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Abstract

Given today’s plastic disposal global crisis, bio-based and biodegradable polymers may have an important role in leading the
way towards a more sustainable plastics industry. Among these ”green” polymers, polyhydroxyalkanoates (PHA) are aliphatic
polyesters synthesized by bacteria and stored as intracellular granules. In this study, poly(3-hydroxybutyrate-co-3-hydroxyvalerate),
P(3HB-co-3HV), was produced by a mixed microbial culture fed with fruit pulp waste fermentate. The accumulation reactor was
monitored at-line by Raman and near-infrared (NIR) spectroscopy to develop models for predicting total suspended solids (TSS)
concentration, PHA concentration and intracellular PHA content. A principal component analysis (PCA) model performed on the
Raman spectral data revealed a gradual change in the shape of the signal over time, which was believed to result from shifts in the
bacterial community. NIR spectra were used for the development of quantitative calibration models through partial least squares
(PLS) regression. The models were subjected to cross-validation and external test set validation and proved to be suitable for
predicting all three parameters under study. TSS concentration was predicted with a root mean square error of prediction (RMSEP)
of 1.0g/L and a coefficient of determination (R2) of 0.86, while PHA concentration showed a RMSEP of 0.69g/L and a R2 of 0.89
and PHA content had an RMSEP of 14.6% and a R2 of 0.86. Finally, the results of the TSS and PHA concentration models were
combined to give an indirect PHA content prediction. This model performed exceptionally in predicting high cell density samples,
with a RMSEP of 4.52% and a R2 of 0.96.

Introduction

We are currently facing a society that is strongly depen-
dent on plastics throughout many sectors: from packaging to
agriculture, electronics, construction industry, transportation or
health care. However, at a time in which a global environmen-
tal conscience is on the rise, the issues associated with the ori-
gin and fate of conventional plastics cannot possibly be ignored.
On the one hand, over 99% of all commercially available plas-
tics are produced from fossil fuels, and on the other hand, their
non-biodegradability, together with inefficient collection and re-
cycling systems, is leading to an alarming accumulation of mis-
managed plastic waste. It is becoming widely accepted that a
possible approach to the current plastic waste crisis might be
the development and production of biorelated plastic materials,
which both reduce nonrenewable energy use and present an
innovative solution for the end of life issues [1, 2, 3].

Polyhydroxyalkanoates (PHAs) are a family of aliphatic
polyesters produced via bacterial metabolic transformation of
sugars or fatty acids, which serve as intracellular reserves for
carbon and energy. To date, over 150 hydroxyalkanoate (HA)
monomers and over 300 PHA-producing bacterial species have
now been identified. The wide range of possible monomeric
compositions, microstructure and molecular weight distribution
grants PHAs a great versatility in terms of material properties
[4, 5]. In fact, properties ranging from hard, brittle plastics to
soft elastomers can be obtained, using conventional process-
ing techniques [6]. This means PHAs show potential to be used
as alternatives for several traditional polymers and applied to a
range of different industries [7].

The most relevant polymers belonging to the PHA family
are poly(3-hydroxybutyrate) (P(3HB)), poly(3-hydroxybutyrate-
co-3-valerate) (P(3HB-co-3HV)) and poly(3-hydroxybutyrate-
co-3-hydroxyhexanoate) (P(3HB-co-3HHx)), all of which are al-
ready commercially available [8, 9, 10]. At an industrial scale,
PHA production is conducted by bacterial pure culture fermenta-
tion using pure substrates (e.g. glucose) and sterile conditions.
However, production costs remain too high for this process to re-
place that of petrochemical commodity polymers. Hence, there
has been an increasing effort towards developing low-cost al-
ternative processes. One strategy has focused on using mixed

microbial cultures (MMCs), which are microbial populations op-
erating in open (non-sterile) biological systems to which a se-
lective pressure that favors PHA-accumulating organisms is ap-
plied. MMCs are particularly interesting when agro-industrial
wastes with high organic fraction are used as substrates, such
as cheese whey effluents, fruit and vegetable solid wastes, olive
oil mill wastewater, crude glycerol and the organic fraction of mu-
nicipal solid waste leachate. Apart from reducing operational
costs by not requiring sterile conditions nor costly substrates,
MMC-based processes offer the possibility of reducing the pol-
lutant load of these waste streams and allow for a possible pro-
cess integration in current wastewater treatment plants (WWTP)
or industrial facilities.

