of the management server and when using a hyperkube version above version 15.0 the 

installation of Kubernetes fails. These problems were solved by, using a GitHub repository commit version of 

the DevStack project older than the one that was being used and using an older version of hyperkube.  

This phase was the most time consuming because of all the configuration options that need to be learned and 

tweaked to fulfil the needs of the architecture solution and the limitations of hardware resources that where 

presented at the time of this phase implementation, e.g. the IST resources were so limited and overbooked, that 

the private hardware resources must be upgraded so the architecture solution implementation could continue.        

After this, it is necessary to configure the management server to create and have access to the virtual instances 

that needed for the architecture solution implementation by loading the environment variables of the OpenStack 

platform onto the management server and creating a SSH key to be able to access to the virtual instances. A 

series of configurations need to be done the OpenStack platform each time the it is deployed:  

• Changing the DNS nameserver IPs on all default OpenStack networks.  

• Creating a router to access the virtual machines. 

• Creating ports in the router to all default OpenStack networks.  

• Adding SSH keys to the OpenStack platform to be able to access the virtual instances.  

• Adding or changing the rules on the default OpenStack security groups.  

• Adding new operating system images to the OpenStack platform.   

A problem of time consumption happens when these configurations of the OpenStack platform occur and the 

solution was using an automation tool such as Ansible [43], which is a Red Hat project that focuses on IT 

automation, using YAML has a standard to create template files, that can deploy and modify virtualized network 

infrastructures and their elements. The template file (also called ansible playbook) was created for configuration 

steps described above and is depicted on Annex D. 

Now that the system is fully configured, it is time to use the Tacker project. The first thing that needs to be done 

is to register the OpenStack and Kubernetes VIMs onto tacker and for that it is necessary to create two YAML 

files that have the information needed to register both VIMS. The information is slightly different in both files as 

we can see in Annex E and Annex F. After the formulation and creation of the files it’s time to register the 
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VIMs onto Tacker via the OpenStack CLI or GUI, and depending on the commit version of Tacker, the 

registration of the Kubernetes VIMs cannot work due to a bug on the code, so the GitHub branch used in Tacker 

must be the master branch to fully pass these kind of problems, just because the branch is more often updated 

than the other ones. 

3.1.3. Backend and frontend VNFs deployment and configuration 

With the VIMs registered, it is necessary to register the backend and frontend VNFs by making one or two 

descriptor template files for each VIM. There are two ways to approach the configuration and deployment of the 

frontend VNF, one can be done manually where it is used a descriptor template file and all the configuration for 

the load balancer is done manually in terms of networking, failsafe protection and the software used for the load 

balancer or two where it is used a OpenStack additional project described on chapter two called Octavia. The 

Octavia project is a LBaaS where it shares the concept of XaaS[49], where anything can be called a service in a 

virtualization system. The configuration selected was the second one because the way that Kubernetes works 

with the OpenStack platform is by using the OpenStack networks via the kuryr-kubernetes project while the 

access to the Kubernetes Pods is done via an ingress Octavia LBaaS project controller. 

The backend template files for each VIM are different. Each template file has its own configuration options as 

seen on Annex G and Annex H just because they use a different type of hardware and software virtualization 

(containers or virtual machines) that have different options for configurations, e.g. on a Kubernetes template file 

it is necessary to define a service type tag that can grant access from the external network to the application 

running on the containers.  

The configuration of the VNFs can be done by: 

• A bash script, where for that is necessary to use a specific image built with the OpenStack additional 

project diskimage-builder. 

• Using a user_data tag on the template descriptor file, where configuration and installation commands 

can simulate like it was a bash script file.  

• Using the management server by running directly the bash script file with the SSH command. 

These configuration options are well documented but the safer to use would be the third option, just because the 

other two have problems with them. The first configuration option the diskimage-builder project has software 

bugs where it only builds successfully images of the latest versions of the operating systems and when using 

these images with Tacker the bash script does not run properly making the VNF unconfigurable. The second 

configuration option is a good option, but the template file organization and length can become quite 

unorganized and big due to inserting the bash script data onto the template descriptor file. In the third option the 

template descriptor file and bash script file are separated, and the script file is loaded via SSH using the 

management server for that matter.  

The software tools used for the backend and frontend VNFs are: 

• HAProxy software is used on the frontend VNFs, being the most documented, tested and versatile 

load balancing software.  
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• NGINX and PHP software are used on the backend VNFs.  

The configuration script bash files for the backend VNFs can be viewed on Annex I of this dissertation report. 

The HAProxy software used on the frontend VNF is preinstalled with the Octavia OpenStack additional project 

and it is configured as a HTTP load balancer with a load balancing round-robin algorithm. The load balancer is 

also configured with a “health monitor” that checks the state of the backend servers. Layer seven policies that do 

redirection based on the path that is entered on the browser can be configured also, giving extra security to the 

backend servers. The backend VNFs will act as web servers that verify if the configurations on the load balancer 

are working as intended. 

After loading the configuration files onto the VNFs, it is time to test the architecture solution implementation. In 

this phase the installation, deployment, connectivity and functionality are tested of the architecture solution. This 

phase will be described in more detail on the next section of the report. 

A problem occurred in this phase were that if a test fails and it is necessary to reboot the management server the 

virtual network interfaces created by the DevStack OpenStack project does not persist over a system shutdown 

or reboot, so the solution is to remove the configurations and installations done on the management server. 

