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Abstract

In game design, one of the most important tasks is associated with the playtesting process, as this is

where game designers are able to understand if the game experience they are trying to create is indeed

being passed to the players. How a player perceives and reacts to a game should be important in the

game design process.

Work developed in the Deep Learning research field has proved to be a great source of information

as to understand how an agent is capable of achieving great runs and scores playing various games

from scratch. The capability of testing different games using a screen capture artificial player powered

by Convolutional Neural Network (CNN) allows for a good understanding of how an agent is capable of

extracting important features from the game screen without additional information.

This Thesis, took the work developed in the Deep Reinforcement Learning field applied to Atari

environments, mainly Deep-Q Networks, modulated different types of player limitations, tested and doc-

umented the results achieved. The results seem to indicate the existence of different types of playing

patterns for different limitations.
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Resumo

Em game design, uma das tarefas mais importantes está associada com o processo de playtesting,

já que é aqui que os designers conseguem perceber e entender se a experiência de jogo que eles

pretendem criar está de facto a ser transmitida aos jogadores. A forma como um jogador percebe e

reage a um jogo é extremamente importante para o processo de design do jogo.

Trabalhos desenvolvidos no campo de Deep Learning provaram ser uma grande fonte de informação

na forma de entender como um agente é capaz de obter boas runs e scores ao jogar vários jogos sem

qualquer conhecimento prévio sobre o jogo. A possibilidade de testar um variado leque de jogos usando

agentes artificiais com captura de ecrã proporcionado por uma Convolutional Neural Network, permite

uma boa compreensão em como um agente é capaz de extrair features importantes a partir do ecrã do

jogo sem qualquer informação adicional.

Esta Dissertação pegou em trabalhos desenvolvidos no campo de Deep Reinforcement Learning

aplicado a ambientes de Atari, modulou diferente tipos de limitações, testou e documentou os resultados

obtidos. Os resultados obtidos tendem a indicar a existência de diferentes padrões na forma de jogar

dos agentes para cada limitação testada.
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1.1 Motivation

Looking at the development process of a new game, playtesting is seen as an indispensable part of the

game design and development process but in part somewhat costly. Game developers need to expose

their games to their intended audience and only through playtesting will a level designer understand

whether the components he or she carefully assembled are able to elicit the game experience they were

designed for, identifying potential design flaws and gather feedback. This game experience can vary

from player to player, taking into account details related to how a player can perceive and interact with a

game.

Different players can perceive the game differently and the way they process what they are looking

at can possibly lead to different ways of playing a game and to the formation of different strategies in

comparison to other players.

For example, people with eye color deficiencies, perceive the game in a different way from someone

with normal vision. The person affected by color blindness can end up developing different strategies

on how to play the game. Take Splatoon 21, as an example. Ink is the main projectile used in the game

and is also a way of moving through the game’s levels. The ink used by each team have different colors

and is used by each players teams to perform various actions. If a player has difficulty distinguishing

between his team color and the enemies team color he might have to find different ways and strategies

in order to gain advantages.

In the opposite spectre, the way a player interacts with a game can in itself be different from how

another one does it and that might prompt different players to develop different strategies on how to

play the same game. If we look at the comparisons of Actions per Minute (measure of how many

clicks and key presses a player can perform in sixty seconds) between professional players and casual

players of the game Starcraft 22, there’s a big disparity in numbers. According to an article by Wong

[1] a professional player averages about 300 APM going up to 400 and beyond, while a casual player

averages around 60 going up to 100 APM. In this case the strategies applied by professional players will

be different from casual players, since they are able to act and react faster.

The fact that the earliest video game players are aging can be seen as a possible limiting factor in

terms of reflex capabilities that should be taken into account during the design process of new games, as

developers try to appeal to an older fan base. Although in recent years the gaming industry has become

more friendly and accessible towards people with limitations like eye color deficiency with for example,

giving them multiple color blind modes in game, it can still be an issue designing games that take all

perception problems into account. So, it might be beneficial to take these conditions into consideration

during the game design process.

1Splatoon 2, Nintendo, 2017, Nintendo Switch, https://splatoon.nintendo.com/
2StarCraft II: Wings of Liberty, Blizzard Entertainment, 2010, Dustin Browder and Chris Sigaty, PC, https://starcraft2.com/
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Having the game developers capable of exposing their games to different types of artificial players as

a way of simulating a specific type of audience might bring good results in their chase for the best design

options. The area of General Game Playing (GGP) has specialized itself in producing artificial agents

capable of playing games they never been in contact before, with a variety of approaches, ranging from

different types of frameworks to different types of learning methods.

1.2 Problem

Knowing that the playtesting process is a time and resource consuming task, in this work it’s interesting

to understand how and if it’s possible to provide the game designer with support during the level design

process. What if the game designer isn’t continuously forced to test his work with real players every

time he needs to perform changes to his game and instead be able to use a model that can replicate

a human like behaviour? Or if the game designer wants to test his work with someone that may have

some kind of physical limitation?

In order for that to happen we need to understand if there is a way of replicating players limitations

in an artificial manner, using the game screen as its main source of information. And so the problem we

intend on tackling is as follows:

Is it possible to accurately modulate a certain type of player limitations through an artificial agent?

Can this model replicate the nuances of different types of player limitations, be it either in how the

game information is perceived in the form of input and how the following processed information is passed

and executed as output of the game information

1.3 Hypothesis

In order to solve the problem described, we’ll be looking at replicating an artificial player capable of

having a level of resemblance between itself and a real human player as the basis to our hypothesis.

Since we are trying to understand how the manipulation of input and output of game information

influences the type of results and strategies the artificial player might have, our proposed model needs

a way of how to process the game information in a way similar to how a human processes what he sees

on screen while playing a game. For that we need to implement a deep learning method that allows the

agent to learn from the game screen.

And so, our proposed hypothesis consists on using a model that allows us to replicate different types

of sensorial and actuation limitations on top of the deep learning algorithm we use to create the artificial

player. Using specific scenarios(delays, lag, action limitations), we want to show that this type of model

is capable of presenting results that resemble a limited player.

4



1.4 Contributions

This project’s work aims at the possibility of providing the game designers with a set of tools that might

facilitate their work during the playtesting process. The capacity of executing various sets of tests using

our proposed model to create the artificial player, before diving into real human players tests could allow

the game designers the ability to predict in part a portion of what might happen during the playtesting

with real players, allow them to plan and make changes in advance and to know what aspects they

should be focusing, taking into account what they most deem important.

It might get used for simulating certain types of players or to simulate certain types of situations.

Other contributions include a collection of papers and descriptions relevant to the state of the art studied

all of which have helped arrive at the current solution.

1.5 Organization of the Document

This thesis is is organized as follows: in Chapter 1 we introduce the motivation behind the work, the

problem raised by it, and the hypotheses based on the research done. The chapter ends with the

document’s delimitation. In chapter 2 we give a bit of the background of the areas in which this thesis

is operating. In a first section, there’s a look at the area of GGP, the ideas and frameworks surrounding

it, followed by a section that presents the competition borne from it. After that, a section dedicated to

the presentation of various deep learning algorithms, their applications and finally, a summary of the

research done and a discussion about how it influenced the decisions made in the implementation and

evaluation of the solution. In chapter 3 we look at how to replicate the chosen algorithm original results

as well as describing the model proposed. Chapter 4 presents the results obtained using our model and

trained agents, with the according analyses. Finally, in Chapter Chapter 5 the implications of the work

results are discussed, and some routes in which the work can be continued and improved upon in the

future.
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In order to form and develop a solution to the main problem exposed and to backup the hypothesis

given, there had to be an extensive research focusing on previous works and approaches taken in the

area, as well as crucial information that grants the justification as to why the path taken to solve the

problem is the one pursued and not other possibilities. For that, this chapter is focused on taking a look

at the various areas of this study, explain them and seek further knowledge on the subject.

