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Resumo

Os algoritmos de aprendizagem automática estão a ser desenvolvidos e aplicados a dados que ajudam

a população nas suas necessidades diárias. Estes algoritmos trazem muitos benefı́cios a diferentes

áreas e possibilitam análises preditivas, formação de grupos de classes (clustering) e classificação

dos dados. Podem ser usados, por exemplo, em bases de dados médicas para facilitar o diagnóstico

e o tratamento de um paciente. Em relação à eficiência destes algoritmos, existe uma preocupação

acrescida no que se refere a valores em falta nos dados. Os algoritmos que existem não estão prepara-

dos para lidar com a falta destes dados, pelo que existe a necessidade de se abordar este tema. Assim,

neste trabalho, pretende-se comparar dois algoritmos de imputação de dados que poderão ser usados

para completar os dados em falta. Os algoritmos usados são o Dynamic Time Warping e Needleman-

Wunsch. Verificou-se que estes dois algoritmos são capazes de preencher os dados em falta, onde o

Dynamic Time Warping se revelou mais preciso, enquanto que o Needleman-Wunsch se revelou mais

rápido. Com este trabalho também se verificou que estes dois algoritmos podem ser testados em mais

profundidade devido ao seu potencial para preencher os dados em falta. Também são feitas sugestões

para melhorar alguns pontos menos positivos em relação à performance dos mesmos.

Palavras-chave: Aprendizagem automática, data mining, valores em falta, Dynamic Time

Warping, Needleman-Wunsch.
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Abstract

Machine learning algorithms are now being designed and applied to data to help humans in their every-

day needs. These algorithms can bring major benefits to many areas and are capable of conducting pre-

dictions, clustering and classification on data. They could be used, for example, on medical databases

to help in treatments and diagnosis of patients. One major concern that threatens the efficiency of these

algorithms are missing values. Many algorithms which are in place today are not prepared to handle

these missing values, which means they have to be handled in other ways. In this paper it is aimed to

compare two imputation algorithms that could be used in filling these missing values. Both methods use

sequence alignment to find matches with which the missing values could then be imputed. One of the

algorithms uses dynamic time warping while the other uses Needleman-Wunsch. Both of these algo-

rithms were suitable when it came to data imputation. Imputation done using dynamic time warping was

accurate, although it lacked in speed, while the Needleman-Wunsch imputation was faster, but not quite

as accurate as the dynamic time warping imputation. The results show that both of these algorithms

should be further tested due to their potential in the imputation of values, as well as some suggestions

to strengthen the weaknesses of both of these algorithms.

Keywords: Machine learning, data mining, missing values, Dynamic Time Warping, Needleman-

Wunsch.
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Chapter 1

Introduction

1.1 Motivation

Nowadays, there is an increased necessity in handling large volumes of data, particularly when it comes

to medical data. This data can be used to extrapolate useful information and, as a consequence, aiding

medical professionals [1]. Many algorithms were designed in order to extract useful patterns from med-

ical databases, which would be impossible for a medical team to analyze due to the immensity of the

data. This process is called data mining [2, 3] and one of the fields that is used to perform these oper-

ations is machine learning [4]. This field is dedicated to the classification, prediction and clustering of

data, among others [5]. All of these can be applied to medical databases in various situations requiring

data handling, depending on the circumstances. Besides medical databases many other fields benefit

from the use of these techniques in many ways [6].

Regarding the usefulness of these algorithms in the medical fields there is a number of ways on

which they excel:

• Diagnosis - Many classification algorithms have been developed to provide with an answer with

haste [7]. By applying these, many lives could be saved, not only because of the speed on which

a diagnosis could be achieved, but also on the accuracy, preventing a wrong diagnosis. Of course

these can be merely suggestive, being regarded as a second opinion to the medical professionals.

Another important tool for diagnosis is image recognition which can lead to a quick diagnostic

by analyzing image-related diagnostic tools.On the field of prediction, many options are being

explored, one of which is the capability to predict the appearance of a certain disease or an injury,

based on data from the patient. Thus, diagnosis is possibly the one with the most direct impact

regarding the health of a patient, since these will define the treatment applied.

• Treatment - There have been many changes when it comes to treating patients as well, such as

making use of patient data, so that professionals can choose a specific treatment for an individual

with specific and similar features [8]. Research and drug manufacturing is also being affected with

these algorithms, since they are starting to be produced not only based on past results, but also

base on predictive data.
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As time passes, a lot of applications using these machine learning techniques have encountered

some issues regarding data quality. Given the fact that the amount of data collected is enormous (and

regarding the data itself, the amount of variables/features captured is also very big), the probability that

the collected data is one hundred percent accurate is very low [9]. This effect is even more critical

when it comes to medical data, given the sensibility the algorithms have to have with these type of

data. Mistakes are bound to happen, whether it is by the hand of man, which is considered to be very

common, whether it is done by machine errors. These mistakes can range from non-existing values to

simply absurd values that were found because someone misplaced a simple comma. The problem that

is faced nowadays is that with the amount of data in existence it is impractical to identify and correct all

mistakes by hand. Thus, methods to identify these situations and correctly handle them are needed, or

else, whenever these kinds of situations occur, the data would need to be disposed of, losing valuable

information.

Due to the fact that many of the machine learning algorithms require their data intact, a lot of effort is

being put into creating accurate imputation algorithms, capable of filling out data with values that could

represent the missing value, while still maintaining data coherence [10, 11].

1.2 Objectives

The purpose of this work is to find a suitable way of dealing with missing values in time series data,

particularly in medical databases. To do so, two methods of imputation will be compared which will

focus on a single feature, making both of these algorithms usable with multivariate and univariate time

series, by using an approach based on the similarity measurement of time series using the Dynamic

Time Warping (DTW) algorithm [12], while drawing a comparative analysis with the Needleman-Wunsch

(NW) algorithm [13, 14] due to the similarity in behaviour of both of these algorithms.

1.3 Thesis Outline

On the background chapter, the state of the art regarding this theme is discussed, starting with general

notions on the theme of machine learning algorithms and tasks as well as a more profound analysis of

the algorithms used in this work. On the proposed method chapter, it is explained the way in which the

two algorithms used to perform the data imputation (DTW and NW) will be used. On the results chapter,

an overview of the performance of the two algorithms implemented is shown. Finally, conclusions on

this work will be discussed and suggestions on new approaches to develop will be remarked.

2



Chapter 2

Background

Nowadays, databases are used to store all kinds of information, such as transactions, financial or even

simple client information. Amongst these there are medical databases, that have certain importance due

to the content displayed by them. The amount of information regarding medical conditions is enormous,

given the number of features that can be extracted from patients. In order to ease data comprehension,

many datasets are created for a specific purpose, having a reduced amount of patient’s data that relates

only to the desired problem at hand, such as a specific disease. To solve such problems, there is a

need for ways to reach viable conclusions using the available data. For this purpose, the subject of data

mining emerged.

Data mining can lead us to anticipate the appearance of conditions, or the likelihood of the use of a

certain drug improving the patients’ state. It can obviously be applied in other sorts of problems such

as: Marketing, Investment, Fraud Detection, Manufacturing, among others. However, with the amount

of data at our disposal, data patterns can prove to be quite difficult to be extrapolated from the data.

