
CROSS: loCation pROof techniqueS
for consumer mobile applicationS

Gabriel Antunes Maia

Thesis to obtain the Master of Science Degree in

Information Systems and Software Engineering

Supervisor: Prof. Miguel Filipe Leitão Pardal

Examination Committee

Chairperson: Prof. Alberto Manuel Rodrigues da Silva
Supervisor: Prof. Miguel Filipe Leitão Pardal

Member of the Committee: Prof. Alberto Manuel Ramos da Cunha

December 2019

ii

Acknowledgments

This work would not have been possible without the guidance of my advisor Miguel Pardal. His help

and coordination were essential throughout the development of this work, and I am very grateful for

the opportunity to work with him.

I would like to extend my deepest gratitude to Rui Claro, for the notable effort of collecting

Wi-Fi data throughout Lisbon, and for his help revising this document. I would also like to thank

my friends and colleagues Henrique Santos and Pedro Carmo, for the ideas shared in the context of

the SureThing project, and for their help with the evaluation and public presentations of my work.

I am also grateful to my friends Ricardo Farracho and Pedro Brás, with whom I shared impressions

about the development of this work. Their patience and encouragement cannot be overestimated.

I would like to recognize the assistance of the volunteers who participated in the evaluation

sessions, with special thanks to those part of the UnderLX community. Their names are too many

to mention, nevertheless, their effort had a notable positive impact in the quality of the evaluation.

Last, but certainly not least, I would like to thank my family, particularly my parents, for

supporting me throughout the years, so that I could achieve higher education in my favorite field.

This work was supported by national funds through Fundação para a Ciência e a Tecnologia

(FCT) with reference UID/CEC/50021/2019 (INESC-ID) and through project with reference

PTDC/CCI-COM/31440/2017 (SureThing).

iii

iv

Resumo

A omnipresença de smartphones, wearables e outros dispositivos móveis, associada com a crescente

quantidade de infraestrutura de telecomunicações presente em ambientes urbanos, levaram à popu-

larização de aplicações senśıveis à localização. Muitas destas aplicações não verificam a informação

de localização que consomem, tornando-as vulneráveis a ataques de falsificação de localização. Os

sistemas de prova de localização tentam resolver este problema, permitindo que os dispositivos

interajam com recursos espećıficos de cada local, produzindo prova da sua presença em certo local

a determinada hora.

Neste trabalho propomos o CROSS, um sistema que verifica informação de localização recorrendo

a técnicas compat́ıveis com smartphones Android comuns. Apresentamos três estratégias para a

produção de provas de localização com crescente resistência a ataques, duas das quais baseadas

na tecnologia Wi-Fi e uma terceira baseada em interação f́ısica com quiosques eletrónicos ou

dispositivos equivalentes. Estas estratégias foram desenvolvidas com a privacidade e segurança dos

utilizadores em mente, minimizando a quantidade de ligações entre dispositivos. Foi desenvolvida uma

aplicação protótipo para avaliar a viabilidade e fiabilidade da arquitetura e das estratégias de prova de

localização. A aplicação permite recompensar utilizadores que completem circuitos tuŕısticos, com

provas de visita recolhidas ao longo do caminho. Escolhemos o turismo inteligente como contexto

demonstrativo da utilidade e viabilidade das provas de localização. A avaliação realizada, que incluiu

experiências com 30 utilizadores, com equipamentos diversos, indica que o sistema pode ser usado

em cenários do mundo real, fornecendo garantias de segurança adequadas para o caso de uso em

questão.

Palavras-chave: Prova de Localização, Adaptação ao Contexto, Segurança Móvel, Turismo

Inteligente, Internet das Coisas.

v

vi

Abstract

The ubiquitousness of smartphones, wearables and other mobile devices, coupled with the increasing

amount of communications infrastructure present in urban environments, has led to the rise of

location-aware applications. Many of these applications do not verify the location information they

consume, making them vulnerable to location spoofing attacks. Location proof systems aim to solve

this problem by allowing devices to interact with location-specific resources and issue proof that they

have been at specific locations on specific times.

In this work we introduce CROSS, a system that performs location verification using techniques

compatible with off-the-shelf Android smartphones. We present three strategies for the production of

location proofs with increasing tamper-resistance, two of which are based on Wi-Fi and a third based

on physical interaction with kiosk-like devices. Our techniques were designed with user privacy and

security in mind, minimizing the amount of connections between devices. A prototype application was

implemented to assess the feasibility and reliability of the architecture and location proof strategies.

The application allows rewarding users who complete a touristic route, with proofs of visit collected

along the way. We chose smart tourism as the demonstrative use case for the usefulness and feasibility

of location proofs, in the context of a mobile application. Our evaluation, which included experiments

with 30 users, using diverse equipment, showed that the system can be feasibly used in real-world

scenarios, providing adequate security guarantees for the intended use case.

Keywords: Location Proof, Context-Awareness, Mobile Security, Smart Tourism, Internet of

Things.

vii

viii

Contents

Acknowledgments . iii

Resumo . v

Abstract . vii

List of Tables . xi

List of Figures . xiii

Acronyms . xv

1 Introduction 1

1.1 Motivation . 2

1.2 Contributions . 3

1.3 Dissertation Outline . 3

2 Background 5

2.1 Location in mobile applications . 5

2.1.1 Geolocation systems . 6

2.1.2 Microlocation systems . 7

2.1.3 Ambient-sound systems . 8

2.2 Privacy-preservation techniques . 8

2.3 Geographical Information Systems . 9

2.4 Smart Tourism applications . 10

2.4.1 Microlocation applications . 11

2.4.2 Applications with reward schemes . 11

2.5 Summary . 12

3 Location Proof Systems 13

3.1 Existing systems . 13

3.2 Discussion . 15

ix

4 Implementation 17

4.1 Requirements . 17

4.2 Architecture . 19

4.2.1 Communication protocols . 22

4.2.2 Security and privacy considerations . 22

4.3 Location proof techniques . 24

4.3.1 Confidence score . 24

4.3.2 Scavenging strategy . 25

4.3.3 TOTP strategy . 26

4.3.4 Kiosk strategy . 28

4.3.5 Other considered techniques . 30

4.4 Technology stack . 32

4.4.1 Client application . 32

4.4.2 Server . 33

4.4.3 Customized Wi-Fi Access Point . 34

4.5 Usage example . 35

4.5.1 Setting up the system . 35

4.5.2 Using the system . 36

4.6 Summary . 38

5 Evaluation 39

5.1 Security assessment . 39

5.2 Field experiments . 43

5.2.1 Location detection performance . 45

5.2.2 Location proof performance . 46

5.3 Power consumption . 49

5.4 User survey . 50

5.5 Scavenging feasibility . 52

5.5.1 Discussion . 54

6 Conclusion 57

Bibliography 59

x

List of Tables

2.1 Summary of the studied location systems. 6

5.1 Attacker capabilities considered in our security assessment. 40

5.2 Characteristics of each location considered in the experiment. 43

5.3 Configuration of the experimental locations in our solution. 43

5.4 Location detection performance . 46

5.5 Visits submitted to the server for analysis, per location. 47

5.6 Battery drain depending on the location collection method. 49

5.7 Locations where Wi-Fi networks were collected. 53

5.8 Wi-Fi networks present at each tourist attraction 53

xi

xii

List of Figures

1.1 Representation of the technology available to smart tourism applications. 2

4.1 Use cases of the proposed solution and associated entities. 18

4.2 User flow throughout a tourism route with four points of interest. 18

4.3 Overview of the architecture of the developed solution. 20

4.4 Diagram of the entities used in the server domain logic. 21

4.5 Graph showing the multiplier in function of the average speed between locations . . 25

4.6 Scavenging strategy representation . 26

4.7 TOTP strategy representation . 27

4.8 Overview of the used technology stack. 32

4.9 Screens of the CROSS client application. 37

5.1 Alameda campus route used in the evaluation. 44

5.2 Devices in evaluation sample, per Android version 44

5.3 Accepted visits in function of confidence score threshold – scavenging strategy . . . 47

5.4 Accepted visits in function of confidence score threshold – TOTP strategy 48

5.5 Characterization of the survey sample. 50

5.6 Familiarity of the survey respondents with the concept of “location proofs”. 51

5.7 Connectivity options usually enabled by the surveyed. 51

5.8 Criteria considered by the surveyed when installing an application 52

xiii

xiv

Acronyms

GIS Geographic Information Systems

GNSS Global Navigation Satellite Systems

POI Point of Interest

AP Access Point

BSSID Basic Service Set Identifier

SSID Service Set Identifier

HMAC Hash-based Message Authentication Code

TOTP Time-based One Time Password

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

TCP Transmission Control Protocol

UDP User Datagram Protocol

API Application Programming Interface

AR Augmented Reality

IDE Integrated Development Environment

IoT Internet of Things

JSON JavaScript Object Notation

REST REpresentational State Transfer

XML Extensible Markup Language

xv

xvi

Chapter 1

Introduction

In the coming years, the amount of Internet-connected devices will increase by orders of magni-

tude [Int19, Str19]. Many of these devices are sensors and actuators that will be deployed in cities,

which are gradually becoming smart cities. These devices will connect the physical and virtual

worlds, constituting an Internet of Things (IoT) [ZBC+14]. Smartphones and wearables, which are

now ubiquitous, will play an important role as user interfaces between people and the smart city

infrastructure, paving the way to new context-aware applications.

Location information is one of the most frequently used context sources, with the first location-

aware applications dating back to the end of the 1990s [BDR07]. In the Android ecosystem, about a

quarter of the applications request access to location information [OA15]. Many of these applications

do not verify the location information they consume, making them vulnerable to location spoofing

attacks. Location proof systems focus on countering these attacks, by e.g. allowing devices to

interact with location-specific resources and issue proof that they have been at specific locations on

certain times.

One specific smart city application that could benefit from location proofs, for tourism and cultural

promotion, can be called smart tourism. Smart tourism provides tourists with rich experiences

supported by mobile technology and, overall, creates value from a business perspective [KK17,

GSJ17]. According to Gretzel et al. [GSXK15], smart tourism can be considered a progression from

traditional tourism that has greatly benefited from technological innovation, with applications for the

discovery and reservation of accommodations, for example. These benefits are further enhanced by

the widespread adoption of social media, the ubiquitousness of mobile devices and the development

of an increasing number of smart city projects.

One possible form of smart tourism uses the personal devices of tourists to interact with existing

or newly-added infrastructure in emblematic city locations, as illustrated in Figure 1.1. The ability

to locate tourists in a reliable and verifiable way allows for the development of location-based smart

1

Figure 1.1: Representation of the technology available to smart tourism applications.

tourism applications and games. User location information is sensitive and preserving the privacy of

the tourists is also a priority.

1.1 Motivation

Many mobile IoT applications use location context to provide their core functionality or to augment

their capabilities [BDR07]. Only a minority of the currently available smart tourism applications uses

the location context for non-informational purposes, for example, to reward users for visiting certain

locations. Those which do, do not verify the location information they use, and can be deceived

by different location spoofing techniques. Developing the means to validate location information is,

therefore, of high importance.

Location proof systems differ from location systems in that they focus on countering location

spoofing, by providing verifiable location information. The methods that can be used to produce

location proofs depend on the available information sources and on the intended use cases. Wi-Fi can

be used as infrastructure for location because most urban environments in populated areas tend to

have many Wi-Fi networks. Some of these are for private or institutional use, while others are open

for the general public to use. Nevertheless, the overwhelming majority of these networks announce

their presence and can be detected using commodity smartphones.

This work was done in the context of the SureThing project. The SureThing project [FP18] allows

for verifying the location of Internet-connected devices. The location component is very important

for the design and enforcement of security policies suitable for the complex and dynamic reality of

the IoT. This work illustrates the usefulness of the project with a valuable use case.

2

1.2 Contributions

Our main contribution is called CROSS (loCation pROof techniqueS for consumer mobile applica-

tionS), a system that uses the Wi-Fi networks present in a predefined set of locations, to both detect

the presence of the user in these locations, and to verify that the user is not spoofing his location.

This information is used, in the prototype application, to ascertain whether the user completed one or

more predefined tourism routes. System operators can then reward tourists who verifiably complete

tourism circuits in the city with promotional gifts or coupons.

We evaluated different aspects of our system, including its security model, the accuracy of the

location detection system, the ideal settings for location verification, and the effort required to

maintain Wi-Fi Access Point databases and to add new locations to the system.

With this work, we show that location proofs can feasibly be used in the context of mobile

applications, supported on hardware commonly found in consumer handhelds, using the infrastructure

already present in cities and preserving the touristic experience.

1.3 Dissertation Outline

The remainder of this document is structured as follows. Chapter 2 presents concepts relevant to

location systems, related work in the field of location systems, and a survey of existing smart tourism

applications. Chapter 3 presents existing work in the field of location proof systems. Chapter 4

details the implementation of our solution, including its architecture, as well as the techniques and

technologies used to implement the prototype. Chapter 5 presents the evaluation performed to assess

the design of the solution and its performance. Finally, Chapter 6 presents the conclusion and future

work.

3

4

Chapter 2

Background

Context-aware mobile applications play an important role in smart tourism, with location information

being the most commonly used type of context [BDR07]. In Section 2.1, we survey the state of the art

in location systems for mobile use. Privacy-preservation techniques will be discussed in Section 2.2,

because tourism-related applications often acquire and process sensitive user information, including

location information. Geographic information systems facilitate the development of location-aware

solutions, and will be discussed in Section 2.3. Finally, in Section 2.4, we will summarize the current

work in smart tourism applications.

2.1 Location in mobile applications

Location systems can provide physical and symbolic information. The former locates an object in

absolute terms within a coordinate system, while the latter consists on abstract information about

the position of an object. Symbolic location systems usually can only provide low-precision physical

positions. Location systems can also be classified as absolute, where a shared reference is used

for all located objects, and relative, where each object can have a different frame of reference.

Absolute positions can typically be transformed into relative positions with ease, but the reverse can

be complex, requiring the use of triangulation or trilateration and the knowledge of the absolute

positions of other objects [HB01].

Location techniques can also be broadly divided into geolocation and microlocation techniques.

The former focuses on determining geographic location, while the latter can determine the location

of something within a limited space, such as an university campus, building or room, with typically

much higher precision than geolocation techniques. Often, microlocation can be used for indoor

location, i.e. in confined environments without a clear view of the sky and where precision is usually

more important. A useful example of such an environment is a building with multiple floors, where

5

each floor is a separate physical space with different use assignments.

A summary of the considered location systems is shown in Table 2.1, showing which function

they perform (scope), the platforms they target, the data sources they use, and whether they are

stand-alone. We consider a location system to be stand-alone when it is able to locate the device

where it is running without offloading parts of the computation to other systems. Similarly, sound

recognition systems are stand-alone when they operate on the same device where sounds are captured

without offloading the analysis.

System Scope Platform Data sources Stand-alone

Android
Location APIs [Goob]

Geolocation Android
GNSS, Wi-Fi,

cell towers
Yes (with

lower accuracy)
Apple Core

Location [App]
Geolocation iOS

GNSS, Wi-Fi,
cell towers

Yes (with
lower accuracy)

Google Indoor [Gooa] Microlocation Google Maps Wi-Fi No

HERE Indoor
Positioning [HER]

Microlocation Android, iOS Wi-Fi, Bluetooth Yes

SurroundSense [ACC09] Microlocation
Nokia N95
(prototype)

Wi-Fi,
sensors, camera

No

Baniukevic et al. [BJL13] Microlocation Android Wi-Fi, Bluetooth
Yes (in

thick-client mode)

SAIL [MSLK14] Microlocation Android, iOS Wi-Fi, sensors
Yes (requires

AP connection)

Pillos et al. [PAA+16]
Sound

recognition
Android Microphone Yes

OtoSense [Oto]
Sound

recognition
Not disclosed

Microphone,
vibration sensor

No

AmbientSense [RFA+13]
Sound

recognition
Android Microphone Yes

Table 2.1: Summary of the studied location systems.

