
i

Symmetric redundancy of network functions and services on

virtualized network infrastructures

Frederico André Dias Januário Santana

Thesis to obtain the Master of Science Degree in

Telecommunications and Informatics Engineering

Supervisor: Prof. Fernando Henrique Côrte-Real Mira da Silva

Examination Committee

Chairperson: Prof. Ricardo Jorge Fernandes Chaves

Supervisor: Prof. Fernando Henrique Côrte-Real Mira da Silva

Member of the Committee: Prof. Rui Jorge Morais Tomaz Valadas

October 2019

ii

iii

iv

Abstract

The traditional way of implementing network functions and network services does not make use of the

flexibility, adaptability and interoperability offered by virtualized network infrastructures. Using these

infrastructures, it is possible to scale network solutions better, because the resources are being used in the most

efficient way possible by virtualizing the required resources. The technologies, tools and products associated

with it can now, be a type of service and therefore automated using e.g. a data serialization language like YAML.

Considering these developments, the ETSI elaborated an architectural framework, called ETSI MANO, which is

used as a reference model for the creation of software that does the orchestration and management of virtualized

network functions and network services. This architectural framework has three major components, the NFVO,

the VNFM and the VIM that are essential for the management and operation of virtualized network functions

and services systems. In this dissertation, an analysis and study of the technologies associated with the three

major components of the ETSI MANO architectural framework are performed. Based on the study and analysis

done, a symmetric redundant network functions and services system is built on a virtualized network

infrastructure. For testing the system, it is deployed a VNF load balancer and two sites, where each site has two

web servers.

Keywords

VNFs, NSs, orchestration, management. ETSI NFV framework

v

vi

Resumo

O modo tradicional de implementação de funções e serviços de rede, não faz o uso devido da flexibilidade,

adaptabilidade e interoperabilidade das infraestruturas em rede virtualizadas. Ao usar estas infraestruturas é

possível melhorar a eficiência dos recursos usados nas soluções de rede, visto que os recursos usados são

virtualizados. Os produtos, ferramentas e tecnologias associadas às funções e serviços de rede passam agora a

serem tratados como serviços, podendo depois ser automatizados usando e.g. uma linguagem de serialização de

dados como é a linguagem YAML. Considerando estes desenvolvimentos, o ETSI elaborou uma architectural

framework denominada de ETSI MANO que é usada como modelo de referência para o desenvolvimento de

software para a realização da orquestração e gestão de funções e serviços de rede virtualizados. Esta architectural

framework é constituída por três blocos principais, o NFVO, o VNF e o VIM, essenciais para a gestão e

operação dos sistemas de serviços e funções de rede. Nesta dissertação, é feita uma análise e estudo das

tecnologias associadas com os três principais componentes da ETSI MANO architectural framework. Baseado

no estudo e analise feitos, um sistema redundante de funções e serviços de rede é construído dentro duma

infraestrutura de rede virtualizada. Para o teste deste sistema, é implementada uma função de rede de

balanceador de carga e dois sítios, em que cada sítio é composto por dois servidores web.

Palavras-Chave

VNFs, NSs, orquestração, gestão, ETSI NFV framework

vii

viii

Acknowledgments

I would like to thank Professor Fernando Mira da Silva for his help, patience, encouragement and persistence to

make this dissertation project possible.

I am so grateful to my mom for the support and encouragement throughout these years to keep helping me fulfil

my dreams as an engineer.

To my closest friends, i would like to thank you for being what you are, a friend for the good and bad times in

life.

ix

x

Table of Contents

Abstract ... iv

Resumo.. vi

Acknowledgments .. viii

Table of Contents .. x

List of figures ... xii

List of Tables ... xiii

List of Acronyms ... xv

1. Introduction .. 18

1.1. Motivation and Goals ... 18

1.2. Document structure ... 19

2. State of the art .. 20

2.1. ETSI NFV architectural framework .. 20

2.2. ETSI MANO block ... 23

2.2.1. TOSCA and YAML .. 24

2.3. VIMs block ... 27

2.3.1. The OpenStack platform ... 27

2.3.2. Kubernetes ... 30

2.3.3. Docker... 32

2.4. NFVOs and VNFMs blocks.. 33

2.4.1. OSM .. 33

2.4.2. CORD ... 34

2.4.3. Cloudify ... 36

2.4.4. Open Baton ... 37

2.4.5. Tacker ... 37

3. Architecture .. 39

3.1. Implementation .. 40

3.1.1. Management server deployment and configuration ... 40

3.1.2. DevStack and Tacker projects deployment and configuration 41

3.1.3. sBackend and frontend VNFs deployment and configuration 43

4. Evaluation ... 45

xi

4.1. Tests .. 45

4.1.1. Tests 1 to 3 ... 45

4.1.2. Test 4 .. 46

4.1.3. Test 5 .. 46

5. Conclusion ... 48

5.1. Future work .. 48

References ... 50

Annex A – VNFD example file ... 53

Annex B – Vagrant virtual machine configuration file ... 54

Annex C – DevStack project configuration file .. 55

Annex D – OpenStack platform configuration file ... 56

Annex E – OpenStack VIM descriptor file ... 58

Annex F – Kubernetes VIM descriptor file .. 58

Annex G – OpenStack backend descriptor file .. 59

Annex H – Kubernetes web server descriptor file ... 60

Annex I – Configuration script files for the load balancer and web servers 61

Annex J – Python script used for tests 1 to 3 .. 63

xii

List of figures

Figure 1: ETSI NFV architectural framework ... 20

Figure 2: ETSI MANO framework .. 23

Figure 3: NSs elements and ETSI MANO records and descriptors .. 24

Figure 4: Conceptual architecture of the OpenStack elements .. 27

Figure 5: High-level overview of the OpenStack essential projects ... 28

Figure 6: Kuryr architecture .. 29

Figure 7: Kata containers architecture .. 30

Figure 8: Kubernetes architecture .. 31

Figure 9: Kubernetes cluster example architecture with 1 master and 2 worker nodes 32

Figure 10: Docker architecture .. 33

Figure 11: OSM architecture ... 34

Figure 12: ONOS architecture ... 35

Figure 13: Cloudify Manager architecture .. 36

Figure 14: Open Baton architecture ... 37

Figure 15: Tacker architecture and Workflow .. 38

Figure 16: Project architecture ... 39

Figure 17: Implementation phases ... 40

Figure 18: Distribution of GET requests with four web servers .. 45

Figure 19: Distribution of GET requests with five web servers ... 46

xiii

List of Tables

Table 1: Summary table of the evaluation tests .. 45

Table 2: Requests time with four web servers ... 46

Table 3: Requests time with five web servers .. 46

xiv

xv

List of Acronyms

ETSI MANO European Telecommunications Standards Institute Management and Orchestration