First, a description of the GGP area field, an area to which this work pretends to provide some

contribution, followed by a description of various deep learning based algorithms usually used in order

to create successful learning artificial agents as well as various examples of their implementation.

2.1 General Game Playing

General Game Playing [2] is seen as the idea of having an Artificial Intelligence capable of playing a

game it has never been in contact with before, without any kind of human help. This concept is put to

action by having a General Game Player, which is an artificial agent, that learns to play the game it is

put in by itself. As described by Genesereth and Love, these agents are systems capable of accepting

the descriptions and the list of possible actions of a game which means they don’t know what are the

game’s rules beforehand [2]. With the information that is given, the agent uses it to evaluate what is the

best possible course of action to take in order to play the game. By continuously playing the game, the

agent will be able to learn from its past experiences and develop new strategies that allow it to have a

better performance and edge closer to the way a human player might have played that game.

This type of approach is not easy to achieve because the work that the artificial agent has to accom-

plish can’t be done by preconceived algorithms for specific games. Also, the artificial agent must be able

to find the best approach to the problem, while improving its efficiency.

The GGP approach prevents the developers from designing multiple agents for various different

games, and instead the developer should only focus on developing a single agent capable of recognizing,

adapting and playing the different types of games to which it is exposed.

Through the years the usual approach to create GGP artificial players was to use minimax based

game-tree search methods with self learned evaluation heuristic functions, until the works of people like

Björnsson and Finnsson that successfully applied Monte-Carlo Tree Search methods in their approach,

creating an artificial player called CadiaPlayer, that won 2 GGP competitions [3].

Nowadays MCTS is a common tree-search method used while developing GGP artificial players and

by combining Monte Carlo simulation with value and policy networks, Silver et al. [4] created an artificial

player called AlphaGo that was able to achieve 99.8% win rate against other Go artificial players as well

as defeating the human European Go champion in a match, a feat that made AlphaGo the first artificial

player to beat a human in a full-size game of Go.
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2.1.1 General Video Game Playing

The next logical step in the GGP approach was to expand beyond the usual board game types of

games and into more varied types of video games, forming what is now known as General Video Game

Playing (GVGP), as is exposed in the work of Levine et al. [5].

In its core the concept of GVGP is the application of the previous presented concepts of GGP into

the video game world, which means the objective is to have artificial agents capable of playing video

games they have never played before. The agent must understand how the game reacts to the actions

it performs and how these actions affect the rewards it gets from performing said actions and ultimately

understand how to beat and win the game. The agent should be provided at least with the current state

of the world it is in and what actions it might perform, with the rest being up to the agent to decide.

This allows the agent to be put in several different games, with unique stories, characters and goals

across them with the only constant being the method the agent uses to interact with the current game

it’s playing.

2.1.2 Frameworks

In order to facilitate the development and testing of different game-playing artificial agents Levine et

al. proposed to create a GVGP framework capable of recognizing 2D games written in Video Game

Description Language (VGDL) to be used as various benchmark problems for the various game-playing

agents [5]. This VGDL while not totally related to this research is described thoroughly in the work of

Schaul [6] where he describes the language, its implementation as well as how a wide range of 2D

games is generated.

2.1.2.A GVG-AI Framework

In the General Video Game AI (GVG-AI) framework, for most cases the input is provided in an object-

oriented manner, where the current game state knowledge possessed by the agent is passed through

an observation object that contains a list of observations, past history of events and current step counter.

With this framework as its base Levine et al. proposed to also create and hold a GVGP competition

that ended becoming the annual GVG-AI Competition [5].

2.1.2.B Arcade Learning Environment

The GVGP framework was in part inspired in the work done by Bellemare et al. [7] where they developed

a framework called Arcade Learning Environment (ALE) that provides an interface to a large number of

Atari 2600 games [8](see Fig. 2.1 for example), but in the case of the artificial agents developed using

the ALE framework, they are given as their input the game screen capture and the score counter and
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Figure 2.1: PacMan and Atari 2600

from that they should be able to say which set of outputs (here it’s a set of buttons corresponding to the

Atari controller) determine the next action to execute in game.

Although the next section research is more focused on the GVG-AI framework and competition, which

is focused in a more symbolic type of description of the games that passes to the artificial agents, it was

important to make note of the way the Arcade Learning Environment framework processes its agents

inputs through the use of screen capture, gathering for that the information from a framebuffer type

approach, since it’s the way the work of this thesis focused on passing the information to the artificial

agent.

2.1.3 Breakout

From a wide range of possible testing games, the game that’s used to test the solution proposed is

“Breakout” which was released for the Atari console1 [8].

“Breakout” begins with eight rows of bricks, with each two rows with a different color, with the color

order beginning from the bottom to top as blue, green, yellow, orange and red. The game’s screen is

presented in Fig. 2.2. By using a single ball, the player must knock down as many bricks as possible,

using the walls and/or the paddle controlled by the player as a way of ricocheting the ball against the

bricks and eliminate them. If the paddle misses the ball’s rebound, the player will lose a life. For each

run, the player has three lifes to try to clear two screens of bricks. The yellow bricks earn one point each,

the green bricks earn three points, the orange bricks earn five points and the the red bricks earn seven

points each. The player controlled paddle shrinks to one-half its size after the ball has broken through

1Breakout, Atari Inc., 1976, Nolan Bushnell and Steve Bristow and Steve Wozniak, Atari 2600
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Figure 2.2: Breakout’s game screen

the red row and hit the upper wall, with the ball speed increasing speed after four hits, twelve hits and

after hitting an orange or red row. This was the chosen game for some reasons. The game ball has

different trajectories and different speeds that could influence the way a player with physical limitations

or with slower reaction interacts with it and affect their capability of achieving a better highscore after

finishing the game. Another reason is attached to the fact that this game has been used in various

implementations of Deep Learning and has a wide range of testing results available to cross check and

compare.

2.2 General Video Game AI Competition

Set up in 2014 the GVG-AI Competition explored the problem of creating controllers for GVGP, as

previously stated, and how developers could create a single agent that is capable of playing any game it

is given [6]. Throughout the competition, created agents are run in a number of video games in order to

observe if they show a type of general intelligence and behaviour that can be associated to a possible

human player behaviour. Since its initial conception, the framework has been expanded in order to meet

the demand of different research directions. So in its current iteration, as described by Perez-Liebana et

al. [9], the competition covers 3 major branches:

• Agents capable of playing multiple unknown games with/without access to the game simulations;

• Agents capable of designing new game levels;

• Agents capable of generating game rules.

The Level and rule generation branch [10] focus heavily on the content creation problems and the tra-

ditionally used algorithms for this type of problem, being as well highly tied to the Procedural Content
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Generation concept, which is not a concept we wanted to explore for this research and problem at hand.

Instead, this works research focuses more in the corresponding branch of Agents capable of playing

multiple unknown games with/without access to the game simulations, since it promotes research in

model-free reinforcement learning techniques and neuroevolution.

Taking into account that the artificial agent this work plans on having doesn’t have any kind of forward

model that allows it to plan ahead its actions, the alternative was to look at algorithms that give the

agent the capacity of learning games by repeatably playing them. Looking at the GVG-AI Competition

description by Perez-Liebana et al. [9], there’s a list of past years competition entries and some possible

approaches that tackled the same type of challenge tackled in this work that based themselves in the

use of neuroevolution and reinforcement learning techniques.

As a finishing note to this topic, it’s crucial to emphasize that the objective of this work is in no way

to create an artificial player capable of competing in this competition but it’s nonetheless important to

know in what basis was this competition built on, what have been the current proposed solutions and

hypothesis that have tackled the problem of creating this type of artificial agents and how it helped

selecting the kind of agent to be implemented and modeled as well as forming my solution.