2.1.1 Geolocation systems

Location context is relevant for many mobile applications. For this reason, the most widely used

mobile operating systems, Android and iOS, both provide APIs that manage the access of applications

to the Global Navigation Satellite Systems (GNSS) supported by most smartphones sold in the last

decade [Can08, Ber10]. These systems can be used for stand-alone geolocation of a mobile device, but

are of limited use in areas without line-of-sight to a sufficient number of satellites, including indoors

and underground. Their accuracy can also vary widely, from 1 meter to over 50 meters, depending

on the number and visibility of the satellites and characteristics of the receiver [Bau13, LGD+15].

Additional APIs made available by Google [Goob], Apple [App] and Microsoft [Mic] on Android,

iOS and Windows, respectively, use their proprietary services to combine GNSS with additional

6

information, such as Wi-Fi access points and GSM1 cell tower information, to determine the location

of a device with better accuracy, lower power usage, or under poor sky visibility conditions. This

additional information is kept in large databases, actively collected and maintained by the mentioned

entities. However, these APIs often require the device to have an active Internet connection, and

that users agree to privacy policies governing the access of these companies to user location data.

These solutions are not stand-alone, as part of the computation is offloaded to online services.

2.1.2 Microlocation systems

Google provides an indoor location service [Gooa], but it is heavily coupled with Google Maps2 and

requires a partnership between location administrators and Google. The administrators authorize ac-

cess to the physical location, Google collects measurements and stores them in a database. Another

example of a indoor location service is HERE [HER], which offers a proprietary indoor positioning

system which uses Wi-Fi and Bluetooth radios, and can be implemented on any location and appli-

cation, subject to the terms of service and pricing tiers. Both Google Indoor Maps and HERE Indoor

Positioning are commercial offerings, but there are also relevant research systems.

SurroundSense [ACC09] uses fingerprinting techniques to symbolically (or, in the words of the

authors, logically) localize mobile phones, supported by Wi-Fi sensing, accelerometers, microphones

and cameras. SurroundSense focuses on microlocation, useful for indoor location, and does not

deal with geolocation. The authors of SurroundSense did not consider the energy trade-offs of their

system. SurroundSense is not stand-alone, as it has a server component that performs most of the

fingerprinting and raw data analysis.

Baniukevic et al. [BJL13] present three different techniques for indoor positioning which differ with

regard to their power consumption, accuracy and co-existence properties of the two radio-frequency

technologies used by this system: Wi-Fi and Bluetooth. An algorithm for efficient positioning of

Bluetooth beacons is also presented. Power consumption and accuracy were studied for each of

the techniques in order to attest the feasibility of the presented architectures. Two of the three

architectures perform all position estimation on the client side, and can therefore be considered

stand-alone microlocation techniques.

While the above systems require the presence of multiple beacons, e.g., Wi-Fi Access Points, in

order to micro-localize a device, SAIL [MSLK14] is a dead-reckoning system that was designed to

work with a single Wi-Fi Access Point in conjunction with the motion sensors of the mobile device.

In this context, dead-reckoning is the use of motion sensors, to determine the device’s displacement

1Global System for Mobile communications, the cellular communication standard, that popularized the use of mobile
phones in Europe and around the world.

2An API for generic, uncoupled use of this service does not appear to exist.

7

relative to a previously determined location. SAIL uses Time-of-Flight-based distance estimation,

using physical layer information, provided by Atheros wireless chipsets, to account for the multiple

paths phenomenon, where a reflected wireless signal may be stronger than the signal corresponding

to the direct path, due to e.g. obstacles in the way. In addition, SAIL presents techniques for

reduction of errors in dead-reckoning based on the accelerometer, compass and gyroscope of the

device. Accuracy of this system was thoroughly tested, but no results are shown in terms of energy

consumption.

2.1.3 Ambient-sound systems

Sound recognition systems can be used to help identify symbolic locations as part of a more complete

location system. They can be used to deduce that the user is at a train station by the noise of trains

in the background, but on their own, they can not identify which train station or where it is located.

These systems can also be used to perform activity recognition, i.e., recognize the activity of the

user.

Pillos et al. [PAA+16] proposed an environmental sound recognition system for Android that

runs in real-time, directly on the mobile device. Their system uses machine learning techniques for

sound identification, and a sound detection algorithm to reduce power consumption. Their evaluation

considered privacy concerns, accuracy and battery consumption. They concluded that their system

is viable and has better accuracy (74.5%) than one other considered sound recognition system,

OtoSense [Oto], while achieving about 80% longer battery life.

AmbientSense [RFA+13] is another sound recognition system, implemented as an Android appli-

cation, supporting both on-device and server-based running modes. Evaluation used a set of 23 sound

classes common in daily life. Compared to the system presented by Pillos et al., this work requires

less computationally powerful hardware and consumes less energy, contributing to a longer battery

life. Accuracy results are not directly comparable as different datasets were used during evaluation,

but their system showed an accuracy higher than 80% for 12 sound classes and lower than 20% for 3

sound classes. AmbientSense authors concluded that due to the network communications overhead,

the server-based running mode was not beneficial, unless more complex classification models, requir-

ing more computational power, are used. The alternative mode runs entirely on-device and can be

considered stand-alone.

2.2 Privacy-preservation techniques

Privacy is a primary concern when dealing with exact and certifiable user location information, as

provided by location systems and location proof systems, because this information can be used to

8

track people. Beresford and Stajano [BS03] defined location privacy as a type of information privacy

that consists in “the ability to prevent other parties from learning one’s current or past location”.

Location privacy has been an object of research since before location systems became ubiquitous

with the rising popularity of smartphones. In 2002, Langheinrich presented pawS [Lan02], a system

that lets users make privacy choices as location data is captured. In 2003, Myles et al. [MFD03]

presented a system that, through the use of machine-readable privacy policies, controls the release

of location data on a per-request basis. Beresford and Stajano [BS03] proposed a framework for

privacy protection based on the use of pseudonyms that change periodically.

Fawaz and Chin [FS14] designed LP-Guardian, a location privacy protection framework for An-

droid. It prevents user identification and can be deployed in practice without modifying other ap-

plications, while still providing useful location information. This solution decides whether to provide

location information and if it should be anonymized on a per-application, per-location basis, re-

questing a decision from the user if preferences for a matching request have not been previously set.

LP-Guardian can also provide applications with synthetic routes so those can calculate the traveled

distance, for example, without accessing the true route coordinates. The evaluation performed by

the authors, on Android 4.3, found LP-Guardian to be easy to deploy, to have acceptable energy

consumption, and to cause a tolerable loss in application functionality. Because LP-Guardian requires

the Android operating system to be modified, it does not work with the smartphones currently in

the market. The techniques used for privacy protection also appear to be incompatible with most

location proof systems described above, as they would interfere with their ability to obtain their true

location in the first place.

Agadakos et al. [AHD+16] proposed the Icelus system, which can locate users and model their

movement through the use of IoT devices and smart environments. The paper details concrete

measures for preserving privacy when parts of the system are hosted by third parties: third-party hubs

can only learn the distance between devices, and not the positions of the devices. This is ensured

through the use of a custom sub-protocol for communication between the hubs and the entities

that request location proofs. This sub-protocol uses secure multi-party computation, additively

homomorphic encryption and additive blinding.

2.3 Geographical Information Systems

Geographic information systems (GIS) can be used in the context of a smart tourism application

as the means to locate and manage information about the points of interest and tourism routes.

Web mapping software such as Google Maps, Bing Maps and OpenStreetMap, and satellite imagery

software, of which Google Earth is an example, are widely-known types of GIS. These systems are

9

used by tourists to plan their trips and by businesses to promote and plan touristic offerings [KK17].

Web mapping systems sometimes feature user-contributed or crowdsourced [Bra08] information,

with users being able to submit corrections or new points of interest. Crowdmapping corresponds

to the use of crowdsourcing to maintain up-to-date geographical information and other mapping-

related information [SE15]. OpenStreetMap3 is notable in this regard because it is a collaborative

project built entirely on crowdsourced data. Often, web mapping systems expose APIs4 that allow

their integration in custom applications. MapBox5 is one example of a web mapping system whose

primary focus is providing custom maps for embedding in other applications.

2.4 Smart Tourism applications

We performed a brief analysis of over 50 popular smart tourism applications and identified common

features that allow us to classify and categorize them as informational, georeferenced or location-

specific.

Informational applications show information of interest to tourists, e.g. attractions, monuments,

hospitality, routes and activities, featuring the whole world or specific countries, regions or cities.

The Culture Trip and TripAdvisor are examples of such applications. Informational applications

frequently feature public-domain and crowdsourced/user-contributed information, including ratings

and reviews of the points of interest. Sometimes the informational aspect is included as part of a

larger application, as is the case of the “travel tips” feature in the Booking.com application.

Informational applications often handle georeferenced information, that is coupled with geoloca-

tion systems to let tourists know about points of interest in their vicinity (e.g. with a map showing

the current location along with the nearby points of interest). We consider those to be georeferenced

applications. Georeferencing features are especially important when the application contains data for

the whole world, because they allow for information filtering without requiring that the users man-

ually specify their location. Georeferenced applications, in more general terms, are those that take

into account the location context of the user, to offer different content or functionality depending

on their current and past location, but do not include microlocation information in that context.

Notable applications on this category include: FourSquare, which provides personalized destination

recommendations based on the location and history of the user; Google Trips, which automatically

creates trip plans based on the location of the user; and Sygic, another location-aware trip planner

and tourism guide.

Location-specific applications show information about a single tourist destination or venue, in

3https://www.openstreetmap.org/
4Application Programming Interfaces
5https://www.mapbox.com/

10

https://www.openstreetmap.org/
https://www.mapbox.com/

contrast with georeferenced applications, which generally cover a large geographical region or even

the whole world. Some employ microlocation techniques. These applications are often developed and

operated by the venue owner or responsible entity, and are sometimes marked as being the official

one for that venue. Some examples of location-specific applications include “My Visit to the Louvre”

(official Musée du Louvre application, with indoor location features), the official Portuguese Coach

Museum application, and the Disneyland application.

There are many other types of applications that, despite not having tourism as their main use case,

can be considered smart tourism applications, because they enable mobile technology to enrich the

experience of tourists - thus perfectly fitting the smart tourism definition we presented previously.

These include mapping and navigation applications, transit applications, ride-sharing and rent-a-

vehicle applications, and language translation applications6. Many of these make heavy use of the

geolocation context, and could benefit from location proof systems. For instance, rent-a-vehicle

applications could use location proofs to ensure users do not leave the area of operation of the

service, and to defend against manipulation of the billing system in pay-per-distance schemes.

2.4.1 Microlocation applications

Applications with microlocation functionality are a much smaller subset of the smart tourism appli-

cations we analysed. Google Maps supports indoor location through the same service we described

in 2.1 [Gooa]. Since November 2018, this service is also used in the “Find My Device” feature

available for Android smartphones. Besides generic mapping and navigation, other applications with

microlocation features are typically location-specific, as is the case of the aforementioned “My Visit

to the Louvre” application.

According to the user reviews of applications with microlocation features, these are often inac-

curate and are perceived not to add much value to the core application functionality. Without the

ability to test these applications in a real-world setting it is impossible for us to understand whether

this sentiment is due to deficiencies of the location technology, because of poor user interface and

interaction design, or due to incorrectly identified requirements.

2.4.2 Applications with reward schemes

Of the applications we analysed, none made use of the location context to reward users based on

their location history. Stepping outside of the context of smart tourism, geocaching is a location-

based recreational activity in which navigational and location techniques, including those supported

by GNSS, are used to play a form of “hide and seek”; mobile applications exist to assist the practice

6Google Translate and Microsoft Translator are examples of machine translation applications available for mobile
platforms.

11

of this activity. Beyond geocaching, Ingress and Pokémon Go are two examples of location-based,

augmented reality (AR) games that were popularized in recent years. We believe these games and

applications, while providing users with rewards based on their location, can not be classified as smart

tourism applications as clearly as the others we analysed. Their users do not necessarily follow well-

established tourist routes or visit particular points of interest, and often travel in ways that are most

advantageous to the gameplay but serve no touristic purpose. These applications can often relax

their requirements for location verification, as the nature of the rewards ensures that any innacuracies

or spoofing will usually only have consequences inside of the game itself.

2.5 Summary

The development of location-aware smart tourism mobile applications is closely related to work

in geographic information systems and location systems, which we analyzed in this chapter. We

also looked into privacy-preservation techniques, which are relevant when dealing with user location

information, but none of them are easily applicable to the use case of location proofs for smart

tourism.

We briefly studied existing smart tourism applications, that we classified as informational appli-

cations, georeferenced applications, and location-specific applications. We could not identify any

smart tourism application that contained reward schemes, or used location proof techniques. Other

applications, such as location-based games, contain reward schemes, but cannot be clearly consid-

ered smart tourism applications. In the next chapter, we will look into existing works in the field of

location proof systems, which could be used to verify the location information consumed by mobile

applications.

12

Chapter 3

Location Proof Systems

The location information provided by location systems, such as those studied in Section 2.1, is

vulnerable to location spoofing attacks, where the systems, or the consumers of their results, are

led to believe they are at a location different from their actual one. Location proof systems focus

on countering location spoofing, going beyond locating the user, by also proving that location in

a verifiable way. We are mainly interested in systems that can be used in the context of a mobile

application.

Use cases for location proof systems include reward schemes, such as discount programs for

regular store customers, and location-based authentication schemes, for example, a smart door lock

that only grants access when the homeowners are in its vicinity, or a fraud detection system that

checks whether the holder of a credit card is present at the store when an in-person purchase is

made.

3.1 Existing systems

CREPUSCOLO [CCCP13] uses strategically placed Token Providers and neighboring devices to pro-

vide location verification, even in areas with reduced amounts of users. Privacy is preserved through

the use of periodically changing pseudonyms. In contrast with neighbor-based location proof systems

APPLAUS [ZC11] and LINK [TCB12], CREPUSCOLO can protect against not just simple collusion

attacks but also wormhole attacks, where packets are tunneled by an attacker from one physical

place to another.

The SureThing system [FP18] allows devices to produce and validate location certificates, to

make proof of their location and to reliably verify the location of other devices. Like CREPUSCOLO,

SureThing uses neighboring devices as witnesses, together with the geographic location obtained by

each device, e.g. using GNSS. A central component, the verifier, is responsible for certifying proofs.

13

To prevent collusion, the system takes advantage of the diversity of witnesses and of the concept of

redundancy (multiple witnesses) and decay (proofs from the same witness lose their value as they

are used to testify user presence).

LINK [TCB12] works similarly to SureThing, using neighboring devices reachable over short-range

wireless technologies, such as Bluetooth, as witnesses. This system also associates a trust score with

each device. As with SureThing, a central component is responsible for the decision process that

certifies claims. In LINK, this process takes into account historical data and trust score trends to

detect colluding users. Unlike SureThing, LINK does not make use of witness diversity: while each

user/device is still expected to have the means to locate themselves (e.g. using GNSS), they are not

expected to collect different types of location proofs from the environment, but from LINK neighbors

only (it assumes users are not alone very often).

PROPS [GKRT14] is another neighbor-based location proof system with a focus on privacy

preservation. In this system, the use of zero-knowledge proofs and commitment schemes allows

prover and witnesses to remain anonymous and unlinkable. Witness locations are never disclosed, as

their presence in the vicinity of the prover is checked using a proximity testing protocol. The location

of the prover is not disclosed to the witnesses, as it is hashed before being endorsed by the witnesses.

PROPS authors implemented an Android prototype application and carried out experiments using

two devices connected to the same network.

Khan et al. [KZHH14] presented OTIT, a model that addresses secure location provenance, that

is, the ability to prove a history of locations and not just the presence at an individual location.

Location history is crucial in certain scenarios; for example, when analyzing the supply chain of a

product, it is often important to prove through which countries it passed, or not; whether it went

through the expected border checkpoints, and so on. OTIT authors presented different approaches,

proven formally using their model, that can be used for chronological order preservation of location

records. The OTIT model introduces requirements for location provenance systems and can be used

as a benchmark framework for this type of systems.

The Icelus system [AHD+16], already mentioned in Section 2.2, uses the IoT to estimate the

location of a user, for authentication purposes. The accuracy and efficiency of the system were eval-

uated and compared with smartphone-only approaches, with Icelus presenting lower false acceptance

and false rejection rates. The researchers concluded that their approach exhibited a low impact on

the performance of the tested IoT devices, with effectiveness bound to improve as the number of

deployed IoT devices increases.

