
Modelling Human Player Sensorial and Actuation
Limitations in Artificial Players

André Soares
Instituto Superior Técnico

Porto Salvo, Lisboa
andreghsoares@gmail.com

ABSTRACT
In game design, one of the most important tasks is associated
with the playtesting process, as this is where game designers
are able to understand if the game experience they are trying
to create is indeed being passed to the players. How a player
perceives and reacts to a game should be important in the
game design process. Work developed in the Deep Learning
research field has proved to be a great source of information as
to understand how an agent is capable of achieving great runs
and scores playing various games from scratch. The capabil-
ity of testing different games using a screen capture artificial
player powered by Convolutional Neural Networks allows for
a good understanding of how an agent is capable of extracting
important features from the game screen without additional
information. In this work, we took the developments in the
Deep Reinforcement Learning field applied to Atari environ-
ments, mainly Deep-Q Networks, modulated different types of
player limitations, tested and documented the results achieved.
The results seem to indicate the existence of different types of
playing patterns for different limitations.

INTRODUCTION
Looking at the development process of a new game, playtest-
ing is seen as an indispensable part of the game design and
development process but in part somewhat costly. Game de-
velopers need to expose their games to their intended audience
and only through playtesting will a level designer understand
whether the components he or she carefully assembled are
able to elicit the game experience they were designed for, iden-
tifying potential design flaws and gather feedback. This game
experience can vary from player to player, taking into account
details related to how a player can perceive and interact with a
game.

A person affected by color blindness can end up developing
different strategies on how to play the game. Take Splatoon 21,
as an example. Ink is the main projectile used in the game and
1Splatoon 2, Nintendo, 2017, Nintendo Switch, https://splatoon.
nintendo.com/

is also a way of moving through the game’s levels. The ink
used by each team have different colors and is used by each
players teams to perform various actions. If a player has diffi-
culty distinguishing between his team color and the enemies
team color he might have to find different ways and strategies
in order to gain advantages. If we look at the comparisons
of Actions per Minute (measure of how many clicks and key
presses a player can perform in sixty seconds) between pro-
fessional players and casual players of the game Starcraft 22,
there’s a big disparity in numbers. According to an article by
Wong [12] a professional player averages about 300 APM
going up to 400 and beyond, while a casual player averages
around 60 going up to 100 APM. In this case the strategies
applied by professional players will be different from casual
players, since they are able to act and react faster. Having the
game developers capable of exposing their games to different
types of artificial players as a way of simulating a specific
type of audience might bring good results in their chase for
the best design options. The area of General Game Playing
has specialized itself in producing artificial agents capable of
playing games they never been in contact before, with a variety
of approaches, ranging from different types of frameworks to
different types of learning methods.

We try to understand if it’s possible to accurately modulate a
certain type of player limitations through an artificial agent.
Can this model replicate the nuances of different types of
player limitations, be it either in how the game information is
perceived in the form of input and how the following processed
information is passed and executed as output of the game
information.

In order to solve the problem described, we looked at replicat-
ing an artificial player capable of having a level of resemblance
between itself and a real human player. Since we tried to un-
derstand how the manipulation of input and output of game
information influences the type of results and patterns the ar-
tificial player might have, our proposed hypothesis consists
on using a model that allows us to replicate different types of
sensorial and actuation limitations on top of the deep learning
algorithm we use to create the artificial player. Using specific
scenarios(delays, lag, action limitations), we want to guarantee
that this type of model is capable of achieving the same type
of results and resemblance that a limited player.

2StarCraft II: Wings of Liberty, Blizzard Entertainment, 2010, Dustin
Browder and Chris Sigaty, PC, https://starcraft2.com/

https://splatoon.nintendo.com/
https://splatoon.nintendo.com/
https://starcraft2.com/


GENERAL GAME PLAYING
General Game Playing(GGP) [3] is seen as the idea of hav-
ing an Artificial Intelligence capable of playing a game it has
never been in contact with before, without any kind of human
help. These agents are systems capable of accepting the de-
scriptions and the list of possible actions of a game and with
that information evaluate what is the best possible course of
action to take in order to play the game. By continuously
playing the game, the agent will be able to learn from its past
experiences and develop new strategies that allow it to have a
better performance and edge closer to the way a human player
might have played that game.