2.3 Learning Approaches

In this section a series of learning algorithms fit for the problem are explored in order to replicate the

artificial player of the work. Looking at the problem at hand, we want to replicate limited players, which

led to us to discard the possibility of applying supervised learning methods to create the agent. That

would require a type of preconceived data that to our knowledge doesn’t exist or is not accurately dated.

Taking this facts into account, and knowing that the agent should be learning from scratch and not from

preconceived data, the focus is on Reinforcement Learning algorithms since the agent in the absence

of data, must learn to achieve a goal in an uncertain, potentially complex environment.

Not all of the next approaches were taken into account while developing the work of the thesis,

but were nonetheless important to note as state of the art and in tracing the path to the best possible

solution.

2.3.1 Neuroevolution of Augmenting Topologies

Neuroevolution is an AI field that consists on combining an Artificial Neural Network with an evolutionary

algorithm or more specifically achieve the evolution of neural networks using genetic algorithms. It is

seen as a good way of creating artificial agents capable of simulating human behaviour.

The Neuroevolution of Augmenting Topologies (NEAT) concept consists of a genetic algorithm which

generates efficient Artificial Neural Networks from a very simple starting network. This is the product of
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the research done by Stanley and Miikkulainen [11] in their entitled “Evolving Neural Networks through

Augmenting Topologies” which will primarily be quoted and referenced in order to explain how the algo-

rithm works.

First of all, in neuroevolution the Neural Networks are composed of interconnected processing units

called neurons and the connection between these neurons are called synaptic weights. Each one of

these neurons can be classified as an input, hidden or output node, all of which will vary depending

on the task we want to assign them. The architecture of the Neural Networks is characterized by the

structure of their neurons and connections, in what is called topology. Usually in neuroevolution the

topology of the network is fixed, which means it fixes a topology and focuses only on evolving the

strength of the connection weights, contrary to what Stanley and Miikkulainen [11] tried to achieve in

their NEAT algorithm. Here they wanted to prove that evolving topologies along weights provide an

advantage over evolving weight on a fixed-topology and that evolving structure along with connection

weights can significantly enhance the performance of Neural Networks [11]. Looking at the results

achieved they were able to suggest that the evolution of structure can be used to gain efficency over the

evolution of fixed topologies.

According to the authors the NEAT method consists of solutions to three fundamental challenges in

evolving Neural Network Topology: “Is there a genetic representation that allows disparate topologies

to cross over in a meaningful way?”, “How can topological innovation that needs a few generations to

be optimized be protected so that it does not disappear from the population prematurely?”, “How can

topologies be minimized throughout evolution without the need for a specially contrived fitness function

that measures complexity?”.

In terms of concrete applications of NEAT, a relevant work created by a former video games speed

runner, consisting on an artificial player trained to learn how to play Super Mario World2. This artificial

agent used an implementation of the NEAT algorithm using a graphical world representation as well as

predetermined important game features as inputs3. During the numerous iterations and generations of

the neural network it’s possible to see the evolution of the neural network’s topology while the algorithm

selects the most fit generations. After a period of time that the artificial player spent training, it was able

to beat a level of the game.

Some works approached the use of neuroevolution to GVGP, with NEAT being used as one of the

neuroevolution approaches, using various types of state representation, just like in Hausknecht, et al.

work [12]. Here they reached the conclusion that direct-encoding methods such as NEAT work best

on low-dimensional, pre-processed object and compact state representations while indirect-encoding

methods allow scaling to higher-dimensional representations such raw-pixel representations, suggesting

that neuroevolution is a promissing approach to GVGP.

2Super Mario World, Nintendo, 1990, Shigeru Miyamoto, SNES
3Seth Bling, “MarI/O”, https://www.youtube.com/watch?v=qv6UVOQ0F44, https://pastebin.com/ZZmSNaHX
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2.3.2 Convolutional Neural Networks

Since this work tries to emphasize the aspect of having the capability of recognizing the screen game

as the input to the artificial agent, this research needed to find a way on how to extract information

from what the artificial agent is able to see on the screen, which led to the concept of Convolutional

Neural Network (CNN). In the realm of Neural Networks, CNNs are a type of Neural Network usually

responsible for tasks like image recognition and classification (image data feature extraction). It was

popularized and brought to attention in the work of Krizhevsky et al. [13] where they trained a large

CNN in order to classify 1 million high-resolution images with smaller error rates than the competition

they faced in the year of that work.

Here I will describe the architecture of CNN, based on an explanation by Cornelisse, Daphne4 that it’s

focused on image recognition. The CNN image classifications receives an input image that it classifies

under certain categories. This inputs are passed as arrays of pixels to the CNN and depend on the

image input resolution. So the layers of a CNN are organized according to 3 dimensions: width, height

and depth, which means that a neuron in one connection does not necessarily have to connect to every

neuron contained in the next layer.

The hidden layers of a CNN are the component responsible for the convolution and pooling opera-

tions of a Deep Neural Network, which are performed in order to detect features followed by a classifi-

cation process where fully connected layers serve as classifier for the previously extracted features as

represented in Fig. 2.3.

First the convolution process is applied on the input by using a filter over that input, where at every

area a matrix multiplication is executed and its sums are used to create a feature map. The filter is

applied according to a stride size, which usually is 1, meaning that the filter is applied pixel by pixel.

After executing multiple convolutions on the received input using different filters resulting in different

feature maps, these are put together and form the convolution layer’s final output. As a way of making

the convolution layer output non-linear, it is passed through an activation function (in this case an ReLu

function, f(x) = max(0,x), which is the commonly used). Since the resulting feature map is smaller than

the input received, usually padding is used in order keep the spatial size constant, improve performance

and to secure the filter and stride fit the input. It’s usual to add a pooling layer after a convolution layer in

order to continuously reduce the dimension, parameters and computation along the network resulting in

smaller training times and preventing overfitting. For a visual representation of the various CNN layers

see Fig. 2.3.

After these processes, the classification task is formed by a set of fully connected layers where their

neurons are connected to all the previous layer neurons in order to, after training be able to classify the

4Cornelisse, Daphnee: “An intuitive guide to Convolutional Neural Networks”, https://medium.freecodecamp.org/

an-intuitive-guide-to-convolutional-neural-networks-260c2de0a050 (Last accessed 19 Dec 2018)
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Figure 2.3: Convolutional Neural Network architecture, A Comprehensive Guide to Convolutional Neural Networks
by Sumit Saha

outputs.

In terms of CNN applications, recently Gatys et al. [14] showed how a CNN can be used to create

a picture that combines the content of one picture with the artistic style of another picture. As demon-

strated by the authors, it could recreate pictures of real places using the style of a painter like Van Gogh.

They used CNN in order to extract the content features from the picture to recreate and to extract the

style features from the pictures they wanted to replicate the style.

In the context of GVGP, Kunanusont et al. [15] used CNN in order to extract important features from

a game using screen capture in a work closely based and related to Mnih et al. [16, 17] work, which I

will be describing more thoroughly in the context of another learning algorithm in the Deep Q Network

subsection.

2.3.3 Deep Q-Network

Another take in the Deep and Reinforcement Learning fields is the Deep Q Network (DQN), which is the

product of Mnih et al. [16,17] work at a then called startup DeepMind5. Born out of a first idea by Lange

and Riedmiller [18] that also merged deep learning and reinforcement learning in a visual input learning

task.

In the Mnih et al. [16, 17] proposed model the neural network used is the previously described Con-

volution Neural Network, trained with a variant of the reinforcement learning technique Q-learning, in

which the CNN is able to successfully learn control policies by receiving as input different Atari 2600

games screen’s raw pixels from the Arcade Learning Environment [7], and return as output a q-value

function estimating future rewards.

Taking into account that is often possible to learn better representations than handcrafted features

5DeepMind, https://deepmind.com/(Last accessed: 20 Dec 2018)
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Figure 2.4: Deep Q-Network network architecture, Human-level control through deep reinforcement learning by
Mnih, V., Kavukcuoglu, K., Silver, D. et al.

from previous works with CNN [13], Mnih et al. [16, 17] set their goal as to connect a reinforcement

learning algorithm to a deep neural network which would operate directly on RGB images and efficiently

process training data using stochastic gradient updates.