14

3.2 Discussion

Most location proof systems focus on providing strong tamper-resistance, with many adopting

witness-based strategies, where peer-to-peer communication is used between the prover and wit-

nesses. The communication, task scheduling and power management frameworks of current consumer-

oriented mobile operating systems (Android and iOS) are heavily oriented towards a client-server

model,1 discouraging the use of peer-to-peer solutions.

Witness-based approaches have the drawback of requiring a minimum amount of users at each

location where one may want to prove their presence. Some of these systems also have user privacy

implications, as the peer-to-peer communication will disclose, at the very minimum, hardware iden-

tifiers such as MAC addresses. Randomization and pseudonymization of these identifiers is possible,

but requires the collaboration of the hardware and operating system of the devices.

CREPUSCOLO [CCCP13] introduces the concept of Token Providers, which, in addition to

providing resiliency against collusion attacks, allow the system to operate when there are no witnesses

in the vicinity of the prover. Because these Token Providers must be deployed specifically for use

with CREPUSCOLO, the cost and complexity of setting up this system is increased.

Other systems, such as Icelus [AHD+16], rely even more on the deployment of infrastructure, or

customization of existing devices, to verify location information. This reduces the set of environments

where such systems can operate, as well as the size of the potential user base.

The location proof techniques which we will introduce in the next chapter, present an alternative

to witness-based approaches, using existing, unmodified infrastructure where possible. This helps

reduce the costs, time and permits associated with the acquisition and installation of infrastructure.

Our techniques work on common off-the-shelf, unmodified smartphones, ensuring their feasibility in

real world scenarios and their ability to reach a large number of users. We will use smart tourism as

a demonstrative use case, notwithstanding other possible use cases for these techniques.

1Applications are often prevented from keeping ongoing connections during standby. Firewall traversal and graceful
handling of connectivity changes are complex in a mobile environment. Officially supported push notification systems
in Android and iOS are centralized (Firebase Cloud Messaging and Apple Push Notification Service, respectively).

15

16

Chapter 4

Implementation

We developed CROSS, a mobile application, for smartphones, that rewards tourists for completing

tourism circuits and visiting a set of points of interest. This application demonstrates the usefulness

of location proofs in the context of smart tourism, using a variety of location proof techniques. In

this Chapter we will present and discuss the implementation of this solution.

In Section 4.1, we discuss the requirements identified for this application and the assumptions

made in its development. In Section 4.2, we present an overview of the architecture of the solution,

explaining the main components, their purpose and how they interact. The location proof techniques

employed in our system are presented in Section 4.3. In Section 4.4, we mention the software and

platforms supporting our solution, explaining the reasoning behind our choices. An example of the

operation of the system from the point of view of the users, from configuration to tourist usage, is

given in Section 4.5. Finally, in Section 4.6, we summarize the key aspects of our solution.

4.1 Requirements

A use case diagram representing how system operators, POI officials and tourists interact with our

solution is shown in Figure 4.1. We assume that the system operators (e.g. businesses in the tourism

industry) define emblematic city locations as points of interest, circuits and corresponding rewards. In

other words, our solution requires that points of interest and tourism circuits be manually identified.

Points of interest may be owned, administered or operated by entities, which are not necessarily

system operators and which might not be affiliated with them. We will call these entities Point of

Interest officials, or simply POI officials. Tourists complete routes by visiting points of interest. For

doing so, they receive rewards, or tokens that can be exchanged for rewards, at the end of each

route.

The intended operation of the system from the point of view of the user is illustrated in Figure 4.2.

17

System operator

POI officialTourist Manage custom
infrastructure

Sign up for the system

Verifiably visit points of
interest

Check reward eligibility

Obtain list of points of
interest

Obtain list of available
rewards

Receive rewards

Obtain information

<<extend>>

<<extend>>

Define points of interest
and rewards

Figure 4.1: Use cases of the proposed solution and associated entities.

Figure 4.2: User flow throughout a tourism route with four points of interest.

Tourists, equipped with their personal smartphones, visit different points of interest, represented in

the figure as P1 through P4. At the end of the route, the user is eligible to receive rewards, which

can be redeemed with the cooperation of the system operators.

Our system was developed for environments with Wi-Fi networks. As mentioned in Section 2.1

and Chapter 3, Wi-Fi can be used to locate users, with different degrees of accuracy, and prove their

location. The amount of networks required by our system depends on the location proof strategy

one intends to use at each location. Some strategies can work with a single Wi-Fi Access Point.

To support areas with insufficient preexisting infrastructure and to increase the strength of proofs

in locations with high-value rewards, our solution allows for custom infrastructure to be installed and

used in the production of location proofs. The installation and maintenance of this infrastructure on

different points of interest requires the collaboration of the respective POI officials.

It is desirable that the application be able to operate without a constantly available Internet

connection, as tourists may visit areas without sufficient cell tower coverage for mobile data to work

reliably, or they may need to avoid roaming charges altogether and rely on public Wi-Fi access points.

Because the aforementioned rewards may have a tangible value associated with them, one func-

tional requirement is that rewards should only be given to people who are actually eligible to receive

them. This is where location proofs will be useful. It is important to note that tourists are not the

only entities who may have an interest in exploiting the system: POI officials may try to manipulate

location proofs to make their points of interest appear more popular than they are (for example, to

18

manipulate recommendation systems), or less popular (e.g. to aid in tax evasion schemes and to

qualify for undue subsidies).

A related non-functional requirement is that rewards should be assigned timely; in practice, this

means that rewards should be assigned as soon as users finish the associated route or visit, as

represented in Figure 4.2. As an example, the system will not be very useful if tourists only receive

their rewards two weeks after they have left the city.

One functional requirement is that system operators be able to identify which users were rewarded

with which rewards. This is necessary for some types of rewards, for example, physical prizes. The

system may be extended such that other types of rewards, such as vouchers, coupon codes and digital

licenses, are automatically assigned without intervention from the system operators.

4.2 Architecture

The CROSS architecture has four main components: client application, server accessed through API,

Wi-Fi Access Point (for proof strategy described in 4.3.3), and Kiosk (for proof strategy described

in 4.3.4).

The client and server constitute a traditional client-server model. The client, whose internal

structure is represented on the lower side of Figure 4.3, is the application that is meant to run on the

mobile phones of the tourists. The client interacts with kiosks and Wi-Fi Access Points to produce

location proofs. The server, represented on the upper side of the figure, corresponds to the central

component that is responsible for assigning rewards. Each user has an account in the system, with

credentials that allow for their identification and authentication in the service.

In our solution, one entity (the system operators) has the complete power of decision over the

workings of the system, making a centralized model more appropriate. A more decentralized model

could involve peer-to-peer communication, which has some drawbacks, as mentioned in Section 3.2.

The server provides a service that lets clients fetch information about the available tourism

routes, points of interest and possible rewards. This set of information, which is not user-specific

and will typically not change frequently (more than once per day), will be hereinafter referred to as

catalog. The service is also responsible for authenticating users in the system and, upon successful

authentication, providing information specific to each account, such as past location history and the

awards received. We will refer to this information as user information.

On the server side, a database is used to access and manage the catalog, information necessary

for location proof verification, and user information. The location proof verifier component on the

server is responsible for verifying the validity of location proofs received from clients by the API

request handler. Rewards are assigned by the reward assigner, based on the valid location proofs

19

Internet
API

Server

Database
Catalog

User information

Client (Android application)

Location proof
producer

Location proof verifier

User interface

API request handler

Cache
Catalog

System operator

Internal storage
Proofs pending

submission

API client / Serializer

Tourist

Reward assigner

Android OS

GNSS receiver

Camera

Bluetooth radio

Wi-Fi radio

Kiosk

Wi-Fi Access Point

Figure 4.3: Overview of the architecture of the developed solution.

20

Route

+ ID: string (UUID)
+ MainLocale: string
+ Names: map[string]string

Methods omitted

Waypoint

+ ID: string (UUID)
+ StayFor: time.Duration
+ Threshold: int

Methods omitted

POI

+ ID: string (UUID)
+ Type: string
+ WorldCoord: [2]float64
+ URL: string
+ MainLocale: string
+ Names: map[string]string

Methods omitted

Trip

+ ID: string (UUID)
+ SubmitTime: time.Time

Methods omitted

Visit

+ EntryTime: time.Time
+ LeaveTime: time.Time

Methods omitted

VisitProof

+ Data: string
+ CreationTime: time.Time

Methods omitted

ProofElement

+ ID: string
+ Type: string

Methods omitted

1

1..*

1

1 11

1

1..*

1

1

1

1..*

Reward

+ ID: string (UUID)
+ Type: string
+ MainLocale: string
+ Names: map[string]string

Methods omitted

1

1..*

1..*

MatchedRoutes

1

User

+ Username: string
+ PasswordHash: string
+ Joined: time.Time

Methods omitted

1

Submitter

1

Figure 4.4: Diagram of the entities used in the server domain logic.

received, the information in the catalog and the user information relative to each client.

A simplified diagram of the entities used in the server implementation of the domain logic, and

how they relate to each other, is shown in Figure 4.4. Of the shown entities, POI, Waypoint, Route,

Reward and ProofElement must be configured by the system operators when setting up the system.

ProofElement includes the Wi-Fi Access Points, Kiosks and other elements used as part of location

proofs, that will be described in Section 4.3, and which the server must know about.

The service is meant to be available over the Internet; the server component is meant to be

managed by the system operators. The client is an application for smartphones, that will fetch the

catalog and, upon authentication, the user information from the server. This application is meant

to be used by tourists as they visit different points of interest. The client is responsible for checking

whether the user is near a point of interest, producing location proofs and sending them to the server;

21

it also lets users view the available and earned rewards. It caches information and stores location

proofs for delayed submission, if the device is not online.

4.2.1 Communication protocols

Communication between the client and the server takes place over a HTTPS REST API. The client

is able to work without a constant connection to the server. For this purpose, it caches the catalog,

some user information, and location proofs for opportunistic submission.

HTTP is a web application protocol supported on reliable TCP connections. It is well understood

and widely supported by most commonly used programming languages, and a large number of libraries

exist to support its use. The use of a connectionless custom protocol based on unreliable UDP is not

adequate to the type of communication between the server and the client, which we want to be as

reliable as possible. In all foreseeable communication scenarios between the client and the server, the

delay caused by TCP retransmissions and multiple connection attempts is acceptable. On the client

side, we decided to set an upper bound on communication delays (timeout) of ten seconds, as regular

communications are expected to take, at most, a few seconds, as is typical in mobile applications.

The use of a TCP-based protocol other than HTTP was considered, but we could not identify any

advantages of this option over a well-organized HTTP API.

REST (REpresentational State Transfer) is an architectural style for web services, defining a set

of constraints restricting the way servers respond to requests. In practice, these constraints help

meet some of the requirements for our solution; for example, the application of REST principles

leads to a stateless protocol (from the application layer perspective). In stateless protocols, there is

no concept of sessions and each request contains all the information necessary to be processed. This

is useful in contexts where requests may need to be reattempted multiple times. Stateless protocols

also simplify testing.

REST does not define a message format. We use JSON1, a widely supported text-based data

format that is a lighter alternative to XML, in terms of encoding and decoding complexity and message

size. The server and client can be made to use other message formats, such as MessagePack, with

minimal changes.

4.2.2 Security and privacy considerations

In our client-server model, the server is generally considered a trusted entity, while the client is

untrusted. This means that all information provided by the client is validated by the server, including,

notably, the location proofs. Despite the server being a trusted party, clients should still verify that

1JavaScript Object Notation

22

the information they receive matches the format they expect for each request, as a preventive measure

against communication failures (e.g. due to the server being under maintenance). The API client

component of the client is responsible for handling this verification.

The use of HTTPS (HTTP over TLS2) provides basic security on the connection including

integrity checks and encryption. If care is taken to use and verify both client and server certificates,

HTTPS can also provide authentication based on public-key cryptography. This method is not

commonly used as it requires additional key and certificate management by the client, special web

server configuration, and additional code on the client side. For these reasons, we decided against

using this type of client authentication.

For authentication, we use an alternative method that is simpler, more commonly used and relies

on TLS without involving client certificates: upon successful authentication on the web service, clients

are provided with a API token that the API client component will send on subsequent requests, and

which will be verified by the API request handler on the server, thereby authenticating the client.

To authenticate the server, certificate pinning could be used, where client-accepted certificates are

limited to a specific public key or to those signed by another trusted certificate. The pinned certificate,

or the information specifying which certificates to accept, would be bundled with the application.

This authenticates the server as long as the private key of its certificate is not compromised, because

even if an impostor server manages to obtain a valid certificate for the FQDN3 of the server, it will

not match the pinned certificate.

As mentioned in Section 2.2, user privacy is of high importance, especially when dealing with

location information. The use of HTTPS protects the privacy of the users from the perspective of an

observer, that is able to capture all network traffic, but it does not deny the system operators access

to the location history of a user. One possible mitigation would be to generate random pseudonyms

to identify users, avoiding the propagation of personal information throughout the server database.

However, to allow for the identification of prize winners, these pseudonyms must be associated with

personal information at some point. One idea, which we did not have the opportunity to explore,

is to asymmetrically encrypt all personally identifiable information on the client side, using private

keys protected by the password of the users. This way, only the respective clients/users are able

to decrypt it upon being rewarded, if they choose to do so. The system operators can not obtain

this personal information on their own, but it is still stored encrypted on the server database for the

convenience of the users.

2Transport Layer Security
3Fully qualified domain name

23

4.3 Location proof techniques

We propose three different strategies for location proof production and verification, with increasingly

stronger guarantees. The first strategy, scavenging, relies solely on existing Wi-Fi networks, deployed

by third-parties. The second strategy, TOTP (Time-based One-time Password), relies on Wi-Fi

infrastructure deployed and configured specifically for use with CROSS. The third strategy, Kiosk,

requires users to physically interact with an electronic kiosk booth.

Our first two strategies take advantage of existing infrastructure that smartphone radios can

interact with, to fingerprint a location whenever a client needs to produce a proof of location. In

practice, such infrastructure amounts to any Wi-Fi networks that may already be present in the

environment; fingerprinting is performed by extracting device identifiers from network/beacon scan

results. Of the currently relevant mobile operating systems, only Android provides access to Wi-Fi

scan results.

4.3.1 Confidence score

Upon submission to the server, location proofs are associated with a confidence score, calculated by

the server. This value is calculated differently by each proof strategy, and is not comparable across

strategies. In the case of rewards for completion of routes encompassing multiple locations, the

confidence score is calculated per location. The user is only considered to have completed a route if

his visits to all locations have a score above the minimum acceptable threshold for that location in

that particular route.

System operators are expected to configure the system such that higher value rewards require

stronger proofs. This may be done by using proof strategies that provide stronger guarantees and/or

increasing the acceptable score thresholds for a given strategy.

Protection against travel time inconsistencies

The confidence score suffers a penalty when the user is changing location at a pace inconsistent with

the means of movement assumed to be at his disposal. This detection of travel time inconsistencies

is a small, additional measure to increase the effort necessary to fool the system.

When the user moves from predefined location A to predefined location B, the distance(A,B) in

meters between locations is computed using the Haversine formula on the geographical coordinates

of the two locations, previously configured in the system. time(A,B) is the difference, in seconds,

between the user leaving location A and entering location B, as registered by the client application.

If the locations are more than 500 meters apart, the score associated with the visit to location B is

multiplied by the result of formula 4.1, to penalize the scores of inconsistent visit proofs.

24

Figure 4.5: Graph showing the multiplier in function of the average speed between two locations,
as registered by the client application.

multiplier = max(0, 1.03− 0.03× e

(
0.11376× distance(A,B)

time(A,B)

)
) (4.1)

Because Wi-Fi networks can have a long range, and because a high polling frequency is not

attainable, when locations A and B are sufficiently close, the application will often register the

movement from one location to another as being much faster than it actually was. At a limit,

time(A,B) = 0 and the speed is undefined. Therefore, the system ignores travel time inconsistencies

for locations less than 500 meters apart, a value selected based on the average network range we

observed in a urban environment.