ETSI European Telecommunications Standards Institute

YAML

NFVO

VNFM

VIM

Ain't Markup Language

Network Functions Virtualization Orchestrator

Virtual Network Functions Manager

Virtual Infrastructure Manager

VNFs

NFVI

Virtual Network Functions

Network Functions Virtualization Infrastructure

NFV MANO Network Functions Virtualization Management and Orchestration

OBSS Operational and Billing Support System

ETSI NFV European Telecommunications Standards Institute Network Functions virtualization

NFV Network Functions Virtualization

E2E End-to-End

VNFFGs Virtualized Network Functions Forwarding Graphs

NFs

PNFs

NSs

VLs

TOSCA

CPU

VNFD

NSD

VNFFGD

VLD

PNFD

Network Functions

Physical Network Functions

Network Services

Virtual Links

Topology and Orchestration Specification for Cloud Applications

Central Processor Unit

Virtual Network Functions Descriptor

Network Service Descriptor

Virtual Network Functions Forward Graph Descriptor

Virtual Link Descriptor

Physical Network Functions Descriptor

xvi

NSR

VNFFGR

VLR

VNFR

PNFR

VDU

CP

VL

AMQP

APIs

VMs

OSM

SO

RO

VCA

CORD

ONOS

SDN

RAM

GB

LBaaS

XaaS

UI

CLI

GUI

Network Services Record

Virtual Network Functions Forward Graph Descriptor

Virtual Link Record

Virtual Network Functions Record

Physical Network Functions Record

Virtual Data Unit

Connection Point

Virtual Link

Advanced Message Queuing Protocol

Application Programming Interfaces

Virtual Machines

Open Source MANO

Service Orchestrator

Resource Orchestrator

VNF Configuration and Abstraction

Central Office Re-architected as a Datacenter

Open Network Operating System

Software Defined Networking

Random Access Memory

Giga Bytes

Load Balancer as a Service

Everything as a Service

User Interface

Command Line Interface

Graphical User Interface

xvii

18

1. Introduction

The network infrastructures were only present in a “bare metal” from not long ago, while nowadays it is shifting

to virtualized network infrastructures. The growing of these infrastructures is mainly due to their flexibility,

adaptability and interoperability properties. The widespread age of “Cloud” models and virtualization contributes

to be a standard when using the Internet. This project aims to study and test the technologies that exist for the

orchestration and management of virtual network functions and services in a virtual network infrastructure

environment using the solutions that are based on the ETSI MANO architectural framework [1]. This

dissertation aims to analyse these solutions, and research simple scenarios where they will be tested in a simple

network architecture solution.

1.1. Motivation and Goals

The design of traditional network infrastructures in the past was benchmarked for the minimal loss of latency,

availability, throughput and the capacity to carry data, resulting in hardware and software that were developed

and optimized using the criteria’s described before. With the increase of complexity and bandwidth usage on

technologies such as streaming platforms, Internet of Things or by smartphones, there was a need to scale and

expand the existing network infrastructure without increasing the costs too much. Unfortunately, the traditional

infrastructure solution posed various bottlenecks in terms of hardware and software bringing companies and

developers to find ways of removing those bottlenecks. This led to the concepts of virtualized network

infrastructures and virtualized network functions. Having a VNF system fully customizable and define how the

VNF system behaves, can be achieved using the ETSI MANO architectural framework. The ETSI MANO

architectural framework is the reference framework that companies, developers and users adopted to develop

solutions for their needs in this constant changeable world of virtualized network infrastructures. This

dissertation describes and analyses the desired skills that are needed to learn more about the optimization of VNF

deployment, orchestration and management on virtualized network infrastructures environments.

The main goals of this dissertation are to research the technologies, products and tools used on virtualized

network infrastructures, and how the VNFs instantiation is done in the present and what is the near future for

VNF management and orchestration on virtualized network infrastructures. For this, a virtualized network

infrastructure is deployed to test the most documented and developed VNF placement technology that is low on

resource utilization, reliable, secure and is part or fully automatable considering the available hardware at the

time of implementation of the system solution. Several virtualization and high virtualization models (containers

and virtual machine) are analysed, tested and compared.

19

1.2. Document structure

The document structure is as follows. This chapter introduces the theme of the project as well the motivation,

goals and the structure of the report. Chapter two reviews the existing concepts and technologies for the

virtualized network infrastructures and for the VNF instantiation, orchestration and management solutions that

exist nowadays. Chapter three describes the architecture and the developed prototype for testing and validation

of the architecture. Chapter four describes the tests that were performed. Chapter five provides some conclusion

thoughts for the future work and the work done in the research and writing of this report. The additional sections

are used for the references used in the elaboration of this dissertation report and project and to show the

configuration files that were used for the implementation and evaluation of this dissertation.

20

2. State of the art

The limitations of network infrastructures such as flexibility, scalability, manageability and interoperability

limitations makes companies and developers design new software and hardware that defines how the virtualized

network infrastructures are deployed and configured to support the use of virtual network functions and

services. This brings new challenges such as multivendor implementations of VNFs, managing, monitoring and

configuring the life cycles and interactions of VNFs, as well the hardware resource allocations of VNFs and the

interaction with the billing and operational support systems. Those challenges lead for the creation of an

architectural framework also known as the ETSI NFV architectural framework, which defines a reference model

for virtual network functions and services that are orchestrated and managed on a virtualized network

infrastructure.

2.1. ETSI NFV architectural framework

The European telecommunications standards institute network functions virtualization architectural framework is

based on a complete separation of hardware and software criteria, where network functions deployment must be

automated and scalable and the control of the network functions operational parameters is done by monitoring

and controlling the state of the network [2]. This framework is structured by three high level blocks such as the

VNFs, the NFVI and the NFV MANO blocks. The NFVI block is the foundation for this architectural

framework where it offers the hardware and software responsible for the virtualization process of the virtual

instances. The VNFs block uses the resources of the NFVI block to develop software that implements virtualized

network functions and services. The NFV MANO block is on its own a separate architectural framework that is

responsible for the orchestration and management of the VNFs and NSs resources. The following figure

illustrates the ETSI NFV architectural framework:

Figure 1: ETSI NFV architectural framework

Resourced from [2]

21

The NFV MANO block is also called the ETSI MANO architectural framework where it is a reference model to

developers to create software to manage and orchestrate VNFs and NSs. The next sections and subsections

describe in a more detailed manner the ETSI MANO architectural framework and all the relevant technologies

that are used nowadays to accomplish what the ETSI MANO architectural framework proposes.

23

2.2. ETSI MANO block

The ETSI MANO block decouples computation, storage and networking from the software that implements NFs

by creating new entities such as, the VNFs, NFVI, PNFs, NSs, VNFFGs and VLs. The ETSI MANO

architectural framework is responsible for managing the NFVI and orchestrate the resources for the NFs and

VNFs. The resources that are considered are mainly CPU, memory, network components (subnets, ports, etc.)

and storage. With this, it is important to define VNFs management functions based on operations such as the,

instantiation, scaling, updating or upgrading and terminating of VNFs or NSs. These operations are

accomplished by the creation of template files that use a template language such as TOSCA which is described in

more detail in the following subsection.