For this task, methods have been developed in a field called machine learning, which mainly solves

problems related to: classification, regression and clustering.

2.1 Preprocessing

Before applying machine learning techniques, the data may need to go through a series of operations

to prepare it for the analysis needed to infer the data patterns as can be seen on Figure 2.1. These

operations can be: data cleaning, data integration, data selection and data transformation. Of all of

these operations, the most important for this work would be data cleaning.

Data cleaning is a process that deals with missing values, outliers and errors within the data [15].

These problems can happen in any database, and tend to be associated with human error. Missing

values occur when there is no input for a given field, and in medical databases it is a recurring problem.

As for errors and outliers, they can also happen due to human typos, which are bound to happen in

any kind of database, making the data inaccurate, or even machine related errors. These errors, when

found, can receive the same kind of treatment the missing values do, or even be changed by hand,
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although this is not a practical solution.

On the subject of missing values, there can be many ways to deal with them [16, 17]. The easiest

way would be to completely ignore the missing data. However, by doing so, the information regarding

this value would be completely lost. The other way of dealing with this problem, is by attempting to

fill in the missing values. To do so, many methods can be considered, mainly statistical and machine

learning methods [18], which use a predictive model based on the available data to infer the missing

values. Some of these methods include: k-nearest neighbours [19, 20] and Bayesian approaches [21].

Other simple approaches can be used to tackle this issue, as for example using the mean of the non-

missing values to fill in the missing values. When dealing with errors and outliers, some of the common

techniques are: binning [22], regression [23, 24] and clustering [25]. This last one is specially used for

the identification of outliers, since clustering attempts to identify groups of values that could belong to

the same cluster, and by leaving values out of these clusters these could be considered outliers. Also,

by having previous information regarding the received data, also known as metadata, as for example,

maximum and minimum values of certain fields, some of these outliers and errors can be easily identified

[26].

Data integration is required when using multiple databases in order to solve any discrepancies that

may arise from the combination of various databases into a single one [27]. Problems may include:

redundancies, object matching and data value conflicts. Of these problems, perhaps only redundan-

cies would be of any relevance to our problem and it could be solved by correlation analysis of all the

attributes.

Data transformation consists in altering the data to accepted values so that it can be properly dealt

with [15]. These changes can be implemented by resorting to methods such as: normalization, aggre-

gation, generalization and attribute construction. Normalization is used when certain values should be

scaled to fit between certain pre-determined values, and it can be performed using various methods,

such as min-max normalization, mean normalization and others. Both aggregation and generalization

are used in order to move up in the concept hierarchy, although aggregation does so on numeric at-

tributes, while generalization acts on nominal attributes. Attribute construction, as the name suggests,

creates new attributes from already existing attributes. All of these modifications are made so that the

process of data mining can be done in a smoothly manner.

Data reduction has the purpose of condensing the available data, while still getting the same results

when it comes to discovering data patterns. This can be attained by reducing: the number of attributes,

attribute values and tuples. Operations that can be performed in order to achieve these results include:

data cube aggregation [28], attribute subset selection [29], dimensionality reduction [30] and numerosity

reduction [31].

2.2 Learning tasks

After the data goes through the previous steps successfully, several machine learning techniques can

be applied depending on the type of conclusions that need to be reached. Machine learning relies
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Figure 2.1: The preprocessing steps [32].

on models that can “learn” with the given data and seek out patterns, so that it can predict certain

behaviours or give a classification when new data is presented. According to the way data is given

there can be two types of learning performed by systems. The first, supervised learning, consists of

analyzing given inputs with the corresponding outputs as a learning experience. Having both of these

components will enable the system to figure out a way of classifying future data based on the observed

“examples” given previously. Then there is unsupervised learning, which, instead of giving inputs and

the corresponding outputs, will only give the inputs, and from these it will need to extract patterns.

2.2.1 Classification and Prediction

As previously discussed, machine learning can be used for a variety of tasks, being one of those classi-

fication and prediction. Classification consists in the assignment of a pre-determined class to the input

data, taking into consideration a particular model. This is usually done with the use of supervised learn-

ing, by giving existing inputs and their corresponding labels, called the training set, in order to build

a decision model to infer future cases. While classification deals with the attribution of classes/labels,

prediction is used for analyzing continuous functions and determining their new values. After a classifier

is ready, the respective classification accuracy can be measured by using a test set independent of the

training set, because the data would tend to overfit if data related to the training set were to be used.

Another method of approaching this issue is cross-validation, on which the training data is divided into

two different segments, preferably in a way that the whole data is represented in both segments (strat-

ified cross-validation), being the first segment used to train the data to find a predictive model, and the

second used on the process of validation of the model. If the accuracy is considered acceptable the

classifier can be used in labeling new data.

Regarding classification, several ways of addressing this issue were created throughout the years.

One of those methods would be decision trees [33, 34]. In a simplified way decision trees consist of 3

types of structures: internal-nodes, branches and leaves. Internal-nodes represent the tests made to

the data. Depending on the results of those tests, a branch would be chosen which could lead to more

tests or to a leaf, which represents the class label and the end of the decision tree. To create these
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trees, algorithms such as ID3 [35], C4.5 [36] and CART [37] were created.

Bayesian classifiers are a way of classifying data based on probabilities. As the name suggests it is

based on the Bayes theorem, thus relying on posterior and prior probabilities. A variant of this method,

showing similar results in terms of classifying, though with less computational power involved, would be

the naive Bayesian classifier [38], which has a key aspect to it of considering all attribute values to be

independent of one another, making the task of classifying data much simpler.

Neural Networks are another classification method [39]. They are constituted by input and output

units, and also hidden units. These units are connected to each other and each of these connections

has a weight associated to it. The idea underlying this method is that an extensive training period is

performed to, given the input, calculate the weights in order to classify, in the best possible way, the

future inputs.

Besides these methods, support vector machines are also used in classification problems [40]. This

method uses a nonlinear mapping to bring the data to a higher dimension. In this new dimension it will

attempt to find a way to separate the data using a linear hyperplane, while trying to find the optimal

solution to do so. To find this hyperplane there is the need to use certain data, called support vectors,

that are critical to finding the best solution to separate the data, which will establish the best possible

margins to work with.

These are some of the classification methods, although many more exist [41, 42]. The examples

given could be considered to be the most widely used ones, being that some of these can also be used

as prediction methods.

Regarding prediction, one method stands out for being used in various occasions. Regression tech-

niques are widely used whenever numeric prediction is being attempted [43]. These methods try to

estimate a relationship between a response variable and one or more predictor variables. When there is

only one predictor variable, simple linear regression is used. An example of a simple regression model

would be straight-line regression, which tries to fit the data to a straight line, as the name suggests,

using the following equation: y = b + wx , where y represents the response variable, and x the pre-

dictor variable. Both b and w can be regarded as weights and can be estimated using the method of

Least Squares. There can also be more than one predictor variables, implying the use of multiple linear

regression, and there is also Nonlinear regression [44]. There are many types of regression used for

nonlinear functions that include: Polynomial Regression, Logistic Regression and Poisson Regression.