Processes for PHA production involving MMCs are com-
monly operated in three-stages, comprising: (1) an acidogenic
fermentation of the organic carbon substrate to produce volatile
fatty acids (VFAs), which are used as precursors for PHA biosyn-
thesis; (2) a culture selection stage, where the culture is en-
riched with PHA-producing organisms by applying a selective
pressure method for PHA storage; and (3) a PHA accumula-
tion stage where the selected culture is fed with an excess of
VFAs in order to exploit its PHA storage capacity to its maxi-
mum [11]. This three-stage process has been demonstrated at
both laboratory and pilot scale and PHA contents comparable
to those of pure culture processes have been demonstrated [12,
13]. However, the low cell densities and consequent volumet-
ric productivities attained with MMCs are the main bottleneck of
the process, along with some challenges in the cost and envi-
ronmental impact of the downstream stage.

Real-time monitoring of the process bioreactors is consid-
ered essential for a reliable and robust process control and, con-
sequently, for improved efficiency, productivity and reproducibil-
ity [14]. For instance, measurements of cell growth, substrate
consumption, and product concentration are traditionally ob-
tained through off-line analytical methods like gas chromatogra-
phy (GC) and high-performance liquid chromatography (HPLC).
However, these are labor-intensive and time-consuming tech-
niques, meaning the results are usually too late to be of any
use for process control [15]. Spectroscopy, on the other hand,
has been gaining attention as a low-cost on-line monitoring tool
for bioreactors. Spectral data can be treated through chemo-
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metrics methods for process modelling and multi-analyte quan-
tification. Among the different spectroscopy methods available,
vibrational spectroscopy techniques, such as Raman and near-
infrared (NIR), have received the most attention.

NIR spectroscopy is based on absorption phenomena tak-
ing place between 13,000 and 4,000 cm−1. This energy is high
enough to induce molecular vibrational transitions correspond-
ing to overtones and combinations of the different fundamen-
tal bands seen in the mid-infrared (MIR) region [16]. Chemical
bonds between hydrogen and a heavier atom such as carbon,
nitrogen or oxygen (i.e. X-H bonds), are particularly suscepti-
ble to NIR spectroscopy, and thus strong water interference is
frequent in aqueous samples. NIR spectroscopy has already
been proven useful for detection and quantification of PHA and
other relevant elements of the production process. For instance,
Cruz et al. developed an at-line monitoring strategy based on
NIR technology for the production of P(3HB) by C. necator us-
ing waste cooking oil as a substrate [17]. Dai et al. carried
out a similar experiment using MMCs and crude glycerol as a
substrate and were able to follow P(3HB) content and substrate
concentration in-situ [18].

In Raman spectroscopy, on the other hand, the incident
light is not absorbed but rather interacts with the molecule and
is scattered from it. In this case, a single frequency radiation is
used and the frequency difference between the incident and the
scattered light is detected. Raman spectroscopy is best for the
detection of symmetric vibrations of non-polar groups, and thus
its spectra are not sensitive to water. However, it provides an
inherently weak signal. Most studies using Raman as a monitor-
ing tool for PHA production have focused on intracellular poly-
mer quantification in pure cultures [19, 20]. The technique has
further been used to quantify the molar fraction of (3HV) in sam-
ples containing commercially available copolymers of P(3HB-
co-HV) [21]. No studies have been developed regarding the ap-
plication of Raman spectroscopy to PHA production with MMCs.

The present study aimed to develop an at-line monitoring
strategy for the accumulation assays of a pilot-scale 3-stage
PHA production process, using MMCs and fruit pulp waste as
a substrate. Both Raman and NIR spectroscopy were investi-
gated as potential tools for the development of quantitative cal-
ibration models to determine total suspended solids (TSS) con-
centration, PHA concentration and PHA content in the biomass.
Spectral data was analyzed through multivariate analysis tools,
such as principal component analysis (PCA) and partial least
squares (PLS) regression.

Materials and Methods

Bioreactor Operation

Pilot-scale PHA production was carried out through a 3-
stage process. Two different operations of the pilot plant were
followed for the present thesis. The first one took place between
April and July 2019 (Operation 1), when bioreactor operation
was stable, and the second one in October of the same year
(Operation 2), right after restarting production.