General Video Game Playing
By applying the concepts of GGP into the video game world,
the agent must understand how the game reacts to the actions
it performs and how these actions affect the rewards it gets
from performing said actions and ultimately understand how
to beat and win the game. The agent should be provided at
least with the current state of the world it is in and what actions
it might perform, with the rest being up to the agent to decide.
This allows the agent to be put in several different games, with
unique stories, characters and goals across them with the only
constant being the method the agent uses to interact with the
current game it’s playing.

Arcade Learning Environment
A framework that provides an interface to a large number of
Atari 2600 games [6], where the agents given as their input
the game screen capture and the score counter and from that
they are able to say which set of outputs (set of buttons of the
Atari controller) determine the next action to execute in game.

GENERAL VIDEO GAME AI COMPETITION
Set up in 2014 the General Video Game AI(GVG-AI) Compe-
tition explored the problem of creating controllers for General
Video Game Playing and how developers could create a single
agent that is capable of playing any game it is given [11].
Throughout the competition, created agents are run in a num-
ber of video games in order to observe if they show a type of
general intelligence and behaviour that can be associated to a
possible human player behaviour. Since its initial conception,
the framework has been expanded in order to meet the demand
of different research directions. So in its current iteration, as
described by Perez-Liebana et al. [9], the competition covers
3 major branches:

• Agents capable of playing multiple unknown games
with/without access to the game simulations;

• Agents capable of designing new game levels;

• Agents capable of generating game rules.

LEARNING APPROACHES
Knowing that the agent should be learning from scratch and
not from preconceived data, the focus of this work is on Rein-
forcement Learning algorithms since the agent in the absence
of data, must learn to achieve a goal in an uncertain, potentially
complex environment.

Convolutional Neural Networks
Since this work tries to emphasize the aspect of having the
capability of recognizing the screen game as the input to the
artificial agent, we needed a way on how to extract information
from what the artificial agent is able to see on the screen. In the
realm of Neural Networks, Convolutional Neural Networks
are a type of Neural Network usually responsible for tasks
like image recognition and classification (image data feature
extraction). It was popularized and brought to attention in
the work of Krizhevsky et al. [4] where they trained a large
CNN in order to classify 1 million high-resolution images with
smaller error rates than the competition they faced in the year
of that work.

The CNN image classification receives an input image that it
classifies under certain categories. This inputs are passed as
arrays of pixels to the CNN and depend on the image input
resolution. The layers of a CNN are organized according to 3
dimensions: width, height and depth. The hidden layers of a
Convolutional Neural Network are the component responsible
for the convolution and pooling operations, which are per-
formed in order to detect features followed by a classification
process where fully connected layers serve as classifier for the
previously extracted features.

First the convolution process is applied on the input by using a
filter over that input. After executing multiple convolutions on
the received input using different filters resulting in different
feature maps, these are put together and form the convolution
layer’s final output. Since the resulting feature map is smaller
than the input received, usually padding is used in order keep
the spatial size constant, improve performance and to secure
the filter and stride fit the input. It’s usual to add a pooling
layer after a convolution layer in order to continuously reduce
the dimension, parameters and computation along the network
resulting in smaller training times and preventing overfitting.
The classification task is formed by a set of fully connected
layers where their neurons are connected to all the previous
layer neurons in order to, after training be able to classify the
outputs.

Recently Gatys et al. [2] showed how a Convolutional Neural
Network can be used to create a picture that combines the
content of one picture with the artistic style of another picture.
In the context of General Video Game Playing, Kunanusont et
al. [5] used CNNs in order to extract important features from a
game using screen capture in a work closely based and related
to Mnih et al. [7, 8] work.