Formula 4.1, graphed in Figure 4.5 as a function of the speed in km/h, was obtained using

exponential regression from a manually selected set of values. It should be adjusted, or a different

formula could be used entirely, to reflect the means of transportation available to the user. For

example, in a context where locations are in two far apart cities connected by high-speed train, the

formula must be adjusted to consider much higher average speeds as legitimate. This protection

applies to all of the location proof strategies detailed below.

4.3.2 Scavenging strategy

The idea for this strategy is to harness the large amount of Wi-Fi networks installed by third parties

in urban environments. These networks may appear and disappear at any time. In this strategy,

represented in Figure 4.6, location proofs are produced simply by storing Wi-Fi scan results with

associated timestamps. These results are then submitted as part of the trip log.

On the server side, the set of Wi-Fi networks present in the scan results is compared with a list of

known networks for each location. This list is curated by the system operators. The server periodically

25

analyzes past location proofs to suggest the addition and removal of certain Wi-Fi networks from

the list. In this strategy, the confidence score is the fraction of client-presented networks over the

total number of server-known networks.

Identifying the ideal confidence score threshold can be complex and will usually require on-field

experiments. In general, the weaker the average signal strength of the networks at a location, the

lower the threshold must be, in order to consider a fair amount of visits as verified. This is because

the weaker the signal of each individual network is, the less likely it is for it to be detected and

registered in the trip log. Therefore, this strategy provides stronger guarantees when more networks

with strong signal levels are present at a location.

The main advantage of the scavenging strategy is its simplicity and reduced setup cost, as it just

uses existing infrastructure. However, it is also the strategy that provides the weakest guarantees:

as soon as the list of networks at a certain location is known, an attacker can forge trip logs.

4.3.3 TOTP strategy

This strategy allows for stronger proofs by deploying a customized Wi-Fi access point that is dynami-

cally changing the broadcast SSID4, as depicted in Figure 4.7. The SSID is used as a low-bandwidth,

unidirectional communication channel to transmit a changing value: the digits in the network name.

This strategy is compliant with Wi-Fi standards [IEE] and compatible with existing devices. Note

that the device observes the changing SSID values and does not need to connect to the network.

Networks used in this strategy can be broadcast by existing APs, without disrupting the existing

services, as typically each AP can support more than one Wi-Fi network.

Time-based SSID setting

The SSID should change in a way that is unpredictable to an observer, but which can be verified by

the server. We achieve this by including a Time-based One-Time Password (TOTP), similar to the

4Service Set Identifier, the user-facing name for a Wi-Fi network

NEO-39CB21 Go-WiFi-Free

eduroam

Location A

94:CA:1E NEO-39CB21 @ 10:21 (trigger)
E3:21:09 Go-WiFi-Free @ 10:21
44:FA:EE eduroam @ 10:22
48:11:BC John's Home @ 10:34
39:DC:A2 Belem-Free-Net @ 11:12 (trigger)
02:1F:3D AliceFamily @ 11:15
0C:AF:E4 Pasteis de Nata @ 11:15

John's Home

AliceFamily Belem-Free-Net

Pasteis de Nata

Location B

Figure 4.6: Representation of the networks and logs in a visit to two locations, A and B, where the
scavenging strategy is used. Locations are sensed using trigger networks.

26

CROSS-C-2393

12:34

CROSS-C-9198

12:36

CROSS-C-1091

12:38

CROSS-D-5527

14:02

CROSS-D-2322

14:04

CROSS-D-9003

14:06

Location C Location D

2C:3E:B6 CROSS-C-2393 @ 12:34
2C:3E:B6 CROSS-C-9198 @ 12:36
2C:3E:B6 CROSS-C-1091 @ 12:38
5F:39:A0 CROSS-D-5527 @ 14:02
5F:39:A0 CROSS-D-2322 @ 14:04
5F:39:A0 CROSS-D-9003 @ 14:06

Figure 4.7: Representation of the networks and logged information in a visit to two locations, C and
D, where the TOTP strategy is used. There is one AP at each location.

proposed in RFC 6238 [MMPR11], in the SSID value. Only the Wi-Fi Access Point (AP) and the

CROSS server know the TOTP secret, to produce and validate OTPs, respectively. Each AP should

use a different secret key, and only the server should know the keys used by all APs. The APs and

server must have synchronized clocks with minute granularity, but both components do not need to

communicate, which means APs can function as stand-alone beacons in locations without Internet

access.

Our solution uses a carefully selected time-step size and hash algorithm, that are different from

those recommended in RFC 6238, as our use case is different from the typical TOTP use case

where the one-time password acts as a second authentication factor. We use a time-step size of

120 seconds, sufficient to provide enough resolution during proof verification, while still fitting within

the constraints of most Wi-Fi Stations when it comes to updating scan results. We chose SHA-512

HMAC as the TOTP hash algorithm, with keys as long as the HMAC output, instead of the typically

used SHA-1 HMAC. This allows the use of longer keys for additional security. This algorithm was

selected to ensure that it is computationally complex to perform a key-recovery attack, i.e., infer

the secret TOTP key by continuously observing the different SSIDs assumed by the AP. To the best

of our knowledge, such an attack against SHA-512 HMAC is yet to be achieved [DEM15], unlike

HMAC using weaker hash algorithms [CY06].

Proof collection and validation

Clients are programmed to log all the different SSIDs a Wi-Fi network assumes during their visit to

a location, along with the observation timestamp. Clients do not know whether each Wi-Fi network

is part of the infrastructure for this strategy, as that is irrelevant to how they collect proofs; only

the server needs to know this, to select the correct proof validation strategy. In other words, as far

as the client implementation is concerned, the scavenging strategy and the TOTP strategy are the

same.

The TOTP strategy, unlike the scavenging one, allows for attesting not just that the user was

present at a certain location, but also that he did so at a certain point in time. Therefore, this

strategy can verify the visit duration, and helps establish location provenance, as defined by Khan et

27

al. [KZHH14].

In this strategy, the confidence score corresponds to the fraction of visit time that could be

verified, in relation to the total time the client claims to have been present at the location. For

example, if the client claims to have been present at a location for 20 minutes, but only 7 OTPs

could be verified, corresponding to a total of 14 minutes within the claimed 20 minutes period, the

confidence score will be 70%.

Whenever the TOTP strategy is set up at a location, it supersedes the scavenging one, as it

provides stronger guarantees. This way, updating the list of networks is not a concern for locations

where custom APs are installed.

Because the process of announcing a network is independent of the number of nearby devices,

this approach allows a virtually unlimited number of nearby devices to create proofs of their location

without overloading the Wi-Fi network.

Validating the authenticity of Wi-Fi and Bluetooth devices is hard because the hardware identifiers

can be spoofed; in fact, some systems do this as an intended privacy measure [Gooc]. Because this

solution does not involve bi-directional communication with other devices or networks, as in many

witness-based proof strategies [ZC11], it minimizes user exposure to attacks. This also protects their

privacy, as only the entity operating the CROSS server will be able to know the locations visited by

the user.

4.3.4 Kiosk strategy

The TOTP strategy prevents the attacker from creating new proofs on the fly, but not from replaying

proofs from a legitimate visit under a different user account, or tunneling the information to a distant

user. The kiosk strategy counters the possibility of claiming multiple rewards for a single trip, by

preventing variants of Sybil attacks [DR02], where a malicious visitor creates multiple user accounts

and runs them in parallel using one or more smartphones.5

This strategy requires the tourist to interact with a machine present at the location - the kiosk

- in order to prove his presence. In CROSS, the main function of the kiosk is to sign a message for

the CROSS client, logged on the account of the user and running on his smartphone. The kiosk can

have other functionality unrelated to CROSS, including showing advertising or information about the

location. Existing tourism information kiosks can be adapted for this purpose.

5When using just one device, the attacker would spoof its MAC address and other identifiers to pose as multiple
devices, each with their own user account.

28

Proof production and validation

Similarly to Wi-Fi APs in the TOTP strategy, kiosks are required to have their clocks synchronized

with the server, also with minute granularity. Each kiosk keeps a private key, used to sign information.

The server has the corresponding public key. Kiosks do not need to have a network connection to

the server.

Location proofs are produced as follows. The client application sends the username of the logged

in user to the kiosk, by displaying a QR code that is scanned by the kiosk. The latter, using its

private key, signs a message containing the kiosk ID, the username of the user, the current date and

time, and a randomly generated large number (a nonce). This message and respective signature is

sent back to the client, again using a QR code, which is scanned by the smartphone built-in camera.

The smartphone stores this data as a visit proof. When the trip log is submitted to the server,

it verifies this proof by checking the signed message using the public key associated with the kiosk

at the visit location; the username matches the user account submitting the proof; the date and

time is contained within the period of the visit; the nonce was not reused from any other visit proof

submitted in the past. The signed timestamp allows for limiting the validity of the proofs, eliminating

the need to store nonces for a long period.

Unlike the scavenging and TOTP strategies, this one is binary: it either undoubtedly proves the

presence of the user at the location, or provides no trace of it. Like the scavenging one, this strategy

is also incapable of proving the duration of the visit, unless the kiosk device is more akin to an access

gate and can monitor when the user enters or leaves the venue. The naive approach to mapping

this strategy to a confidence score would be to assign two possible values, 0 for no visit and 100 for

a proven visit. However, it is more interesting to use this strategy in conjunction with one of the

previous two. The confidence score could then be that of the Wi-Fi based strategy, with a bonus

multiplier if the kiosk validation is successful, or a penalizing multiplier if it is not.

By eliminating the remote network connection to the kiosk, an attacker must be physically

present at the location to interact with it using QR codes. This physical interaction is essential to

prevent Sybil attacks [DR02]. It can easily be inspected by a bystander, e.g. a tourist attraction

staff member, who can check the behavior of the users for any suspicious activity, e.g. attempting

to check-in with more than one device, or using the same device to check in multiple times, using

different user accounts. An additional security mechanism could be the collection of ad-hoc witness

reports from users in the same location, as described in [FP18]. However, this will not be necessary

for this use case because kiosk devices can act as trusted witnesses.

The inconvenience for the user, and the kiosk setup cost for the system operators, can be greatly

minimized by limiting the use of this strategy to a few locations per trip, where there are already

29

tourist support infrastructures.

4.3.5 Other considered techniques

We considered using Global Navigation Satellite Systems (GNSS), as explored in Section 2.1.1, to

identify the location of the user and to enrich the produced location proofs. GNSS is the most

common source of location information in Android applications, but it is also the easiest to ma-

nipulate. Both emulators and real devices support falsifying the location information returned by

GNSS API functions, to help with development and debugging. This typically requires enabling the

“Allow mock locations” setting, which can be detected by applications, but the incentive to cheat

in location-based games, like those mentioned in Section 2.4.2, popularized more sophisticate ways

to achieve the same effect, bypassing this setting.

GNSS also present reduced accuracy indoors, or may be outright nonfunctional. Finally, their use

would almost certainly increase the power consumption of the device while registering visits. Because

we only want to know whether the user was present at a location, not the precise coordinates of their

path, we consider GNSS would not significantly improve the tamper resistance of our strategies. An

attacker with the means to provide fake Wi-Fi scan results, most likely can easily tamper the GNSS

location information provided to the application.

One possible alternative to the TOTP and Kiosk strategies is to have the client connect to an

access point at the location, in order to establish a bidirectional communication channel. A challenge-

response protocol, based on asymmetric cryptography, would be used to produce a location proof.

This protocol would be conceptually similar to the one used in the kiosk strategy, with communication

being carried out through Wi-Fi or Bluetooth instead of QR code scanning.

We decided against the implementation of such a strategy because, as explained previously,

it would require connecting to possibly malicious wireless networks or devices, as verifying their

authenticity before connecting is complex. It could also interrupt any ongoing Wi-Fi connection

the device may have. Such strategy would not prevent Sybil attacks [DR02] where a single device

presents itself as multiple ones by spoofing the hardware identifiers.

Another alternative to the TOTP strategy would be to use Wi-Fi Access Points or Bluetooth

scanning devices to inform the server of which users are present at their respective locations. In

addition to requiring a connection between the Access Points and the server, while still not protecting

against Sybil attacks, Access Points are generally unable to know which clients are in range unless

they are connected, which is to be avoided due to the aforementioned security implications. It is

possible for some Access Points to enter promiscuous modes where the MAC addresses of nearby

devices can be collected, but modern smartphones protect against this, by e.g. randomizing their

30

MAC address when scanning for networks [Gooc][MMD+17].

If Bluetooth scanning was used, the devices of tourists would need to be in discoverable mode,

in order for their presence to be registered. This presents privacy issues, as anyone would be able to

register this information for other purposes, and may pose energy consumption issues, as the mobile

devices would need to actively broadcast their presence at regular intervals.

These strategies, like Scavenging and TOTP, are vulnerable to wormhole6, signal amplification7,

and Sybil attacks. Their implementation would be more complex and prone to failure, have most

of the disadvantages of the scavenging and TOTP strategies, while still not providing the same

guarantees as the Kiosk strategy.

Wormhole and signal amplification attacks could be countered using distance-bounding protocols,

as introduced in [BC]. These are unsuitable for our use case, as Android, like other smartphone oper-

ating systems, is not real-time and does not provide low-level hardware access, making it impossible

to distinguish between random scheduler delays and those caused by such attacks.

The use of ambient-sound systems akin to those described in Section 2.1.3 was considered, to

allow for a different kind of environment fingerprinting, but their use was ultimately decided against:

� Naturally, the use of these systems requires access to the microphone of the smartphone.

On many mobile operating systems, this rightfully warns users that an application is using

the microphone. Users may fail to realize why a “smart tourism application” would use the

microphone in the background, augmenting privacy concerns even if all analysis is performed

on the client;

� Audio analysis for prolonged periods of time will decrease the battery running time, especially

if the radios and GNSS receivers are already being used to prove the location of the user;

� For many locations, sound fingerprints can vary heavily depending on the time of day and day

of week, weather, or a number of other uncontrollable factors, especially outside;

� With many smartphones not leaving the pocket or purse of tourists for extended periods of time,

obtaining audio input of sufficient quality could prove troublesome (at a limit, all fingerprints

would be of the sound of phones moving around in pockets);

� Depending on the device and its specific configurations, access to the microphone can be

impossible during phone calls.

6Attacks where packets are tunneled from one physical place to another.
7Attacks where a wireless signal is amplified to make its source appear closer than it actually is.

31

Go runtime

Go standard library
(including database drivers,

HTTP server and
cryptography library)

Android API
Dalvik / Android Runtime (ART)

Additional Go libraries

Server Client

Application Code (Go)

Linux / Windows

Application Code (Java)

Room Persistence Library
SQLite

Support Libraries
(AppCompat/AndroidX)

Android
Linux

Po
st

gr
eS

Q
L

Low level firmware
Mask ROM functions

Wi-Fi AP

Application Code (C++)

NTP client
Cryptography libraries

ESP8266 SDK Functions

ESP8266
Wi-Fi-enabled microchip

Arduino Core

Figure 4.8: Overview of the used technology stack.

4.4 Technology stack

Functional server, client and customized Wi-Fi AP prototypes were developed, supported on different

sets of technologies. These were used to evaluate our solution, as will be presented in Chapter 5.

Figure 4.8 shows how the technologies discussed in this section are used in our solution.

4.4.1 Client application

The client application targets the Android operating system. We developed the client for this platform

because access to peripherals, like sensors and wireless radios, is traditionally less hampered on

Android, when comparing with other relevant smartphone operating systems. In the context of this

work, this is important because the location proof techniques discussed in Section 4.3 require this

less restricted access to the capabilities of these components, namely, the Wi-Fi scan results.

Wireless radio access is very restricted in iOS. As a relevant example, it does not provide any pub-

lic, officially-supported API for Wi-Fi network scanning. iOS development is only officially supported

on macOS and is primarily done using Swift, a language almost exclusively used in development for

these two platforms. These factors led to the exclusion of iOS as a possible target for our prototype.

Development of Windows 10 Mobile has ceased and the market share of this operating system is

negligible, excluding it as a possible target for our solution. It is also unclear whether this operating

system ever allowed access to Wi-Fi scanning, or if it shares the limitations of iOS.