2.2.2 Clustering

Another machine learning field that is very used is clustering [45]. Clustering is used to group data into

clusters, being that the objects within a cluster need to be similar among themselves, and on the other

hand, need to be sufficiently different from other clusters’ objects. These sort of tasks are used when

there are no pre-defined classes, contrary to what happens with classification, thus having the neces-

sity for the clustering algorithms to create their own classes, which are called clusters. Due to these

circumstances clustering operations are considered to be an unsupervised learning method because
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class labels are not provided due to the fact that they do not exit, having to be created as the algorithm

is applied. The algorithms, in order to separate the clusters, tend to use distance measures between the

data, which is an intuitive way of performing clustering on data.

Many methods for clustering have been developed, and they can be sorted into different categories.

One of those categories is partitioning methods [46]. These methods use a certain number of partitions,

which will form the future clusters, to sort the objects among them. The objects would then be relocated

through the partitions to find the best fit, usually found through the use of distances as previously said.

One of these algorithms is K-means [47]. The K-means algorithm behaves in the way that has been

described and uses as similarity measure the mean value of the objects within the clusters. The name

of this algorithm comes from the similarity measure used, and the fact that there will be used a K number

of clusters.

Hierarchical methods are also used frequently [48]. These methods consist of the grouping of clus-

ters in a tree form and can be developed in two ways: agglomerative or divisive. In agglomerative

clustering, all of the objects are clusters in the beginning. As the algorithm progresses, the objects will

merge until certain conditions are met, providing the final form of the clusters. The divisive methods are

similar, but instead of having all the objects become clusters individually, all of the objects are a single

cluster. As the method iterates, the objects will begin to separate creating new clusters. Some examples

of these methods are minimal spanning trees, and simple linkage algorithms, and also BIRCH [49], and

ROCK [50].

Density-based methods are another type of methods used for clustering [51]. They consist in a

growing cluster, that will continue to expand until a certain threshold of density is reached. The density

is in relation with the amount of objects contained in the cluster, and while the density stays above the

threshold indicated previously, the assumption that the data contained in that cluster belongs to it will

remain true. Two popular density-based clustering algorithms are DBSCAN [52] and DENCLUE [53].

The first one uses a density-based connectivity analysis to expand the clusters, and DENCLUE makes

use of density distribution functions in order to perform clustering on the objects.

Grid-based methods can also be used to cluster objects. These methods make a finite number of

cells, creating a grid structure, upon which the clustering operations are performed. As a result of this

sort of method, the whole process of clustering will have a speed dependent only on the number of

cells of the grid, thus having the ability to be faster than most algorithms. STING [54] is one of these

methods, which acts based on statistical information of each cell of the grid. Another method is CLIQUE

[55], although this can be considered a mix of grid-based methods, with density-based methods.

Last but not least, model-based methods are another option when it comes to clustering. These

methods resort to mathematical models in order to fit the data into clusters. For this purpose a variety of

models can be used, as for example using the logic of K-means, but using mathematical models to infer

the distribution probability, in a process called Expectation-Maximization [56]. Other methods make use

of neural networks, as for example Self-organizing feature maps [57]. In order to choose which of all of

these methods to use, there is a need to know the data on which clustering is to be performed to choose

the one that would best adapt to it.
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2.2.3 Evaluation measures

In order to check if any sort of data mining operations are correctly performed, whether it is classification,

clustering or even imputation, there is a need for evaluation methods. These methods include Root Mean

Squared Error, ROC curve and AUC [58], accuracy, and some of the more specific performance metrics

when it comes to imputation, prediction accuracy, and coefficient of determination. These are just some

examples of the many evaluation measures that exist. Let Oi be the ith observed value, and Ei be the ith

estimated value.

The Root Mean Squared Error (RMSE) is used as way of measuring precision and accuracy, by

calculating the deviation between the real values, x and the prediction made x′, and it can be used on

imputed values, being T the amount of values imputed. The lower the RMSE the better the data has

been imputed. It is represented mathematically as:

RMSE(x, x′) =

√√√√ 1

T

T∑
i=1

(x′i − xi)2.

A good way of measuring a binary classifier (classifier with two output classes) is by using the ROC

curve and by calculating the respective AUC. ROC refers to Receiver Operating Characteristic and in

short represents the trade-off between the true positive rate and the false positive rate when changing

the classification threshold. AUC is short for Area Under the Curve, in this case the Curve delivered by

ROC. This is a good efficacy metric that will have a value between 0.5 and 1. The closer the AUC is to

1, the better the model behaved.

The accuracy is another good method to evaluate the performance of a classifier. To calculate

the accuracy, a proportion between the correctly assigned classification and the wrongfully assigned

classifications need to be done. The higher the accuracy, the better the classification model is.

Prediction Accuracy (PA) is a performance indicator that can be used to evaluate whether the impu-

tation is done correctly or not. It can take values that range from 0 to 1, being a value closer to 1 a better

fit than if it were closer to 0. Using O and E as the average of the observed and expected (in this case

imputed) values, and σO and σE as their standard deviations we get:

PA =

T∑
i=1

(Ei − E)(Oi −O)

(T − 1)σEσO
.

Finally, the last evaluation measure discussed will be the coefficient of determination, which is also

used to evaluate imputation processes. In similarity with the previous performance indicator, it can take

values that range between 0 and 1, being 1, once again, a better fit than 0. This coefficient can be used

to assess the variability in the imputed data in relation to the actual values, and it is given by:

R2 =

(
1

T

∑T
i=1(Ei − E)(Oi −O)

σEσO

)2

.
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2.3 Time series analysis

This work will focus on the imputation of missing values in time series, which have a component that

differentiate them from the rest of the data - time. Data is to be acquired over time and indexed in

accordance to the passage of time, usually with equal time intervals, so that it forms a sequence of

time-stamped data. This kind of data is used on many applications nowadays as, for example, in the

stock market or medical records, amongst many other fields [59, 60] . Data mining applied to time series

share the same concerns as if it were applied to the generality of data: classification, clustering, and

forecasting. This last one refers to forecasting future values in time series and is a highly explored field.

A time series is a sequence of data points indexed in time t ∈ {1, . . . , N} with the result X =

(x1, x2, . . . , xN ). Thus, a forecast of a time series, at a further time t, would be xN+t.

Whichever is the goal of the data mining process, there is another procedure that can help filling a

time series data. It is called trend analysis [61] and mainly consists of 4 components: trend, seasonal,

cyclic and random variations.

• Trend variations refer to the general direction taken over a time interval as, for example, the trend

to rise at a certain moment.

• Seasonal variations represent a certain event that re-occurs within a time interval, with a time

interval associated with a calendar period, such as monthly or daily routines.

• Cyclic variations are very similar to seasonal variations, being the main difference the interval of

time associated - these events use to have a duration longer then. a year

• Random variations, as the name implies, is associated with random events that occur, possibly

modifying the previously discussed components.

The existence of these components in time series is very important, since they will enable the use

of many algorithms that can analyze the patterns made by them. This is especially important when

it comes to matching or aligning time series with one another. Medical databases will benefit greatly

from these components because of the big sample of patients they hold, which in turn will increase the

diversity of behaviour of many features, making it easier to find connections between the features of

some patients.