Deep Q-Network
In the Mnih et al. [7, 8] proposed model, the neural network
used is the previously described Convolution Neural Network,
trained with a variant of the reinforcement learning technique
Q-learning, in which the CNN is able to successfully learn
control policies by receiving as input different Atari 2600
games screen’s raw pixels from the Arcade Learning Environ-
ment [1], and return as output a q-value function estimating
future rewards.

With the algorithm pseudocode 1 as reference we take a deeper
look at the Deep Q-Network structure.



Input
The model applies to the raw Atari input frames some prepro-
cessing methods in order to reduce its dimensionality, turning
it less demanding from a computational aspect. The game
frames are converted from a RGB representation to gray-scale
and down-sampled. As a final result the input representation is
given by cropping an 84x84 region of the image that captures
a small size of the playing area.

Network
The exact network structure as described by the authors con-
sists of a first hidden layer which convolves 16 8 × 8 filters
with stride 4 with the input image and applies a rectifier non-
linearity. As for the second hidden layer, it convolves 32 4 × 4
filters with stride 2, again followed by a rectifier nonlinearity.
The final hidden layer is a fully-connected layer and consists
of 256 rectifier units. The output layer is a fully-connected
linear layer with a single output for each valid action [7, 8].
This outputs have the corresponding action predicted Q-values
for the input state.

Experience Replay
All the observation and information is packed together in what
is called “experience" at each time-step, to be stored in an ex-
perience pool. Some drawn at random experiences in the pool
are sampled to update the network using Q-learning according
to the last 4 frames of the selected experience, in what is called
“experience replay". Knowing that in reinforcement learning
successive states are similar, there’s a risk of the network for-
getting what a state is like in which it has been in some time.
By applying replay experience the network will still be able to
access past frames. Although the replay is a good way of ac-
cessing past experiences it is limited to the last N experiences
and samples uniformly at random while updating, which in
some aspects is limiting since the memory is unable to form
differentiating important transitions and needs to constantly
be overwritten with newer experiences.

Policy
After the “experience replay" process the agent selects an
action taking into account an E-greedy policy, which means
that sometimes it picks actions randomly in a way that the
model can learn about an action it doesn’t think is optimal,
and sometimes pick actions according to the model so that it
moves forward in the game and learns different states.

BREAKOUT
’Breakout’ 3 [6] begins with eight rows of bricks, with each
two rows with a different color, with the color order beginning
from the bottom to top as blue, green, yellow, orange and red.
The game’s screen is presented in Fig. 2. By using a single
ball, the player must knock down as many bricks as possible,
using the walls and/or the paddle controlled by the player as
a way of ricocheting the ball against the bricks and eliminate
them. If the paddle misses the ball’s rebound, the player will
lose a life. For each run, the player has three lifes to try to
clear two screens of bricks. The yellow bricks earn one point
each, the green bricks earn three points, the orange bricks earn
3Breakout, Atari Inc., 1976, Nolan Bushnell and Steve Bristow and
Steve Wozniak, Atari 2600

Figure 1. DQN algorithm pseudocode

Figure 2. Breakout’s game screen

five points and the the red bricks earn seven points each. The
player controlled paddle shrinks to one-half its size after the
ball has broken through the red row and hit the upper wall, with
the ball speed increasing speed after four hits, twelve hits and
after hitting an orange or red row. This was the chosen game
for some reasons. The game ball has different trajectories
and different speeds that could influence the way a player
with physical limitations or with slower reaction interacts with
it and affect their capability of achieving a better highscore
after finishing the game. Another reason is attached to the
fact that this game has been used in various implementations
of Reinforcement Learning and has a wide range of testing
results available to cross check and compare.

IMPLEMENTATION
In this section, we present the base on which our solution
model is rested. We present the technologies that were used in
order to replicate the reinforcement learning algorithm used,
the results achieved by training and testing the network in our
environment of choice as well as comparing the results with
the documented results on the Mnih et al. [7, 8] work papers.