It should be noted that recent Android versions, namely the major versions 8 (“Oreo”, API levels

26 and 27) and especially 9 (“Pie”, API level 28) heavily restrict application access to some hardware

capabilities, notably some that are useful for implementing location techniques, including the ability

to scan for Wi-Fi access points.8 Only starting with Android 10 (“Q”, API level 29), an option was

added, in the normally hidden developer settings, that disables this restriction. Because of this, our

8https://developer.android.com/guide/topics/connectivity/wifi-scan#wifi-scan-restrictions

32

https://developer.android.com/guide/topics/connectivity/wifi-scan#wifi-scan-restrictions

solution targets version 8 (“Oreo”), where such restrictions can be worked around by keeping the

application in the foreground, which can be achieved, for example, by displaying a notification.

Applications run on a Java Virtual Machine, and are able to use APIs provided by Android, as well

as libraries included with the application code. The latter include Support Libraries, which provide

features from recent Android versions even when the application is running on older ones.

SQLite is used in conjunction with the Room Persistence Library9 in order to manage client-side

storage (Internal storage and Cache in Figure 4.3).

The application was developed using the Android Studio IDE10 and the Gradle build and de-

pendency management solution, which corresponds to the currently officially supported Android

development tool set.

4.4.2 Server

The server handles the HTTP API requests and queries the relational database containing the catalog

and user information, in order to perform its core function, which is to verify location proofs, assign

rewards and serve the catalog and relevant user information to each client.

The server is written in the Go programming language11, a fairly recent language (released

in 2009) but which has gained popularity in recent years. Go provides a very complete standard

library, including cryptography packages implementing different encryption and hash algorithms, se-

cure random number generators, and certificate manipulation functions. Go also provides libraries for

connection with SQL databases, creation of HTTP servers and handling of requests, and serialization

libraries, including a JSON decoder and encoder. These features make Go a good choice, as they

facilitate HTTP server programming, database interaction, and location proof validation.

Go programs compile to a single statically-linked binary, which helps with their deployment. Go

code is generally platform-agnostic and can be easily cross-compiled12. Because the resulting binaries

are statically linked, their behavior is less prone to change depending on the configuration of the

operating system where they are deployed.

If care is taken with regards to dependency management (namely, through the use of a practice

known in the Go community as vendoring), Go builds are almost fully reproducible. We used dep13

as the dependency management tool.

Another reason for the choice of Go is that we have validated its use, in solutions architecturally

9A library that abstracts the use of SQLite. https://developer.android.com/topic/libraries/

architecture/room
10Integrated Development Environment
11https://golang.org/
12Compiled on an architecture other than the target of the resulting binary, e.g. producing a AArch64 Linux binary

on x86-64 Windows.
13https://golang.github.io/dep/

33

https://developer.android.com/topic/libraries/architecture/room
https://developer.android.com/topic/libraries/architecture/room
https://golang.org/
https://golang.github.io/dep/

similar to the one we are proposing, in past projects. We already had high proficiency in the use of

a number of relevant libraries for database querying and transaction management, organization of

REST handlers, serialization, authentication and cryptography.

The server uses a relational database with SQL support to store the catalog and user information.

PostgreSQL is used as the database management system. Alternatively, MySQL or MariaDB could

have been used. The interoperability of these three database management systems with the SQL

database driver in Go had already been validated on previous projects. We decided to use PostgreSQL

because we had higher familiarity with it.

In our prototype, configuring the server must be done directly using SQL statements, either

through a command line client, or through a graphical tool such as pgAdmin. Configuring the server

mainly consists on registering records of the different entities described in Figure 4.4 of Section 4.2.

It would be essential for a production-quality product to include a web dashboard to configure and

monitor the system.

4.4.3 Customized Wi-Fi Access Point

We developed a functional prototype of the customized Wi-Fi Access Point (AP) used in the TOTP

strategy, described in Section 4.3.3. Such an AP could have been implemented using, for example,

conventional Wi-Fi adapters connected to desktop and laptop computers, operating in AP mode.

We opted for a more realistic and portable solution, developed to run on programmable low cost

embedded computers with Wi-Fi support: the ESP8266 microchips developed by Espressif Systems.

These chips include a low-power Tensilica 32-bit CPU, that runs a proprietary RISC instruction set,

at a default clock speed of 80 MHz and a maximum speed of 160 MHz. They include about 80 kB

of static RAM (SRAM), of which about 50 kB are available for user applications, with the rest being

used by basic hardware drivers and firmware support functions. The specific memory allocations vary

depending on the operation mode, selected SDK14 version, among other factors. The supported

Wi-Fi protocols are 802.11 b, g and n on the 2.4 GHz frequency range [Esp19].

These chips, available packaged in inexpensive modules that include Flash memory, are pro-

grammed using C and C++, or higher-level languages including MicroPython15 and Lua. Our

prototype is programmed in C++ using the Arduino environment for this platform.16 To aid with

the computation of the TOTP to broadcast in the SSID, the Arduino Cryptography Library by Rhys

Weatherley17 is used.

14Software Development Kit, based on GCC, developed by Espressif for the ESP8266. The Arduino framework is
implemented on top of this SDK.

15https://micropython.org/
16https://github.com/esp8266/Arduino
17https://rweather.github.io/arduinolibs/crypto.html

34

https://micropython.org/
https://github.com/esp8266/Arduino
https://rweather.github.io/arduinolibs/crypto.html

To implement the TOTP strategy, the AP must have a synchronized clock. Because most

ESP8266 modules do not include a battery-powered real-time clock, the system must obtain the

time when it boots, which can be challenging.

When the system is in range of a trusted Wi-Fi network with Internet access, this problem is

solved quite easily. Because the ESP8266 can act as a Wi-Fi station and AP simultaneously, it can

connect to the Wi-Fi network to periodically synchronize the volatile real-time clock included in the

chip, over NTP18. For this purpose, the NTPClient library19 is used.

When a trusted network is not available, because this is just a prototype, our implementation can

also “scavenge” existing open Wi-Fi networks to obtain the current time and date. It will attempt

to connect to each open Wi-Fi network in range, until it synchronizes the clock. In addition to NTP,

it can also obtain the time and date from the Date header in response to a HTTP request. We

found that this enables the system to obtain the time and date even when connected to networks

with captive portals, such as those operated by or in partnership with Fon Wireless Ltd.20, making

this workaround successful in many urban environments.

It is very important to note that this workaround is completely unsuitable for use in production

systems, as it is trivial for an attacker to provide their own open Wi-Fi network that will feed our AP

incorrect time information, breaking the TOTP strategy – a denial of service attack, as no proofs

produced using an AP with a wrong clock will be accepted by the server. In a production system,

if a trusted Wi-Fi connection is not available, an alternative clock synchronization method would be

needed, using, for example, a GPS receiver.

4.5 Usage example

Consider the following example scenario, where all components of our solution would be exercised,

going over all steps necessary to set up our solution and use it in a production context.

Consider that Bob, who owns a tourism bus company, wants to give tourists an incentive to

visit more places in town, hoping that this will lead to an increase in passengers transported by his

company. Bob discovers CROSS and considers that the reward scheme it enables is an adequate

solution.

4.5.1 Setting up the system

Bob, who in this situation will be the system operator, has already figured out that in order to

increase the usage of his most profitable bus route, tourists should be incentivized to visit three

18Network Time Protocol
19https://github.com/arduino-libraries/NTPClient
20Company that operates the Fon hotspot network, focused on residential Wi-Fi sharing. https://fon.com

35

https://github.com/arduino-libraries/NTPClient
https://fon.com

different attractions: a small public park (Park), a Monument and a Museum. The bus route goes

through these attractions in this order, and Bob intends to reward tourists who complete this circuit

with a discount voucher to the fancy restaurant operated by his cousin.

In the Park and at the Monument, the only viable location proof strategy is the Scavenging one,

as the nearby residential and commercial buildings ensure there will be a decent amount of third-party

Wi-Fi networks, but Bob does not have the permission to set up his own Access Points or a Kiosk.

To set up the system for these locations, Bob will need to visit both and take note of the BSSIDs21

of the Access Points in range at each location.22 To easily exclude mobile and temporary APs, one

solution is to visit each location in separate days and consider only those APs present in both visits.

Bob will then need to select which networks should be triggers in each location, i.e. the networks

that the clients will know about, so they can detect their presence at the location and collect proofs.

Based on experiments in the field, that we will present in Section 5.2.1, we recommend that about

a quarter of the networks in range be used as trigger; preferably, these should be the networks with

the strongest signal.

In the Museum, Wi-Fi coverage is lackluster. Bob signs a partnership with the Museum admin-

istration; together, they will install a network of APs providing free Internet to visitors and running

the custom software necessary for the TOTP strategy. In this example, the Museum administrator

is a POI official. In the TOTP strategy, all APs should be a trigger, because the secret elements are

not the BSSIDs, but the SSIDs broadcasted by the APs.

Once all APs are registered in our solution, together with their TOTP secrets in the case of the

Museum APs, Bob must configure the remaining entities: each location will be a POI, the Route

will have the voucher Reward and three Waypoints, one per POI. Minimum visit durations must to

be set for each Waypoint, as well as confidence score thresholds. Bob decides to set a minimum of

15 minutes for the Park and Monument, and a minimum of 30 minutes for the Museum. In the case

of the Scavenging strategy, the ideal values for the thresholds can be hard to determine, as explained

in Section 4.3.2. After testing the route, Bob considers that the system is finally ready to be used

by tourists.

4.5.2 Using the system

Alice, a tourist looking forward to use the tourism buses, installs the CROSS client application on her

smartphone. She will be prompted to create an account and sign in, as depicted in Figure 4.9.(a).

She will also be prompted to grant the Location permission to the application. After signing in,

Alice can go offline, which is convenient as she has not purchased a data plan. To preserve her

21Basic Service Set Identifiers, which in the case of an Wi-Fi Access Point, corresponds to its MAC address.
22This can be done using one of the many “Wi-Fi Scanner” or “Wi-Fi Analyzer” Android applications.

36

Figure 4.9: Screens of the CROSS client application.

privacy, the application only collects data in visit logging mode, launched by pressing “Start trip”,

in Figure 4.9.(b).

Alice then visits the Park, the Monument and the Museum, in order. She spends 20 minutes in

each of the first two locations, and 40 minutes at the Museum. During all this time, because the

Kiosk strategy is not being used, Alice does not need to use her smartphone at all. If the Kiosk

strategy was being used, for example, at the Museum, she would need to take a moment during her

visit to exchange QR codes with the Kiosk, or she would otherwise not be eligible for the reward

voucher.

Finally, Alice presses “End trip”. Because she is offline, she won’t immediately receive the reward.

Later that day, when she connects to the hotel Wi-Fi, the application will submit the trip log and

associated visit proof elements to the server. Because all visits were successfully detected and verified,

she will receive the discount voucher for the fancy restaurant, as depicted in Figure 4.9.(c).

In our solution, reward attribution is a task to be solved by the system operators. Our system only

determines whether the user should receive the reward, not how to securely do it. In this example,

simply showing the rewards screen of the application to the restaurant waiting staff could suffice, but

such a solution is so easy to fool that the whole effort becomes pointless. A better solution would

be to integrate our system with the payment system at the restaurant.

37

4.6 Summary

We described the implementation of CROSS, a solution that, once configured by system operators and

POI officials, lets them verify whether tourists using the system have verifiably visited predetermined

locations. In Section 4.1, we described the use cases to be supported for each of these entities, as well

as the desirable properties of the solution. As detailed in Section 4.2, our solution uses a client-server

architecture, where communication occurs through a HTTP REST API. Location proof elements are

collected by an application running on the smartphones of the tourists, and are validated by the

server, which ultimately decides whether users have completed tourism circuits, unlocking rewards

accordingly.

Visits are verified using three different location proof strategies with increasing tamper-resistance,

two of which are based on Wi-Fi (Sections 4.3.2 and 4.3.3) and a third one based on physical

interaction with kiosk-like devices (Section 4.3.4). Other considered location proof techniques and

ideas were discussed in Section 4.3.5.

Client and server prototypes were developed, as well as a prototype of the customized Wi-Fi

Access Point used in one of the location proof strategies. The client prototype is an Android

application developed in the Java programming language. The server was programmed in Go and

uses a PostgreSQL database. The Wi-Fi Access Point prototype was developed for the ESP8266

microchip, programmed in C++. These technology choices were discussed in Section 4.4.

Finally, a thorough example of how the prototype is meant to be set up and used by system

operators and tourists was presented in Section 4.5.

38

Chapter 5

Evaluation

This Chapter encompasses our evaluation of the proposed system, CROSS. In Section 5.1, we will

analyze the security of the system against different types of attackers. In Section 5.2, we will present

the results of the evaluation of the prototype in a realistic setting, with a focus on the Scavenging and

TOTP location proof strategies. Section 5.3 will present our power consumption analysis. Section 5.4

will discuss the results of the user survey we conducted. Lastly, in Section 5.5, we will analyze the

feasibility of the Scavenging strategy based on data collected at various locations in the city of Lisbon.

5.1 Security assessment

The purpose of this assessment is to clarify what types of attacks CROSS is designed to counter and

the limitations of the proposed solution in this regard. We consider an attacker model where the

attacker has one or more of the following goals:

� Tamper : Obtaining more rewards than he has the right to, considering the routes he actually

completed;

� DoS : Disrupting the CROSS system (denial of service), e.g., preventing other users from

receiving rewards;

� Hijack: Attacking CROSS users through the CROSS infrastructure, by e.g. using it to spread

malware.

Tamper is the most relevant goal, because the main contribution of CROSS is in the field of

location proof systems. However, two concerns with existing witness-based solutions, and which

led us to the selected strategies, is that they require cooperation between prover and witnesses,

potentially compromising the Availability of the system, and the peer-to-peer connections could be

39

exploited for malicious purposes. Therefore, it is important to understand in what situations our

solution is vulnerable to DoS and Hijack.

To model different types of attackers, we considered the capabilities presented in Table 5.1,

divided in sets A through D. A focuses on server control, B affects the connection between clients

and server, C consists on client control and client-side tampering, and D are generic infrastructure

attacks.

A1 Read all the information in the server database.
A2 Take control over the server.

B1 Record all communication between the server and his client.
B2 Record all communication between the server and any client.
B3 Send requests to the server, posing as a client, using alternative software.
B4 Suppress communication between the server and any client, or redirect the

client to a rogue server.

C1 Make the client application believe any Wi-Fi network is nearby.
C2 Know all the networks at a given location, at a certain point in the past.
C3 Know all the networks at a given location, in real-time, without being

present.
C4 Set up rogue Wi-Fi Access Points.
C5 Know the OTP secret key of a AP used in the TOTP strategy.
C6 Pretend to be multiple users when at a kiosk.
C7 Know the private key of a kiosk.
C8 Set up fake kiosks.

D1 Send Wi-Fi deauthentication packets.
D2 Attack devices connected to the same network.

Table 5.1: Attacker capabilities considered in our security assessment.

Ideally, the solution should guarantee the CIA properties (Confidentiality, Integrity and Avail-

ability) regardless of the performed attack. In this context, Confidentiality corresponds to a lack of

access to privileged information, which consists on the trip history of other users, network lists used

by the Scavenging strategy, and OTP secret keys used by the TOTP strategy. Integrity corresponds

to the inability to tamper with trip logs and data used in location proofs, including the forgery of

location proof elements, and is directly tied to the Tamper attacker goal. Availability corresponds

to the normal and continuous operation of the system, namely by continuing to let users download

the catalog, create accounts, sign in, submit trip logs, and unlock the rewards they should qualify

for. The latter property is directly tied to the DoS attacker.

Capability A1 can be acquired by discovering, for example, a vulnerability in the server REST API

that lets the attacker perform arbitrary SQL read-only queries. A1 attackers are not able to change

the data associated with other user accounts or impersonate users (passwords and API tokens are

40

hashed and salted) but they will immediately gain capabilities C2, C5, B4 and (partially) B2.1 The

system loses the confidentiality property against attackers with this capability. Because the server

does not know the private key of each kiosk, it is still impossible for A1 attackers to break the third

proof strategy. The integrity property is lost for the other two strategies. Availability is not affected.