An Upflow Anaerobic Sludge Blanket (UASB) reactor with
working volume of 60 L was used to carry out the acido-
genic fermentation, during which apple pulp waste provided by
Sumol+Compal S.A. was converted into a VFA-rich stream and
served as substrate for the selection and accumulation reactors.

The culture selection was conducted in a selection batch
reactor (SBR) with a working volume of 100 L, operating un-
der a feast and famine regime. The reactor was inoculated
with activated sludge from the Mutela WWTP. The carbon
source was fed in the beginning of a 12 hour-cycle. Synthetic
VFA supplementation was often necessary to adjust the OLR
to 75 Cmmol/cycle. Nutrient supply was uncoupled from the
carbon source and was performed 2 hours after the begin-
ning of the cycle, with a typical C:N:P ratio of 100:6.5:1 [Cm-
mol:Nmmol:Pmmol]. Overall, a sludge retention time (SRT) of
4 days and a hydraulic retention time (HRT) of 1 day were ap-
plied to the reactor.

Accumulation assays were performed in a 60L fed-batch
reactor. A biomass purge collected at the end of the famine
phase of two SBR cycles was placed in the reactor and fed with
the VFA-rich stream in a pulse-wise manner under nutrient lim-
itation. Each feeding pulse was typically equivalent to that of
the SBR. Carbon depletion was indirectly monitored through dis-
solved oxygen (DO) levels and the accumulation assays were
terminated once no significant DO drop was observed after
pulse feeding. Samples were collected before each accumula-
tion pulse for analysis through Raman and NIR spectroscopy
techniques. GC was used as a reference method for PHA
concentration (triplicate measurements) and the corresponding
TSSwere further determined for each data point (duplicate mea-
surements). A total of 16 accumulations were monitored during
Operation 1 and 13 during the Operation 2. The first set was
exclusively analysed through Raman, whereas the second set
was investigated through NIR spectroscopy.

Analytical Procedures

Polymer Quantification GCwas used to quantify the intracel-
lular polymer and to characterize it in terms of monomer compo-
sition [22]. Dried biomass (3-7 mg) was weighed into digestion
test tubes to which acidified methanol (20% H2SO4, 2mL) and
chloroform (2 mL, containing 1 g/L of heptadecanoate (HD) as
internal standard) were added, and placed in a digestor for 3.5
hours at 100 ◦C. After cooling, water (2 mL) was added., the
mixture was vigorously shaken and then allowed to settle. The
organic phase was extracted and placed in GC vials. A gas
chromatograph (Varian CP-3800 Gas Chromatograph, Bruker),
equipped with a Restek column (60 m, 0,53 mm internal diame-
ter, 1 µm film thickness, Stabilwax) was used for quantification.
Standards were made using an Aldrich copolymer of P(3HB-co-
3HV) containing 14% (HV) and 86% (HB) (%(w/w)) with concen-
trations between 0 and 6.3 g/L. Squared correlation coefficients
(R2) of 0.987 and 0.994 were achieved for HB and HV calibra-
tion curves, respectively. The PHA concentration of the sam-
ples was considered as the sum of the concentrations of both
monomers.

Solids Determination The determination of TSS concentra-
tion in the samples was carried out according to the standard
procedure described in [150]. Samples were filtered through a
pre-weighed standard glass-fiber filter, which was then placed
in an oven at 105 ◦C overnight. Once dried, the increase in fil-
ter weight represented TSS. The sample volume was generally
fixed at 5 mL. This method offers an estimation of the amount
of matter present in the accumulation reactor, which roughly re-
lates to its biomass concentration. TSS were chosen as a mea-
sure of cell density because they give a close estimation of PHA
concentration from the PHA content obtained by GC, which is
based on total solids (TS).
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Cell staining and Visualization Nile blue staining was per-
formed according to Bengtsson et al., 2008 [23], to visualize
PHA granules and confirm that the selected culture was effec-
tively enriched with PHA-accumulating organisms. A drop of
Nile blue stain was added to about 1 mL of sample, which was
then placed in a thermostatic bath at 55 ◦C for 15 min. After this
incubation period, samples were examined under an Olympus
BX51 epifluorescence microscope at 1000X.