Technology
The development language used for the replication of the al-
gorithm and further implementations and tests was Python. In
order to simulate the Atari and game environment we used a
Python library called Gym4 developed by the OpenAI com-
pany. Gym is a toolkit for developing and comparing rein-
forcement learning algorithms and capable of simulating large
numbers of reinforcement learning environments, including
Atari games as we wanted for the solution. In order to replicate
4Gym, https://gym.openai.com/

https://gym.openai.com/


the Neural Network of the reinforcement learning algorithm,
we used the Keras API library5 with the Tensorflow GPU
implementation67 as its base.

The algorithm implementation is provided by Plappert,
Matthias Keras-RL[10]. This library implements some state-
of-the art deep reinforcement learning algorithms in Python
and is integrated with Keras, working with OpenAI Gym, pro-
viding easy evaluation and tinkering of different algorithms.

Replicating Paper Results
In order to guarantee the accuracy of the implementation and
results, we needed to run the code on our setup, so we could
cross check it against the results obtained in other runs of the
code and the data presented in the Mnih, et al paper.

For this we performed a series of tests that allowed us to check
how similar our results are. We trained the network and ex-
tracted the game high scores, the reward per episode evolution,
the mean q value through the network training process and an
average of the actions performed. Following Mnih, et al pa-
per each epoch corresponds to 50000 steps of training, so we
looked to limit our training data to a maximum of 35 epochs
(1.75M steps). Acording to Mnih, et la paper, in order to
have a accurate depiction of a DQN network we should have
an average Q value of around 2.5 and an average reward per
episode of over 60 for 1.75M training steps.

In the data we got from training our network (see Figures 3
and 4) the results are in part similar to what was expected
according to the paper data. The average Q value evolves in
a similar fashion to the corresponding paper data, while for
the average reward per episode case the results are not always
similar. Initially the reward progression is in line with the
paper values but, although that for the 35 training epoch mark
of the paper it had a somewhat close value (around 60 to ours
51 average), it’s possible to see that it also oscillates around
higher values at this point. The difference in values might be
due to different software versions and hardware configurations
since the progression of values seems similar, therefor we will
use our obtained results as our baseline moving forward.

Solution Model
After forming the baseline to our work, we were able to take
the algorithm implementation and apply our hypothesis on top
of it.

Following Mnih Deep Q Network architecture8, we propose
the model present on Fig.5. Here we see 2 major differences
in comparison to the original architecture. The original model
elements are represented in green and blue, while our model
is represented by the orange states. The blue and green states
represent the procedures a normal DQN implementation would
take. And so, on top of that model, first we have a state where
we treat the action that the network passes to be executed on
the environment. This means we are able to regulate the action
5Keras, https://keras.io/
6Tensorflow, https://www.tensorflow.org/
7Tensorflow GPU, https://www.tensorflow.org/install/gpu
8DQN Lecture, https://drive.google.com/file/d/0BxXI_
RttTZAhVUhpbDhiSUFFNjg/view, Last accessed: 27 October 2019

Figure 3. Average Q for 1.75M steps training

Figure 4. Average reward for 1.75M steps
training

Figure 5. Solution Model Architecture

how we deem fit to simulate some types of limitations we want
to enforce on the agent. This action is previously selected by
the agent, and might suffer some type of change when passed
through our state. Next is a state that regulates the storage
of experiences on Memory, limiting the set of experiences
the agent can save and sample through it’s experience replay.
We wanted to limit what the agent would remember from
executing different actions for different states, limiting what it
counts as training information.

With this model our intention was to try and model limitations
in a way we formulated our hypothesis, focusing on simulating
errors on the execution of certain types of actions, applying
delays on the execution of actions and force a possible visual
misses of certain states. These limitations, procedures and
results are further explained in the next chapter.