The ETSI MANO architectural framework architecture is presented in the figure below:

Figure 2: ETSI MANO framework

Resourced from [1]

The main blocks of the ETSI MANO architecture are:

▪ The NFVO is responsible for the resources allocated to the VIM and the lifecycle management of the

NSs.

▪ The VNFM is responsible for the lifecycle management of the VNF instances, where it can manage

only a VNF instance or multiple VNF instances.

▪ The VIM is responsible for the management and control of the NFVI in terms of the network, storage

and compute resources.

24

▪ The Data Repositories are responsible for the storage of the templates for the VNFs and NSs. Also

holds information about the resources and instances that are being used.

The ETSI MANO illustrates also that the NSs as the relation between VNFs and PNFs and defines the elements

that a NS relates to, which are depicted in the following figure:

Figure 3: NSs elements and ETSI MANO records and descriptors

Resourced from [1]

As shown in figure 3, NSs can contain information about the VNFs, Physical network functions, Virtual Links

and Virtual Network Function Forwarding Graphs and with this information create network forwarding paths to

be used on E2E virtualized network services. The ETSI MANO architectural framework instantiation input

parameters are used as descriptors which are grouped in a catalogue and therefore translated to records in a

runtime context when the virtual instances are deployed. The descriptors are written in the TOSCA language and

have information about the network itself, such as the topology, network path, resource requirements for the

elements of the network and the physical elements. The records have not only the information given by the

descriptors, but also additional runtime information such as CPU, network or disk usage.

2.2.1. TOSCA and YAML

TOSCA[3] or Topology and Orchestration Specification for Cloud Applications is a template language based on

the data serialization and markup language YAML (Ain't Markup Language) that describes the virtualized

25

network functions or services nodes and the relations between them. In fact, TOSCA is a service template

language that describes virtualized network infrastructures workloads as a topology template, meaning that is

basically a graph of node templates modelling the components and the relations between them. An example of a

VNFD written in TOSCA is depicted on Annex A. The VNFD example is from a NFVO and VNFM software

called Tacker, which describes a VNF topology with three node types, a VDU, a VL and a CP, each with

different capabilities and requirements. The capabilities describe the resources that each node will be deployed

with and the requirements describe the virtual networks that are associated with each VNF.

The YAML language is a data serialization and markup language where integrates and builds concepts from a lot

of other languages, e.g. Python, JSON, Ruby, C and XML. YAML language indentation-based scoping is similar

to Python language where the indentation facilitates the inspection of the data structures. YAML language literal

style leverages this by enabling formatted text to be cleanly mixed within an indented structure without

troublesome escaping. YAML also allows the use of traditional indicator-based scoping similar to the JSON

language.

YAML language core type system is based on the requirements of agile languages such as Perl, Python, and

Ruby. YAML directly supports both collections (mappings, sequences) and scalars. Support for these common

types enables programmers to use their language’s native data structures for YAML manipulation, instead of

requiring a special document object model. YAML language foremost design goals are human readability and

support for serializing arbitrary native data structures [4].

27

2.3. VIMs block

The virtualized infrastructure managers block has the responsibility to supervise the virtual infrastructure of a

network function virtualization solution. In summary the VIM is a key component of any ETSI MANO

architecture, and the following subsections describe some of the most developed solutions that exist nowadays

for virtualized infrastructure managers.

2.3.1. The OpenStack platform

The OpenStack platform is an open source project that aims to be a cloud operating system that manages and

deploys the network, storage and computing resources of a complete virtualized infrastructure over a set of

hardware resources. The following figure details the conceptual architecture of the OpenStack elements

(services) [5]:

Figure 4: Conceptual architecture of the OpenStack elements

Resourced from [6]

These elements or projects can be classified has essential projects and additional projects and are explained in

more detail on the subsections below.

The growth of the Internet and hardware infrastructures network solutions implies new challenges for operators

to manage, configure and launch on demand new services using the resources for them as efficient as possible.

OpenStack is an excellent solution for that matter because it offers virtualization of compute, storage,

networking and many other resources. Each component in OpenStack manages a different resource that can be

virtualised for the end user. Separating each of the resources that can be virtualized into separate components

makes the OpenStack architecture very modular. OpenStack can be divided into four groups: Control,

Networking, Compute and Storage. The Control tier runs the Application Programming Interfaces (API)

services, web interface, database, and message bus. The Networking tier runs network service agents for

networking. The Compute tier is the virtualization hypervisor, with services and agents to handle virtual

28

machines. The Storage tier manages block (Volumes; partitions) and object (containers; files) storage for the

Compute instances. All the components use a database and/or a message bus [7].

2.3.1.1. Essential OpenStack projects

The essential projects are the projects that an OpenStack platform cannot operate without. The essential projects

to deploy an OpenStack installation are [8]:

• Nova project manages and provisions virtual machines running on hypervisor nodes [9].

• Neutron project provides network connectivity between the interfaces of OpenStack services [10].

• Glance project is a registry service that is used to store resources such as virtual machine images and

volume snapshots [11].

• Keystone project is a centralized service for authentication and authorization of OpenStack services and

for managing users, projects, and roles [12].

And some advisable but not mandatory projects to add to an OpenStack installation as they facilitate the usage of

the OpenStack platform [8]:

• Horizon project is a web browser-based dashboard that is used to manage OpenStack services [13].

• Swift project allows users to store and retrieve files and arbitrary data [14].

• Ceilometer project provides measurements of cloud resources [15].

• Heat project is a template-based orchestration engine that supports automatic creation of resource stacks

[16].

• Cinder project manages persistent block storage volumes for virtual machines [17].

A high-level overview of the described projects is depicted on the figure below:

Figure 5: High-level overview of the OpenStack essential projects

Resourced from [8]

All the services communicate with each other by APIs and the AMQP.

29

2.3.1.2. Relevant OpenStack additional projects

The additional OpenStack projects are software tools that are developed as a side project to add some new

features / services to the OpenStack platform. The most important ones for the scope of this dissertation are:

• Octavia and Octavia dashboard projects that aim to be a load balancer as service project and a GUI of

Octavia project that can manage a fleet of virtual machines, containers, or bare metal servers on demand

[18] [19].

• DevStack project is a compilation of scripts to quickly bring up a complete and updated version of the

OpenStack platform hosted on a bare metal or virtual machine [20].

• Diskimage-builder project is a tool for automatically building customized operating-system images to

be used in clouds and other environments, producing cloud-images in all common formats (qcow2, vhd,

raw, etc), bare metal file-system images and ram-disk images [21].

• Kolla project is a provider of production-ready containers and deployment tools for operating

OpenStack clouds that are scalable, fast, reliable, and upgradable using community best practices [22].

• Magnum project makes container orchestration engines such as Docker Swarm, Kubernetes, and

Apache Mesos available as first class resources in OpenStack. Magnum uses Heat OpenStack project to

orchestrate an operating system image which contains Docker and Kubernetes and runs that image in

either virtual or bare metal machines in a cluster configuration [23].