Phylogenetic Characterization Fluorescence in situ Hy-
bridization (FISH) was carried out as previously described by
Amann et al. (1995) [24]. Samples were fixed with 4%
paraformaldehyde (PFA), which is specific for Gram-negative
bateria: 1 mL of PFA was added to 0.5 mL of sample, which was
then incubated at 4 ◦C for 3 hours, centrifuged, washed twice
with 1 mL of phosphate-buffered saline (PBS) and resuspended
in 0.5mL of absolute ethanol. Samples were applied to the wells
of specific glass-slides, dried at 46 ◦C for 10 min, dehydrated in
a grading series of ethanol solutions at 50%, 80% and 98% (3
minutes in each solution) and dried under compressed air at the
end. 8 µL of an hybridization buffer (2 M NaCl, 10% sodium do-
decyl sulphate (SDS), 1 M Tris-HCl, formamide and miliQ water,
pH 8) were applied to each well. Then, 0.7 µL of EUBMIX (see
below) and 0.7 µL of a specific probe were added to each well.
Each slide was incubated at 46 ◦C for 1.5-3 hours and subse-
quently washed with a washing buffer (2 M NaCl, 10% SDS, 1
M Tris-HCl, 0.5 M ethylenediaminetetraacetic acid (EDTA) and
miliQ water) pre-heated to 48 ◦C, then with MiliQ water at 4 ◦C
and dried with compressed air. Vectashield mounting media
was added to the dried slides. The slides were visualized using
ZEISS Axiocam 506 mono fluorescence microscope, at 1000X.
The fluorescein isothiocyanate (FITC)-labelled EUBmix was ap-
plied to differentiate bacteria from detritus. Specific cyanine 3
(Cy3)-labelled probes for PHA-accumulating genera were ap-
plied: Paracoccus, Azoarcus, Thauera, Lampropedia, Amaric-
occus, Zoogloea and Plasticicumulans.

Spectral Analysis

Raman spectra were obtained with a modular spectrome-
ter (Ocean Optics QE65 Pro), coupled with a 785 nm excitation
laser (RGBLase LLc, California, USA). SpectraSuite® was the
software platform used for operating the spectrometer. A 15 s
integration time was applied to all samples. Each spectrum cor-
responded to a single scan and quadruplicates were measured
every time. The detector covered a Raman shift range between
-62.34 and 2677.68 cm−1 in a total of 1044 data points. Samples
were concentrated by centrifugation and the supernatant was
partially discarded before the spectra were acquired.

NIR spectra were obtained with a Matrix-F Fourier
Transform-NIR Spectrometer (Bruker OPTIK GmbH, Ettlingen,
Germany), coupled with a Matrix-F Fourier Transform-NIR
Spectrometer (Bruker OPTIK GmbH, Ettlingen, Germany), cou-
pled with a fiber optic probe (Falcata XP 12 NIR, Hellma® Analyt-
ics, Müllheim, Germany) with a mechanical pathlength of 1 mm
(total optical path length of 2mm). OPUS (Version 8.2) spec-
troscopy software was used to operate the equipment. Spectra
were acquired in transflectance mode with a resolution of 16
cm−1 and a scanner velocity of 40kHz. The detector covered
between 12,000 and 4,000 cm−1 in a total of 999 data points
per spectra. Quadruplicates were measured for every sample
and each spectrum further comprised 64 scans. Air was used
as background. No sample pretreatment was performed before
spectral acquisition. Around 50 mL of sample were collected

from the accumulation reactor and placed in a glass beaker un-
der constant agitation, where the fiber optic probe was directly
inserted.

Data Processing

Multivariate data analysis was performed usingMatlab ver-
sion 9.3, R2017b (MathWorks, Natick, MA, USA) and the PLS
Toolbox version 8.2.1 (Eigenvector Research Inc., Wenatchee,
WA, USA). The Raman data matrix included 95 spectra and 970
Raman shifts, whereas the NIR data matrix comprised 74 sam-
ples and 999 wavenumbers.