With this model we hope to comprehend how these limitations
can influence the network we are training, how does it behave
and what kind of results it achieves in comparison to the
original network and between different limited networks.

https://keras.io/
https://www.tensorflow.org/
https://www.tensorflow.org/install/gpu
https://drive.google.com/file/d/0BxXI_RttTZAhVUhpbDhiSUFFNjg/view
https://drive.google.com/file/d/0BxXI_RttTZAhVUhpbDhiSUFFNjg/view


Figure 6. Table with all the Test results from various training agents with limitations

RESULTS AND ANALYSES
In this section we present the results of the various types of
manipulations tested, with multiple iterations between them-
selves. All the networks trained and presented from here on
further were trained following the same basis as the original
network, albeit following our model structure for specific situ-
ations. We use rewards and highscores as benchmarks because
highscore simply shows the final score obtained while the re-
ward represents the total reward the agent achieved per episode
of play. They are related but the values might differ, although
smaller rewards tend to have the same value as the highscore.

Action Change
Set of action limiting implementations based on the principle
of having an error probability associated with the execution of
a certain type of action. This way, we could formulate an idea
of what happens when the action intent doesn’t go according
to plan. This is a way of either simulating the execution and try
of last second changed actions, the limitation of performing
an action, the execution of an action contrary to what it was
supposed to happen or at a more simple level, a possible
problem associated with hardware malfunction. In this section
we split the action change study into 3 main subsections, each
having 3 different error probabilities.

Both Actions Reverse
Results
We can see a clear worst performance, with the reward and
highscore(see Table on Figure 6) values achieved by the agent
dropping when compared to the original implementation re-
sults. Subsequently the number of steps the agent is able to
take during an episode of a game is also lower. When observ-
ing the progression it has for different error probability values,
it’s possible to see that the drop off in values between the 10%
and 50% error probability is as accentuated as it was between

Figure 7. Action Distribution for Both actions reverse Training

the standard agent and with the 10% error probability with the
same pattern standing for the highscores.

In terms of actions performed(see Figure 7) we can state that
the 10% action distribution resembles a lot the standard action
distribution, having a good balance between non moving and
moving actions, albeit with more focus on the ’Left’ action.
As the error probability increases we see a number of notable
changes. The slight decrease of non moving actions and also
the decrease in the difference between the ’Right’ and ’Left’
action from 10% to 30% but not from 30% to 50% where the
proportions are maintain.

Analyses
The discrepancy between the standard values and this scenario
training values is quite significant, which led us to believe that
the unpredictability and uncertainty associated with reversing
both actions provides the agent a big hurdle to overcome when
trying to train for the best possible outcomes.



Figure 8. Action Distribution for One action reverse Training

If we look at the actions the agent performs in Fig. 7, it’s
possible to state that despite the number of steps the agent
is capable of taking per episode is reduced, it still is able to
maintain a similar proportion of moving actions. He does that
at the expense of performing non moving actions and although
it isn’t able to achieve great results, we can see that it tried to
adapt to it’s imposed limitations.

One Action Reverse
Results
For this scenario we obtained some interesting results. Look-
ing at the whole spectrum we can see that the reward pro-
gression throughout the increasing higher error probabilities
displays only a drop of under 10 reward values. And looking
at the high score values (see Table on Figure 6) it’s possible to
state that after initially dropping off in relation to the standard
training, they progressively see an increase in value while
increasing the error probabilities. In terms of steps executed
by the agent, the number of steps per episode don’t see a big
reduction between the standard training and the different re-
version error probabilities, and thus it’s no surprise that for
the lowest of error probabilities the actions performed are
still similar to the standard trained agent. As for the other
error probabilities, it’s visible a clear increase in the number
of non moving actions performed at the expense of moving
actions(see Figure 9).

Analyses
Here we can conclude that the agent is capable of better adapt-
ing to the limitations where it is only required to reverse one
action. The unpredictability still exists but in smaller quanti-
ties. As stated before, the action distribution for 10% seems
to be identical to the previous tests, seemingly indicating that
the uncertainty to this point caused on the agent the same type
of reaction as it did in previous tests. After that the agent
clearly shows signs of preference towards non moving actions,
indicating that it would rather have the paddle stay in the same
position and only act on situations it would be more certain
of the outcome and trying to reduce the possible error while
applying the ’Right’ action.

