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Abstract

Airline companies have been making a great effort to find ways to optimise maintenance processes
in order to maintain high safety standards. The application of data-driven methods to maintenance has
been introduced as a breakthrough in aeronautics, due to benefits in cost reduction and safety increase.
Over the years, data-driven prognostics has become an important area of study, complementary to the
still-dominant strategy in aeronautics, preventive maintenance. These new methods allow maintenance
personnel and process engineers to take a proactive instead of a reactive approach to failures, where
failures are anticipated and eliminated before they occur. In view of this, there has been a growing
concern in the maintenance sector to find indicators or precursors of failures using machine learning and
artificial intelligence. This paper reports on the work carried out on the evaluation of the Prognostics
and Health Management (PHM) capabilities of the Central Maintenance Computer (CMC) messages.
This is achieved by comparing different types of models, varying several properties of the data sets
allowing to relate differences in the results to differences in the characteristics of the models. Using a
real data set from Portugdlia Airlines, this study focuses not only on the prediction of the remaining
useful life (RUL) of the equipment but also on the prediction of the urgency of an intervention at a given
time. The results show that message data associated with the applied machine learning techniques have
predictive failure capabilities, aiding the trigger of unplanned maintenance actions.

Keywords: Prognostics, Machine Learning, Predictive Maintenance, Aeronautics, Central Mainte-

nance Computer Messages.

1. Introduction

The world is becoming largely more dependant of
machines and systems that are crucial in the present
days of the human being’s usual daily routine. The
level of maintenance required to preserve the func-
tionality and life of an equipment depends largely
on how complex the running system is. An air-
craft is a result of the continuous interaction of sev-
eral highly complex systems, that allow the machine
to provide the flying capabilities that human could
only dream about a century ago. Capable of fly-
ing upwards of 40 000 feet, at speeds close to the
speed of sound, over its long lifespan of, in some
cases, more than 100 000 flight cycles, the commer-
cial aircraft is one of the more complex equipment
created and developed by the human being.

Nowadays, the commercial aircraft is a highly
instrumented machine. Given the increasing ten-
dency of the amount of data being generated by
the global fleet, the major players in the aircraft
industry, namely the Original Equipment Manufac-
turers (OEM), operators and Maintenance, Repair
and Overhaul (MRO) companies are trying to use

innovative ways to take advantage of the level of in-
strumentation present in the modern day aircraft,
investing mainly in Aircraft Health Monitoring and
Predictive maintenance systems. Although health
monitoring systems represent an important comple-
ment to the maintenance and troubleshooting ac-
tions of an aircraft operation, its primary goal is
to identify changes that may indicate damage or
imminent failure. These systems have some data
interpretation capabilities, mainly based on the oc-
currence rate of certain predefined important fail-
ures. However, a significant part of the data inter-
pretation rests on the knowledge of engineers and
technicians, being generally the software itself in-
capable of predicting a failure occurrence. That’s
where predictive maintenance role lies, as with the
significant amounts of data available, the main goal
of this technique is to develop data-based or phys-
ical degradation based models that may interpret
aircraft health monitoring parameters and predict
when a failure might occur.



2. Background

2.1 Predictive Maintenance and Prognos-
tics

”Most machine maintenance today is either purely
reactive (fixing or replacing equipment after it fails)
or blindly proactive (assuming a certain level of per-
formance degradation, with no input from the ma-
chinery itself, and servicing equipment on a rou-
tine scheduled whether service is actually needed
or not” [I]. These scenarios are extremely waste-
ful considering the level of instrumentation present
in the modern days machinery. That is the reason
why the maintenance world is adopting and moving
forwards using new technologies and adopting the
"predict and prevent” maintenance [I].

Predictive maintenance is based on the policy of
only applying maintenance actions to the equip-
ment once the magnitude of certain reliability in-
dicators reach a predetermined level and lead to
the possible imminent future failure. Using a com-
bination of the available performance and diagnos-
tic data, operation logs, or other available physical
or digital data, the predictive maintenance uses a
combination of human and technical skills to make
decisions about maintenance procedures of certain
equipment or systems [I]. Predictive maintenance
is essentially "fitting a network of sensors to the
aircraft or other equipment to measure condition
signals” [2]. Those signals may be then used as
condition monitoring variables that may be useful
to decide the maintenance intervention to a specific
item before it fails. This ability to schedule the in-
tervention before a failure event is the main purpose
of predictive maintenance [I].