For Raman spectra, the preprocessing stage comprised
spectral truncation between 200 and 2000 cm-1, Savitsky-Golay
smoothing, followed by standard normal variate (SNV) normal-
ization andmean-centering. On the other hand, different prepro-
cessing strategies were explored during the optimization of the
NIR models, including first and second derivative, SNV normal-
ization and different spectral truncations. PCA was performed
on both Raman and NIR data matrices for data compression
and information extraction. Of the 74 NIR samples, 5 were ex-
cluded as outliers and 57 were used in PLS regression for quan-
titative determination of PHA content (%), PHA concentration
(g/L) and TSS concentration (g/L). The remaining 12 samples
were used for test set validation, after performing a full cross-
validation (venetian blinds with 8 splits and 1 sample per split)
and pre-selecting the calibration model. The latter was evalu-
ated by its squared coefficient of determination (R2), root mean
square errors (RMSE) of calibration, and cross-validation (RM-
SEC and RMSECV, respectively). The optimal number of LVs
was identified as that leading to the minimal RMSECV and a
total of 20 LVs were estimated for each calibration. The final
models were chosen based on their root mean square error of
prediction (RMSEP).

Results and Discussion

Overview of Process Peformance

The three-stage process was successfully applied to the
pilot-plant in two operational periods, allowing for culture en-
richment in PHA-accumulating organisms and production of a
P(3HB-co-HV) copolymer. Table 1 summarizes the most rele-
vant parameters of every accumulation monitored.

Regarding Operation 1, it is worth highlighting that the
SBR had to be started-up again after a wash-out of the culture
took place. Only two accumulations were monitored before the
wash-out. Since the UASB reactor was stable at the time, all the
accumulations used its VFA-rich outlet stream as feed, although
supplementation was often carried out in order to increase its
organic load or adjust the HB:HV precursors ratio. Overall, the
percentage of HV in the copolymer varied between 17 and 26 %
(% w/w) and PHA contents up to 78 % (%w/w) were achieved.
High cell densities for MMC standards were also obtained, up to
22 g/L as TSS. The results in terms of PHA storage are compa-
rable to the highest storage capacities in the literature and the
cell densities are considerably higher than those reported so far
[12, 13].

Operation 2 overlapped with the start-up of the entire 3-
stage process and, therefore, the UASB reactor was not stable
when the accumulation assays began. Hence, the first assays
of this operation period used a synthetic VFA mixture as feed,
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which was changed to the UASB fermentate outlet as soon as
possible. Supplementation was necessary in most of the as-
says. However, the last two accumulations (12b and 13b in
Table 1) used the VFA-rich outlet exclusively as feed. The HV
content in the copolymer produced was slightly higher than that
of Operation 1, with a range between 22 and 35 %. The two last
accumulations were an exception, since the HV content went up
to 52 %. This was probably the result of not supplementing the
fermentate feed, which at the time presented a higher fraction of
HV precursors than expected. Nevertheless, similar PHA con-
tents were obtained during this second operation, with a maxi-
mum of 89 % (%w/w) reported - or 71 % if these last couple of
accumulation assays were to be excluded. However, lower cell
densities, of up to 11 g/L, were observed.

Table 1: Summary of the most important parameters regarding the ac-
cumulation assays carried out during Operation 1 and 2. ”Day” refers
to the number of days since SBR start-up. Regarding Operation 1, the
SBR was first started-up on the 21st of December, 2018 (accumula-
tions i and ii) and then again on the 19th of June, 2019 (accumulation
1a to 14a). Regarding Operation 2, the SBR was started-up on 18th of
September, 2019 (accumulations 1b to 13b). In some cases, (1) two or
(2) three purges of the SBR were used in the accumulation assay.

Accumulation Day
PHA Content

(%)

HB:HV Ratio

(%w/w)

TSS

(g/L)

i 167 72 76:24 4,43

ii 172 75 79:21 9,34

1a 13 n.a. 76:24 7,77

2a 14 n.a. 76:24 9,80

3a 16 77 78:22 12,3

4a 21 45 77:23 16,8

5a 22 53 76:24 11,7

6a 27 64 68:32 15,1

7a 28 42 74:26 14,1

8a 29 44 78:22 16,1

9a(2) 34 n.a. 79:21 12,0

10a 35 53 83:17 18,4

11a 36 56 80:20 15,8

12a 37 42 83:17 12,0

13a 40 78 79:21 16,9

14a(3) 43 69 80:20 22,4

1b 19 50 67:33 6,24

2b 20 51 65:35 6,39

3b 21 47 76:26 8,31

4b 23 55 77:23 11,1

5b 27 52 78:22 9,69

6b 28 56 74:26 6,35

7b 29 60 73:27 7,19

8b 30 62 74:26 8,79

9b 33 71 77:23 3,58

10b 34 63 77:23 3,34

11b 35 65 77:23 6,29

12b 37 75 48:52 3,63

13b 40 89 49:51 4,57

It is worth highlighting the significant drop in TSS levels
observed on day 33, which was certainly due to the changes
in C:N:P ratio applied to the SBR (100:6.5:1 to 100:5:1) on day
29 of Operation 2. It appears that there was some serious ni-
trogen limitation after a few cycles, which eventually resulted in
a significant loss of biomass. Although the ratio was increased
right after this observation (day 34), the culture was not able to
go back to the initial TSS concentrations during the monitored
operation period.