Although the only one type of action can reverse scenario
might not be as important to replicate real human limitations, it
can still represent some kind of impact at the game design level,

Figure 9. Action Distribution for Both actions changing to ’Don’t Move’

for example by having one action execution more facilitated
than the other. Seeing as the highscore obtained for 50%
error probability is higher than standard values, it might be
interesting to explore a game with this types of characteristics.

Both Actions become ’Don’t Move’
Results
Again we have decreasing values for average reward and high
scores. similar to the One Action reversing scenario. The
number of steps executed by the training agent are very consis-
tent between error probabilities and very close to the standard
values. In terms of action distribution (see Figure 9), for 10%
error we see a high abundance in moving actions, with very
little execution of non moving actions. From there on out, the
executed actions paradigm changes a bit as the moving actions
decrease in terms of executions, while the non moving actions
(’Don’t Move’ mainly) increase.

Analyses
The agent was again able to adapt in similar fashion to the
limitations in play. The maintenance of close to standard num-
bers of steps per episode is a clear evidence of that, albeit the
rewards and high scores are not up to par with the standard
iteration. The actions executed for the 10% error probability
are intriguing. Here we have a high volume of moving actions
whereas the non moving actions represent a small percent-
age of the total actions executed. The speculation is that this
increase in volume of non movement actions and the conserva-
tion of the execution of high number of moving actions is due
to the fact that the agent executes a higher number of actions
that lead to movement in order to counter the existence of a
probability of changing the actions to ’Don’t Move’.

Action Delay
For this type of limitation, we replicate a delay in the execution
of an action by the player. This might be result of slower
reaction times on players or movement deficiencies. For that,
every state we calculate which action is to be executed on
the environment and store it onto an array of delayed actions.
From then on the delayed actions stored are to be executed in
future frames of the game according to the delay we define
beforehand. On Figure 10 we display a visual guide of the
process that happens on every frame for processing the current
calculated actions and the delayed actions.



Figure 10. Delay Process for each Frame

Figure 11. Action Distribution for Both actions changing to ’Don’t
Move’

Results
The results are much worse than the standard values. The
rewards and high scores obtained are much smaller, as well as
the number of steps executed on each episode. Although the
drop off is high for this type of limitation, it’s visible that for 1
and 5 frame delays the action distribution it’s in line with what
we have been expecting from standard values. Beginning on
the 2 frames delay the action distribution begins to be more
erratic (see Figure 11).

Analyses
The delay implemented caused some problems to the training
agent. The 1 frame delay is the best in terms of results, which
seems plausible because we are only forcing the agent to pass
it’s intended action to the next frame. The actions executed
for the 1 frame delay also represent the best adaptation to the
delay by the agent, since it has a good distribution of actions,
while the higher delay frames don’t.

In the 2 frame delay the agent prefers to execute the ’Left’
action a larger number of times, trying to maybe compensate
the possible incapability of following normal standards and
reaching the ball. If these results are confirmed as patterns
adopted by real players, it would be of extreme importance to
the game design, since such a small delay would be important
of taking into consideration during the game design process.

For the 3 frame delay the high percentage of moving actions
indicate that the agent is trying to do its best to achieve higher
reward values, knowing that with the delay it might not be
possible. By forcing more moving actions may lead the agent
to reach the ball in more occasions.

We can state that when the delay spreads into another training
step (4 delay frame), it exists an increase in reward values.

Figure 12. Action Distribution for Missing Frame Training

This seems to indicate that by pushing the actions 1 training
step forward allows the agent to better adapt to the delay in
place. On this case, it decided that using more non moving
actions would allow for better results, something that looking
at previous results and the 1 frame delay might be true. From
4 frames forward the rewards decrease again and spreading
the delay into another training step(8 delay frame) might be
too much for the agent to handle and adapt.