Time series may need to be handled differently depending on the number of variables, especially

when it comes to forecast an event. When a time series is only represented by a single variable, the

forecast can only depend on the past and present values. These are called univariate time series. As

opposed to this, the multivariate time series are composed by two or more features that are registered

along time [62]. An example of this type of time series are medical records, which can hold many

variables taken from the variety of exams patients undergo.
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2.3.1 Forecasting

When it comes to forecasting several models can be used, being some of the most used the Auto-

Regressive Integrated Moving Average (ARIMA) model [63], and the Exponential Smoothing [64]. ARIMA

acts based on the autocorrelation of the data which in time series can be very useful for forecasting. This

approach uses two procedures: a linear combination of the past values of the variable (auto-regressive

model), and, instead of using the past values, it uses the past forecast errors (moving average model).

2.3.2 Clustering and Classification

Clustering in time series can be made with two different clustering types in mind. Whole-series cluster-

ing, where the objective is to take the whole time series and apply clustering techniques to it. This can

be done by using any of the previously discussed techniques, or even any kind of general clustering ap-

proach, having only to define an appropriate distance measure. Methods such as Self-Organizing Maps,

Auto-Regressive models and k-means can be used. The second type is called subsequence clustering

and is performed on subsequences found in the time series, which will be used to generate the clusters.

Although usually, Euclidian distances are used as similarity measures, many alternative methods have

been created, dealing with other aspects of the time series such as the shape it takes.

As for classification, in similarity to what was described previously, operations will be done with two

different types. One that deals with the whole sequence, and the other deals with subsequences. Either

way, once again, any kind of classification technique can be applied and even other methods such as

ARIMA can be used.

2.3.3 Data representation and summarization

Another field approached on time series is data representation [65]. The goal to achieve on this field is

to reduce the dimensionality of time series, by using representation techniques, while still keeping intact

all of the available information on the data set. One of the ways of achieving this is by using the Discrete

Fourier Transformation [66]. Another known algorithm is the Symbolic Aggregate Approximation (SAX)

[67]. One of the most important aspects of these methods is the distance definition between time series.

Among the distance measures for the time series similarity, the Euclidian Distance and Dynamic Time

Warping (DTW) [12, 68]. DTW is used to compare and align two time series due to the ability of this

algorithm in altering the time series by “compressing” or “decompressing” these.

Data summarization is another of the fields of interest in time series. It strives for summarizing and

describing the data in time series, in order to obtain a better performance on the other data mining tasks

to be applied on the time series. Many methods have been developed using existing techniques, such

as clustering methods, to perform the data summarization.
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2.4 Missing data imputation

As previously discussed, imputation is a preprocessing task that should not be overlooked. If the missing

values were to be ignored a lot of information would be lost. This becomes an even bigger issue when

time series are being handled because future values may depend on the past values, and by erasing

certain past data, the operations of forecasting, classification and clustering will become more error

prone. The best course of action would be to adopt imputation techniques so that the data could be

filled with plausible values. Three types of missing values can be considered: Missing data are not

random (NMAR), Missing Data are Random (MAR), and Missing Completely at Random (MCAR). By

defining the type of missing data, an appropriate imputation algorithm can also be chosen [69]. Of these

types of missing data the most complicated to deal with is MCAR due to the difficulty in finding patterns

to impute this type of data.

2.4.1 Statistical Methods

Some of the imputation techniques resort to statistical methods. The most simple of these methods

replaces the missing values with the mean or median of the variable [70]. This leads to biased data,

diminishing the correlations in these variables, having a negative impact on the learning tasks to be

performed. This becomes an even bigger issue when multivariate data is being used. Another statistical

method used is the hot-deck imputation [71], which will use the value of a random instance of the

required variable to fill in the missing value. An example of this method is the Last Observation Carried

Forward [72]. This method makes an ordered version of the data set (according to some variables), and

whenever missing values are detected, the previous value will be used to impute them. Once again, this

may lead to bias problems. One method that achieves good results in terms of predicting variables is

regression. A regression model is built to predict values, based on other variables, in order to impute

the data. Although these methods are fairly simple to use, they still lack in terms of efficiency.

One of the most used imputation techniques is called multiple imputation [73]. This method has three

phases: the first phase is to create n copies of the database, each one with separate imputed values.

These values are obtained by using an appropriate model, and also by giving them some variability, in

order to include the uncertainty of the imputation. If the data present in the database is highly relatable,

making it easier to predict the data to be imputed, there is a smaller need for the variability, although

there will still exist some to account for the uncertainty. In cases where the imputed data is not as

relatable to the existing data, the variability given to it will be increased, in order to account for a bigger

number of cases, making it more likely to achieve the desired results. The second phase refers to the

analysis of the n created databases. At this point, it is to be expected that the analysis will result in

different outcomes. This is related to the given variability imputation-wise. The third and final phase is

the merging of all the information collected on the previous step in order to perform statistical analysis

on them, thus inferring on the best possible imputation process.

A particular case of this method is MICE (Multivariate Imputation by Chained Equations) [74]. MICE

runs a series of regressive models, that will be performed on variables with missing values, being mod-

11



elled against the other variables on the data set, so that each variable is modelled according to the way it

is distributed. In order to perform this method, firstly a basic imputation method should be applied, such

as replacing all the missing values with the mean values. This holds the purpose of while performing the

regression for a certain variable, the other variables will have complete data to enable the operations.

After this, a single value of one variable that was imputed will be removed, and the remaining values,

which are known, will be regressed on the other variables. After the creation of this regression model,

the missing values belonging to this variable can finally be filled, resorting to the created regression

model. This will then be repeated for all variables, until all variables have been imputed resorting to the

regression model. This will be regarded as a cycle, being more cycles performed in order to give a better

approximation to the values of the imputed data. In resemblance to what was previously discussed, this

whole process will be repeated n times, forming n databases, each with different imputed values due to

the variability that was added. The rest of the process will hold similar to what was previously described.

2.4.2 Time Series Imputation

One of the easiest techniques to apply to impute time series is a simple moving average [75]. This

consists of a window of data that will use a certain amount of values, from either way of the missing

value, to calculate a mean that will be used to impute the missing value. A problem that can arise from

this method is when a window takes up more than one missing value. The solution found for this is the

automatic increase of the window until the necessary amount of values is found. Other variations of this

algorithm exist such as the Exponential Weighted Moving Average.

Multiple imputation is a technique that is commonly used to impute data in time series, particu-

larly, when it comes to multivariate time series. Other of the already described algorithms can also be

used in multivariate time series imputation such as the Nearest Neighbour [76] and the Expectation-

Maximization methods [77].

Another method used on time series revolves around the notion of the previously described time

series characteristics. By removing the components related with trends and seasonality, the imputation

process becomes easier, due to the lack of “noise” derived from these components [69]. After removing

the components any of the imputation methods described can be applied to perform the imputation.

Afterwards, the removed trend and seasonality components will be added in order to deliver the final

imputation results. The performance of this method is greatly enhanced when the data sets on which it

operates has strong seasonality and trends, while if it does not, the results will be close to what would

happen if the seasonality decomposition has not been applied.