With Fig. 2.4 and the algorithm pseudocode 2.1 as reference we take a deeper look at the Deep

Q-Network structure since this will approach will be used to develop our work.

The model applies to the raw Atari input frames some preprocessing methods in order to reduce its

dimensionality, turning it less demanding from a computational aspect. The game frames are converted

from a RGB representation to gray-scale and down-sampled. As a final result the input representation

is given by cropping an 84x84 region of the image that captures a small size of the playing area.

The exact network structure as described by the authors consists of a first hidden layer which con-

volves 16 8 × 8 filters with stride 4 with the input image and applies a rectifier nonlinearity. As for the

second hidden layer, it convolves 32 4 × 4 filters with stride 2, again followed by a rectifier nonlinearity.

The final hidden layer is a fully-connected layer and consists of 256 rectifier units. The output layer is

a fully-connected linear layer with a single output for each valid action [16, 17]. This outputs have the

corresponding action predicted Q-values for the input state.

In their approach, they use a technique called experience replay, where all the observation and infor-

mation is packed together in what is called “experience” at each time-step, to be stored in an experience
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Algorithm 2.1: Deep Q-Network, Playing Atari with Deep Reinforcement Learning by Mnih
Initialize replay memory D to capacity N
Initialize action-value function Q with random weights θ
Initialize target action-value function Qt with weights θ− = θ

for episode = 1,M do
Initialize target action-value function Qt with weights θ− = θ
for t = 1, T do

With probability ε select a random action at
otherwise select at = argmaxaQ(φ(s1), a; θ)
Execute action at in emulator and observe reward rt and image xt+1

Set st+1 = st, at, xt+1 and preprocess φt+1 = φ(st+1)
Store transition (φt, at, rt, φt+1) in D
Sample random minibatch of transitions (φj , aj , rj , φj+1) from D
if episode terminates at step j+1 then

yj = rj
else

yj = rj + γmaxa, Qt(φj+1, a
,; θ−)

Perform a gradient descent step on (yj - Q(φj , aj ; θ)) with respect to the network
parameters θ

Every C steps reset Qt = Q

pool. Some drawn at random experiences in the pool are sampled to update the network using Q-

learning according to the last 4 frames of the selected experience, in what is called “experience replay”.

Knowing that in reinforcement learning successive states are similar, there’s a risk of the network

forgetting what a state is like in which it has been in some time. By applying replay experience the

network will still be able to access past frames. Although the replay is a good way of accessing past

experiences it is limited to the last N experiences and samples uniformly at random while updating,

which in some aspects is limiting since the memory is unable to form differentiating important transitions

and needs to constantly be overwritten with newer experiences.

After the “experience replay” process the agent selects an action taking into account an E-greedy

policy, which means that sometimes it picks actions randomly in a way that the model can learn about

an action it doesn’t think is optimal, and sometimes pick actions according to the model so that it moves

forward in the game and learns different states.

Recently Kunanusont et al. [15] tried to create a screen learning agent for GVG-AI framework based

on what the work of Mnih et al. [16, 17] achieved. Here they applied the Deep Q-Network approach

as well, with some improvements achieving results that suggested that their proposed screen capture

learning agent had the potential to learn many different games using only a single learning algorithm.

Also a look around some websites related to deep learning shows some works like an article where they
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instruct on how to create an agent that learns to play Doom67 using the same principles referred before.

2.3.4 A3C

Another reinforcement learning algorithm developed by DeepMind’s Mnih et al. [19], Asynchronous Ad-

vantage Actor-Critic (A3C) has quickly became the go to algorithm for new challenging problems with

complex state and action spaces. It is faster and simpler compared to DQN and achieves better scores

on the standard Deep Reinforcement Learning tasks.

The algorithm can be separated into 3 major components, that are called the 3 As of A3C which are

represented in Fig. 2.5 architecture.

Actor-Critic

Similar to how the DQN works, the structure of the A3C algorithm presents a major change. In a regular

DQN, there would only be one output which corresponded to the q-values of the possible different

actions. In A3C case, there are two outputs that combine the benefit of a value-iteration method and

policy-iteration methods. The network estimates both a value function V(s), how good a certain state is

to be in and a policy π(s) with set of action probability outputs.

The agent uses the value estimate (the critic section) in order to update its policy (the actor section)

in a better way comparing to traditional policy gradient methods.

Asynchronous

Unlike DQN, where a single agent is represented by a single neural network interacting with a single

environment, A3C makes use of multiple agents with each agent having its own network parameters

and a copy of the environment.

In A3C there is a global network, and multiple worker agents which each have their own set of

network parameters. Each agent interacts with its own copy of the environment at the same time as the

other agents are interacting with their environments.

This approach performs better than a single agent because the experience of each separate agent

is independent of the others, which means each agent has a more diversified training data contributing

to an overall diverser experience.

6Simonini, Thomas: “An introduction to Deep Q-Learning: Let’s play Doom”. https://medium.freecodecamp.org/

an-introduction-to-deep-q-learning-lets-play-doom-54d02d8017d8 (Last accessed: 20 Dec 2018)
7Doom, id Software,1993, Tom Hall and John Romero and Sandy Peterson and American Mcgee and Shawn Green
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Figure 2.5: Diagram of A3C architecture

Advantage

The algorithm wants to figure out the difference between a taken action Q-value and the value of the

state the agent is in. Simplifying it wants to know how much better is the q-value in relation to the

known value. The point of having this calculation is to always get better q-values in order to obtain

increased rewards. According to this calculations, if the advantage is high the Neural Network enforces

this behaviour and updates its weights in order to keep repeating these same actions, in case they’re

lower it tries to prevent these actions form occurring again.

2.3.5 Proximal Policy Optimization

Obtaining good results using policy gradient methods is challenging due to their sensitive choice of step

size (too small might turn the progress extremely slow and too large might cause performance issues

and noise) and often poor sample efficiency, leading to the execution of millions of steps in order to learn

simple tasks.

The OpenAI team of Schulman et al. proposed a new policy gradient methods for reinforcement

learning which alternate between sampling data through interaction with the environment, and optimiz-

ing an objective function using stochastic gradient ascent [20]. The proposition included an objective

function that enables multiple iterations of small batch updates. To this methods they named it Proximal

Policy Optimization (PPO).
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According to the authors blog on the OpenAI website 8, PPO strikes a balance between ease of

implementation, sample complexity, and ease of tuning, trying to compute an update at each step that

minimizes the cost function while ensuring the deviation from the previous policy is relatively small. This

way there’s less discrepancy in training at the cost of some bias, but a smoother training.

PPO achieves the data efficiency and reliable performance of TRPO [21], using only first-order op-

timization. Schulman et al. proposed a novel objective with clipped probability ratios, which form a

pessimistic estimate of the policy performance. In order to optimize, it alternates between sampling data

from the policy and performing several iterations of optimization on the sampled data.

When applying PPO on the network architecture with shared parameters for both policy (actor) and

value (critic) functions, in addition to the clipped reward, the objective function is augmented with an

error term on the value estimation and an entropy term to encourage sufficient exploration.

The algorithm has been tested on a set of benchmark tasks and also on the Atari domain against

other well-tuned implementations of policy gradient methods. It proved to have better overall perfor-

mance according to the authors.

2.4 Discussion

Looking at this section, a varied series of relevant method based approaches to the paradigm of artificial

intelligence being able to play games without having prior knowledge about them and a series of deep

learning algorithms were presented, allowing for a wider look at the field of research applied.