Miss Frame
We wanted to simulate a visual type of limitation a player
might have, or a simple visual miscue. How would an agent
react if from time to time it couldn’t observe the environment?
Basically, every state we have a probability of having what
we called a visual miss. This consists of telling the agent that
the frame in question is not to be actuated and observed. We
do that by forcing the action to be executed on that state to
be either ’Don’t Move’ or ’Fire’, because the environment
always forces an action to be executed. Additionally we don’t
store that state and information of the action in the memory
of experiences. This way it’s as if we never saw the current
frame and so we simulate a missed frame.

Results
The results obtained for this limitation scenario brought some
problems with them. Through various test runs they didn’t
seem to be always as coherent between themselves, achieving
a wide range of results. The values seem to indicate a fast
decline in reward and highscore values when the probabilities
increase and in terms of action distribution (Figure 12) the
decrease of moving actions is evident, while the non moving
actions tend to maintain the same volume of execution.

Analyses
Looking back at the training process, we are inclined to believe
that the variation of results we obtained where due to the fact
that we are simulating a wide range of frames being missed.
That might be the cause to why with higher percentages the
results tend to dip in performance so abruptly. If we look at the
action distribution, we see a pattern of play that evolves with
the increase of miss probabilities. This pattern seems to be
maintained throughout the various probabilities, in which the
agent forces the execution of non moving actions in detriment
of moving actions. The results obtained show that this pattern



doesn’t seem to achieve great results but it’s probably the best
option the agent found to counter the increasing probability of
missing more and more frames.

CONCLUSION
In this document we proposed a model that would allow to
accurately modulate certain types of player limitations using
deep learning algorithms. The results achieved allowed us to
conclude that a series of patterns of plays we believe would
be visible in real human players and real playing limitations
are present in our trained agents. For example, in the case of
changing actions the agent found various ways of countering
the limitations imposed. The patterns ranged from forcing the
executions of a certain type of action in order to compensate
for the probability of changing actions, to showing preference
in having the games paddle stay in one place and only move
when it was most rewarding, compensating the possibility
of actions changing a high number of times. For the delay
the conclusions are not as clear, but we know that the agent
was able to better adapt to delays that spread exactly from
one training step to another while the intermediates tended
to achieve worse results due to cross training actions being
executed between 2 training steps. The missing frames tests
don’t provide us we great conclusions, since the results ob-
tained varied for the same training, but taking into account the
averages, the agent tried to adapt to the situation in play by
reducing the moving actions, therefore changing its pattern
of play as well. If these observations and patterns are indeed
confirmed, through user tests, we could affirm we have found
a good way of simulating various types of player limitations
using Deep Learning methods, through the implementation of
our proposed model.

Future Work
Although the results documented seem promising, they are
merely theoretical. In order to prove the accuracy of the re-
sults obtained, the future works needs to focus on testing the
same type of limitation in real players. Be it physically lim-
ited players, or simply through the applications of limitations
into the games core mechanics. As an example, taking the
results of the moving actions becoming non moving actions,
it’s concluded that the agent tries to force an execution of more
moving actions to compensate for the high probability of ac-
tion changes. By forcing this limitation on testing players, we
should be able to observe the same type of results or since our
training was limited, the same type of strategies as we were
able to obtain. If the results are indeed confirmed through
user testing, it should also open the door to a wider variety of
limitations to be implemented and explored, as well as testing
with other types of games and algorithms.

ACKNOWLEDGMENTS
I would like to thank my parents and brother for their friend-
ship, encouragement, caring and patience over all these years,
for always being there for me through all the challenges and
without whom this project would not be possible. I would also
like to acknowledge my dissertation supervisors Prof. Carlos
António Roque Martinho for his insight, support, sharing of
knowledge and understanding that has made this Thesis possi-
ble on various levels. Last but not least, to all my friends and

colleagues that helped me grow as a person and were always
there for me during the good and bad times in my life. To each
and every one of you – Thank you.