When it comes to univariate time series, the methods used must differ from these, in the sense that

the univariate methods can only depend on data from the one variable it possesses, thus only being

able to analyze past and future values on the time series to impute the data. Linear/Spline interpolation

are some of the methods used for univariate time series imputation [78].

In the following section, the sequence alignment algorithms which will be used in this work will be

introduced.
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2.5 Dynamic time warping - DTW

The DTW algorithm consists in the alignment of two data series by trying to explain variability in the

Y-axis with variability in the X-axis [12]. An example of this can be seen in Figure 2.2.

Figure 2.2: Example of the dynamic time warping algorithm [79].

This algorithm takes two time series (Equations (2.1) and (2.2)), not necessarily with the same size,

and builds an m-by-n matrix in order to align both of these sequences. Each of the elements of this matrix

will correspond to a distance δ(ai, bj) between two points ai and bj , for i ∈ {1, ..., n} and j ∈ {1, ...,m}.

The goal of this matrix is to help to determine a path in which the distance between both sequences is

minimized. This is called a warping path and an example of one is given in Figure 2.3, and it would be

represented as in Equation (2.3).

A = a1, a2, ..., ai, ..., an (2.1)

B = b1, b2, ..., bj , ..., bm (2.2)

W = w1, w2, ..., wk, ..., wt (2.3)

max(n,m) ≤ t < n+m− 1

The warping path elements wk represent the alignment of two points of the sequences to be aligned

(i, j)k. A warping path must obey certain conditions [12]:

• Continuity - There is a limit in the steps that can be given: If wk = (i, j) and wk−1 = (i′, j′) then

we must have i − i′ ≤ 1 and j − j′ ≤ 1. In short terms this means the warping path must only

progress in the matrix through adjacent cells (horizontally or diagonally).

• Monotonicity - The points of the warping path must be monotonically ordered in time such that

for wk = (i, j) and wk−1 = (i′, j′) we have i ≥ i′ and j ≥ j′
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Figure 2.3: The alignment of two sequences (Equations (2.1) and (2.2)) in a matrix, and the respective
warping path (Equation (2.3)) [80].

• Boundary Conditions - The first point of the warping path and the last should refer to the respec-

tive first and last points of the sequences to be matched: w1 = (1, 1) and wt = (n,m). Although

this is one of the conditions, sometimes there are exceptions that are introduced by giving offsets

that could be used to initiate/terminate the warping path.

Many paths can be determined using these conditions, however the goal is to minimize the warping

path as much as possible, as presented in Equation (2.4).

DTW (A,B) = min


√∑t

k=1 wk

Z

 , (2.4)

Z is a coefficient used to compensate for the difference in size of the warping paths. One of the

possibilities for this value is the size of the found warping path Z = t. Having wk as the distance

between elements of the time series wk = δ(i, j), two commonly used distance measures are presented

in Equations (2.5) and (2.6).

δ(i, j) = |ai − bj | (2.5)

δ(i, j) = (ai − bj)2 (2.6)

The path can then be found by applying dynamic programming to calculate the cumulative distance

γ(i, j) for each point, which will be the distance for the current points δ(i, j) added to the minimum of the

cumulative distances of the adjacent elements in the matrix (both horizontally and diagonally), as shown

in Equation (2.7).
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Figure 2.4: DTW alignment.

Figure 2.5: DDTW alignment.

Figure 2.6: The alignment of two sequences by using DTW 2.4 and by using DDTW 2.5 [79].

γ(i, j) =δ(ai, bj)+ (2.7)

min[γ(i− 1, j), γ(i, j − 1), γ(i− 1, j − 1)]

When the algorithm is completed, the optimal warping path will be found by tracing backwards

through the minimum found values. When the warping path is found a score will be attributed to the

match, which will reflect upon the distance of the full warping path to both sequences (in this case

reflecting how good the fit was).

2.5.1 Derivative Dynamic Time Series - DDTW

Although DTW is able to align many sequences with great proximity, excelling particularly when it comes

to variations in the X-axis (variations in time), there are many sequences in which it will encounter

certain issues. One of the problems it will encounter is when it comes to variations in the Y-axis. With

the presence of local features, such as peaks and valleys, the alignment will be affected. The DTW

algorithm will attempt to justify these local features by making corrections in the X-axis, thus producing

singularities which will affect the alignment in the places where these features are located. The issue

falls on the alignment being made depending solely on the distance of the sequence points, and not

considering the waveform/shape of the sequence. To mitigate this problem, DDTW was created [79].

This algorithm would be using the derivative of the sequences, which will have more significant results

in terms of aligning the waves using their shape. In Figure 2.6 it is visible the differences when aligning

the same sequence with DTW and DDTW.

The algorithm will behave in the same way as before, however the alignment will happen on the

derivative of the sequences. Usually, for simplicity, the derivative is calculated based on the slopes of

the point in question with the point on the left and the one on the right. Thus, the derivative, D[ai] at any
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given point, ai, of the sequence will be as presented in Equation (2.8).

D[ai] =
(ai − ai−1) + (ai+1−ai−1)

2

2
(2.8)

By having the derivative calculated as shown in Equation (2.8), there could be loss of information

when it comes to the first and last points of the sequence. Another problem is the exact issue trying to

be solved: missing values. Missing values will not only have a direct impact in the point where they are

missing, but also in their surroundings, specifically to their immediate right and left. This can have a big

impact particularly when it comes to short sequences.

2.5.2 Dynamic time warping-based imputation - DTWBI

Having both of the previous sections in mind we can now look at Dynamic time warping-based imputation

or DTWBI for short [81]. This method was developed with imputation of gaps (a continuous group of

missing values) as a goal. This method was originally applied in univariate time series, and would

compare the sequence with the missing gap with other time series of the same dataset, trying to find the

most similar sequence to the one with the missing value.

To perform this imputation, the first step would be to extract a sub-sequence, before or after the gap.

Then, the DDTW algorithm would be applied in other time series, locally, as a sliding window, to find the

best match possible. The final step would be to copy the values associated with the best match, which

was found in the previous step, at the relative position of the gap and the sub-sequence used to find

the best match. For instance, if there was a gap from positions a20 to a25 and the sub-sequence a14

to a19 was used to find a match, then if the best match were to be found (on a different time series) at

positions b7 to b12 then the values to be used for the imputation would be from b13 to b18. An example of

this algorithm can be seen in Figure 2.7.

Figure 2.7: An example of the DTWBI algorithm using a sliding window to find the optimal match. [81].
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2.6 Needleman-Wunsch algorithm - NW

This algorithm was chosen due to the similarity in terms of behaviour, comparing to DTW algorithm,

in the sense that both perform sequence alignment. The NW algorithm [14] was mainly created with

the purpose of aligning discrete sequences in the field of bioinformatics such as protein or nucleotide

sequences (related with DNA).

It will also behave in a similar way to the DTW algorithm, with the construction of a matrix using both

sequences. The difference will be that, in DTW, the distance between data points is used to build the

alignment matrix. In NW, a similarity matrix will be used to build the alignment matrix, with given scores

between two data points ai and bj , for i ∈ {1, ..., n} and j ∈ {1, ...,m}.This similarity matrix must be

consulted to define the scores of each cell of the matrix. The similarity matrix can be custom made or

it can be built based on the scores attributed to matches, mismatches and gaps. Typically the score

for matches is 1, while for mismatches is 0 (this is considered a penalty). Besides these factors there

are also two types of gap penalties. These can be gap openings, which refer to when a gap must be

introduced to a sequence, and the gap extension penalty which is used when a gap (which was already

open) extends. When using a custom similarity matrix certain matches of characters could be assigned

a greater score, thus favoring the matching/mismatching with certain characters.