• Kuryr-kubernetes and Kuryr are OpenStack containers networking projects that enables native Neutron-

based networking in Kubernetes. With Kuryr-kubernetes it is now possible to choose to run both

OpenStack VMs and Kubernetes Pods on the same Neutron network [24].

• Kata containers project aims to “deliver standard implementation of lightweight virtual machines that

feel and perform like containers but provide the workload isolation and security advantages of virtual

machines” [25].

The architectures of the last two additional projects of the list above, are described in more detail by the figures

below:

Figure 6: Kuryr architecture

Resourced from [26]

Kuryr uses the libnetwork API to map and create Neutron objects. By doing this, the solutions that Neutron

provides (security groups, NAT services and floating IP´s) for networking can be used by containers networking.

30

Figure 7: Kata containers architecture

Resourced from [27]

Kata containers elements include an Hypervisor to create virtual machines where containers will run, an Agent

(kata-agent) for managing containers and processes in the guest machine, an open container initiative (OCI)

compatible container runtime (kata-runtime) that handles all commands and launches instances, a Proxy entity

that offers access to the virtual machine agent to multiple instances and runtime clients associated with the

virtual machine, and a container process (kata-shim) that the container process reaper can monitor.

2.3.2. Kubernetes

Kubernetes is an open source solution for managing and orchestrating containers. The architecture type is client-

server, where it has one or more master servers that controls and defines how the worker nodes should act and

react to the master node. Kubernetes infrastructure is based in five different principles such as pods, services,

volume, namespaces and deployment. Pods and Volume are the storage units of Kubernetes, where it stores all

information related to the containers and the data of each Pod respectively, Services are a logical set of pods and

acts as a gateway to the exterior, allowing (client) pods to send requests to the service without needing to keep

track of which physical pods make up the service, Namespaces are based in the Linux namespaces, where here it

is a virtual cluster (a single physical cluster can run multiple virtual ones) intended for environments with many

users, and finally the Deployment is normally done via a deployment file in the YAML language which describes

the configuration and state of pods.

The next figure presents the Kubernetes architecture:

31

Figure 8: Kubernetes architecture

Resourced from [28]

An example of the workflow (with a single master server and two worker servers) of Kubernetes is depicted in

the following figure:

32

Figure 9: Kubernetes cluster example architecture with 1 master and 2 worker nodes

Resourced from [29]

The master node provides Kubernetes with cluster control, making global choices for the cluster and deciding

what to do when a cluster event is detected, it has a central management entity (kube-apiserver), a distributed

key value storage (etcd), a scheduler that helps optimizing resource utilization (kube-scheduler) and a controller

that regulates the state of the Kubernetes or manages the cloud provider (kube-controller-manager or cloud-

controller-manager).

The worker node has a service daemon (kubelet) responsible for taking pod specifications and health checks, a

proxy service daemon (kube-proxy) responsible for the networking in the worker node and a container runtime

(Docker) that is the software that will run the containers on the Pod. Kubernetes has also some useful features

(addons) like a DNS Server, a Web UI, a Container Resource Monitoring and a Cluster-level Logging that can

make the life easier on the administrator of the Kubernetes platform.

Kubernetes has become in the last few years the standard container orchestration platform, mainly because of the

performance gain by using containers over virtual machines and the high availability of the applications running

on the containers is provided by the use of container replicas quotas and the health container checks.

2.3.3. Docker

Docker is a client-server application (like Kubernetes), that leverages the technologies of namespaces, control

groups, union file formats and container formats. The Docker engine is defined as follows:

33

Figure 10: Docker architecture

Resourced from [30]

Docker is composed by a docker daemon (dockerd) that manages the Docker objects (images, containers,

networks and volumes) and the communication with other Docker daemons to manage Docker images, a Docker

Client that consists of a REST API and CLI (Docker command or a Docker client) being used to interact with the

Docker daemon, a Docker registry for the storage of Docker images (default one being Docker Hub) and a

Docker object or objects that can be images, containers or services.

Docker is a fast and consistent delivery system of applications because of the use of containers and being a light

program to run offers great scaling, a fast deployment system and the amount of work uses less resources in

opposition of using virtual machines.

2.4. NFVOs and VNFMs blocks

The network functions virtualization orchestrator and the virtualized network functions manager blocks are

normally bundled together in a software suite but have different responsibilities that need to be attended to. The

NFVO is responsible for overlooking the instantiation, scaling, updating and terminating network services. The

VNFM is responsible for overlooking the instantiation, scaling, updating and terminating of virtual network

functions.

The next subsections describe the most developed and documented software solutions for the implementation

and configuration of NFVOs and VNFMs.

2.4.1. OSM

Open source MANO is a project that is run by the ETSI foundation, adhering to the ETSI MANO architecture

framework on their management and orchestration proposal. The OSM architecture is depicted below:

34

Figure 11: OSM architecture

Resourced from [31]

As seen in figure ten OSM has three major components:

• SO that is responsible for the service orchestration, provisioning, deploying, querying and the storage

of the virtual network definitions and network services catalogues.

• RO that is responsible for the resources provision of networking services over a virtualized network

infrastructure.

• VCA that is responsible for the configuration of the virtual network functions using Juju charms.

The configuration files of NSDs and VNFDs are written using the TOSCA language. OSM uses these templates

to instantiate network function or services and the necessary resources associated with them. OSM also supports

a good variety of virtualized infrastructure managers such as OpenStack or OpenVIM [32] and the deployment

of network functions virtualization services in multiple virtualized infrastructure managers.

2.4.2. CORD

In its beginning, central office re-architected as a datacentre was a simple project used by the open network

operating system project which is an open source SDN controller for building next-generation SDN/NFV

solutions controller. But CORD became a greater project and was separated and run by the Open Networking

Foundation. The main objective of CORD is to “combine the technologies of NFV, SDN and the “elasticity of

commodity clouds to bring datacentre economics and cloud agility to the Telco Central Office”[33]. CORD

components are shown in the following figure:

35

Figure 12: ONOS architecture

Resourced from [34]

CORD is composed by five important components:

• Kubernetes platform where CORD run all control panel elements.

• Platform that is a Kubernetes environment with an ONOS, XOS [35], Kafka [36] and a collection of

logging and monitoring micro-services.

• Profile is a combination of services such as VNFs, access services or cloud services.

• Workflow being a component of a Profile where describes the business logic and state machine for one

of the access technologies contained in the Profile.

• BoM that is the hardware bill of materials defined for each Kubernetes pod.

CORD is installed as a collection of Docker containers in a Kubernetes cluster where Helm[37] is used, which is

a packaged manager for Kubernetes. TOSCA templates are used for the configuration and provisioning of a

running system of ONOS where XOS (a model-based platform for assembling, controlling, and composing

services) is used for developers to run their applications on CORD.