Gladly the DevStack developers thought of that and created two scripts called unstack.sh e clean.sh. The 

unstack.sh script stops all services associated with OpenStack and the clean.sh script cleans all configurations 

and installations done by DevStack on the management server. After that it is necessary to run the stack.sh file 

and to do all VNFs configuration and deployment.  
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4. Evaluation 

The evaluation phase is the most important phase of all systems implementation, just because it validates all the 

work that was done. It also detects if something is not running how it should be, by testing all the elements in the 

system and giving out precious information to the administrator. With that information the administrator can 

monitor and fix all the elements that are not corresponding to the normal behaviour. The next subsections 

describe the tests performed on the architecture solution implementation.   

4.1. Tests 

The tests are divided on functional and performance tests. The tests validate if the functionality, failover and 

scalability of the implemented solution are working as intended. The table below describes in a short manner 

what tests were done on the implemented solution: 

Test number Test short description 

1 – functional test Verify VIMs and VNFs deployment 

and configuration 

2 – functional test Verify frontend and backend VNFs 

connectivity 

3 – functional test Verify frontend and backend VNFs 

functionality 

4 – functional test Verify frontend and backend VNFs 

failover 

5 – performance test Verify VNFs scalability 

Table 1: Summary table of the evaluation tests 

4.1.1. Tests 1 to 3  

The tests one to three are done via a Python script that is depicted on Annex J, where issues one hundred GET 

requests to the VNF acting as load balancer and outputs the graph below: 

 

Figure 18: Distribution of GET requests with four web servers 
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The algorithm chosen for these tests is the round robin algorithm and as it is seen on the graph above, all the one 

hundred requests are evenly distributed proving the web servers and load balancer functionality. The success of 

the web servers and load balancer functionality also validates the frontend and backend VNFs connectivity (test 

two) and the VIMs and VNFs deployment and configuration (test one).  

4.1.2. Test 4 

Test four is where the frontend failover testing is done via a terminal command (openstack loadbalancer 

failover name_of_lb) where it simulates with an interval of time a failover scenario that is performed on the 

load balancer. The command initiates the failover by destroying the virtual machine that hosts the load balancer, 

verifies that the load balancer no longer is available and performs the recoverability process of creating a new 

virtual machine using the load balancer configuration metadata. The backend failover is tested by creating a 

health monitor checker and shutting down a backend VNF virtual machine or container via the OpenStack CLI 

or GUI and verifying that the load balancer becomes aware and do not forward HTTP traffic to that specific 

virtual machine or container.  

4.1.3. Test 5 

Test 5 uses a scalability property on the VNFDs, where it defines how many replicas of a VM or container a 

system can make. To test this the script on Annex J was slightly modified where it calculates the GET response 

average time plus the computational time for each web server. The number of replicas was increased to three on 

site 2 and the script outputs the following graph and times: 

 

Figure 19: Distribution of GET requests with five web servers 

site1-web1 site1-web2 site2-web1 site2-web2 

885ms 886ms 887ms 884ms 

Table 2: Requests time with four web servers 

site1-web1 site1-web2 site2-web1 site2-web2 site2-web3 

847ms 847ms 847ms 846ms 846ms 

Table 3: Requests time with five web servers 



47 

 

As it is seen on the graph above and tables, the time is reduced by forty milliseconds proving that the scalability performance 

is relevant and is working as intended.  
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5. Conclusion 

All the technologies described on chapter two are still being heavily developed and complementing their core 

environment to using containers. Containers in comparison with virtual machines use less resources, meaning 

better overall performance for the workflow of a VNF solution. Nevertheless, the use of virtual machines means 

a better isolation for the adopted VNF solution that containers cannot deliver yet. That is why kata containers 

enables the merge of virtual machines and containers by adding the good features described from both virtual 

machines and containers. 

The problems encountered while doing this dissertation were mainly, the documentation of the researched 

technologies that needs improvement on explaining how some of the projects work and what certain aspects of 

the projects do, e.g. to lost a lot of time searching for a solution when the installation script used by the DevStack 

project stops working. Unfortunately, due to limitations on the hardware resources it was not possible to test all 

the technologies described on chapter two and to scale the proposed architecture solution as it was intended. The 

projects used on the implementation of the proposed architecture are still being heavily developed, and still need 

optimization regarding merging the features of containers and virtual machines. Nevertheless, the 

implementation of the architecture was successful and describes well what is the expectation for the future of 

virtualized network functions and services.       

5.1.  Future work 

For future work, if the resources permit, it is very important to implement and research other possible 

architecture scenarios. For example, creating a multi VNF network service where it deploys different VNFs with 

different networks graphs. With these virtual network graphs, it is possible to create virtual network paths and 

selecting witch VNFs are associated with each virtual network path.    
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Annex A – VNFD example file 
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Annex B – Vagrant virtual machine configuration 

file 
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Annex C – DevStack project configuration file 

 

 



56 

 

Annex D – OpenStack platform configuration file  
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Annex E – OpenStack VIM descriptor file 

 

 

Annex F – Kubernetes VIM descriptor file 
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Annex G – OpenStack backend descriptor file 
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Annex H – Kubernetes web server descriptor file 
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Annex I – Configuration script files for the load 

balancer and web servers 
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Annex J – Python script used for tests 1 to 3 

 