In order to ensure the presence of PHA-accumulating mi-
crorganisms in the culture and to confirm the production of in-
tracellular PHA granules, Nile Blue staining was performed on
samples collected during an accumulation assay. Figure 1 illus-
trates polymer storage at the end of an accumulation assay.

Figure 1: Fluorescence images of the biomass samples taken from
after the accumulation assay on day 30 (Accumulation 8b), at 1000X.
The image shows the PHA granules stained with Nile Blue, which are
enhanced under fluorescent light.

An analysis of the dynamics of the culture during Oper-
ation 1 was carried out based on the SBR performance pa-
rameters, namely on the feast to famine (F/F) ratio and on the
PHA production and VFA consumption rates. These parame-
ters were obtained through weekly monitorings of the reactor
and are summarized in Table 2. The significant decrease in
the F/F ratio, along with the increase in both PHA production
and VFA consumption rates over time indicate that the bacte-
rial community was dynamically changing during most of the
first operation period towards a more efficient PHA-producing
culture.

Table 2: SBR performance parameters during Operation 1:
feast/famine ratio, PHA production rate and VFA consumption
rate. The PHA production rate is a global rate, which takes into account
the difference in intracellular PHA between the beginning and the end
of the feast phase and divides it by the length of this phase, whereas
the VFA consumption rate was determined based on the slope of the
VFA consumption curve during the same period. COD - chemical
oxygen demand.RT

Day F/F
Ratio

PHA Production
Rate (gCOD/(L.h))

VFA Consumption
Rate (gCOD/(L.h))

8 0.268 1.50 0.70
16 0.064 2.74 5.18
28 0.050 4.11 7.40
35 0.037 7.78 9.30

For the second operation period, on the other hand, FISH
was performed on a biomass sample collected from the SBR on
day 6. The culture was screened for PHA-producing bacteria
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and it was possible to conclude that the selection process was
effective in only a few days. In fact, the bacterial community
was dominated by the genus Azoarcus, with a strong presence
of the genera Thauera and Plasticiumulans and some traces of
Amaricoccus and Paracoccus. No further FISH analyses were
carried out after this day and therefore a dynamic study of the
culture was not possible.

Process Monitoring through Raman Spectroscopy

Preliminary spectral analysis A first inspection of the raw
Raman spectra revealed that the shape of the spectra was not
constant among the different samples, although it appeared to
be coherent within a given accumulation and even within a given
week. In order to establish some trend within this variation, the
mean spectrum of every accumulation was estimated (see Fig-
ure 2). Firstly, there is a clear distinction between accumula-
tions i and ii, hereby Group 1, and those who took place af-
ter reinoculating the SBR, as the former exhibit a wide band
around 1,400 cm-1 which is non-existent in any of the others
(I). Regarding accumulations 1a to 14a, there also seems to be
an obvious division: accumulations 1a to 5a (Group 2) show a
plateau within the first 500 cm-1 (II) and then a descending trend
along the rest of the spectral range, whereas accumulations 6a
to 14a (Group 3) display the same initial elevation but also a
clear peak at around 1,200 cm-1 (III). It actually appears that
the signal is evolving in terms of this latter peak, which is ab-
sent in the first accumulations and then starts to increase over
time, eventually becoming predominant in the spectra. As was
briefly mentioned before, the results gathered in Table 2 clearly
indicate that the bacterial community in the SBR was evolving
during Operation 1 and thus, there might have been significant
changes in the bacterial community to justify the different spec-
tral shapes detected. Unfortunately, no FISH data is available
on this operation period to validate this hypothesis.
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Figure 2: Mean Raman spectra of each of the 16 accumulations mon-
itored during Operation 1. I,II and III indicate the most evident spectral
bands, while A, B and C point out some subtle peaks on top of these ma-
jor bands which seem transversal to the different accumulations. The
region below 200 cm-1 was discarded.