Prognostics is the term used for the science of
making predictions about engineering systems [3].
All the processes that aim to predict the future be-
haviour of systems are considered a form of prog-
nostics. One of the main goals of prognostics is
the estimation of the time at which the system or
the components is no longer capable of performing
its task. Making use of various indicators of vibra-
tion, temperature, lubricant condition, among oth-
ers, that may be extracted from the highly complex
sensor network present in today’s most complex ma-
chines, such as the aircraft, prognostics aims to
correlate the indicators to a possible future failure
event, hence reducing the system’s unpredictability.
It may be stated that the application of prognos-
tics in maintenance results on the predictive main-
tenance.

This work focuses on the data driven approach
to prognostics. It takes advantage of large amounts
of data available from historical records, both from
normal and faulty operations. No priori knowledge
of the process is required as it only develops models

from measured data from the process itself. How-
ever, general knowledge of the system or process
may be useful to interpret results. Prognostics rely
on methods that can follow and analyse the trend
in data, and forecast the next failure occurrence.
Hence, machine learning is a very useful tool for
prognostics. It is defined as a sub-field of computer
science and artificial intelligence that explores the
development of algorithms closely related to linear
algebra, probability theory, statistics, and mathe-
matical optimisation that can learn from data and
make subsequent predictions. Machine learning al-
lows data analysis otherwise not feasible with more
conventional methods. It enables machines to learn
by themselves based on provided data with the goal
of making predictions [4].

2.2 Related Work

This subsection aims to describe three selected
projects ([5l, [6], [2]), with objectives that are re-
lated to this work. The comparison is focused
mainly on the used data types, the general method-
ologies, the algorithms implemented, and the con-
cluding remarks. The three works aimed the predic-
tion of the health state of a system yet, the method-
ologies differ, and it is in this subsection presented
a brief overview.

Starting with the data types, the authors of [5]
used ”all the available parameters that could be re-
lated to a failure of the system/component under
analysis”. These included data both from the crash
protected and non-protected flight recorders. Basi-
cally, the data consisted in raw sensor data from the
data recorders placed in the aircraft. Furthermore,
the authors considered as failure indicative actions
maintenance logs, such as replacements, cleanings
and adjustment actions. Instead of using raw sen-
sor data as the previous publication, the authors of
[6], used central maintenance system messages as
variables. Finally, the last project here presented
[2] uses a combination of the last two, analysing
the evolution of the results using each data type
separately or both in the same analysis.

Focusing first on the project [5], the authors stud-
ied the left-hand bleed valve unit. The parameters
considered included the 7 bleed manifold pressure,
temperature, the high-pressure compressor speed of
the engine where the bleed is taken from (left en-
gine).” These were transformed into 24 statistical
features/variables associated with each flight. ”To
reduce the contribution of the flight profile on the
bleed unit behaviour” only the stable cruise flight
data from the flights with a minimum of 20 minutes
of stable cruise flight phase were considered [5].

The study rested on the classification of the com-
ponent’s health. The authors defined the two clas-
sifications on whether the component is within 30



days of a failure event. The definition of failure re-
sulted from the filtering of maintenance logs. Due
to the lack of importance of some, the only consid-
ered and defined as failures were the ones resultant
from a bleed replacement [5]. Post the introduc-
tion of the data into a Support Vector Machine
(SVM) classifier, the authors decided to define a
so-called degradation index that aimed to ”smooth
the effect” of the misclassifications resultant from
the predictions.

Also using a classification machine learning ap-
proach based on the SVM algorithm, the authors of
the second article [6] stated that the criteria used
to identify whether the objectives were or weren’t
met relied on a Notice Period (NP), i.e., time in
advance of a fault occurrence. The overall goal of
this project consisted in alerting the user if the fail-
ure occurrence is predicted to be between 2 and 12
flight cycles prior to a particular reference time or
flight [0].

These first two projects met the desired objec-
tives. In [5], the authors stated that the results were
good, especially considering the limited amount of
data. No quantitative results were demonstrated
in the article, however, the good behaviour of the
degradation index confirmed the good results [5].
In the second publication [6], the authors concluded
that the results were overall good, as the main goal
of developing a model with precision above 50% was
achieved [0].