When the matrix is filled with all the values, the traceback phase will occur, in similarity to what

happens in DTW. Then, it will generate the alignment by finding the path, starting at the bottom right cell

of the matrix and ending at the top left cell. To find this path the movements from one cell to another

can be made upwards, diagonally or to the left. When a move is made diagonally it will correspond

to a match/mismatch, and when it moves either to the up or left a gap is to be introduced. In Figure

2.8 a representation of the Needleman-Wunsch algorithm is shown. On the left the scoring matrix is

represented along with the traceback (path in orange), which was made by following the blue lines which

were added during the building of the matrix, while on the right side we have the similarity matrix with

the scores for the matches and mismatches.

An alternative to this method could be the Smith-Waterman algorithm [82], which is a variation of the

NW algorithm. The main difference between these algorithms is that, while the NW algorithm operates

globally on a sequence, the Smith-Waterman will act using a local approach. In the traceback phase,

instead of aligning both sequences globally it will analyze the best score in the matrix and build the best

local path it can find. This means that certain parts of both sequences may not belong to the alignment

if they negatively impact the best score.

The next chapter describes will describe the implementation of the imputation algorithms which will

make use of DTW and NW.
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Figure 2.8: Example of the result of the Needleman-Wunsch algorithm applied to align two DNA se-
quences with a gap value of -1.
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Chapter 3

Proposed Method

This work will consider two main approaches to data imputation, focusing on time series, which will be

explained in this section. These methods were chosen due to the similarity in methodology, and will both

be compared in a later section.

3.1 DTW imputation

The first method will be based on DTW to perform imputation of missing values. The algorithm will re-

semble the DTWBI algorithm explained in the previous chapter, although it will suffer some adjustments.

Firstly, the number of points of the window that will be used to find a match will be chosen, and this

number will also have impact in the amount of windows to be analyzed. For instance, by analyzing a

window of size 5 we will have a maximum of 6 different windows to analyze placed around the missing

value. An example of this is represented in Figure 3.1. The size of the window should be influenced by

the size of the time series analyzed, as well as the amount of missing values in the series. If the missing

value is placed in the beginning or ending of a time series the amount of windows to be used will be

reduced due to the non-existence of points to analyze surrounding the missing value. If there are other

missing values surrounding the analyzed missing value, the amount of windows will also be adapted to

whichever number of windows that are able to utilize in the algorithm.

After the windows which are to be used for the comparison are chosen, they will be compared against

other samples of time series. The objective is to find (regarding the same feature) the most similar sub-

sequence in all of the data available against the chosen windows. Needless to say that the more data

to be compared, the better due to increased diversity of samples that this could bring. The algorithm

must of course not be applied in the presence of missing values in the other data for the alignments to

be accurate. Additionally, the position from which the value to fill for the missing value will be retrieved

must not contain a missing value.

In this algorithm, the DDTW will be applied, and as such the derivative of the time series must be

calculated. One of the problems which was already described would be the loss of information regarding

the initial and final points of the time series, as well as loss of information on the points surrounding
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Figure 3.1: Example of the result of the windows to be compared with DTW. Blue circles represent the
window to be analyzed, red circles represent the missing value, and the white circles are the remaining
data points.

missing values. To counter this, the derivative was calculated by using two points whenever it was

necessary. This was done because, in order for this work to be applied in short time series, the amount

of information that would be lost because of the derivative using three points would be impactful in the

efficiency of the algorithm.

Regarding the imputation of the actual value, instead of copying the exact values as done in the

DTWBI algorithm, the value will be calculated by using (2.8). The objective will be to calculate ai, having

D[ai] as the value found (in the same place of the missing value when compared to the window to be

searched), and the values of ai+1 and ai−1 as the values surrounding the missing value to be imputed.

3.2 Needleman-Wunsch Imputation

The other method to be analyzed will rely on the Needleman-Wunsch algorithm. In order to use this

method on the imputation of continuous time series, a pre-processing step of discretization must be

taken. The dataDiscretize function from the R package bnspatial was used. The discretization was

made with equal sized classes, being the number of classes to be used based on the number of data

points available in the sequences. Another important factor is that the discretization for each individual

is made independently, which will be beneficial in terms of creating matches between sequences with

similar shapes instead of only considering the values of the data points.

To perform this algorithm on a sequence with missing values, the missing values will be assigned

a special character: ‘?’. Also, when building the similarity matrix, we must consider that the objective

of this algorithm is to match the missing values (‘?’) with another character (a suitable one) in order to

discover its value. To do so, the similarity matrix must be built with such objective in mind, which means

the matrix should consider the following:

• All matches between characters (except for the matches between ‘?’) will have a score of 1.

• All mismatches between characters (except for the ones involving ‘?’) will have the score of -1.

• The match between ‘?’ characters is unwanted, because it would mean that two missing values
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are being aligned, which is not the objective of the algorithm. As such, the value assigned to the

match of ‘?’ will be the same as a mismatch (-1).

• Mismatches with ‘?’ must be considered beneficial in order to find the values used to replace the

missing values. As such, this value must be higher than the normal mismatch value, being the

chosen value -0.5.

• The gap introduction penalty was set to -0.8 in order to prioritize finding a mismatch for the missing

value instead of opening a gap.

• The gap extension penalty was set to -0.3, so that if a gap opened beforehand a missing value

is not mismatched. This means that the missing values will not have a correspondence to a data

point inside a gap.

Having the matrix built in such a fashion the algorithm will behave in the usual way, and the best

possible match will be the one used to retrieve the missing values. However, there is a possibility that

the missing values could align with a gap, which would not be useful to this algorithm. When this occurs

the algorithm will have to run again with a feature enabled which will not allow the algorithm to align

missing values at the first missing value. It will run as many time as necessary to fill all the missing

values.

In the next chapter, the tests and results obtained with these algorithms are presented.
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Chapter 4

Results

In this section the results obtained with the previously described methods will be presented. Besides

this, some information on the used data will be given as well as a comparison on the performance of

both algorithms.

4.1 Datasets

In this work, three datasets were used: two synthetic datasets, ECG and CMUsubject16 [83] and a real

dataset, Epileptic Seizure Recognition [84]. This last dataset is a recording of brain activity in several

patients under different situations with the main goal of studying people suffering of epileptic seizures,

which is helpful when trying to perform the imputation, due to the variety of data, even though this

dataset holds only one feature. This dataset is also the one with the highest range, with values from

-1885 to 2047. The ECG dataset contains data on 200 individuals with only two features. Although the

time series are short (39 datapoints), there is a wide range of values in the sequences (going from -438

to 430). CMUSubject16 is a database with few individuals but with many features (62). The data has a

range from -137.54 to 437.35, although the range is shorter on each characteristic. A brief overview on

the features of these datasets is presented in Table 4.1.