Taking into account the algorithms presented as well as their pros and cons, one of them was to

be selected as the basis for this thesis model and work. Knowing that the NeuroEvolution approach

wasn’t really viable, due to the necessity of having a screen capture processing input method which is

not present on the explored NeuroEvolution, the choice was made to have the DQN algorithm as the

base going forward in detriment of the other options. Although DQN might not be the most friendly at a

computational weight level, but the wide variety of implementations already document and implemented

as well as the fact that the use of multi-threading needed to implement the other algorithms ended up

being a problem to implement and support, the decision was made to move forward with the DQN.

With this in mind, the implementation of the DQN, the results and the proposed model will be de-

scribed in the following section.

8https://openai.com/blog/openai-baselines-ppo/ (last accessed 13 Oct 2019)
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In this chapter, we will approach the base on which our solution to the problem presented in the Intro-

duction chapter is rested. We will start by presenting the technologies that were used in order to replicate

the reinforcement learning algorithm used. Then, we present the results achieved by training and testing

the network in our environment of choice as well as comparing the results with the documented results

on the Mnih et al. [16,17] work papers.

3.1 Algorithm Specifications

The DQN agent implementation was provided on the keras-rl library and it follows the agent described in

the work of Mnih et al [16,17]. As previously discussed, the game used for testing the agent implementa-

tion was Breakout and was replicated using the gym environment ’BreakoutDeterministic-v4’. The gym

tool offers a wide range of environments and the one stated has some particularities. The deterministic

in the name stands for a fixed frameskip of 4 frames, which means that the agent only train every 4 game

frames and the v4 for a 0 probability of repeating the previously selected action on the current state (v0

has a 0.25 probability of repeating the previous selected action no matter what action was selected for

the new state). And with that, the frame skipping described in the paper is already implemented as part

of the environment.

The frames are extracted from the framebuffer and processed according to the same procedure

present in the Mnih paper. First the frames RGB representation is converted to gray-scale and down-

sampled, after which the final input representation is obtained by cropping an 84 × 84 image that cap-

tures the playing area. As they explained this is done in order to allow the use of GPU implemented 2D

convolutions.

A crucial part of the DQN agent rests on its network, and following the model description of Mnih the

implemented network is composed by 5 layers. It all starts with the 84x84x4 image that serves as the

input, followed by 3 hidden convolutional layers a hidden fully connected layer and a final fully connected

layer with a single output for each valid action. All of this layers are followed by a rectifier nonlinearity as

previously discussed. More specifically the first layer convolves 32 filters of 8x8 with sride 4, the second

convolves 64 filters of 4x4 with sride 2, the third convolves 64 filters of 3x3 with sride 1 and the first fully

connected layer consists of 512 rectifier units.

Since we replicated the Breakout game, the number of valid actions is set to 4 [’no-op’, ’fire’, ’right’,

’left’]. The crucial ones are the ’no-op’ action (referred to from here on out as ’Don’t Move’) that means

the slider does not move and ’left’, ’right’ which move the slider in each direction. The ’fire’ action can be

seen has doing the same as the ’Don’t Move’ action but it does carry the function of restarting the game

when the player loses a life.

The memory used to stash the experiences collected through the training is a sequential one. While
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the experiences are stored in the experience replay in a sequential fashion, when they are used to train

the network, random sampling is perform to extract minibatches. In our training case the replay memory

has a maximum of one million most recent frames stored and each minibatch has fifty thousand frames.

Although the agent trained in the Mnih et al. paper was trained for a total sum of 5M steps, in our

case we settled for 1.75M training steps. It is not the best training time but is capable of showing results

and allowed a reduction on time spent training multiple iterations of different networks.

In terms of policy, we use eps-greedy action selection. For the policy, a random action is selected

according to probability eps and over the course of one million steps the eps slowly decreases from

1.0 to 0.1 in order for the agent to first explore the environment, due to high eps, and gradually for it to

commit to what he recognizes.

3.2 Replicating Results

In order to guarantee the accuracy of the implementation and results, we needed to run the code on our

setup, so we could cross check it against the results and data presented in the Mnih, et al paper.

For this we performed a series of tests that allowed us to check how similar our results are. We

trained the network following the previous declared specifications and from that we extracted the game

high scores, the reward per episode evolution and the mean q value through the network training process

and also an average of the actions performed.

Looking at Fig. 3.1, we have the average Q and average reward for the Mnih et al paper, with the

values ordered by training epochs. In the paper each epoch corresponds to 50000 steps of training(due

to minibatch size), so we looked to limit our view of this data to the max of 40 epochs (2M steps), since

we trained our network for only around 1.75M steps. Each episode corresponds to a run of the game,

which includes playing until the player as no more lifes and has to restart. The reward function returns

increasingly better results according to the actions that lead to a change in the games score. Looking at

the data, in order to have a accurate depiction of a DQN network we should have an average Q value of

around 2.5 and an average reward per episode of over 60 for 1.75M training steps.

Now looking at the data we got from training our network the results are in part similar to what

was expected according to the paper data. The average Q value evolves in a similar fashion to the

corresponding paper data, while for the average reward per episode case the results are not always

similar. Initially the reward progression is in line with the papers values but, although that for the 35

training epoch mark of the paper it had a somewhat close value (around 60 to ours 51 average), it’s

possible to see that it also oscillates around higher values at this point.

The difference in values might be due to different software versions and hardware configurations

since the progression of values seems similar, therefor we will use our obtained results as our baseline
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Figure 3.1: Average reward and q value from Mnih et al. paper

Figure 3.2: Average Q for 1.75M steps training Figure 3.3: Average reward for 1.75M steps training

Figure 3.4: Average Q for 2M steps training Figure 3.5: Average reward for 2M steps training

moving forward.

As a final note, in order to reduce the time spent training all the networks, we tested the 1.75M training

step network head to head with a 2M training step network to conclude if the difference between training

steps would produce significant impacts on the final rewards and high scores. Looking at Figures 3.2,
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Figure 3.6: Actions Performed for Standard Training

3.3, 3.4 and 3.5 we can conclude that the difference between training steps isn’t significant that would

require testing with the bigger steps and so we decided to stick to 1.75M steps.

This way we are able to affirm that the trained network is able to in part replicate the paper results

and we are able to propose our solution on top of this DQN implementation and our baseline results.

3.2.1 Additional Data

We now present some additional data for future reference.

First of all, a graph that represents the high score evolution throughout the training process, as a

way of showing that after a certain amount of training steps (0.75M), exists a less steep evolution on the

agents capability of reaching higher scores. This is also in line with the slower increase of the average

reward per episode showcased in Fig. 3.3. Next, an average of the actions performed by the agent after

the training has concluded (see Fig. 3.6), offering an understanding of the agents preferred actions in

order to achieve the best rewards and high scores. The action ’Don’t Move’ and ’Fire’ will a lot of times

be agglomerated on the same category of action, since they have the same effect on the environment

most of the time.

Moving forward, the previous data collected is the base to which we pretend to compare and analyze

the next trained agents, following our solution model.

3.3 Solution Model

After forming the baseline to our work, we were able to take the algorithm implementation and apply our

hypothesis on top of it

Following the DQN architecture1 by Mnih, we propose the model present on Fig.3.7. Here we see

1DQN Lecture, https://drive.google.com/file/d/0BxXI_RttTZAhVUhpbDhiSUFFNjg/view, Last accessed: 27 October
2019
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Figure 3.7: Solution Model Architecture

2 major differences in comparison to the original architecture. The original model elements are repre-

sented in green and blue, while our model is represented by the orange states.

The blue and green states represent the procedures a normal DQN implementation would take. And

so, on top of that model, first we have a state where we treat the action that the network passes to

be executed on the environment. This means we are able to regulate the action how we deem fit to

simulate some types of limitations we want to enforce on the agent. This action is previously selected by

the agent, and might suffer some type of change when passed through our state (for example, a moving

action becoming a non moving action).

Next is a state that regulates the storage of experiences on Memory, limiting the set of experiences

the agent can save and sample through it’s experience replay. We wanted to limit what the agent

would remember from executing different actions for different states, limiting what it counts as training

information.