REFERENCES
[1] Marc G. Bellemare, Yavar Naddaf, Joel Veness, and

Michael Bowling. 2012. The Arcade Learning
Environment: An Evaluation Platform for General
Agents. CoRR abs/1207.4708 (2012).
http://arxiv.org/abs/1207.4708

[2] Leon A. Gatys, Alexander S. Ecker, and Matthias
Bethge. 2015. A Neural Algorithm of Artistic Style.
CoRR abs/1508.06576 (2015).
http://arxiv.org/abs/1508.06576

[3] Michael Genesereth and Nathaniel Love. 2005. General
Game Playing: Overview of the AAAI Competition. AI
Magazine 26, 2 (2005), 62–72.

[4] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.
2012. ImageNet Classification with Deep Convolutional
Neural Networks. In Advances in Neural Information
Processing Systems 25, F. Pereira, C. J. C. Burges,
L. Bottou, and K. Q. Weinberger (Eds.). Curran
Associates, Inc., 1097–1105.

[5] Kamolwan Kunanusont, Simon M. Lucas, and
Diego Perez Liebana. 2017. General Video Game AI:
Learning from Screen Capture. CoRR abs/1704.06945
(2017). http://arxiv.org/abs/1704.06945

[6] Jay Miner. 1977. Atari 2600. (1977).

[7] Volodymyr Mnih, Koray Kavukcuoglu, David Silver,
Alex Graves, Ioannis Antonoglou, Daan Wierstra, and
Martin A. Riedmiller. 2013. Playing Atari with Deep
Reinforcement Learning. CoRR abs/1312.5602 (2013).
http://arxiv.org/abs/1312.5602

[8] Volodymyr Mnih, Koray Kavukcuoglu, David Silver,
Andrei A. Rusu, Joel Veness, Marc G. Bellemare, Alex
Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg
Ostrovski, Stig Petersen, Charles Beattie, Amir Sadik,
Ioannis Antonoglou, Helen King, Dharshan Kumaran,
Daan Wierstra, Shane Legg, and Demis Hassabis. 2015.
Human-level control through deep reinforcement
learning. Nature 518, 7540 (2015), 529–533.

[9] Diego Perez-Liebana, Jialin Liu, Ahmed Khalifa,
Raluca D. Gaina, Julian Togelius, and Simon M. Lucas.
2018. General Video Game AI: a Multi-Track
Framework for Evaluating Agents, Games and Content
Generation Algorithms. CoRR abs/1802.10363 (2018).
http://arxiv.org/abs/1802.10363

[10] Matthias Plappert. 2016. keras-rl.
https://github.com/keras-rl/keras-rl. (2016).

[11] Tom Schaul. 2013. A Video Game Description
Language for Model-based or Interactive Learning. In
Proceedings of the IEEE Conference on Computational
Intelligence in Games. IEEE Press.

http://arxiv.org/abs/1207.4708
http://arxiv.org/abs/1508.06576
http://arxiv.org/abs/1704.06945
http://arxiv.org/abs/1312.5602
http://arxiv.org/abs/1802.10363
https://github.com/keras-rl/keras-rl


[12] Kevin Wong. Last accessed 19 Dec 2018. StarCraft 2
and the quest for the highest APM. (Last accessed 19

Dec 2018). https://www.engadget.com/2014/10/24/
starcraft-2-and-the-quest-for-the-highest-apm/

https://www.engadget.com/2014/10/24/starcraft-2-and-the-quest-for-the-highest-apm/
https://www.engadget.com/2014/10/24/starcraft-2-and-the-quest-for-the-highest-apm/

	Introduction
	General Game Playing
	General Video Game Playing
	Arcade Learning Environment

	General Video Game AI Competition
	Learning Approaches
	Convolutional Neural Networks
	Deep Q-Network
	Input
	Network
	Experience Replay
	Policy


	Breakout
	Implementation
	Technology
	Replicating Paper Results
	Solution Model

	Results and Analyses
	Action Change
	Both Actions Reverse
	Results
	Analyses

	One Action Reverse
	Results
	Analyses

	Both Actions become 'Don't Move'
	Results
	Analyses

	Action Delay
	Results
	Analyses

	Miss Frame
	Results
	Analyses


	Conclusion
	Future Work

	Acknowledgments
	References 