Dataset Individuals Length Features

CMUsubject16 58 127 62
ECG 200 39 2

Seizures 11500 178 1

Table 4.1: Overview of the used datasets.

4.2 Single missing values imputation

Firstly, tests were made with a single missing value (picked at random) in a certain individual and fea-

ture (also picked at random). To test this, a missing value was inserted in each of the datasets, and
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once found these would be compared against the original values. In order to be able to compare both

procedures, the missing values used for the DTW imputation will be the same used in NW imputation.

As for evaluations measures, the Root Mean Squared Error (RMSE) will be used as a way of mea-

suring precision and accuracy by calculating the deviation between the real values, x and the prediction

made x′.

The prediction accuracy (PA) indicator will also be used which is a performance indicator that can be

used to evaluate whether the imputation is done correctly or not. It can take values that range from 0 to

1, being a value closer to 1 a better fit than if it were closer to 0.

Finally, the last evaluation measure discussed will be the coefficient of determination (R2), which is

also used to evaluate imputation processes. In similarity with the previous performance indicator, it can

take values that range between 0 and 1, being 1, once again, a better fit than 0. This coefficient can be

used to assess the variability in the imputed data in relation to the actual values.

The following subsections will discuss the tests made in both approaches.

4.2.1 DTW Imputation

The results of the single missing values imputation using DTW is shown on Table 4.2.

Dataset RMSE PA R2

CMUsubject16 0.307 0.999 0.766
ECG 13.72 0.993 0.756

Seizures 3.491 0.999 0.875

Table 4.2: Evaluation measures of the single imputation using DTW.

By analyzing Table 4.2 it is shown that the algorithm worked well overall on all the datasets. The

ECG dataset was the one with which this method was least effective, and this could be due to the high

range of the data (in the case of ECG data ranges from -438 to 430), as well as the amount of data

available to compare in order to search for the missing values. Even so, the obtained result for this

dataset was mostly accurate. The seizures dataset also had good results even though the RMSE is

higher when compared to the CMUsubject16 dataset. This could be once again caused by the range of

the data (which in the case of the seizure dataset ranges from -1885 to 2047). Regardless, considering

this dataset contained real data, the algorithm could impute data with good precision. In Figure 4.1 an

example of an alignment can be visualized. The sequence in blue is the one with the missing value,

represented by the cross, and the sequence in orange is the best match found in the dataset. This work

used a window size of 5 in the algorithm, and because it analyses the surroundings of the missing value

(with the window size given) the charts will have the missing value position in the middle, and will also

have the 5 prior and following datapoints. Take in consideration also that any of the windows could have

been used to find the best match, and that this match is based on the shape of the waves instead of the

values.
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Figure 4.1: Example of the result of the DTW algorithm applied to align two sequences of the Seizures
dataset.

NW Imputation

The results of the single missing values imputation using NW are shown on Table 4.3.

Dataset RMSE PA R2

CMUsubject16 0.523 0.999 0.765
ECG 39.02 0.946 0.685

Seizures 12.99 0.997 0.872

Table 4.3: Evaluation measures of the single imputation using NW.

The NW imputation algorithm shown in Table 4.3 shows that for the CMUsubject16 dataset the results

were quite good. Regarding ECG and Seizures datasets the results were not as good. Once again, the

ECG dataset suffered the worst imputation, which could be associated with the amount of datapoints for

each individual. The size of the sequences directly affects the discretization, as was mentioned in the

earlier chapter, because the amount of classes created depends directly on the size of the sequences.

Because this particular dataset has short sequences and a big range, the boundaries of each class will

have a big range, which will make this method more inaccurate (because the values will be imputed with

the intermediate value of the range of the class assigned to the missing value).

As for the Seizures dataset, the results could be explained by the same reason. Because this dataset

has bigger sequences, the effects of the discretization were not as noticeable as on the ECG dataset,

nonetheless the effects of the range of the data of the Seizures dataset and the size of the sequences

also affected the performance of the algorithm. The CMUsubject16 dataset had the best imputation

out of the three, which can be explained by the size of the sequences (having a size that facilitates a

good amount of classes) and the range of the values, which in this case is smaller than the other two

datasets (ranges from -137.54 to 437.35, although the ranges for each feature it has are much smaller).

Although the results for the NW were the best for this dataset, when examining the alignment of the
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discrete values, we could observe that some of the matches were not correct, but due to the proximity in

class (and having each class a low range of values), the imputation was not as affected by the wrongful

alignment of the sequences, as the other two datasets. In Figure 4.2 an example of the discretized

alignment is given. The missing value is represented by a ”?”.

Figure 4.2: Example of the result of the NW algorithm applied to align two sequences of the Seizures
dataset.

4.2.2 DTW vs NW

Comparing both of these algorithms it can be said that DTW is the most accurate one, although on large

sequences with low range of data the results are quite close. Regarding speed, the NW imputation

is faster than DTW imputation. It was more noticeable on the Seizure dataset, due to the amount of

individuals it had. The NW algorithm also had an issue due to the alignments of missing values with

gaps. This was surpassed when forcing the algorithm on finding the best possible alignment which

would not align the missing value with gaps.

4.3 Multiple missing values imputation

On the second part of this work , the imputation of data when multiple missing values are present in a

sequence will be analyzed. This will be done by following the same steps as before, although instead of

removing only one datapoint at random, an individual and feature will be chosen at random, and from the

elected sequence we will have 5%, 10%, 15% and 20% of missing values in randomly picked positions.

This will be done in four different runs for each missing percentage, with the exception of the Seizure

dataset which will be done in a single run, due to the high computation time of the DTW imputation on

this dataset. For effects of comparison the same positions will be applied on DTW and NW imputation.

4.3.1 DTW imputation

The results of the DTW imputation with multiple missing values are shown on Table 4.4.

26



Dataset Missing % RMSE PA R2

CMUsubject16

5% 0.221 0.999 0.934
10% 1.802 0.997 0.965
15% 2.08 0.997 0.973
20% 1.8 0.997 0.978

ECG

5% 24.01 0.979 0.734
10% 36.24 0.934 0.766
15% 45.82 0.965 0.856
20% 42.05 0.948 0.844

Seizures

5% 13.4 0.998 0.787
10% 53.44 0.997 0.888
15% 29.66 0.907 0.764
20% 25.98 0.894 0.757

Table 4.4: Evaluation measures of the multiple imputation using DTW.

The CMUsubject16 had the expected behaviour with the increase in the RMSE, even though for

the 20% missing values the RMSE value decreased. Overall the values were in accordance to what

was seen in the single imputation for this dataset, having a good accuracy and low errors, even in the

presence of many missing values. Regarding the ECG dataset, there were also no surprises, because

in similarily to what happened with the single imputation, this was the dataset which had the worst

performance. Both of these datasets had a relatively fast execution time, which was not the case for the

Seizures dataset, which required a lot of processing time to handle the imputations. Due to these long

execution times, only one execution of the algorithm was done, causing the values on Table 4.4 to be

not as compliant to the expected when compared to the ECG and CMUsubject16 datasets. Although

it was to be expected for the RMSE to be the lowest for the 20% missing values, this was not verified,

with the highest RMSE on the 10% missing values. In terms of the prediction accuracy, the values were

particularly good in the CMUsubject16 dataset. Both the Seizures and ECG dataset also had good

results, although the Seizures dataset struggled with a higher missing percentage. An example of the

imputation with 20% missing values is shown on Figure 4.3.