With this model our intention was to try and model limitations in a way we formulated our hypothesis,

focusing on simulating errors on the execution of certain types of actions, applying delays on the execu-

tion of actions and force a possible visual misses of certain states. These limitations, procedures and

results are further explained in the next chapter.

With this model we hope to comprehend how these limitations can influence the network we are

training, how does it behave and what kind of results it achieves in comparison to the original network

and between different limited networks.
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3.4 Technology

The development language used for the replication of the algorithm and further implementations and

tests was Python. In order to simulate the Atari and game environment chosen to replicate, we used

a Python library called Gym2 developed by the OpenAI company. Gym is a toolkit for developing and

comparing reinforcement learning algorithms and capable of simulating large numbers of reinforcement

learning environments, including Atari games as we wanted for the solution. In order to replicate the

Neural Network of the reinforcement learning algorithm, we used the Keras API library3 with the Tensor-

flow GPU implementation45 as its base.

The algorithm implementation is provided by Plappert, Matthias Keras-RL [22]. This library imple-

ments some state-of-the art deep reinforcement learning algorithms in Python and is integrated with

Keras, working with OpenAI Gym, providing easy evaluation and tinkering of different algorithms.

2Gym, https://gym.openai.com/
3Keras, https://keras.io/
4Tensorflow, https://www.tensorflow.org/
5Tensorflow GPU, https://www.tensorflow.org/install/gpu
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Following the model structure proposed, in this chapter we present the results of the various types of

manipulations deemed fit to test, with multiple iterations between themselves. All the networks trained

and presented from here on further were trained following the same basis as the original network, albeit

following our model structure for specific situations. Each network was trained 2 times, due to time con-

straints. The first and second set of test results use only part of our model, more specifically the action

regulation module while the third set of test results takes full use of our model disposition, engulfing the

action and memory regulation steps.

We display the graphs displaying the training actions performed to understand the trained agents

patterns of play, as well as the values of rewards and highscores for each of the training executed. We

decided to showcase the both since highscore simply shows the final score obtained while the reward

represents the total reward the agent achieved per episode of play. They are related but the values might

differ, although smaller rewards tend to have the same value as the highscore.

4.1 Action Change

Here we have a set of action limiting implementations that we base on the principle of having an error

probability associated with the execution of a certain type of action. This way, we can formulate an idea

of what happens when the action intent doesn’t go according to plan. This is a way of either simulating

the execution and try of last second changed actions, the limitation of performing an action, the execution

of an action contrary to what it was supposed to happen or at a more simple level, a possible problem

associated with hardware malfunction.

In order to better understand the impact these changes carry, we apply different degrees of error

probability throughout the networks testing. The error percentages were set at 10%, 30% and 50%.

In this section we split the action change study into 3 main subsections. First, the possibility of an

action when chosen reversing to the opposite one following the error probability set for the testing. Next,

fruit of curiosity and to see how it would perform against the prospect of both actions reversing, we

simply test the possibility of only one of the actions reversing (in this case the ’Right’ action) according to

the error probability. To finish off, a set of training networks for testing what happens when both actions

have a probability of becoming the action ’Don’t Move’.

4.1.1 Parametrization

For the following training procedures, it was guaranteed that all the iterations of the training had the

same values and errors to ensure the results were coherent between themselves.

So in the first scenario (Both Actions Reverse) after calculating the action that would lead to the best

reward according to the network, if it happened to be an action that resulted in movement (’Right’,’Left’)
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it would therefor be subjected to another decision step process. According to the error probability in

play, the action was reversed to its counter-part nullifying the action initially calculated in favour of its

reverse. In the cases the action wasn’t reversed the training process resumed as normally according to

the algorithm in play.

Following a procedure identical to the first scenario in One Action Reverses scenario case, if the

action calculated results in the action movement ’Right’ it goes through the error probability phase pre-

viously described and is subject to a reversal if the error probability deems it so.

Finishing the scenarios, is the training according to Both Actions become ’Don’t Move’ philosophy,

where in case the action calculated is either ’Right’ or ’Left’ it has a chance of becoming a ’Don’t Move’

action after calculating. Note that it was decided to set the actions to ’Don’t Move’ and not ’Fire’. Although

they are in most part the same thing (both have the same effect on the players paddle), the ’Fire’ action

is used to restart the game every time the ball gets past the paddle.

4.1.2 Both Actions Reverse

Table 4.1: Both Actions Reverse Trained Agent Results

Limitation Value Reward NºSteps Highscore Don’t Move Fire Right Left
Standard - 51 1646 105 541 124 487 494

Both Actions Reverse 10% 37 1300 67 297 97 250 656
Both Actions Reverse 30% 31 1143 46 0 359 270 514
Both Actions Reverse 50% 22 846 28 69 78 239 460

Results

Looking at the data obtained training this agent, it’s possible to see a clear worse performance, with the

reward and highscore(see Table 4.1 and Figures 4.1 and 4.2) values achieved by the agent dropping

when compared to the original implementation results. Subsequently the number of steps the agent is

able to take during an episode of a game is also lower, since it loses quicker.

When observing the progression it has for different error probability values, it’s possible to see that

the drop off in values between the 10% and 50% error probability (37-22) is as accentuated as it was

between the standard agent and with the 10% error probability (51 to 37 reward) with the same pattern

standing for the highscores (105-67 and 67-28).

In terms of actions performed by the agent(Fig. 4.3) we can state that the 10% action distribution

resembles a lot the standard action distribution, having a good balance between non moving and moving

actions, albeit with more focus on the ’Left’ action. As the error probability increases we see a number of

notable changes to the actions performed. First of all starting at 30% the slight decrease of non moving
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Figure 4.1: Average reward for Both Actions Reverse Figure 4.2: Average highscore for Both Actions Reverse

Figure 4.3: Action Distribution for Both actions reverse Training

actions further highly accentuated by the 50% mark, where they are almost non existent in comparison

to the moving actions. Worth highlighting the decrease in the difference between the ’Right’ and ’Left’

action from 10% to 30% but not from 30% to 50% where the proportions are maintain.

Analyses

Based on the results obtained we know that the discrepancy between the standard values and this

scenario training values is quite significant, which leads us to believe that the unpredictability and uncer-

tainty associated with reversing both actions provides the agent a big hurdle to overcome when trying to

train for the best possible outcomes. Although the values indicate the agents worse capability to obtain

better results in this conditions, it is possible to see how he tries to adapt to those limitations.

If we look at the actions the agent performs in Fig. 4.3, it’s possible to state that despite the number of
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steps the agent is capable of taking per episode is reduced, it still is able to maintain a similar proportion

of moving actions as in the standard and lower error probability iterations. He does that at the expense

of performing non moving actions and although it isn’t able to achieve great results, we can see that it

tried to adapt to it’s imposed limitations.

To finish off, the action ’Left’ sees a decrease in the number of times it was executed. Knowing that

both actions can reverse and that one of the actions maintained its proportions while the other decrease,

leads us to believe that the agent tried to execute more ’Right’ actions knowing they would have an higher

chance of reversing, turning them into ’Left’ actions.

4.1.3 One Action Reverse

Table 4.2: One Action Reverse Trained Agent Results

Limitation Value Reward NºSteps Highscore Don’t Move Fire Right Left
Standard - 51 1646 105 541 124 487 494

One Action Reverse 10% 48 1635 90 137 457 427 614
One Action Reverse 30% 47 1447 92 699 288 265 225
One Action Reverse 50% 44 1230 107 341 393 186 310

Results

For this scenario we obtained some interesting results. Firstly the training still achieves worse results

in terms of reward values obtained comparing to the standard training, albeit these results represent a

minimal drop off in comparison (see Table 4.2 and Fig. 4.4). Looking at the whole spectrum we can see

that the reward progression throughout the increasing higher error probabilities displays only a drop of

under 10 reward value. And looking at the high score values (see Fig. 4.5) it’s possible to state that after

initially dropping off in relation to the standard training, they progressively see an increase in value while

increasing the error probabilities.