A2 attackers essentially become as powerful as the system operators, and can manipulate the

system to their own will, being able to achieve all three goals. In the CROSS security model, the

server is the trust anchor, and therefore, it is not designed to counter attackers with capabilities A1

or A2. Attackers with capability A2 are not able to produce kiosk proofs, so while they achieve the

Tamper goal, this tampering will be obvious if the proofs are independently audited. Confidentiality,

Integrity and Availability are lost.

Capability B1 can be acquired by compromising the connection of a single client with a man-in-

the-middle, and B2 by compromising the server connection. As long as B1 or B2 attackers are not

able to obtain the clear-text content of the HTTPS connections between the server and the client,

they will only be able to violate users’ privacy by inferring usage patterns. They will not be able to

achieve any of the three goals, and the system retains all the CIA properties.

Capability B3 can be obtained relatively easily, by reverse-engineering the client application to

obtain the API address and request format. By itself, this capability does not let the attacker achieve

any goals, nor does it affect CIA, but it is useful in conjunction with some of the C capabilities.

Capability B4 will let the attacker perform selective denial of service, as well as obtain the creden-

tials of clients connecting to the rogue server, directly affecting the Availability and Confidentiality

properties. To set up a rogue server, the attacker will need to obtain a valid TLS certificate for the

FQDN2 of the server that matches the pinned certificate in the client application. The most likely

way to do this is to compromise the server and obtain the private key of the certificate, i.e. obtain

capability A2, at which point setting up a rogue server is a pointless exercise.

C1 can be used in conjunction with C2, C3 and C5 in order to produce illegitimate visit proofs,

breaking the Integrity property. With capability C2, an attacker can produce valid proofs for any

location that uses the scavenging strategy, and can produce valid TOTP strategy proofs for the

limited period in time when the list of APs was obtained. Therefore, the Integrity property is lost

for these two strategies.

With capability C3, which can be acquired using signal amplification or by tunneling information

from the attraction location to the attacker’s location, an attacker can produce valid proofs for

both the scavenging and TOTP strategies. Again, these two would lose the Integrity property. In

1Communication between server and client can be inferred from the database data, because some of the communi-
cation will result in changes to the data.

2Fully-qualified domain name

41

conjunction with capability B3 or C1, they will therefore be able to achieve the Tamper goal with

routes that do not use the kiosk strategy.

An attacker with capability C4 can achieve the DoS goal by faking triggers, making client ap-

plications believe they are at a different location, breaking the scavenging strategy. They can also

break the TOTP strategy by making clients collect SSIDs with nonsense OTPs, producing invalid

proofs that will be rejected by the server. This capability does not help attackers achieve the Hijack

goal, as clients never automatically connect to any of the CROSS Wi-Fi networks. Capability C4 will

cause the Integrity and Availability properties to be lost for the TOTP and Scavenging strategies.

An attacker that acquires capability C5 will be able to fraudulently prove his presence at the

location of the AP, at any past and future point in time, until a new key is generated for that

AP. This allows him to achieve the Tamper goal, causing the TOTP strategy to lose the Integrity

property, but only if the stronger kiosk strategy is not used in some other point of the route.

Capability C6 will let an attacker produce valid proofs for the strongest strategy. In conjunction

with capability C4 and C1, this lets them achieve the Tamper goal with any route. The Integrity

property is lost for the Kiosk strategy. We believe that acquiring this capability is complex, as long

as users are monitored by a supervisor when operating the kiosks. An alternative capability that nets

the same results is C7, which can only be acquired by tampering with the kiosk to extract its key, or

compromising the key when it was configured in the kiosk.

With a naive implementation of the Kiosk strategy, where the client application does not verify

the authenticity of the kiosk, an attacker with capability C8 would achieve the DoS goal by tricking

clients into collecting invalid proofs which will then cause the rejection of the trip log. However, if a

mutual authentication scheme is used – one can be easily implemented, by letting clients know the

public key for each kiosk – the application will be able to detect a fake kiosk. The only way to set

up a functional impostor kiosk is by also having C7.

Attackers with capability C8 may also achieve the Hijack goal, if they can exploit the QR reading

functionality of the client application or of the kiosk. QR codes can be used as an attack vector, as

summarized by Krombholz et al. [KFK+14]. We believe our system is not vulnerable to the attacks

mentioned in their work. The QR code reader in CROSS does not act on any URL, tel: command,

or similar contents. In CROSS, the purpose and context of the QR codes is clear for the users,

rendering unfeasible attacks similar to the QRishing experiment.

Capabilities D1 and D2 do not affect any of the proof strategies, as they do not require the user to

be connected to a network. This is one of the advantages of not using peer-to-peer communication

between devices: because no connections are established, the potential for attacks and privacy

invasion is much smaller. However, D1 and D2 can help the attacker achieve the DoS goal, if they

42

prevent other users from submitting their trip logs, therefore affecting the Availability of our system

for these users.

Overall, we can conclude that the security mechanisms in place for the smart tourism application

are well suited. The cost of attacks with the Tamper goal exceeds the value of the intended rewards,

which are small (e.g. a value of up to EUR 2) and will likely consist on discount coupons whose

full redemption will require a purchase. The cost of DoS is high and there is no clear benefit for

a specific attacker. The benefit of Hijack for an attacker is limited, because most times there will

be no direct device interaction – the device sees the networks but does not connect to them – or is

limited to the scanning of a data QR code.

5.2 Field experiments

An evaluation scenario was set up in the Alameda campus of Instituto Superior Técnico. Three

locations were selected to simulate a tourism route, shown in Figure 5.1 as locations A through C.

Additionally, a control location, N, not part of the route, was selected. Participants were asked not

to visit this location. The characteristics of each location are shown in Table 5.2.

Location Common Name Type Area

A “Jardim Sul” Outdoor garden ≈ 3300m2

B “Jardim Norte” Outdoor garden ≈ 3900m2

C
“Room 0.09 –

Pavilhão de Informática III”
Indoor room ≈ 31m2

N “Átrio do Pavilhão Central” Indoor hall ≈ 526m2

Table 5.2: Characteristics of each location considered in the experiment.

The route was configured in the system such that the three locations had to be visited in order,

from A to C. The Scavenging location proof strategy was used in locations A, B and N; the

TOTP strategy was used in location C. Details about the route configuration are shown in Table 5.3.

“Minimum visit duration” corresponds to the minimum acceptable duration configured in the system;

“Effective visit duration” corresponds to the amount of time participants were asked to stay at each

location.

Location
Location Proof

Strategy
Known

APs
Trigger

APs
Minimum

visit duration
Effective

visit duration

A Scavenging 21 4 10 seconds 3 minutes
B Scavenging 17 8 1 minute 3 minutes
C TOTP 1 1 8 minutes 10 minutes
N Scavenging 10 2 - No visit

Table 5.3: Configuration of the experimental locations in our solution.

43

Figure 5.1: Alameda campus route used in the evaluation.

6
.0

 (S
D

K
 2

3
)

3
 d

e
v
ic

e
s

7
.0

 (S
D

K
 2

4
)

2
 d

e
v
ic

e
s

7
.1

 (S
D

K
 2

5
)

3
 d

e
v
ic

e
s

8
.0

 (S
D

K
 2

6
)

8
 d

e
v
ic

e
s

8
.1

 (S
D

K
 2

7
)

2
 d

e
v
ic

e
s

9
.0

 (S
D

K
 2

8
)

1
6
 d

e
v
ic

e
s

Figure 5.2: Representation of each Android version in the sample of devices used for evaluation.

The lists of APs for locations A, B and N were obtained immediately before the start of the

tests, using the “Wifi Analyzer” Android application.3 The networks with strongest signal levels at

each location were selected to be triggers. At location C, only our customized AP prototype was

used.

We conducted tests with voluntary participants who brought their own personal Android phones.

This let us reach a large and diverse sample size, and approximates the experiment to the intended

real-world use of the system, where there is no control over what devices tourists will use. A total

of 34 Android smartphones were used in the experiment. A break down of the OS versions of these

devices is shown in Figure 5.2.

Participants were told to assemble at location A. To make the experience more amenable, the

CROSS application was published to the Google Play store, for participants to download. We hosted

the server prototype on an Internet-facing machine, which the public version of the client application

3https://play.google.com/store/apps/details?id=com.farproc.wifi.analyzer

44

https://play.google.com/store/apps/details?id=com.farproc.wifi.analyzer

was configured to use.

Users were instructed to turn on the Wi-Fi and Location options on their smartphones, and to

grant the location access permission to the application. Regarding the use of the application, users

were asked to create a user account, to start the trip logging on command, and to only stop it

when instructed, at location C, where participants answered the survey discussed in Section 5.4.

Participants were told to put their phones in standby mode and carry them as they normally would.

It should be noted that our system was designed with longer visit durations in mind, with a

minimum of ten minutes per location. Visit length was shortened for the experiment, to decrease the

burden on the voluntaries. The application was configured to scan for networks every 30 seconds.

Longer visit durations would ensure that the smartphones would see a larger set of networks, including

those with weaker signals, as not all networks are immediately found on the initial scans.

To make the experience practical for all participants, all locations are inside the Alameda campus.

Unfortunately, due to their proximity, the protection against travel time inconsistencies, described in

Section 4.3.1, was not exercised.

Two sessions of tests were conducted, on separate days, in order to maximize the number of

participants. In each session, users were divided in small groups, in order to better guide them through

the testing procedure. In order to facilitate the statistical analysis, we made sure that all groups from

both sessions followed the same procedure, and confirmed that other relevant environment variables,

such as nearby Wi-Fi networks, did not change. Therefore, we do not feel a separate analysis per

group or per session is necessary or adequate.

We decided to focus this part of the evaluation on the following aspects:

� Location detection performance: how often are locations correctly detected? Are locations

detected within a useful time frame?

� Location proof performance: what are the optimal threshold settings that maximize the number

of accepted visits while rejecting fake proofs?

5.2.1 Location detection performance

When evaluating the location detection capabilities of CROSS, we were interested in understanding

whether locations are detected by the client application. We are not concerned about whether

sufficient location proofs were collected, or even if the trip logs were successfully sent to the server.

In this experiment, the expected result is that each device should be able to detect locations A,

B and C, and not detect location N. The results presented in Table 5.4 correspond to the results

after the devices were present for three minutes at each location, except for location N, near which

every device passed on the way between A and B.

45

Location Total visits Total detections Success rate

A 34 30 88%
B 34 33 97%
C 34 34 100%
N 0 0 100%

Table 5.4: Location detection performance after three minutes at each location (except for N, not
visited).

Discussion

As expected, no devices detected control location N. For other locations, results are satisfactory as

well. The lower detection rate of location A in comparison with B may be explained by the lower

number of trigger networks configured for A. As shown in Table 5.3, about one fifth of the networks

in A are triggers, while in B about half of the networks are triggers. These are the results backing

our affirmation, in Section 4.5.1, that at least a quarter of the APs known at a given location should

be set as triggers.

All devices detected location C within three minutes, which may be explained by the fact that

the single AP was in the same room as the participants, therefore its signal was much stronger and

easier to detect than the signals of the APs at A and B, which were installed in the nearby buildings,

at distances between 20 and 80 meters from the users.

It is also interesting to note that although almost half of the devices in the sample were running

Android 9.0, the limitations imposed in this version and mentioned in Section 4.4.1 did not seem to

affect the location detection performance of these devices. This is most likely because the scanning

period of 30 seconds does not exceed the limit of four scans per two minutes imposed by this Android

version.

5.2.2 Location proof performance

Because, in CROSS, location proof elements are analyzed by the server, in this section we will only

consider visits that were submitted to the server as part of trip logs. For two of the participants, the

trip log could not be submitted due to a bug in the client application, that let these users proceed to

the main screen despite the account creation having failed. In addition, as we showed in the previous

section, a minority of devices failed to detect some locations. The total number of trips analyzed

per location in this section of the evaluation is shown in Table 5.5.

In locations A and B, the Scavenging strategy was used. In this strategy, the confidence score

corresponds to the percentage of networks found by the client, compared to the total number of APs

registered in the server for each location.

46

Location Total visits Total submissions

A 34 28
B 34 31
C 34 32

Table 5.5: Visits submitted to the server for analysis, per location.

19,04762 0 47,05882 0
19,04762 1 47,05882 1

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 20 40 60 80 100

A
cc

ep
te

d
vi

si
ts

Confidence score threshold

Location A

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 20 40 60 80 100

A
cc

ep
te

d
vi

si
ts

Confidence score threshold

Location B

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 20 40 60 80 100

A
cc

ep
te

d
vi

si
ts

Confidence score threshold

Location C

Figure 5.3: Percentage of accepted visits in function of the confidence score threshold configured at
locations A and B.

Figure 5.3 shows the percentage of accepted visits for locations A and B, in function of the

confidence score threshold that is set for those locations. When deciding whether to reward an

user, all visits must be accepted for the trip to count, but here, each location is being analyzed

individually. The vertical orange line in the charts corresponds to the percentage of known networks

that are triggers, at each location. We consider that it represents the minimum confidence score

threshold acceptable, as only visits proofs with a higher score are guaranteed to contain a non-trigger

(secret) network.

In location C, the TOTP strategy was used. In this strategy, the confidence score corresponds

to the percentage of visit time that could be verified by the TOTP codes present in the scan results

collected by the client. Figure 5.4 shows the relation between the threshold and the accepted visits,

for this location. Again, the visit is being analyzed individually, and the acceptance rate is for the

visits to the location, not the whole trip.

Discussion

Results for the Scavenging strategy (locations A and B) fell short of expectations, as the confidence

score threshold has to be set very low – lower than recommended – for a large percentage of visits

to be accepted. For location A, the minimum recommended threshold would be 19, but that would

only accept 24 of the 28 visits (86%), rejecting four legitimate visits. For location B, the minimum

recommended confidence score threshold would be 47, accepting only 16 of the 31 visits (52%).

These results show that most devices did not see a majority of the networks associated to each

47

19,04762 0 47,05882 0
19,04762 1 47,05882 1

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 20 40 60 80 100

A
cc

ep
te

d
vi

si
ts

Confidence score threshold

Location A

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 20 40 60 80 100

A
cc

ep
te

d
vi

si
ts

Confidence score threshold

Location B

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 20 40 60 80 100

A
cc

ep
te

d
vi

si
ts

Confidence score threshold

Location C

Figure 5.4: Percentage of accepted visits in function of the confidence score threshold configured at
location C.

location, in part certainly due to the short visit duration (three minutes) and the weak network signal

levels, whose APs were relatively distant.

Defining a larger ratio of trigger networks per location increases the probability that the location

will be detected successfully, but because it increases the minimum threshold, it also means more

visits will be rejected. The problem would be minimized if the strength score for this strategy was

calculated based solely on the amount of non-trigger (secret) networks submitted by the client.

However, the cause of the phenomenon would still exist: in the Scavenging strategy, the more

networks that are set as trigger, the less secret information there is to consider.

Results for the TOTP strategy (location C) were positive. We believed most devices would have

trouble capturing the SSID changes every two minutes, especially given the Wi-Fi scanning limitations

presented in Section 4.4.1. However, this did not appear to be the case: 24 devices (75%) were even

able to capture TOTP codes attesting the entirety of the visit period (10 minutes).

For the TOTP strategy, we do not recommend a minimum confidence score threshold; it is

entirely up to the system operators to be more or less demanding. The results show it is possible

to require that half of the duration of the visits be backed by TOTPs, and still accept over 80% of

the visits. The positive results may be explained by the close proximity to the AP, which was in the

same room as the participants.

Overall, the difference in results shows that the confidence scores for each strategy and even for

each location are not directly comparable or mixable. In its current form, the system requires careful,

manual and empirical calibration for each location and tourism route one may want to support.

One clear challenge for future work is the development of a method for identification of the ideal

thresholds and trigger networks for each location, eventually even recognizing whether the Scavenging

strategy is suitable for a location, or if APs and other hardware, like Kiosks, will need to be deployed

48

specifically to support the system.