Figure 4.3: Alignment of the sequence using DTW with 20% missing values for the Seizures dataset.
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4.3.2 NW imputation

The results of the NW imputation with multiple missing values are shown on Table 4.5.

Dataset Missing % RMSE PA R2

CMUsubject16

5% 1.873 0.998 0.931
10% 3.784 0.991 0.952
15% 3.622 0.992 0.963
20% 3.088 0.994 0.973

ECG

5% 39.8 0.942 0.78
10% 40.54 0.889 0.727
15% 45.5 0.925 0.809
20% 57.81 0.862 0.713

Seizures

5% 39.76 0.998 0.787
10% 289.2 0.855 0.652
15% 36.17 0.891 0.627
20% 55.19 0.502 0.238

Table 4.5: Evaluation measures of the multiple imputation using NW.

During the tests, in order to impute all missing values in a sequence, the algorithm had to run multiple

times, due to the alignment occurring globally, which means that sometimes a certain amount of missing

values would align with gaps. In the following runs the already imputed values would be used and a

restriction to find the best matching sequence which could have a match for any missing value would be

implemented in order to fill the missing value.

By inspecting Table 4.5 we can verify that for the CMUsubject16 dataset the RMSE was generally

low. It is also to be noticed the accuracy for the 20% missings was better than the 15% and 10% missings

which was not according to expectations. Although this behaviour was not expected, even though this

result may have happened due to the low number of tests performed, this could mean the algorithm

can still show acceptable results with a large amount of missing values. Regarding the ECG dataset

the same could be verified, although with lesser accuracy due to the size of the classes made by the

discretization, leading to imputed values with less accuracy. This behaviour also repeats itself in the

seizures dataset, although the 10% RMSE results are far from the expected because of the presence

of an outlier in the data (and because this algorithm ran only once), and having difficulties with the

imputation with the 20% of missing values. An example of the imputation the Seizures dataset is done

on Figure 4.4

4.3.3 DTW vs NW

By analyzing the results on Tables 4.4 and 4.5, it is possible to see that both algorithms behave in a

similar way (although there are some exceptions such as the results for the Seizures with 10% missing

values). The DTW algorithm is mostly the one with the biggest accuracy, although the NW algorithm

has shown good accuracy when facing a big percentage of missing values in the ECG and CMUsub-

ject16 datasets. Although DTW had the biggest accuracy it was the slowest when compared to the NW

algorithm. With multiple values missing the difference in execution time is more noticeable, because the

DTW algorithm analyzes the missing values one by one, while the NW algorithm matches the sequences
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Figure 4.4: Alignment of the sequence using NW with 20% missing values for the Seizures dataset.

globally, although more runs of the algorithm may be necessary to fill the missing values aligned with

gaps.

While analyzing the imputations in the DTW algorithm it was seen that in the presence of gaps of

missing values the imputation accuracy would drop the most, which can be explained by the calculations

made for the derivative using only two available points (which is less effective than the derivative using

three points). In the NW algorithm these effects were not as noticeable.

4.4 DTW Discussion

This algorithm gave off the best accuracy overall when compared to the NW algorithm. A few factors

could have influenced this such as the fact that this algorithm fills the missing values, and then uses

these filled missing values to proceed in finding the next ones. Also, due to the algorithm being applied

locally and with several windows, better results were found, which could be overlooked if the algorithm

acted on a global scale. That being said, because this algorithm has an exhaustive local analysis, it will

also take a long time to complete, especially with multiple missing values on big sequences and a lot of

individuals to analyze, which was the case for the Seizures dataset. In order to improve on this aspect a

threshold could be established on the scores of the DTW match. Another solution could be comparing

all sequences globally in order to determine the ones most likely to succeed in an alignment, and use

those on the algorithm. There should also be made attempts to discover a relation between the window

size and the size of the sequences being analyzed, as well as the number of windows to be analyzed.

4.5 NW Discussion

In terms of accuracy, the NW algorithm was lacking when compared to DTW, even though the results

were still appropriate when compared to the original values. The positive point is that it takes less time

than the DTW algorithm. This is because the algorithm compares sequences globally which makes the

process faster. A downside of this is that, when comparing sequences globally, some missing values
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might only match with gaps, which was countered by adding certain validations, although this means

the algorithm will need to process more alignments. Even with this extra step it was still much faster

than the DTW algorithm. One of the biggest problems could be the discretization of the sequences.

When applying discretization, information will be lost, which could be troublesome when retrieving the

final values for the imputation. This issue comes from the fact that the number of classes are chosen

based on the size of the sequences being analyzed, which will affect short series with high variability

in their data. For example, regarding the ECG and Seizures dataset the size of the sequences and the

high variability resulted in a discretization in which classes had a wide range (this happened specially in

the ECG dataset).

An additional improvement would be re-designing the similarity matrix. Instead of using the same

mismatch value for whenever a mismatch between two characters occur, a score could be assigned to

reflect the proximity between the classes. For example, class ‘C’ would have a higher mismatch score

with classes ‘B’ and ‘D’ and the mismatch scores would worsen from these on out. This would promote

mismatches with the nearest classes, instead of with any class.

Another suggestion of an upgrade for this project is the use of a local version of this algorithm to be

compared with DTW which acts locally. To achieve this, the Smith-Waterman algorithm could be used.
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Chapter 5

Conclusions

In this chapter the achievements of this work are listed, as well as the future work that can be done.

5.1 Achievements

In this paper, it was intended to analyze the behaviour of two algorithms when applied to sequences

with missing values in a continuous time series. This analysis is considered extremely important, given

the fact that there are many machine learning algorithms applied to data that have missing values, and

this happening is not being taken in proper consideration, which could have a negative impact on these

algorithms. Thus, this work implemented two algorithms based on DTW and NW alignments, applied to

three different datasets. In addition, some tests were also performed regarding the number of missing

values: single missing values imputation and multiple missing value imputation, placing 5%, 10%, 15%

and 20% of the dataset as missing values. Results showed both algorithms can be used for imputation,

each with their respective strengths - accuracy, when speaking about DTW, or speed, when speaking

about NW.

5.2 Future Work

There are many ways in which the proposed algorithms can improve, which were mentioned in the

previous chapter. Regarding the DTW based algorithm:

• The biggest problem this algorithm faces is the amount of time expended in performing the impu-

tation. A threshold could be implemented, or even a sort of preprocessing step to eliminate the

less likely sequences to have a match.

• Another thing to consider is the size of the windows used in searching for the alignments.

As for the NW based algorithm, which struggled with the accuracy:

• Consider doing a local version of this algorithm by using Smith-Waterman.
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• Applying a discretization algorithm that is able to generate the classes in such a way that the

algorithm will not be affected by the lack of suitable classes to perform the correct imputation.

• The values of the similarity matrix could also be tweaked, especially the mismatch values, as well

as the gap and gap extension values.

Besides these points, both algorithms need further testing to verify their usefulness in imputing real

data.
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