36

2.4.3. Cloudify

Cloudify is a cloud orchestration and management framework, adhering to the ETSI MANO architecture

framework that facilitates how applications and services are modelled and automated in their life cycle. That

includes the deployment, monitoring of applications, detecting and resolving issues that may occur while

running such applications. The cloudify architecture is depicted below:

Figure 13: Cloudify Manager architecture

Resourced from [38]

The three major components of Cloudify are:

• Cloudify Manager being the brain of the cloudify environment to manage and deploy applications

where the deployment is done using the “blueprints” that are TOSCA based templates files that can

instantiate a service or application in the system.

• Cloudify Agents used to manage the running applications by using plugins.

• Cloudify Console being the command line tool that Cloudify uses to communicate with the Cloudify

Manager.

The Cloudify Manager can use a CLI or GUI for communication and is composed by a Nginx web server that

has the function of a proxy server and file server, the Gunicorn and Flask elements where Gunicorn and Flask

provide the Cloudify REST service, a PostgreSQL database that provides the main database where it stores the

application’s model and the indexing logs’ and events’ storage, a Logstash element that is used by Cloudify to

pull log and event messages from RabbitMQ and index them in a PostgresSQL database, a RabbitMQ element

that is used to queue deployment tasks, logs, events and metrics, a Riemann element that is an event stream

processor used primarily for monitoring, a Pika element that is the communication agent programmed in Python

37

of the AMQP protocol and the InfluxDB that is a database used to pull metrics from RabbitMQ and to store

them.

2.4.4. Open Baton

Open Baton is an extensible and customizable framework that adhered to the ETSI MANO architecture

framework. It uses TOSCA templates to deploy and configure services and applications. The main components

of Open Baton are depicted in the figure below:

Figure 14: Open Baton architecture

Resourced from [39]

Open Baton elements are, a NFVO that is ETSI MANO compliant, a VNFM and a Generic Element

Management System to manage VNFs and VNFDs, a Juju VNFM Adapter in order to deploy Juju Charms, a

driver mechanism supporting different type of VIMs, a Docker VNFM and VIM driver for instantiating

containers on top of Docker Engine, a powerful event engine based on a pub/sub mechanism for the dispatching

of the lifecycle events execution, an autoscaling engine which can be used for automatic runtime management of

the scaling operations of your VNFs, a fault management system which can be used for automatic runtime

management of faults which may occur at any level, a network slicing engine which can be used to ensure a

specific QoS for your NSs, a monitoring plugin integrating Zabbix as monitoring system, a marketplace useful

for downloading VNFs compatible with the Open Baton NFVO and VNFMs and a set of libraries (in Java, Go

and Python) which could be used for building your own VNFM.

2.4.5. Tacker

Tacker is an OpenStack additional project for NSs an VNFs orchestration and management adhering to the ETSI

MANO architectural framework. It has a generic NFVO and VNFM to deploy network services and virtual

network functions providing E2E solutions.

The next figure shows how Tacker workflow and architecture are:

38

Figure 15: Tacker architecture and Workflow

Resourced from [40]

Tacker has three fundamental components:

• Network Functions Virtualization Catalog that contains the VNF, NS and VNF Forwarding Graph

descriptors.

• Virtualized Network Functions Manager (VNFM) that creates, updates, deletes and monitors VNFs.

• Network Functions Virtualization Orchestrator (NFVO) that optimizes resource checks and allocation

of VNFs. The NFVO can orchestrate VNFs, throughout multiple VIMs or Sites and can create a service

function chain between VNFs by using a VNF Forwarding Graph Descriptor.

Tacker can be deployed and configured manually or using the additional OpenStack projects DevStack or Kolla.

Tacker only supports currently as VIMs the OpenStack and Kubernetes platforms.

39

3. Architecture

The architecture is to deploy and test a system that encompasses one of each of the three main blocks of the

ETSI MANO architectural framework presented on chapter two of this dissertation report. The proposed

architecture solution will have the following entities:

• A frontend network with one VNF acting as a Load Balancer.

• A backend network with two web servers.

• The backend network will have replicated sites (one and two).

• Two virtualized infrastructure managers installed on the different sites.

• A client to connect and test the system functionalities.

The architecture is depicted below:

Figure 16: Project architecture

The system workflow starts by the users connecting to the system via a VNF acting as a load balancer that will

redirect traffic depending on the load balancing algorithm that was selected, connecting the users to the sites on

the backend network. Each site will have two web servers that will be used for testing the load balancer and the

sites functionalities, e.g. handling HTTP requests.

The orchestration and management of the global system will be done via a management server. The management

server is configured using the necessary software researched in chapter two of this dissertation report and some

extra tools that will be described in the next subsection.

The ideal scenario will be that, the servers on site one and the VNF acting as load balancer will be hosted on

virtual machines, as for the servers on site two will be hosted on containers. The process of being hosted by

40

virtual machines and containers is also important to test, analyse and compare how different these host

virtualization techniques are in terms e.g. resource utilization.

The proposed architecture is a heavy system to deploy and the available hardware is limited, so the

implementation takes all that in consideration by building the system with the minimal resources necessary not

compromising the proposed architecture.

3.1. Implementation

The implementation of the architecture is defined in three different phases that are depicted below:

Figure 17: Implementation phases

The implementation starts with phase number one where a management server is deployed and configured to

host the DevStack and Tacker projects used on phase number two. Phase number two main objective is to deploy

and configure the DevStack and Tacker projects. Phase number three deploys and configures the backend and

frontend VNFs hosted on virtual instances (containers or virtual machines). The next subsections describe in

more detail how all the phases were processed.

3.1.1. Management server deployment and configuration

The main goal is to deploy a bare metal or virtual solution of a management server that consists on installing and

configuring the software of the virtual network infrastructure that is going to be used to deploy the architecture

solution described before. The first step is the most important one as encompasses the research of the software

and hardware requirements for the system architecture and choosing the right tools to deploy the management

server. The tools chosen were for a virtual solution of the management server, just because it is easier to test the

hardware requirements for the architecture solution as is a better modular solution than the bare metal solution,

e.g. if a virtual machine does not meet the right requirements it is faster to install and configure the hardware and

operating system on the virtual machine. The tools chosen to deploy the virtual solution to the management

server where, Packer [41] and Vagrant [42] that are tools respectively, to manage updated virtual images to be

used on virtual machines and to deploy those virtual images onto virtualization platforms such as VirtualBox or

QEMU. The problems that were encountered here were the time necessary to choose the right operating system

and the minimal hardware and software requirements to deploy the management server as it depends on phase

two of the implementation of the architecture solution. The operating system chosen was Ubuntu Server 16.04

with Ansible [43] and openstack-sdk packages installed with sixteen GB of RAM, five CPU cores and sixty GB

of disk. Annex B depicts the contents of a Vagrantfile, used by Vagrant and written in the Ruby language where

it defines the virtual machine configuration to be used for the management server.