Finally, the author of the project [2] used, unlike
the previous, a mix of classical and deep learning al-
gorithms, and compared the results obtained with
and without the application of one technique called
Kalman filtering. Furthermore, the machine learn-
ing algorithms were used to predict the remaining
useful life of the equipment and not to predict if it
is between a specified time range. Hence, machine
learning in question was regressive, unlike in [5] and
[].

The author concluded that ”the results confirm
the intuition that is easier to extract information
from sensory signals” than from message informa-
tion. Also, the introduction of more advanced deep
learning algorithms also contributed to the general
decrease in prediction errors, despite the best result
not reaching the target of a MAE (Mean Absolute
Error) of 10 days. The author stated that ”deep
learning models present a promising alternative to
traditional machine learning models, especially for
precision near the potential failure” [2].

2.3 In Summary

The above three mentioned projects are useful to
showcase the variety of prognostic approaches al-
ready applied in maintenance. the variety of data
used to develop the prediction models demonstrates

both the high level of instrumentation present in to-
day’s aircraft and also the overall uncertainty in the
choice of the better data type to predict those fail-
ures.

Nothing is perfect, and these models are not an
exception. Even if the models would be able to pre-
dict with almost perfect precision, the definition of
failures used in the three projects, i.e., replacement
maintenance logs, do not necessarily represent the
end of the life of the equipment. Most replacements
are performed, due to safety measures, according to
human perception of health monitoring parameters,
or even due to complaints. As a result, not all the
replacement actions are close to the true end of life
of the equipment, and therefore, as the models learn
according to those maintenance actions, predictions
may fail to identify the real end of life indicators,
meaning that the ground truth may fail to be cap-
tured.

Prognostics using data science is an emerging
field and is attracting the attention of many world-
wide companies that seek new and innovative ways
to increase safety, efficiency, improving maintenance
scheduling, and avoiding all the costs and struggles
of unforeseen failure events. The aeronautic sector
is one of them, and there is already commercial soft-
ware available, such as the PROGNOS developed
by Air France and KLM [7].

3. Objectives and Methodology

CMC (Central Maintenance Computer) and CAS
(Crew Alerting System) messages represent several
megabytes of aircraft health reports. The aircraft
airworthiness may be dependent on whether a fatal
CAS message may or may not be emitted by the
avionic system. Some messages represent a AOG
(aircraft on ground) risk, and are capable of stop-
ping the otherwise smooth operation on an airline
company. Due to the high incidence of maintenance
messages which represent the system’s behaviour,
this paper intends to answer the following indus-
trial hypothesis: Do the maintenance messages have
any predictive power over the crew alerting system’s
failure messages?; Is it possible to predict a future
failure event based on the appearance of mainte-
nance messages?.

This work’s approach to clarify the predictive ca-
pabilities of the message data follows six main steps:

1. Define how the messages’ predictive power will
be quantified

2. Choose the evaluation measures and the de-
sired results

3. Combine different pre-processing techniques
and apply to the data



4. Train and optimise the selected machine learn-
ing algorithms

5. Evaluate the models’ performance

6. Compare the different results from the different
data sets and models built

The messages’ predictive power is quantified by
the application of five different types of models,
varying several properties of the data set, allowing
to relate differences in the results and differences
in the characteristics of the models. This study
applies regression and classification supervised ma-
chine learning to each of the different types of analy-
sis. The first intend to predict the remaining useful
life of the system, whereas the latter aim to clas-
sify the risk of failure as high or low. Besides, a
baseline approach, which estimates the failure oc-
currence solely based on the failure data, is used as
a comparison measure.

There are five main steps inherent to the adopted
machine learning framework: Feature Construction
and Transformation to the tabular form; Train-test
data split; Data Scaling; Feature statistics; Machine
Learning model construction and evaluation.

The first is explained in the section [I.2] The sec-
ond consists in dividing the data into training and
test data sets. When dealing with models treating
multiple independent time-series data, to keep the
unseen nature of the test data, the temporal depen-
dencies may be as well divided. To train and test
with the highest possible reality, the test and train
data have to be divided chronologically [10], to pre-
vent training on data concerning a failure that is
also included in the test set. This work allocates
80% of the data into the training data, and the rest
into the test data set.

The following steps consist in scaling the data,
and in the application of the feature statistics to
eliminate one of each pair of highly correlated vari-
ables. These concepts are explained in the sections
[4:3] and [£-2] respectively.