5.3 Power consumption

To assess the power consumption of our techniques and compare their consumption with that of

alternative solutions, we collected battery usage data on a LG V40 ThinQ smartphone, running

Android 9.0. To minimize noise effects caused by variation of irrelevant external factors, all data was

collected with Bluetooth and the cellular radios disabled. Wi-Fi was enabled, but not connected to

a network - the device was kept offline. We also kept the battery level between 50% and 80%, as to

avoid the fudging introduced by Android when the battery is full or almost empty.4 The device had a

minimal amount of applications installed beyond those that came pre-installed, and we ensured that

the lowest possible number of applications was running in the background.

We compared three different situations: location using both Wi-Fi and GNSS, location using

exclusively Wi-Fi scanning, and no location collection at all. For the first case, a modified CROSS

application, that also used GNSS to collect location information, was used. In the second case, the

unmodified CROSS application was used. In both cases, data was requested every 30 seconds. In

the third case, no applications were used - the phone was left turned on, with Wi-Fi enabled, without

explicitly using any applications. Table 5.6 presents the results.

Method Polling rate Total test duration Average battery drain

CROSS using GNSS and Wi-Fi 30 s 8 h 1.25 p.p.5 / hour
CROSS using Wi-Fi 30 s 39 h 30 min 0.61 p.p. / hour

No collection N/A 29 h 5 min 0.58 p.p. / hour

Table 5.6: Battery drain depending on the location collection method.

It is clear that the use of GNSS for location consumes more battery than using Wi-Fi scanning

exclusively, with the device using, on average, about twice as much power than when not collecting

location data. CROSS, which exclusively uses Wi-Fi, presents a negligible increase in power con-

sumption relative to no location collection. This increase, of 0.03 percentage points per hour, can

be attributed to random variations and to deficiencies in the analysis method, as the battery level is

only ever presented by Android with unit precision.

4Above 90%, occasional topping charges are performed despite the device always reporting 100%. When the battery
is almost empty, the percentage may decrease more quickly to avoid battery depletion and damage.

5Percentage points

49

18 to 25: 19

26 to 30: 4

31 to 40: 2

41 to 65: 4

Male: 24

Female: 5

Higher Education: 26

Secondary Education: 3

Age Gender Educat ion

Figure 5.5: Characterization of the survey sample.

5.4 User survey

We conducted a small survey among the participants of the field experiments from Section 5.2. Users

were asked to fill a multiple-choice questionnaire while they waited at location C. With this survey,

we wanted to answer the following questions:

� How do users treat location information that is relative to them?

� How familiar are users with location proofs?

� What communication technologies, to produce and transmit proofs, are typically available on

their devices?

� What are the most important criteria users consider when installing an application?

We received a total of 29 answers to the questionnaire. The characterization of the sample

is shown in Figure 5.5. The sample is not representative of the general population: 24 of the

respondents were male, 19 of them were less than 26 years old, and 26 attained higher education.

We believe the results are still interesting, even if they only characterize a range of the population.

An overwhelming majority of the respondents (26, or 90%) does not commonly share their

location on social networks. Generally, those surveyed were less willing to share their location with

other parties, the less intimate those parties were, and the more connected to their identities the

information would be. Only two respondents were unaware that smartphones can be constantly

reading sensor data.

Notably, 20 of the 29 respondents were willing to share location information and history with a

company or organization they trust, if such information was completely anonymous

(not pseudonymized). On the contrary, only three were willing to share with the whole world if

it was pseudonymized, and none of the surveyed were willing to share their location information with

50

Not
familiar

3

Mildly familiar
12

Very familiar
10

Already used
4

Figure 5.6: Familiarity of the survey respondents with the concept of “location proofs”.

Enabled by

24
respondents

Enabled by

19
respondents Enabled by

9
respondents

0

29

Cellular data Wi-Fi Bluetooth

Figure 5.7: Connectivity options usually enabled by the surveyed.

the whole world if it had their real name associated. We can conclude that, for the population range

represented by our sample, personal location information privacy is very important.

As shown in Figure 5.6, most surveyed volunteers were familiar with the concept of “location

proofs”. 90% of the respondents had an interest in being able to produce location proofs using their

smartphone, for one purpose or another. 70% of them would be willing to collect location proofs for

their own personal reference, while 67% would be willing to do so in order to justify their absence at

work or school or to prove their presence at a public service.

We asked users whether they typically had mobile data, Wi-Fi and Bluetooth enabled on their

smartphones. The intention is to understand what technologies can be used by location proof

strategies. The results are shown in Figure 5.7. A majority of participants enables mobile data,

but our sample is not representative of tourists, the target audience for our solution. It is possible

that this figure would be lower among international tourists. The fact that a third of the surveyed

does not usually have Wi-Fi enabled surprised us. Fortunately, many recent Android devices support

scanning for networks even when Wi-Fi is disabled, thus, our location proof strategies will still work.

These results validate our decision to base our strategies on Wi-Fi and not Bluetooth.

Respondents were asked to select the top three criteria they took into account when deciding

whether to install an application. The most selected option was “Privacy and permissions”, selected

by 17 (59%) of the participants, again confirming the high privacy-consciousness of our sample. The

second most selected option was “User interface appearance and ease of use”. Complete results are

shown in Figure 5.8.

51

Selected by 17 participants

Selected by 14 participants

Selected by 12 participants

Selected by 12 participants

Selected by 10 participants

Selected by 9 participants

Selected by 5 participants

Selected by 5 participants

Privacy and permissions

User interface appearance and ease of use

Mandatory account creation

Presence of advertisements

Amount of mobile data used

Undersirable notifications

Application size

Battery consumption

Figure 5.8: Most important criteria considered when installing an application, according to the
respondents.

Overall, for CROSS to match the expectations of the users, we believe it should have an even

stronger emphasis on privacy protection. It would also need to have a more polished user experience,

compared to that of our prototype, whose focus was on the validation of the Scavenging and TOTP

techniques. Given the high percentage of respondents who can use cellular data connections, it may

be viable to implement different location proof strategies that communicate in real-time with the

server.

5.5 Scavenging feasibility

One of the concerns with the scavenging strategy, presented in Section 4.3.2, is the need to maintain

the lists of Wi-Fi networks for each location where this strategy is used. As time passes, some of the

networks may disappear, and new, different networks may appear. Even though the server suggests

the addition and removal of networks based on the submitted visit proofs, these suggestions need to

be manually vetted.

If the sets of networks at a location change too frequently, the scavenging strategy may prove

to be inadequate for that location: at a limit, the server database would need to be updated almost

daily. The system would also need to be modified, to decide proof acceptance based not on the

current set of known networks, but on the set that was in effect at the time when the proof was

produced.6 Therefore, it is important to understand how frequently Wi-Fi networks appear and

disappear in the real world, to assess whether the current implementation is adequate.

We collected data on the Wi-Fi networks in range, at six locations in Lisbon, in three dates. The

second date was ten days after the first, and the third date was 31 days after the first. Five of the

locations are well-known tourist attractions and one is a residential area, that serves as an example

of a location where there could be an interest in using the system, despite not being a recognized

tourist attraction. Details of each location are presented in Table 5.7. We will mention locations by

6Recall that proofs can be produced offline and their submission is deferred until the device is online.

52

their Reference name.

Reference name Name Coordinates Type

Alvalade R. Eugénio de Castro 38°45’16.4”N 9°08’48.3”W Residential area

Comércio Arco da Rua Augusta 38°42’30.2”N 9°08’12.1”W Landmark

Gulbenkian
Jardim da Fundação
Calouste Gulbenkian

38°44’13.7”N 9°09’12.0”W City park

Jerónimos Mosteiro dos Jerónimos 38°41’50.9”N 9°12’21.5”W Monastery

Oceanário Jardins da Água 38°45’45.1”N 9°05’38.7”W City park

Sé
Largo da Sé /

Jardim Augusto Rosa
38°42’34.8”N 9°08’01.3”W Church

Table 5.7: Locations where Wi-Fi networks were collected.

The application used to collect the information was a modified version of CROSS, which registered

location information and Wi-Fi scan results every 30 seconds. Visits to locations lasted for 15 minutes

each, and data was simultaneously collected by three different smartphones, in order to always collect

the largest amount of networks possible and minimize random variations where a device may not see

a network for unknown reasons.

We are interested in knowing, for each location, how many Wi-Fi networks are still Present, and

how many New networks became available, after ten days and after a month. The results, presented

in Table 5.8, correspond to the deduplicated network counts after merging the data from the three

devices. Across devices and visits, APs were identified by their BSSID to avoid counting renamed

networks (such as in our own TOTP strategy) as separate networks. Values for both periods are

always relative to the first visit.

After ten days After one month

Location
Initial
total

Present New Present New

Alvalade 86 74 (86%) 13 73 (85%) 31

Comércio 133 8 (6%) 60 7 (5%) 43

Gulbenkian 80 54 (68%) 92 54 (68%) 55

Jerónimos 148 34 (23%) 100 24 (16%) 62

Oceanário 39 22 (56%) 41 24 (62%) 40

Sé 61 25 (41%) 43 22 (36%) 44

Table 5.8: Wi-Fi networks present at each location after ten days and after a month.

53

5.5.1 Discussion

One positive aspect, seen in the results of Table 5.8, is the large amount of Wi-Fi networks present

at each location, which is a prerequisite for the scavenging strategy. However, in certain locations,

notably, Comércio and Jerónimos, most networks appear to be temporary. This can be confirmed by

looking at their SSIDs: many clearly correspond to personal mobile Wi-Fi hotspots and smartphones,

with names such as “iPhone”, “VodafoneMobileWiFi”, “NOS Internet Movel” or “Nokia 7 plus”.

For the scavenging strategy we propose, temporary or mobile Wi-Fi networks should not be

considered. The number of networks still present ten days after the first visit is a good indicator of

the number of networks that can be considered in the scavenging technique, at each location. Most

locations have a sufficiently large set of usable networks, with the notable exception of Comércio,

where just 8 APs appear to be permanently installed.

In terms of the frequency at which the lists of networks must be updated, we can look at the

number of permanent networks that disappeared between the second visit (after ten days) and the

third visit (after one month). In most cases, there is only a minor reduction from one visit to

another, with Jerónimos being the worst case, where 10, or 30%, of the permanent networks seem

to have been disabled after twenty days. This is the only case where we believe frequent updates,

e.g. bi-weekly, may be warranted, to ensure the correct operation of the system.

The location in a residential area, Alvalade, is the one that presents the highest number of

permanent networks and also the highest ratio of permanent to temporary networks. Most of these

networks seem to correspond to domestic routers of the nearby homes, and it makes sense that this

set of networks would not see significant changes too frequently. The much lower number of tourists

in this location explains why there are very few temporary networks, such as those from mobile

hotspots.

The case of Oceanário is interesting, as two of the networks seen on the first visit have reappeared

after one month, despite being absent on the second visit. These correspond to mobile Wi-Fi

networks, for example in buses, that are only present sometimes, and which should not be considered

in the scavenging strategy.

In the general case, the scavenging strategy appears to be viable and to not require excessive

maintenance of the lists of networks on the server side. The suggestions given by the server on

what networks to add and remove, can be used to update the lists without revisiting the locations,

if one is willing to trust the trip logs of the users. At the very least, they can indicate that a new

thorough survey of the networks is necessary. As mentioned in Section 5.2.2, the identification of

which networks to consider, which networks to set as trigger, and what thresholds to set, continues

to be the biggest challenge with this strategy.

54

In future work, more robust variations of the scavenging strategy could take advantage of the

transient aspect of mobile Wi-Fi hotspots, in schemes similar to those used by witness-based location

proof strategies. For example, when verifying proofs, instead of comparing exclusively against a fixed

list of known networks, the server could also compare against other proof submissions from roughly

the same time, and increase the confidence score of the proofs which contain the then present

temporary networks.

With such a strategy, the system could become susceptible to a new type of collusion attack,

where two or more attackers, or a single attacker using multiple identities, mention the same fake

temporary networks in their forged proofs. This would boost their confidence score past the ac-

ceptance threshold, despite insufficient knowledge of the permanent networks present at a location.

The means to reconcile proof acceptance and reward assignment after the initial submission would

need to be developed, as confidence scores for past proofs could change at any moment, by later

submissions confirming the presence of temporary networks.

55

56

Chapter 6

Conclusion

We presented CROSS, a system that implements location proof techniques in consumer mobile

applications. Location proofs allow for the verification of the location information provided by

smartphone sensors, increasing the dependability of this information. We used smart tourism as

the demonstrative use case, developing a smartphone application where location proofs are used

to implement a reward scheme. Users unlock rewards by verifiably completing predefined tourism

circuits.

We proposed three different location proof strategies, two of which are supported on Wi-Fi and a

third one which uses QR codes for human-visible communication with kiosk-like devices. Two of the

techniques can verify the date and time of visits to locations, and therefore help establish location

provenance. Our system is able to perform location detection using Wi-Fi exclusively, collecting

information only when explicitly enabled by the user and only when in the vicinity of a registered

location. By using multiple strategies, CROSS is easily adapted to the conditions of different locations

and can provide varying degrees of tamper-resistance.

In CROSS, the Wi-Fi-based techniques do not require bidirectional communication between de-

vices. In contrast with most witness-based techniques, CROSS does not use peer-to-peer communi-

cation. This allows the system to have the same performance independently of the number of users

at each location. Additionally, we believe this has advantages in terms of user security and privacy,

while providing a better user experience in current consumer mobile platforms, where peer-to-peer

communication has become a secondary concern.

Often, compromises must be made between security, user experience and compatibility with

existing technologies. We analyzed other location proof systems, some of which are more resilient

against wider categories of attacks, and concluded that, for the smart tourism use case, a stronger

emphasis in user experience and compatibility was necessary. We believe our solution provides well

suited security mechanisms for this use case.

57

A prototype of CROSS was implemented, encompassing a Android application, a server appli-

cation, and a custom Wi-Fi Access Point. The prototype includes the two location proof strategies

based on Wi-Fi, which were evaluated regarding their accuracy, response times and configurations

for optimal operation. Evaluation was conducted in a realistic setting, with 30 volunteers who used

34 different devices, and had positive results. We compared the power consumption of Wi-Fi-based

location, used by our system, with GNSS-based location, and showed that CROSS uses comparatively

negligible amounts of power. Finally, we collected and analyzed data regarding the Wi-Fi networks

present near five tourist attractions, confirming that techniques which take advantage of existing

Wi-Fi networks, are generally viable. Overall, we believe CROSS is a viable option for implementing

location-based reward schemes, in the context of a mobile application.

In terms of future work relative to the proposed location proof strategies, the scavenging strategy

would benefit from the implementation of a method for identification of the optimal threshold setting

and trigger networks. Taking advantage of mobile hotspots for location proofing could also be

valuable.

The CROSS prototype can be easily extended to support additional location proof strategies,

however, the system would benefit from more robust means of combining them, instead of using a

fixed hierarchy where certain strategies always completely supersede others. It would be extremely

valuable to have the means to prevent Sybil attacks, without resorting to the proposed solution of

visible interactions with a kiosk, which represent an interruption for the tourists.

Regarding user privacy, the proposed techniques are already privacy-protecting, by not broad-

casting the location of the users, not disclosing their presence to others, and not collecting location

information outside of predetermined locations. CROSS could benefit from further work in this area,

by e.g. not disclosing the visit history to the system operators, or by making it impossible to associate

a trip log with a specific user, while still assigning rewards.

58

Bibliography

[ACC09] Martin Azizyan, Ionut Constandache, and Romit Roy Choudhury. SurroundSense. In

Proceedings of the 15th annual international conference on Mobile computing and net-

working - MobiCom '09. ACM Press, 2009. doi:10.1145/1614320.1614350.

[AHD+16] Ioannis Agadakos, Per Hallgren, Dimitrios Damopoulos, Andrei Sabelfeld, and Georgios

Portokalidis. Location-enhanced authentication using the IoT. In Proceedings of the

32nd Annual Conference on Computer Security Applications - ACSAC '16. ACM Press,

2016. doi:10.1145/2991079.2991090.

[App] Apple Inc. Core Location — Apple Developer Documentation. Accessed November 30,

2019. URL: https://developer.apple.com/documentation/corelocation.

[Bau13] Christine Bauer. On the (in-)accuracy of GPS measures of smartphones. In Proceedings

of International Conference on Advances in Mobile Computing & Multimedia - MoMM

'13. ACM Press, 2013. doi:10.1145/2536853.2536893.