3

Backend and Frontend

VNFs deployment and configuration

Tacker

Octavia

2

DevStack and Tacker projects

deployment and configuration

DevStack

Ansible

OpenStack

Kubernetes

1

Management server

deployment and configuration

Vagrant

Packer

41

3.1.2. DevStack and Tacker projects deployment and configuration

After the management server is up and running, it is time to the next phase where the DevStack and Tacker

OpenStack additional projects are deployed and configured. These projects were chosen based on the hardware

requirements of all the software researched for the ETSI MANO architectural framework blocks. For the VIM

block the project used for this was DevStack where it deploys a virtualized network infrastructure platform and

installs the OpenStack and Kubernetes VIMs. For the NFVO and VNFM blocks, the project used was Tacker.

The first step of using the DevStack project is meeting the following requirements:

• DevStack should be run as a non-root user with root enabled privileges.

• Having GitHub [44] and PIP [45] (package installer for Python) programs installed on the management

server used to deploy DevStack.

The next step involves using the GitHub program called git to download the repository of DevStack to a folder

and access the folder. When in the DevStack folder, the most important files to look for are the stack.sh, openrc

and local.conf files. The stack.sh is a bash script file that uses the information of the configuration local.conf file

to install and configure the OpenStack and Kubernetes VIMs. The openrc is also a bash script file used to load

the OpenStack environment variables to the management server so that OpenStack can be accessed and

managed. The configuration local.conf (Annex C) file that needs to be created by the user of the management

server is based from the local.conf.kubernetes [46] file, that can be accessed on the DevsStack GitHub site with

slight modifications. The relevant configurations options for the local.conf file are:

• The IPs and passwords for the services that will utilize that information such as, the OpenStack

database and network services.

• The IP range and network interface that is going to be used to give Internet connectivity to virtual

instances, e.g. virtual machines or containers.

• Enabling a log file, it is very important because if anything goes wrong, it is possible to search for

errors during installation.

• Enabling the use of the Kubernetes VIM and selecting the hyperkube [47] version to be installed. The

hyperkube version can be selected from google public hyperkube image repository[48].

• Enabling the necessary OpenStack services by using the enable_plugin command tag. The OpenStack

services are then downloaded from a GitHub repository and automatically configured with the default

options. The customization of the services is done via proper tags and the tag availability depends if the

service has DevStack installation support.

After all the configuration is done, the file must be saved under the DevStack folder and then run the stack.sh

script. One problem that originated running the script, was when the management server has one network

interface and the login method to the management server is via SSH, it is necessary to run the script on a

separate virtual terminal by using the command screen.

The script is going to run a series of installations and configurations on the system, so it is not recommended to

run this script on a daily use operating system installation. This is one of the reasons why the management server

is a virtual machine described in the phase before. The script run time depends in the amount of services it must

42

install and configure, but the script at a fresh install of the operating system on the management server takes

about forty five minutes and the time decreases after the first run, to thirty minutes. At the end of the script the

output gives useful information such as:

• The time it took to install and configure the script.

• The default IP address used by the user of the management server to access, e.g. via browser the

OpenStack UI.

• The users (admin and demo) that have relevant privileges to access the OpenStack platform.

• The version of OpenStack that was installed.

In this phase the most relevant problems that were faced were, the script stops working as of a bug on the

DevStack project as the association of the bridge br-ex (responsible for the routing of the external network to the

internal networks of the OpenStack platform) to the network interface of the management server removes the

DNS name resolution of the management server and when using a hyperkube version above version 15.0 the

installation of Kubernetes fails. These problems were solved by, using a GitHub repository commit version of

the DevStack project older than the one that was being used and using an older version of hyperkube.

This phase was the most time consuming because of all the configuration options that need to be learned and

tweaked to fulfil the needs of the architecture solution and the limitations of hardware resources that where

presented at the time of this phase implementation, e.g. the IST resources were so limited and overbooked, that

the private hardware resources must be upgraded so the architecture solution implementation could continue.

After this, it is necessary to configure the management server to create and have access to the virtual instances

that needed for the architecture solution implementation by loading the environment variables of the OpenStack

platform onto the management server and creating a SSH key to be able to access to the virtual instances. A

series of configurations need to be done the OpenStack platform each time the it is deployed:

• Changing the DNS nameserver IPs on all default OpenStack networks.

• Creating a router to access the virtual machines.

• Creating ports in the router to all default OpenStack networks.

• Adding SSH keys to the OpenStack platform to be able to access the virtual instances.

• Adding or changing the rules on the default OpenStack security groups.

• Adding new operating system images to the OpenStack platform.

A problem of time consumption happens when these configurations of the OpenStack platform occur and the

solution was using an automation tool such as Ansible [43], which is a Red Hat project that focuses on IT

automation, using YAML has a standard to create template files, that can deploy and modify virtualized network

infrastructures and their elements. The template file (also called ansible playbook) was created for configuration

steps described above and is depicted on Annex D.

Now that the system is fully configured, it is time to use the Tacker project. The first thing that needs to be done

is to register the OpenStack and Kubernetes VIMs onto tacker and for that it is necessary to create two YAML

files that have the information needed to register both VIMS. The information is slightly different in both files as

we can see in Annex E and Annex F. After the formulation and creation of the files it’s time to register the

43

VIMs onto Tacker via the OpenStack CLI or GUI, and depending on the commit version of Tacker, the

registration of the Kubernetes VIMs cannot work due to a bug on the code, so the GitHub branch used in Tacker

must be the master branch to fully pass these kind of problems, just because the branch is more often updated

than the other ones.

3.1.3. Backend and frontend VNFs deployment and configuration

With the VIMs registered, it is necessary to register the backend and frontend VNFs by making one or two

descriptor template files for each VIM. There are two ways to approach the configuration and deployment of the

frontend VNF, one can be done manually where it is used a descriptor template file and all the configuration for

the load balancer is done manually in terms of networking, failsafe protection and the software used for the load

balancer or two where it is used a OpenStack additional project described on chapter two called Octavia. The

Octavia project is a LBaaS where it shares the concept of XaaS[49], where anything can be called a service in a

virtualization system. The configuration selected was the second one because the way that Kubernetes works

with the OpenStack platform is by using the OpenStack networks via the kuryr-kubernetes project while the

access to the Kubernetes Pods is done via an ingress Octavia LBaaS project controller.

The backend template files for each VIM are different. Each template file has its own configuration options as

seen on Annex G and Annex H just because they use a different type of hardware and software virtualization

(containers or virtual machines) that have different options for configurations, e.g. on a Kubernetes template file

it is necessary to define a service type tag that can grant access from the external network to the application

running on the containers.

The configuration of the VNFs can be done by:

• A bash script, where for that is necessary to use a specific image built with the OpenStack additional

project diskimage-builder.

• Using a user_data tag on the template descriptor file, where configuration and installation commands

can simulate like it was a bash script file.

• Using the management server by running directly the bash script file with the SSH command.