Finally, the last step in the machine learn-
ing framework consists in creating and testing
the models. This work uses five different al-
gorithms for the regression problem, and four
for the classification, implemented in python’s
library sklearn:  From sklearn.linear-model -
LinearRegression; from sklearn.ensemble - Ran-
domForestRegressor and RandomForestClassifier;
From sklearn.neighbors - KNeighborsRegressor and
KNeighborsClassifier; From sklearn.svm - SVR and
SV, from sklearn.ensemble - GradientBoostingRe-
gressor and GradientBoostingClassifier.

To optimise the validation and performance eval-
uation, a cross-validation methodology is employed.
Due to the variance inherent to the models’ results

obtained from the numerous ways to split the data
into training and test, the cross-validation intends
to minimise this effect. The reasoning for the cross-
validation application consists, on each iteration,
defining one of the K data groups as the test set,
and the other as the training set, iteratively running
the machine learning process over the K groups of
data. The end results come from the average over
the K iterations. All the algorithms are trained and
tested according to a 5 fold cross-validation method.

This case study analyses the full fault history
database from the Portugélia Airlines’ fleet of 13
aircraft over the last 3 years. In total, the data set
is composed with 1.6 million records of CMC mes-
sages. The analysis concerns the pneumatic subsys-
tem of the Embraer E190 aircraft.

For the regression methods, the considered error
quantifiers are the Mean Absolute Error (MAE),
and Root Mean Squared Error (RMSE), defined in
the table [ as:

Table 1: Performance metrics. T}cq stands for the
predicted remaining useful life, Tjctyq; for the ob-
served value, n the number of observations, and i is
the observation identifier.

Performance Measures Regression

1 n
RMSE = g ;(Tpredi - Tactuali)2

1
MAE = E Zl |Tpred,; - Tactuali

For the classification approach, the performance
metrics are different. The evaluation is based on the
number of true positives, false negatives, and false
positives. These concepts are relevant and need to
be defined before the evaluating parameters. Notice
that the meaning of positive in this context is the
cases when there is a "HIGH” risk of failure. The
definitions are the following [§]:

e True Positive (TP) : The predicted and the ac-
tual result are both positive, or indicate that
there is a high risk of failure.

e True Negative (TN) : The predicted and the
actual result are both negative, or indicate that
there is a low risk of failure.

o False Positive (FP): The predicted result sug-
gests a positive result (high risk) but the actual
result is in fact negative (low risk). This is also
known as a type I error.

e False Negative (FN) : The predicted result sug-
gests a negative result (low risk) but the actual
result is in fact positive (high risk). This is also
known as a type II error.



The evaluating metrics for the classification prob-
lem are showcased in the table ]

Table 2: Performance metrics for classification.

Performance Measures Classification

Precisi TruePositives

recision =
TruePositive + FalsePositive

ruePositives
Recall = — -
TruePositive + FalseNegatives
TruePositives + TrueNegatives
Accuracy =

Total observations
Precision x Recall

F1 score= 2 x

Precision + Recall

In both the classification and regression prob-
lems, the main goal is to optimise all the evalua-
tion measures, and therefore obtain the best per-
formance out of the developed models.

4. Data Pre-Processing

The application of machine learning techniques re-
quires a pre-processing phase. Especially for real-
world data sets, the original format is often not
compatible with most machine learning algorithms.
Also, surplus and unreliable data only contribute to
the contamination and the weakening of the models.
Therefore, the main steps in data pre-processing al-
low extracting the best possible performance with
the available data set.

4.1 Data Filtering and cleaning

This first step consists on filtering and cleaning the
data. As the analysis only concerns the pneumatic
subsystem, it is included in this step the filtering of
the messages, only maintaining the data linked to
the ATA (Air Transport Association) 36. Acknowl-
edging that routine pre-flight checks often cause a
misleading appearance of messages, and that the
aircraft is often incapable of distinguishing mainte-
nance phases from pre-flight phases, the data con-
sidered only contemplates messages emitted in the
airborne flight phases. All the remaining data was
considered meaningful and trustworthy, as unlike
other data types, such as raw sensor data, this data
results from a manipulative and processing phase
performed by the aircraft’s internal computers.

4.2 Feature Construction

It was decided to base the analysis on the message’s
emission frequency. The general reasoning behind
this decision was that the more critical messages
would increase its frequency when closer to the fail-
ure event. Therefore, the main features are set as
the sum of emitted messages in a certain period.
This is referenced at a variable timestamp, that

ranges from the first to the last recorded message,
in this work denominated as time reference.