In terms of steps executed by the agent(see Fig. 4.6), the number of steps per episode doesn’t see

a big reduction between the standard training and the different reversion error probabilities, and thus it’s

no surprise that for the lowest of error probabilities the actions performed are still similar to the standard

trained agent. As for the other error probabilities, it’s visible a clear increase in the number of non moving

actions performed at the expense of moving actions. The moving actions tend to also follow the same

line of execution as the 10% error percentage one, although for the 30% case it seems to be more even.
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Figure 4.4: Average reward for One Action Reverse Figure 4.5: Average highscore for One Action Reverse

Figure 4.6: Action Distribution for One action reverse Training
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Analyses

Taking into account the previous Change Both Actions scenario results we can indeed conclude that the

agent is capable of better adapting to the limitations in play for this scenario where it is only required to

reverse one action. The unpredictability is still there but in smaller quantities, with the fact that exists

only one action capable of being reversed, making the decision process less uncertain.

As stated before, the action distribution for 10% seems to be identical to the previous tests, seemingly

indicating that the uncertainty to this point caused on the agent the same type of reaction as it did in

previous tests. After that, the pattern the agent seems to apply is different when compared to before.

The agent clearly shows signs of preference towards non moving actions, indicating that it would rather

have the paddle stay in the same position and only act on situations it would be more certain of the

outcome and trying to reduce the possible error while applying the ’Right’ action.

Although only one type of action can reverse scenario might not be as important to replicate real

human limitations, it can still represent some kind of impact at the game design level, for example by

having one action execution more facilitated than the other. Seeing as the highscore obtained for 50%

error probability is higher than standard values, it might be interesting to explore a game with this types

of characteristics.

The scenario also can be used as a benchmark as to how much impact the both actions reversing

has on an player. In certain situations a game designer might want to know how an agent can respond

when a limitation is applied to simply one action of its game, and how influential it might be on the

gameplay.

4.1.4 Both Actions become ’Don’t Move’

Table 4.3: Both Actions Become ’Don’t Move’ Trained Agent Results

Limitation Value Reward NºSteps Highscore Don’t Move Fire Right Left
Standard - 51 1646 105 541 124 487 494

Both become ’Don’t Move’ 10% 45 1506 84 85 96 628 697
Both become ’Don’t Move’ 30% 41 1517 77 505 112 430 470
Both become ’Don’t Move’ 50% 41 1476 71 445 85 495 451

Results

Finishing off, the results here are in line with the previous tests, showing off decreasing values for

average reward and high scores(see Table 4.3 and Figures 4.7 and 4.8) but more similar to the One

Action reversing scenario instead of Both Actions reversing since the drop off is not very steep. More
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Figure 4.7: Average reward for Both Actions Becoming
’Don’t Move’

Figure 4.8: Average highscore for Both Actions Becom-
ing ’Don’t Move’

Figure 4.9: Action Distribution for Both actions become ’Don’t Move’ Training

specifically, in terms of highscore it doesn’t have the increase we saw happen in the previous test,

settling for a steady decrease in value.

The number of steps executed by the training agent are very consistent between error probabilities

and very close to the standard values.

In terms of action distribution (Fig. 4.9), for 10% error they don’t seem to be as in line with previous

tests as they were before. Here we see a high abundance in moving actions, with very little execution

of non moving actions. From there on out, the executed actions paradigm changes a bit as the moving

actions decrease in terms of executions, while the non moving actions (’Don’t Move’ mainly) increase.
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Figure 4.10: Reward distribution for 3 scenarios Figure 4.11: Highscore distribution for 3 scenarios

Analyses

As happened in the training scenario before, for these conditions the agent was able to adapt in similar

fashion to the limitations in play. The maintenance of close to standard numbers of steps per episode is

a clear evidence of that, albeit the rewards and high scores are not up to par with the standard iteration.

The actions executed for the 10% error probability are intriguing. Here we have a high volume of

moving actions whereas the non moving actions represent a small percentage of the total actions exe-

cuted, when we expected the contrary to happen. If we set our attention onto the other percentages we

might have an idea as to why this is the case. For the higher percentages, it’s still visible a high per-

centage of moving actions in play, albeit a decrease in comparison to the 10% training. The speculation

is that the increase in volume of non movement actions and the conservation of the execution of high

number of moving actions is due to the fact that the agent executes a higher number of actions that lead

to movement in order to counter the existence of a probability of changing the actions to ’Don’t Move’.

Following this logic, it’s possible to assume that the agent was already putting in practice this counter

measure on the 10% error probability training.

4.1.5 Final Notes

Finishing this section off, we have a representation of all of the rewards and highscores on the same

graphs to show which have the supposedly best results (Figures 4.10 and 4.11). As previously stated

the One Action reverse limitation trained agent seems to achieved a similar level of results to the ones

of the Standard baseline, following a different pattern of play. From these trained agents we are already

able to understand that it’s possible to obtain different patterns of play for different iterations of the same

limitation range.
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Figure 4.12: Delay Process for each Frame

4.2 Action Delay

For this type of limitation, we hoped to replicate a delay in the execution of an action by the player. This

might be result of slower reaction times on players or movement deficiencies. For that, every state we

calculate which action is to be executed on the environment and store it onto an array of delayed actions.

From then on the delayed actions stored are to be executed in future frames of the game according to

the delay we define beforehand. On Fig. 4.13 we display a visual guide of the process that happens on

every frame for processing the current calculated actions and the delayed actions.

4.2.1 Parametrization

As with all the scenarios tested before, it’s ensured that all of the training processes have the same base

values. In this delay scenario, the action selection is affected by a delay value set by the user. The

delay values range from 1 to 5 and an extra delay of 8 frames. The delay values were selected in order

to understand the effect a delay has between 2 training steps (1 to 4 delayed frames, 5 and 8 delayed

frames).

Table 4.4: Action Delay Trained Agent Results

Limitation Value Reward NºSteps Highscore Don’t Move Fire Right Left
Standard - 51 1646 105 541 124 487 494

Frame Delay 1 27 991 39 318 205 211 257
Frame Delay 2 19 720 28 194 18 86 422
Frame Delay 3 13 627 16 17 45 311 254
Frame Delay 4 25 958 37 138 477 123 220
Frame Delay 5 19 757 25 280 119 148 210
Frame Delay 8 15 580 27 225 6 83 266
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Figure 4.13: Action Distribution for various delay training

Figure 4.14: Average reward for delay training Figure 4.15: Average highscore for delay training

4.2.2 Results

The results achieved while applying delay are indeed much worse than the standard values. The rewards

and high scores obtained (see Table 4.4 and Figures 4.17 and 4.18) are much smaller, as well as the

number of steps executed on each episode.

Although the drop off is high for this type of limitation, it’s visible that for 1 and 5 frame delays the

action distribution it’s in line with what we have been expecting from standard values, albeit with bigger

emphasis on non moving actions. Beginning on the 2 frames delay the action distribution is more erratic,

having for 2 frames delay a high percentage of ’Left’ actions while the other actions saw a drop off in

executions. For 3 frames it’s visible the preference given to moving actions in detriment of non moving

actions. For the highest delay value tested we have a similar distribution to the 2 delay frame, with a

smaller set of number of steps, all of which is displayed on Fig. 4.13.
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4.2.3 Analyses

The delay implemented seems to cause some problems to the training agent. The 1 frame delay is

the best in terms of results, which seems plausible because we are only forcing the agent to pass it’s

intended action to the next frame. The actions executed for the 1 frame delay also represent the best

adaptation to the delay by the agent, since it has a good distribution of actions, while the higher delay

frames don’t.