These configuration options are well documented but the safer to use would be the third option, just because the

other two have problems with them. The first configuration option the diskimage-builder project has software

bugs where it only builds successfully images of the latest versions of the operating systems and when using

these images with Tacker the bash script does not run properly making the VNF unconfigurable. The second

configuration option is a good option, but the template file organization and length can become quite

unorganized and big due to inserting the bash script data onto the template descriptor file. In the third option the

template descriptor file and bash script file are separated, and the script file is loaded via SSH using the

management server for that matter.

The software tools used for the backend and frontend VNFs are:

• HAProxy software is used on the frontend VNFs, being the most documented, tested and versatile

load balancing software.

44

• NGINX and PHP software are used on the backend VNFs.

The configuration script bash files for the backend VNFs can be viewed on Annex I of this dissertation report.

The HAProxy software used on the frontend VNF is preinstalled with the Octavia OpenStack additional project

and it is configured as a HTTP load balancer with a load balancing round-robin algorithm. The load balancer is

also configured with a “health monitor” that checks the state of the backend servers. Layer seven policies that do

redirection based on the path that is entered on the browser can be configured also, giving extra security to the

backend servers. The backend VNFs will act as web servers that verify if the configurations on the load balancer

are working as intended.

After loading the configuration files onto the VNFs, it is time to test the architecture solution implementation. In

this phase the installation, deployment, connectivity and functionality are tested of the architecture solution. This

phase will be described in more detail on the next section of the report.

A problem occurred in this phase were that if a test fails and it is necessary to reboot the management server the

virtual network interfaces created by the DevStack OpenStack project does not persist over a system shutdown

or reboot, so the solution is to remove the configurations and installations done on the management server.

Gladly the DevStack developers thought of that and created two scripts called unstack.sh e clean.sh. The

unstack.sh script stops all services associated with OpenStack and the clean.sh script cleans all configurations

and installations done by DevStack on the management server. After that it is necessary to run the stack.sh file

and to do all VNFs configuration and deployment.

45

4. Evaluation

The evaluation phase is the most important phase of all systems implementation, just because it validates all the

work that was done. It also detects if something is not running how it should be, by testing all the elements in the

system and giving out precious information to the administrator. With that information the administrator can

monitor and fix all the elements that are not corresponding to the normal behaviour. The next subsections

describe the tests performed on the architecture solution implementation.

4.1. Tests

The tests are divided on functional and performance tests. The tests validate if the functionality, failover and

scalability of the implemented solution are working as intended. The table below describes in a short manner

what tests were done on the implemented solution:

Test number Test short description

1 – functional test Verify VIMs and VNFs deployment

and configuration

2 – functional test Verify frontend and backend VNFs

connectivity

3 – functional test Verify frontend and backend VNFs

functionality

4 – functional test Verify frontend and backend VNFs

failover

5 – performance test Verify VNFs scalability

Table 1: Summary table of the evaluation tests

4.1.1. Tests 1 to 3

The tests one to three are done via a Python script that is depicted on Annex J, where issues one hundred GET

requests to the VNF acting as load balancer and outputs the graph below:

Figure 18: Distribution of GET requests with four web servers

46

The algorithm chosen for these tests is the round robin algorithm and as it is seen on the graph above, all the one

hundred requests are evenly distributed proving the web servers and load balancer functionality. The success of

the web servers and load balancer functionality also validates the frontend and backend VNFs connectivity (test

two) and the VIMs and VNFs deployment and configuration (test one).

4.1.2. Test 4

Test four is where the frontend failover testing is done via a terminal command (openstack loadbalancer

failover name_of_lb) where it simulates with an interval of time a failover scenario that is performed on the

load balancer. The command initiates the failover by destroying the virtual machine that hosts the load balancer,

verifies that the load balancer no longer is available and performs the recoverability process of creating a new

virtual machine using the load balancer configuration metadata. The backend failover is tested by creating a

health monitor checker and shutting down a backend VNF virtual machine or container via the OpenStack CLI

or GUI and verifying that the load balancer becomes aware and do not forward HTTP traffic to that specific

virtual machine or container.

4.1.3. Test 5

Test 5 uses a scalability property on the VNFDs, where it defines how many replicas of a VM or container a

system can make. To test this the script on Annex J was slightly modified where it calculates the GET response

average time plus the computational time for each web server. The number of replicas was increased to three on

site 2 and the script outputs the following graph and times:

Figure 19: Distribution of GET requests with five web servers

site1-web1 site1-web2 site2-web1 site2-web2

885ms 886ms 887ms 884ms

Table 2: Requests time with four web servers

site1-web1 site1-web2 site2-web1 site2-web2 site2-web3

847ms 847ms 847ms 846ms 846ms

Table 3: Requests time with five web servers

47

As it is seen on the graph above and tables, the time is reduced by forty milliseconds proving that the scalability performance

is relevant and is working as intended.

48

5. Conclusion

All the technologies described on chapter two are still being heavily developed and complementing their core

environment to using containers. Containers in comparison with virtual machines use less resources, meaning

better overall performance for the workflow of a VNF solution. Nevertheless, the use of virtual machines means

a better isolation for the adopted VNF solution that containers cannot deliver yet. That is why kata containers

enables the merge of virtual machines and containers by adding the good features described from both virtual

machines and containers.

The problems encountered while doing this dissertation were mainly, the documentation of the researched

technologies that needs improvement on explaining how some of the projects work and what certain aspects of

the projects do, e.g. to lost a lot of time searching for a solution when the installation script used by the DevStack

project stops working. Unfortunately, due to limitations on the hardware resources it was not possible to test all

the technologies described on chapter two and to scale the proposed architecture solution as it was intended. The

projects used on the implementation of the proposed architecture are still being heavily developed, and still need

optimization regarding merging the features of containers and virtual machines. Nevertheless, the

implementation of the architecture was successful and describes well what is the expectation for the future of

virtualized network functions and services.

5.1. Future work

For future work, if the resources permit, it is very important to implement and research other possible

architecture scenarios. For example, creating a multi VNF network service where it deploys different VNFs with

different networks graphs. With these virtual network graphs, it is possible to create virtual network paths and

selecting witch VNFs are associated with each virtual network path.

49

50

References

[1] NFV, “GS NFV-MAN 001 - V1.1.1 - Network Functions Virtualisation (NFV); Management and

Orchestration,” 2014.

[2] “The Journey to Network Functions Virtualization (NFV) Era | The Evolution of Network Architecture |

InformIT.” [Online]. Available: http://www.informit.com/articles/article.aspx?p=2755705.

[3] “TOSCA-Simple-Profile-YAML-v1.1-csprd01 TOSCA Simple Profile in YAML Version 1.1

Specification URIs,” 2016.

[4] “YAML Ain’t Markup Language (YAMLTM) Version 1.2.” [Online]. Available:

https://yaml.org/spec/1.2/spec.html.

[5] “OpenStack Docs: Get started with OpenStack.” [Online]. Available: https://docs.openstack.org/install-

guide/get-started-with-openstack.html.