It was also decided to add the aircraft registration
as categorical variables. This aimed to measure and
compare the influence of the messages’ source to the
frequency of the messages’ emission. A categorical
variable differs from the numerical variables as the
first contains labelled values. For this purpose, it
was used the technique denominated as one-hot en-
coding. This consists in a binary approach, assign-
ing the value of 1 to the column that refers to the ac-
tual categorical variable. Another way to integrate
categorical variables consist in assigning a number
to each variable, from a sequence that ranges from
1 to the n categorical variables needed. This feature
is consolidated into one column, reducing the fea-
ture space of the machine learning problem, which
may or may not improve the results. In this thesis,
both methods for scaling are considered and used
the one that improves the results.

Apart from the above mentioned, the system’s
lifetime was also included in the features’ set to
add temporal sense to the model. The new fea-
ture measured, in days, the time difference between
the previously recorded failure event and the time
reference.

4.2.1 Feature statistics

Whenever two variables are highly correlated be-
tween themselves, they may be considered as redun-
dant, as both explain the same variance. Therefore,
the standard procedure in this situation is to define
a correlation coefficient threshold and disregard one
of the two highly correlated variables. The thresh-
old considered in this work is 0.90. Maintaining
highly correlated variable pairs would only increase
the dimensionality of the problem, without improv-
ing the final model. One of the main objectives
inherent to machine learning consists in conserving
the highest possible variable variance with the least
amount of variables possible. This prevents over-
fitting, a common problem in machine learning. It
occurs when there is excessive learning of the train-
ing data, turning the model biased and not per-
forming well when faced with the test data. On the
other hand, when the model fails to train with the
training data, the model is underfitted [9]. All these
pre-processing techniques contribute to avoid both
cases.

4.3 Data Scaling

This step aims to maximise the machine learning
techniques’ performance redefining and scaling the
features’ values. Usually, due to their different na-
ture or sources, the variables in the variable set have
very different scales. Converting the variables into



the same scale is propitious to the overall perfor-
mance of the machine learning algorithms. Some-
times, more than advisable, it is required by some
algorithms implemented in the library used in this
project - sklearn - that the features all vary in com-
parable scales. Gradient-based and metric-based al-
gorithms all assume that the data is standardised.
This work applies the StandardScaler function
available from the scikit-learn preprocessing library.
The StandardScaler re-scales the features so that
they end up in a normal distribution with a stan-
dard deviation of one and a mean of zero, i.e, 0 = 1
and ¢ = 0. The values, or z-scores are then given
by:
T — [t
Ot

(1)

On the other hand, the target of the analysis is,
in this case, not scaled, either for the classifica-
tion (would not be possible) or the regressive ap-
proaches. On the latter, the author considered that
it would not make much sense limiting the range of
the label through scaling.

Other pre-processing techniques include feature
extraction and feature selection. The first consists
of extracting new features based on the existing
ones. One very well known technique is the Prin-
cipal Component Analysis. The second measures
how useful the variables may be to the result, in-
troducing the concept of feature importance. Due
to the lack of improvement result-wise when apply-
ing these techniques, they were disregarded, and
not included in the pre-processing set of techniques
used.

Zj:

5. Models

This section aims to present the implementation
steps carried out to develop the baseline and the
prognostic models.

5.1 Baseline

To compare the results from the more advanced
approaches based on machine learning algorithms
with a more conventional life data-based method-
ology, this work applies the Weibull distribution to
reliability engineering. It has been used for many
years for failure analysis, and it is still used to define
maintenance intervals for several preventive mainte-
nance plans. Instead of considering all the already
discussed variables referring to the messages’ evo-
lution, the distribution aims to fit the life data of
the system and extract some useful reliability re-
sults to compare with the more advanced methods
presented in this paper.

The Weibull distribution may be applied in a va-
riety of forms. This project applies a two-parameter
Weibull distribution (shape 3 and scale n). These

parameters are computed by the fitting stage of the
process, where, based on a selection of time between
failure data, the parameters are estimated to best
suit its evolution.

One of the several reliability measurements possi-
ble to analyse using the Weibull distribution is the
BX life. The BX life refers to the life point in time,
that being days or cycles, when less than X% of
the population has failed. It may as well be defined
as the time when the probability of failure reaches
X%.