In the 2 frame delay the agent prefers to execute the ’Left’ action a larger number of times, trying

to maybe compensate the possible incapability of following normal standards and reaching the ball. If

these results are confirmed as patterns adopted by real players, it would be of extreme importance to

the game design, since such a small delay would be important of taking into consideration during the

game design process.

For the 3 frame delay the high percentage of moving actions indicate that the agent is trying to do

its best to achieve higher reward values, knowing that with the delay it might not be possible. By forcing

more moving actions may lead the agent to reach the ball in more occasions.

We can state that when the delay spreads into another training step (4 delay frame), it exists an

increase in reward values. This seems to indicate that by pushing the actions 1 training step forward

allows the agent to better adapt to the delay in place. On this case, it decided that using more non

moving actions would allow for better results, something that looking at previous results and the 1 frame

delay might be true. From 4 frames forward the rewards decrease again and spreading the delay into

another training step(8 delay frame) might be too much for the agent to handle and adapt.

4.3 Miss Frames

With this limitations we wanted to simulate a visual type of limitation a player might have, or a simple

visual miscue. How would an agent react if from time to time it couldn’t observe the environment? In

order to simulate this, every state we have a probability of having what we called a visual miss. This

consists of telling the agent that the frame in question is not to be actuated and observed. We do that by

forcing the action to be executed on that state to be either ’Don’t Move’ or ’Fire’, because the environment

always forces an action to be executed. And additionally we don’t store that state and information of the

action in the memory of experiences. This way it’s as if we never saw the current frame and so we

simulate a missed frame.

43



Figure 4.16: Action Distribution for various miss frames

4.3.1 Parametrization

As with all the scenarios tested before, it’s ensured that all of the training processes have the same base

values. In this scenario, the probability of occurring a miss on the frame ranges from 10% to 30%. We

decided to cap the probability at 30% since values much bigger than that would cause too big of an

impact on the results.

Table 4.5: Miss Frame Trained Agent Results

Limitation Value Reward NºSteps Highscore Don’t Move Fire Right Left
Standard - 51 1646 105 541 124 487 494

Miss Frame 10% 42 1285 96 171 193 340 581
Miss Frame 20% 27 897 27 165 153 252 327
Miss Frame 30% 8 414 8 163 146 37 68

4.3.2 Results

The results obtained for this limitation scenario brought some problems with them. Through various

test runs they didn’t seem to be always as coherent between themselves, achieving a wide range of

results. On Table 4.5 we display the averages we were able to calculate. The values seem to indicate

a fast decline in reward and highscore values when the probabilities increase and in terms of action

distribution (Figure 4.16) the decrease of moving actions is evident, while the non moving actions tend

to maintain the same volume of execution.
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Figure 4.17: Average reward for missing frames Figure 4.18: Average highscore for missing frames

4.3.3 Analyses

Looking back at the training process, we are inclined to believe that the variation of results we obtained

where due to the fact that we are simulating a wide range of frames being missed. That might be the

cause to why with higher percentages the results tend to dip in performance so abruptly. If we look

at the action distribution, we see a pattern of play that evolves with the increase of miss probabilities.

This pattern seems to be maintained throughout the various probabilities, in which the agent forces the

execution of non moving actions in detriment of moving actions. The results obtained show that this

pattern doesn’t seem to achieve great results but it’s probably the best option the agent found to counter

the increasing probability of missing more and more frames.

4.4 Overview

Looking back at all the results achieved (Table 4.6, we can state that the best performing limitations

are related to the agent being able to adapt to different types of action changes. The agent found

various ways of trying to overcome the limitations, leading to better results overall. While the other

limitations implemented might not have as great results in terms of scores, they clearly showcase that

the constraints led to changes on the agent patterns of play in order to try and achieve the best results

possible in the environment settings it is forced to be. The delay frames limitations show us that the

agent might have a limit as to how much we can delay its actions and have it achieve reasonable results

and the missing frame scenario suggests that with only a small percentage of missed frames a player

might be able to achieve reasonable scores, since for higher percentages the game becomes somewhat

unplayable.
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Table 4.6: Trained Agents Results

Limitation Value Reward NºSteps Highscore Don’t Move Fire Right Left
Standard - 51 1646 105 541 124 487 494

Frame Delay 1 27 991 39 318 205 211 257
Frame Delay 2 19 720 28 194 18 86 422
Frame Delay 3 13 627 16 17 45 311 254
Frame Delay 4 25 958 37 138 477 123 220
Frame Delay 5 19 757 25 280 119 148 210
Frame Delay 8 15 580 27 225 6 83 266

Both Actions Reverse 10% 37 1300 67 297 97 250 656
Both Actions Reverse 30% 31 1143 46 0 359 270 514
Both Actions Reverse 50% 22 846 28 69 78 239 460
One Action Reverse 10% 48 1635 90 137 457 427 614
One Action Reverse 30% 47 1447 92 699 288 265 225
One Action Reverse 50% 44 1230 107 341 393 186 310

Both become ’Don’t Move’ 10% 45 1506 84 85 96 628 697
Both become ’Don’t Move’ 30% 41 1517 77 505 112 430 470
Both become ’Don’t Move’ 50% 41 1476 71 445 85 495 451

Miss Frame 10% 42 1285 96 171 193 340 581
Miss Frame 20% 27 897 27 165 153 252 327
Miss Frame 30% 8 414 8 163 146 37 68

46



5
Conclusion

Contents

5.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

47



48



In this chapter we will attempt to summarize our work, including the solution proposed, the various

limitations and networks training and the conclusions obtained from the results achieved. To finish off,

we present some possibilities on how to improve and confirm the work and solution that we propose.

5.1 Conclusions

This thesis work began with the intent of understanding if it was possible to accurately modulate certain

types of player limitations using deep learning algorithms. With that work goal in mind we studied the

field of General Game Playing and also delve into the state of the art deep learning algorithms and

techniques in order to find the base to propose our solution.

We implemented the deep learning algorithm we saw most fit(DQN) and proposed and developed our

model solution applied on top of the algorithm. On our model we recreated a series of player limitations

and tested our model training various set of DQN networks following the limitations in play (Actions have

a probability of changing, Actions are delayed a number of frames and the agent has a probability of

missing certain frames).

The results achieved allowed us to conclude a series of strategies we believe would be visible in real

human players and real playing limitations. In the case of changing actions the agent found various ways

of countering the limitations imposed. The strategies ranged from forcing the executions of a certain type

of action in order to compensate for the probability of changing actions, to showing preference in having

the games paddle stay in one place and only move when it was most rewarding, compensating the

possibility of actions changing a high number of times.

For the delay the conclusions are not as clear, but we know that the agent was able to better adapt to

delays that spread exactly from one training step to another while the intermediates tended to achieve

worse results due to cross training actions being executed between 2 training steps.

The missing frames tests don’t provide us we great conclusions, since the results obtained varied for

the same training, but taking into account the averages, the agent tried to adapt to the situation in play

by reducing the moving actions, therefore changing its pattern of play as well.

If these observations and patterns are indeed confirmed, through user tests, we could affirm we have

found a good way of simulating various types of player limitations using Deep Learning methods, through

the implementation of our proposed model.
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5.2 Future Work

The work done in this thesis proposed a model capable of simulating and representing different types

of limitations using deep learning algorithms. Although the results achieved seem promising, they are

merely theoretical. In order to prove the accuracy of the results obtained, the future works needs to focus

on testing the same type of limitation in real players. Be it physically limited players, or simply through

the applications of limitations into the games core mechanics. As an example, taking the results of the

moving actions becoming non moving actions, it’s concluded that the agent tries to force an execution of

more moving actions to compensate for the high probability of action changes. By forcing this limitation

on testing players, we should be able to observe the same type of results or since our training was

limited, the same type of strategies as we were able to obtain.

If the results are indeed confirmed through user testing, it should also open the door to a wider

variety of limitations to be implemented and explored, as well as testing with other types of games and

algorithms.
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