[6] “OpenStack Docs: Conceptual architecture.” [Online]. Available: https://docs.openstack.org/install-

guide/get-started-conceptual-architecture.html.

[7] D. Radez, OpenStack essentials : untangle the complexity of OpenStack clouds through this practical

tutorial. .

[8] “Chapter 1. Components Red Hat OpenStack Platform 9 | Red Hat Customer Portal.” [Online].

Available: https://access.redhat.com/documentation/en-

us/red_hat_openstack_platform/9/html/architecture_guide/components.

[9] “OpenStack Docs: OpenStack Compute (nova).” [Online]. Available:

https://docs.openstack.org/nova/latest/.

[10] “OpenStack Docs: Welcome to Neutron’s documentation!” [Online]. Available:

https://docs.openstack.org/neutron/latest/.

[11] “OpenStack Docs: Welcome to Glance’s documentation!” [Online]. Available:

https://docs.openstack.org/glance/latest/.

[12] “OpenStack Docs: Keystone, the OpenStack Identity Service.” [Online]. Available:

https://docs.openstack.org/keystone/latest/.

[13] “OpenStack Docs: Launch and manage instances.” [Online]. Available:

https://docs.openstack.org/horizon/latest/user/launch-instances.html.

[14] “OpenStack Docs: Welcome to Swift’s documentation!” [Online]. Available:

https://docs.openstack.org/swift/latest/.

51

[15] “OpenStack Docs: Welcome to Ceilometer’s documentation!” [Online]. Available:

https://docs.openstack.org/ceilometer/latest/.

[16] “OpenStack Docs: Welcome to the Heat documentation!” [Online]. Available:

https://docs.openstack.org/heat/latest/.

[17] “OpenStack Docs: OpenStack Block Storage (Cinder) documentation.” [Online]. Available:

https://docs.openstack.org/cinder/latest/.

[18] “OpenStack Docs: Octavia Documentation.” [Online]. Available:

https://docs.openstack.org/octavia/latest/.

[19] “OpenStack Docs: Welcome to octavia-dashboard’s documentation!” [Online]. Available:

https://docs.openstack.org/octavia-dashboard/latest/.

[20] “OpenStack Docs: DevStack.” [Online]. Available: https://docs.openstack.org/devstack/latest/.

[21] “OpenStack Docs: Diskimage-builder Documentation.” [Online]. Available:

https://docs.openstack.org/diskimage-builder/latest/.

[22] “OpenStack Docs: Welcome to Kolla’s documentation!” [Online]. Available:

https://docs.openstack.org/kolla/latest/.

[23] “OpenStack Docs: Welcome to Magnum’s Developer Documentation!” [Online]. Available:

https://docs.openstack.org/magnum/latest/index.html.

[24] “OpenStack Docs: Welcome to kuryr’s documentation!” [Online]. Available:

https://docs.openstack.org/kuryr/latest/.

[25] “About Kata Containers | Kata Containers.” [Online]. Available: https://katacontainers.io/.

[26] “Kuryr - Bringing Containers Networking to OpenStack Neutron · GalSagie.” [Online]. Available:

http://galsagie.github.io/2015/08/24/kuryr-part1/.

[27] “Learn | Kata Containers.” [Online]. Available: https://katacontainers.io/learn/..

[28] “Kubernetes: An Overview - The New Stack.” [Online]. Available: https://thenewstack.io/kubernetes-an-

overview/.

[29] “Introduction to Kubernetes Architecture.” [Online]. Available: https://x-team.com/blog/introduction-

kubernetes-architecture/.

[30] “Docker overview | Docker Documentation.” [Online]. Available:

https://docs.docker.com/engine/docker-overview/.

[31] “What is the best NFV Orchestration platform? A review of OSM, Open-O, CORD, and Cloudify |

Mirantis.” [Online]. Available: https://www.mirantis.com/blog/which-nfv-orchestration-platform-best-

review-osm-open-o-cord-cloudify/.

[32] “OpenVIM installation (Release One) - OSM Public Wiki.” [Online]. Available:

52

https://osm.etsi.org/wikipub/index.php/OpenVIM_installation_(Release_One).

[33] “Open CORD – CORD.” [Online]. Available: https://opencord.org/.

[34] “Navigating CORD · CORD Guide.” [Online]. Available: https://guide.opencord.org/navigate.html.

[35] “Introduction · XOS Guide.” [Online]. Available: https://guide.xosproject.org/.

[36] “Kafka Integration - ONOS - Wiki.” [Online]. Available:

https://wiki.onosproject.org/display/ONOS/Kafka+Integration.

[37] “Helm | Docs.” [Online]. Available: https://helm.sh/docs/.

[38] “Overview of Open Source Components in Cloudify | Cloudify Documentation Center.” [Online].

Available: https://docs.cloudify.co/4.3.0/about/manager_architecture/components/.

[39] “OpenBaton Documentation.” [Online]. Available: https://openbaton.github.io/documentation/.

[40] “Tacker - OpenStack.” [Online]. Available: https://wiki.openstack.org/wiki/Tacker.

[41] “Documentation - Packer by HashiCorp.” [Online]. Available: https://www.packer.io/docs/.

[42] “Documentation - Vagrant by HashiCorp.” [Online]. Available: https://www.vagrantup.com/docs/.

[43] “Ansible Documentation.” [Online]. Available: https://docs.ansible.com/.

[44] “GitHub Guides.” [Online]. Available: https://guides.github.com/.

[45] “pip - The Python Package Installer — pip 19.3.1 documentation.” [Online]. Available:

https://pip.pypa.io/en/stable/.

[46] “kuryr-kubernetes/local.conf.sample at master · openstack/kuryr-kubernetes · GitHub.” [Online].

Available: https://github.com/openstack/kuryr-kubernetes/blob/master/devstack/local.conf.sample.

[47] “kubernetes/cluster/images/hyperkube at master · kubernetes/kubernetes.” [Online]. Available:

https://github.com/kubernetes/kubernetes/tree/master/cluster/images/hyperkube.

[48] “Container Registry - Google Cloud Platform.” [Online]. Available:

https://console.cloud.google.com/gcr/images/google-containers/GLOBAL/hyperkube-

amd64?gcrImageListsize=30&pli=1.

[49] R. C. Garcia and J.-M. Chung, “XaaS for XaaS: An evolving abstraction of web services for the

entrepreneur, developer, and consumer,” in 2012 IEEE 55th International Midwest Symposium on

Circuits and Systems (MWSCAS), 2012, pp. 853–855.

53

Annex A – VNFD example file

54

Annex B – Vagrant virtual machine configuration

file

55

Annex C – DevStack project configuration file

56

Annex D – OpenStack platform configuration file

57

58

Annex E – OpenStack VIM descriptor file

Annex F – Kubernetes VIM descriptor file

59

Annex G – OpenStack backend descriptor file

60

Annex H – Kubernetes web server descriptor file

61

Annex I – Configuration script files for the load

balancer and web servers

62

63

Annex J – Python script used for tests 1 to 3