The BX life may be computed using the Cumu-
lative Density Function (CDF):

Ft)=1—e ) (2)

F(t) being the cumulative probability of failure, t
the time, and 7 and 3 the scale and shape Weibull
parameters. Being the BX life the time at which
the cumulative probability of failure is X, it may be
derived from the equation [2 and it is defined as:

(3)

Equation [3] is nothing more than equation [2] de-
riving t (BX) as a function of F(t) (X). Therefore,
post the fitting stage, any BX may be calculated
with the equation [3]

It was decided, in this paper’s behalf, to com-
pare the results from the more advanced machine
learning approaches with the BX life evolution con-
sidering different X, ranging from 10 to 90 percent,
in steps of 10. The value considered for the con-
sequent comparison with the data driven models
will be the one that has the least error associated
when compared with an unseen subset failure data,
hence reducing the uncertainty of only considering
a unique value for X. The evaluation of the baseline
approach follows a cross-validation method.

The uncertainty associated with only using fail-
ure data showcases to what extent is the commit-
ted error if the failure event and subsequent main-
tenance action are expected to occur on a fixed
periodic basis defined by the BX wvalue. There-
fore the failure based analysis disregards any added
information concerning the evolution of messages.
Hence, the comparison between the approaches’ re-
sults helps to conclude about the predictive capa-
bilities of the message data.

BX =n[-In(1 - X)]" 7

5.2 Regressive Models

This section aims to explain all the five regressive
model variants analysed in this work. Realising
that the methods would have to follow tendencies
to extract the best performance out of the machine
learning algorithms, it was decided to define the
type 1 models considering that the most suitable ap-
proach would be to measure the number of emitted



messages since the previous recorded failure event.
Therefore, no matter what is the evolution of mes-
sages issued per day, the tendency is always posi-
tive. Other features included the already mentioned
in the section [£:2] messages’ source and the period
since the previous failure event. In addition, the
decision to keep both the categorical variables and
the time since last failure feature was supported by
the results which showed considerable improvement
when these features were included in the model.
The remaining useful life is here defined as the pe-
riod between a certain time reference and the near-
est failure event of a certain system. In this type
1 iteration of the problem, the failure event is con-
sidered as the appearance of failure indicative CAS
messages. For the pneumatic system, the two mes-
sages considered were the "BLEED 1 FAIL” and
"BLEED 2 FAIL”.

The constant search of new data formulations
that intend to maximise the machine learning meth-
ods’ performance led to the redefinition of the data
structure of the problem. It is defined as the type 2
analysis, the one that instead of considering the sum
of messages from the previous failure event until the
time reference, it only counts the messages emitted
within 24 hours prior of the reference timestamp,
maintaining the rest of the feature set.

In the aeronautical field, the ”time” may be mea-
sured in several different ways. The first two ap-
proaches consisted in predicting the time, in days,
left until the next failure event, and the so-called
reference time also evolved with time steps of one
day. Another approach to this problem consists in
considering the evolution metrics as flight cycles or
flight legs. One flight leg consists in a performed cy-
cle, where an aircraft performs all the possible flight
phases. Based on that, the from this point on de-
nominated as type 3 approach consists in redefining
the time measures as number of cycles. This anal-
ysis intends to minimise the effects of maintenance
periods on the determination of the RUL. Although
not very frequent, the day-based approaches were
influenced by maintenance periods, as they were un-
able to distinguish if the aircraft was in fact flying.

Apart from the already mentioned analysis, type
4 and type 5 approaches are in all aspects similar
to the type 1 and type 2 respectively, except the
definition of failure. To measure the influence of
considering one of the many failure definitions, this
fourth and fifth analysis considers the failure events
as the replacements of the two valves present on
each side of the air bleed distribution subsystem.
One is the valve at the high-pressure (Valve 1) stage
of the engines’ compressor, and the other is the low-
pressure valve (Valve 2).

5.3 Classification Scheme

Until this point, all the considerations were based
on the development of regressive model, that intend
to, in one way or the other, estimate the time or
number of fights left until the next failure event.
Therefore, what the models are aimed to predict
are floating point numbers, that have an infinitive
range.