[BC] Stefan Brands and David Chaum. Distance-bounding protocols. In Advances in

Cryptology — EUROCRYPT ’93, pages 344–359. Springer Berlin Heidelberg. doi:

10.1007/3-540-48285-7_30.

[BDR07] Matthias Baldauf, Schahram Dustdar, and Florian Rosenberg. A survey on context-

aware systems. International Journal of Ad Hoc and Ubiquitous Computing, 2(4):263,

2007. doi:10.1504/ijahuc.2007.014070.

[Ber10] Berg Insight. GPS and mobile handsets, 2010. Accessed November 30, 2019. URL:

http://www.berginsight.com/ReportPDF/Summary/bi-gps4-sum.pdf.

[BJL13] Artur Baniukevic, Christian S. Jensen, and Hua Lu. Hybrid indoor positioning with

Wi-Fi and Bluetooth: Architecture and performance. In 2013 IEEE 14th International

Conference on Mobile Data Management. IEEE, jun 2013. doi:10.1109/mdm.2013.30.

59

https://doi.org/10.1145/1614320.1614350
https://doi.org/10.1145/2991079.2991090
https://developer.apple.com/documentation/corelocation
https://doi.org/10.1145/2536853.2536893
https://doi.org/10.1007/3-540-48285-7_30
https://doi.org/10.1007/3-540-48285-7_30
https://doi.org/10.1504/ijahuc.2007.014070
http://www.berginsight.com/ReportPDF/Summary/bi-gps4-sum.pdf
https://doi.org/10.1109/mdm.2013.30

[Bra08] Daren C. Brabham. Crowdsourcing as a model for problem solving. Convergence: The

International Journal of Research into New Media Technologies, 14(1):75–90, feb 2008.

doi:10.1177/1354856507084420.

[BS03] A.R. Beresford and F. Stajano. Location privacy in pervasive computing. IEEE Pervasive

Computing, 2(1):46–55, jan 2003. doi:10.1109/mprv.2003.1186725.

[Can08] Canalys. Canalys research release 2008/082, 2008. Accessed November 30, 2019. URL:

https://www.canalys.com/static/press_release/2008/r2008082.pdf.

[CCCP13] Eyup S. Canlar, Mauro Conti, Bruno Crispo, and Roberto Di Pietro. CREPUSCOLO: A

collusion resistant privacy preserving location verification system. In 2013 International

Conference on Risks and Security of Internet and Systems (CRiSIS). IEEE, oct 2013.

doi:10.1109/crisis.2013.6766357.

[CY06] Scott Contini and Yiqun Lisa Yin. Forgery and partial key-recovery attacks on HMAC

and NMAC using hash collisions. In Advances in Cryptology – ASIACRYPT 2006, pages

37–53. Springer Berlin Heidelberg, 2006. doi:10.1007/11935230_3.

[DEM15] Christoph Dobraunig, Maria Eichlseder, and Florian Mendel. Security evaluation report

on SHA-224, SHA-512/224, SHA-512/256, and the six SHA-3 functions. Technical

report, CRYPTREC, 2015.

[DR02] Douceur and John R. The Sybil attack. In Revised Papers from the First International

Workshop on Peer-to-Peer Systems, IPTPS ’01, pages 251–260, London, UK, UK, 2002.

Springer-Verlag. Accessed November 30, 2019. URL: http://dl.acm.org/citation.

cfm?id=646334.687813.

[Esp19] Espressif Systems. ESP8266EX Datasheet, 2019. Version 6.2. Accessed

November 30, 2019. URL: https://www.espressif.com/sites/default/files/

documentation/0a-esp8266ex_datasheet_en.pdf.

[FP18] João Ferreira and Miguel L. Pardal. Witness-based location proofs for mobile devices.

In 17th IEEE International Symposium on Network Computing and Applications (NCA),

November 2018.

[FS14] Kassem Fawaz and Kang G. Shin. Location privacy protection for smartphone users. In

Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications

Security - CCS '14. ACM Press, 2014. doi:10.1145/2660267.2660270.

60

https://doi.org/10.1177/1354856507084420
https://doi.org/10.1109/mprv.2003.1186725
https://www.canalys.com/static/press_release/2008/r2008082.pdf
https://doi.org/10.1109/crisis.2013.6766357
https://doi.org/10.1007/11935230_3
http://dl.acm.org/citation.cfm?id=646334.687813
http://dl.acm.org/citation.cfm?id=646334.687813
https://www.espressif.com/sites/default/files/documentation/0a-esp8266ex_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/0a-esp8266ex_datasheet_en.pdf
https://doi.org/10.1145/2660267.2660270

[GKRT14] Sebastien Gambs, Marc-Olivier Killijian, Matthieu Roy, and Moussa Traore. PROPS: A

PRivacy-preserving location proof system. In 2014 IEEE 33rd International Symposium

on Reliable Distributed Systems. IEEE, oct 2014. doi:10.1109/srds.2014.37.

[Gooa] Google LLC. Indoor Maps – About. Accessed November 30, 2019. URL: https:

//www.google.com/maps/about/partners/indoormaps/.

[Goob] Google LLC. Location and Context APIs. Accessed November 30, 2019. URL: https:

//developers.google.com/location-context/.

[Gooc] Google LLC. Privacy: MAC Randomization - Android Open Source Project. Accessed

November 30, 2019. URL: https://source.android.com/devices/tech/connect/

wifi-mac-randomization.

[GSJ17] A. Gómez, M. Server, and A. J. Jara. Turismo inteligente y patrimonio cultural: un

sector a explorar en el desarrollo de las smart cities. International Journal of Scientific

Management and Tourism, 3(1):389–411, 2017.

[GSXK15] Ulrike Gretzel, Marianna Sigala, Zheng Xiang, and Chulmo Koo. Smart tourism:

foundations and developments. Electronic Markets, 25(3):179–188, aug 2015. doi:

10.1007/s12525-015-0196-8.

[HB01] J. Hightower and G. Borriello. Location systems for ubiquitous computing. Computer,

34(8):57–66, 2001. doi:10.1109/2.940014.

[HER] HERE Technologies. HERE Indoor Positioning. Accessed November 30, 2019. URL:

https://indoor.here.com/.

[IEE] IEEE standard for information technology—telecommunications and information ex-

change between systems local and metropolitan area networks—specific requirements

- part 11: Wireless LAN medium access control (MAC) and physical layer (PHY) spec-

ifications. doi:10.1109/ieeestd.2016.7786995.

[Int19] International Data Corporation. Worldwide Global DataSphere IoT Device and Data

Forecast, 2019-2023, 2019. Accessed November 30, 2019. URL: https://www.idc.

com/getdoc.jsp?containerId=prUS45213219.

[KFK+14] Katharina Krombholz, Peter Frühwirt, Peter Kieseberg, Ioannis Kapsalis, Markus Huber,

and Edgar Weippl. QR code security: A survey of attacks and challenges for usable

security. In Lecture Notes in Computer Science, pages 79–90. Springer International

Publishing, 2014. doi:10.1007/978-3-319-07620-1_8.

61

https://doi.org/10.1109/srds.2014.37
https://www.google.com/maps/about/partners/indoormaps/
https://www.google.com/maps/about/partners/indoormaps/
https://developers.google.com/location-context/
https://developers.google.com/location-context/
https://source.android.com/devices/tech/connect/wifi-mac-randomization
https://source.android.com/devices/tech/connect/wifi-mac-randomization
https://doi.org/10.1007/s12525-015-0196-8
https://doi.org/10.1007/s12525-015-0196-8
https://doi.org/10.1109/2.940014
https://indoor.here.com/
https://doi.org/10.1109/ieeestd.2016.7786995
https://www.idc.com/getdoc.jsp?containerId=prUS45213219
https://www.idc.com/getdoc.jsp?containerId=prUS45213219
https://doi.org/10.1007/978-3-319-07620-1_8

[KK17] Dongwook Kim and Sungbum Kim. The role of mobile technology in tourism: Patents,

articles, news, and mobile tour app reviews. Sustainability, 9(11):2082, nov 2017. doi:

10.3390/su9112082.

[KZHH14] Rasib Khan, Shams Zawoad, Md Munirul Haque, and Ragib Hasan. OTIT: Towards

secure provenance modeling for location proofs. In Proceedings of the 9th ACM sym-

posium on Information, computer and communications security - ASIA CCS '14. ACM

Press, 2014. doi:10.1145/2590296.2590339.

[Lan02] Marc Langheinrich. A privacy awareness system for ubiquitous computing environments.

In UbiComp 2002: Ubiquitous Computing, pages 237–245. Springer Berlin Heidelberg,

2002. doi:10.1007/3-540-45809-3_19.

[LGD+15] Xingxing Li, Maorong Ge, Xiaolei Dai, Xiaodong Ren, Mathias Fritsche, Jens Wickert,

and Harald Schuh. Accuracy and reliability of multi-GNSS real-time precise positioning:

GPS, GLONASS, BeiDou, and Galileo. Journal of Geodesy, 89(6):607–635, mar 2015.

doi:10.1007/s00190-015-0802-8.

[MFD03] G. Myles, A. Friday, and N. Davies. Preserving privacy in environments with location-

based applications. IEEE Pervasive Computing, 2(1):56–64, jan 2003. doi:10.1109/

mprv.2003.1186726.

[Mic] Microsoft Corporation. Windows.Devices.Geolocation Namespace - UWP App Developer

— Microsoft Docs. Accessed November 30, 2019. URL: https://docs.microsoft.

com/en-us/uwp/api/Windows.Devices.Geolocation.

[MMD+17] Jeremy Martin, Travis Mayberry, Collin Donahue, Lucas Foppe, Lamont Brown, Chad-

wick Riggins, Erik C. Rye, and Dane Brown. A study of MAC address randomization

in mobile devices and when it fails. Proceedings on Privacy Enhancing Technologies,

2017(4):365–383, oct 2017. doi:10.1515/popets-2017-0054.

[MMPR11] D. M’Raihi, S. Machani, M. Pei, and J. Rydell. TOTP: Time-Based One-Time Password

Algorithm. RFC 6238, RFC Editor, May 2011. Accessed November 30, 2019. URL:

https://www.rfc-editor.org/rfc/rfc6238.txt.

[MSLK14] Alex T. Mariakakis, Souvik Sen, Jeongkeun Lee, and Kyu-Han Kim. SAIL. In Proceedings

of the 12th annual international conference on Mobile systems, applications, and services

- MobiSys '14. ACM Press, 2014. doi:10.1145/2594368.2594393.

62

https://doi.org/10.3390/su9112082
https://doi.org/10.3390/su9112082
https://doi.org/10.1145/2590296.2590339
https://doi.org/10.1007/3-540-45809-3_19
https://doi.org/10.1007/s00190-015-0802-8
https://doi.org/10.1109/mprv.2003.1186726
https://doi.org/10.1109/mprv.2003.1186726
https://docs.microsoft.com/en-us/uwp/api/Windows.Devices.Geolocation
https://docs.microsoft.com/en-us/uwp/api/Windows.Devices.Geolocation
https://doi.org/10.1515/popets-2017-0054
https://www.rfc-editor.org/rfc/rfc6238.txt
https://doi.org/10.1145/2594368.2594393

[OA15] Kenneth Olmstead and Michelle Atkinson. Apps permissions in the Google Play

Store, 2015. Accessed November 30, 2019. URL: https://www.pewresearch.org/

internet/2015/11/10/an-analysis-of-android-app-permissions/.

[Oto] OtoSense Inc. OtoSense. Accessed November 30, 2019. URL: http://www.otosense.

com/.

[PAA+16] Angelos Pillos, Khalid Alghamidi, Noura Alzamel, Veselin Pavlov, and Swetha

Machanavajhala. A real-time environmental sound recognition system for the Android

OS. In Detection and Classification of Acoustic Scenes and Events 2016, 2016.

[RFA+13] Mirco Rossi, Sebastian Feese, Oliver Amft, Nils Braune, Sandro Martis, and Gerhard

Troster. AmbientSense: A real-time ambient sound recognition system for smartphones.

In 2013 IEEE International Conference on Pervasive Computing and Communications

Workshops (PERCOM Workshops). IEEE, mar 2013. doi:10.1109/percomw.2013.

6529487.

[SE15] Abdul Rehman Shahid and Amany Elbanna. The impact of crowdsourcing on organisa-

tional practices: The case of crowdmapping, 2015. doi:10.18151/7217474.

[Str19] Strategy Analytics. Global Connected and IoT Device Forecast Update, 2019.

Accessed November 30, 2019. URL: https://www.strategyanalytics.com/

access-services/devices/connected-home/consumer-electronics/reports/

report-detail/global-connected-and-iot-device-forecast-update.

[TCB12] Manoop Talasila, Reza Curtmola, and Cristian Borcea. LINK: Location verification

through immediate neighbors knowledge. In Lecture Notes of the Institute for Com-

puter Sciences, Social Informatics and Telecommunications Engineering, pages 210–223.

Springer Berlin Heidelberg, 2012. doi:10.1007/978-3-642-29154-8_18.

[ZBC+14] Andrea Zanella, Nicola Bui, Angelo Castellani, Lorenzo Vangelista, and Michele Zorzi.

Internet of things for smart cities. IEEE Internet of Things Journal, 1(1):22–32, feb

2014. doi:10.1109/jiot.2014.2306328.

[ZC11] Zhichao Zhu and Guohong Cao. APPLAUS: A privacy-preserving location proof updating

system for location-based services. In 2011 Proceedings IEEE INFOCOM. IEEE, apr

2011. doi:10.1109/infcom.2011.5934991.

63

https://www.pewresearch.org/internet/2015/11/10/an-analysis-of-android-app-permissions/
https://www.pewresearch.org/internet/2015/11/10/an-analysis-of-android-app-permissions/
http://www.otosense.com/
http://www.otosense.com/
https://doi.org/10.1109/percomw.2013.6529487
https://doi.org/10.1109/percomw.2013.6529487
https://doi.org/10.18151/7217474
https://www.strategyanalytics.com/access-services/devices/connected-home/consumer-electronics/reports/report-detail/global-connected-and-iot-device-forecast-update
https://www.strategyanalytics.com/access-services/devices/connected-home/consumer-electronics/reports/report-detail/global-connected-and-iot-device-forecast-update
https://www.strategyanalytics.com/access-services/devices/connected-home/consumer-electronics/reports/report-detail/global-connected-and-iot-device-forecast-update
https://doi.org/10.1007/978-3-642-29154-8_18
https://doi.org/10.1109/jiot.2014.2306328
https://doi.org/10.1109/infcom.2011.5934991

64

	Acknowledgments
	Resumo
	Abstract
	List of Tables
	List of Figures
	Acronyms
	1 Introduction
	1.1 Motivation
	1.2 Contributions
	1.3 Dissertation Outline

	2 Background
	2.1 Location in mobile applications
	2.1.1 Geolocation systems
	2.1.2 Microlocation systems
	2.1.3 Ambient-sound systems

	2.2 Privacy-preservation techniques
	2.3 Geographical Information Systems
	2.4 Smart Tourism applications
	2.4.1 Microlocation applications
	2.4.2 Applications with reward schemes

	2.5 Summary

	3 Location Proof Systems
	3.1 Existing systems
	3.2 Discussion

	4 Implementation
	4.1 Requirements
	4.2 Architecture
	4.2.1 Communication protocols
	4.2.2 Security and privacy considerations

	4.3 Location proof techniques
	4.3.1 Confidence score
	4.3.2 Scavenging strategy
	4.3.3 TOTP strategy
	4.3.4 Kiosk strategy
	4.3.5 Other considered techniques

	4.4 Technology stack
	4.4.1 Client application
	4.4.2 Server
	4.4.3 Customized Wi-Fi Access Point

	4.5 Usage example
	4.5.1 Setting up the system
	4.5.2 Using the system

	4.6 Summary

	5 Evaluation
	5.1 Security assessment
	5.2 Field experiments
	5.2.1 Location detection performance
	5.2.2 Location proof performance

	5.3 Power consumption
	5.4 User survey
	5.5 Scavenging feasibility
	5.5.1 Discussion

	6 Conclusion
	Bibliography