To broaden the scope of the analysis, it was de-
cided to try a classification approach. Two out of
the three projects discussed in section [2.2] applied
classifying approaches to develop prognostic mod-
els based on the available data, both with success.
Therefore, to complement the five different types
of regressive analysis already discussed, this the-
sis uses a similar structure to those mentioned case
studies. The main difference rests on the definition
of the label.

Considering the real world operation require-
ments, it was decided to define the classification ap-
proach’s target as the system’s failure risk. Hence,
the system’s jeopardy is considered high if the fail-
ure is predicted to occur within 20 days of a certain
time reference. Otherwise, the risk is considered as
low. This attribution of the system’s risk is what
the models are design to predict. The main objec-
tive of the analysis performed in this thesis is to
obtain the best possible results from the models.
The quantification of what is considered as a good
result is discussed in the next section.

6. Results

This section starts by showcasing the results from
the baseline approach, followed by the results from
the regressive and classification models.

6.1 Baseline Results

Table 3: Minimum values of the error’s evolution
with the BX life range considered. All the units are
in days. MAE stands for Mean Absolute Error and
RMSE for Root Mean Squared Error

ERROR/BX MIN
TYPE MAE BX | RMSE BX
1&2&3 90.4  B40 137.8  B70
Valve 1 | 244.2 B30 284.3  B40
4&5 | Valve 2 | 137.8 B50 199.7  B60
Valve 12 | 117.6 B50 163.4  B60

The table Bl summarises the results obtained from
the baseline approach. It presents the minimum
MAE and RMSE and the corresponding BX lifes
for the four different failure data analysed in this
work. It also presents the cross-reference between



the different failure data and the comparable ma-
chine learning models’ types. The results are dis-
cussed in the section [1

6.2 Regression Results

The prognostic of the remaining useful life of the
pneumatic system is the second analysis to be dis-
cussed. Five algorithms are applied to develop all
the models. Due to space limitation, this paper only
shows the best results from each type of approach.

Table 4: Compilation of the best regressive results.
All the units are in days.

ERROR
TYPE MAE RMSE

1 106.1 143.5

2 108.7 147.2

3 81.7 108.4
Valve 1 212.4 244.2

4 | Valve 2 125.9 159.8
Valve 12 | 113.4 151.6
Valve 1 204.9 232.1

5 | Valve 2 131.2 182.9
Valve 12 | 108.9 148.3

The best model reaches a minimum MAE of 81.7
days and a minimum RMSE of 108.4 days. Worth
mentioning that the best models tend to be derived
from the Support Vector Machine algorithm. Also,
the models obtained from the 4 and 5 approaches
fail to reach the results considering the failure defi-
nition as the emission of failure indicative CAS mes-
sages.
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Figure 1: Caparison between the actual and the
predicted remaining useful life of a type 1 approach.

Figure [1| presents the plot comparing the evolu-
tion of the RUL (Remaining Useful Life) estimation
of a selected failure. It’s possible to compare how
the predicted RUL follow the real evolution. The
predictions are extracted from a type 1 approach.
All the gathered conclusions from the results pre-
sented in this section are discussed in section [0

6.3 Classification Results

This section presents the results from the classifica-
tion models. These aim to classify the risk of failure
inherent to the system at a given moment. Table [f]
presents the results from the best models in terms
of F1 score, which combines the influence of the
precision and recall evaluation measures. The first
measures what is the proportion of correct positive
predictions compared with all the positive predic-
tions from the models. On the other hand, the re-
call compares the correct positive predictions with
all the samples that should have been predicted as
positives. The accuracy computes the percentage
of correct predictions between the total number of
predictions performed. Notice that the positive re-
sults are in this case considered as the prediction of
a high risk system.

Table 5: Compilation of the results from the differ-
ent classification models.

TYPE EVALUATION MEASURES
ACCURACY PRECISION RECALL F1 SCORE

1 0.533 0.153 0.39 0.205
2 0.638 0.179 0.276 0.185

3 0.467 0.199 0.640 0.3
Valve 1 0.272 0.044 0.4 0.077
4 | Valve 2 0.771 0.267 0.348 0.215
Valve 12 0.695 0.176 0.488 0.235
Valve 1 0.399 0.099 0.314 0.209
5 | Valve 2 0.870 0.294 0.324 0.302
Valve 12 0.769 0.193 0.337 0.225

The next section discusses and concludes on the
shown results.

7. Conclusion
7.1 Achievements

This paper proposed to analyse the potential pre-
dictive capabilities of one type of data continuously
being emitted by the aircraft - the CMC (Central
Maintenance Computer) messages. Several model
alternatives were considered, including a non ma-
chine learning baseline approach, which only con-
sidered failure data and the corresponding time be-
tween failures. The result comparison between all
the different models allows to extract some relevant
conclusions.

Analysing purely the quantification of the errors,
the best results from the regressive models reach an
MAE (Mean Absolute Error) of 81.7 days and an
RMSE (Root Mean Squared Error) of 108.4 days.
This would mean if one takes into consideration any
prediction in specific, one should expect an error
of 81.7 days. In a real-world situation, such high
error is prejudicial to the trustworthiness of an au-
tonomous model that would eventually predict the
remaining useful life of the equipment. Regarding
the RMSE, due to its definition, the results are al-
ways equal or greater than the MAE, equality being



the best possible outcome. The RMSE results from
this work suggest the presence of high predictive
errors, shown by the tendency of the RMSE being
substantially higher than the MAE.

Comparing the regressive results with the ones
obtained from the baseline analysis allows to ex-
tract some relevant conclusions. The undeniable
improvement of the regressive results means that
a machine learning-based solution would estimate
the failures in a more reliable manner than a
more conventional preventive maintenance schedul-
ing. Therefore, it proves that such techniques help
maintenance move one step forward, allowing to
reduce risks and increase safety. Also, this im-
provement enables to conclude that, associated with
more complex methods, the message data assists in
providing more accurate predictions regarding the
system’s remaining useful life.

In view of this, from the figure[l]it is noticeable a
well behaved evolution of the RUL’s prediction, ob-
tained from the random forest and KNN (K Nearest
Neighbors) algorithms, specifically within 60 days
of the failure event. This indicates that, in fact, the
models were able to extract some information from
the learning data that allowed to rightfully predict
about the remaining useful life of the system. If the
models’ data were fully uncorrelated to the failure
event, those predictions would not be possible.

The classification results also support this idea.
The best overall result in terms of the F1 score was
0.302, from the type 5 approach. However, from
the type three approach results a maximum over-
all recall score of 0.640. This might be considered
the most important evaluating measure for a prog-
nostic tool applied to the aeronautics, as it is de-
fined as the ratio between the correct positive scores
and the situations that were supposed to be classi-
fied as positives. It has an importance that maybe
should be more pronounced than the precision score
to the final F1 score, as a low recall indicates that
there are a significant amount of situations where
the model considers the system as healthy, but in
fact, it is not. The precision, on the other hand,
measures how often the predictions indicated a high
failure risk when, in fact, the failure is not immi-
nent. Therefore, a low precision might lead to un-
necessary maintenance actions, implying monetary
waste. Though, safety being, in this case, a priority,
it might be a reasonable assumption to consider the
recall as the number one score to maximise.

The results of this thesis indicate that the inher-
ent predictive capabilities of the CMC messages are
not enough to develop a fully independent prognos-
tic tool. Despite this, the results show that there
are capabilities associated with the CMC messages
that enable the improvement of failure prognosis
when compared with the more conventional base-

line analysis. Also, the classification results reach
a recall of 64%, which would not be achievable if
the models had no failure predictive capabilities.
Therefore, such models may be suitable as a com-
plement to the decision-making process of the un-
planned maintenance interventions, and not as the
unique decisive factor. From an operational point
of view, it is believed that those models may act
as alerts to upcoming failure events and that the
experienced personnel may also be able to judge
the predictions of the models with other indicators,
therefore concluding on the truthiness of the prog-
nosis. The results show that the predictions often
misjudge the real state of the system, hence the
need for the human intervention may not be dis-
missed. Therefore, a prognostic tool based on CMC
messages, although not fully independent, may aid
the health management of the fleet, improving the
proactiveness to failure events.

7.2 Future Work

To improve quantitatively the results, a future pos-
sibility would be to redefine the predictive data.
Instead of considering message data that fails to
be a promising source to an autonomous prognos-
tic tool, the author suggests considering raw sensor
data instead. Raw sensor data represents the be-
haviour evolution of the system continuously and in
greater detail, therefore having greater possibilities
in improving the performance of machine learning
models, and therefore increasing the chances of de-
veloping a fully automated failure prognostic tool.
This is supported by the significant improvement
result-wise with the introduction of sensor data to
the models, discussed in the project [2].
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