On the other hand, it is interesting to see that despite
these broad bands that dominate the spectra, a few subtle
peaks can be identified on top of these bands which are
transversal to the different accumulations. By inspecting Figure
2 once more, one can see that the first plateau region presents
the same profile throughout the accumulations, up to a Raman

Shift of around 800 cm-1 (A). Furthermore, two subtle peaks be-
tween 1,100 and 1,200 cm-1 can be detected both on top of the
major band in Group 3 as on the other accumulations which
lack this band (B). Similarly, two small depressions can be iden-
tified between 1,300 and 1,500 cm-1, which stand out on top
of the characteristic broad band of Group 1 but are also sub-
tly present in the others (C). This might indicate that the Raman
spectra might indeed be capturing some common structures be-
yond these most evident global changes.

Preprocessing The spectral range was limited from 200 to
2000 cm-1 because the regions outside this interval showed ex-
cessive noise. Nevertheless, and despite the averaging of qua-
druplicate measurements, a significant degree of noise could
still be detected. Furthermore, the intensity of the signal was
highly variable during acquistion, apparently indicating very low
reprodutibility among replicate samples or even consecutive
measurements of the sample. Given these considerations, a
simple preprocessing strategy based on smoothing followed by
SNV normalization was applied to the raw spectra, to reduce
random noise and compensate for intensity shifts, respectively.
All spectra were further mean-centered before moving on to the
subsequent qualitative analysis.

Principal Component Analysis In order to extract further in-
formation from the spectral data, a PCA was performed. The
970 Raman Shifts detected by the spectrometer were inserted
as variables, along with the 95 spectra as samples. Two prin-
cipal components (PCs) were enough to capture 98.5 % of the
variance in the data. The scores plot (Figure 3) clearly points
out the grouping that was predicted above. This was expected,
since PCA looks for the greatest amount of variation in the data,
which in this case would undoubtedly be the changing shape
of the spectra. Furthermore, samples belonging to Group 1
showed the highest Hotelling’s T2 values, some of which were si-
multaneously outside the Q residuals confidence interval (95%).
It is possible to conclude that the model is particularly inade-
quate for this group of samples, possibly because the number
of data points belonging to this group (14 out of 95) is too low
to provide the model with the necessary robustness.

Group 1 Group 2

Group 3

Figure 3: Scores plot of the PCA model performed on Raman spectra
obtained from at-line monitoring of the accumulation bioreactor during
Operation 1.

A more detailed inspection of the scores on PC1 showed
a clear trend among the samples of Group 3, with increasing
PC1 scores along each accumulation. This tendency might be
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due to a number of factors, from increasing cell density or PHA
content to the build-up of feed particles, or even some subtle
changes in the overall structure and composition of the biomass.
This observation, together with the above-mentioned tranversal
subtle peaks, reveals significant potential that ought to be fur-
ther explored through a quantitative analysis, such as PLS re-
gression. In fact, with the right spectral truncation, the grouping
effect might simply be a surmountable complication. Unfortu-
nately, the reference values in terms of PHA content obtained
throughout Operation 1 are not accurate and, therefore, a PLS
model based on them would be unreliable.

Process Monitoring through NIR Spectroscopy

Preliminary Spectral Analysis By inspecting Figure 4, two
saturation regions can be identified in the raw NIR spectra,
between 7,000-6,400 cm-1 and 5,100-4,600 cm-1, which corre-
spond to the O-H bond first overtone and combinations, respec-
tively. In fact, it is often the case with aqueous matrices that
most of the relevant regions are overshadowed by water ab-
sorption bands. Furthermore, the increasing baseline shift that
can be observed above 8,000 cm-1 is probably the result of light
scattering by the particles in suspension, namely biomass [25].
In fact, suspended solids are known to induce light diffusion, de-
creasing the intensity of the incident radiation reaching the de-
tector and thus raising absorption [26]. The baseline shift was
very clear across the samples of one accumulation assay, rein-
forcing the hypothesis that it results from increasing cell density.
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Figure 4: Raw NIR spectra obtained from at-line monitoring of the ac-
cumulation bioreactor during Operation 2 (74 spectra in the data set).

Preprocessing As a primary step, only the second derivative
spectra were calculated, since this represents one of the most
common preprocessing techniques found in the literature for
NIR spectra of biomass samples and, in particular, of biomass
containing intracellular PHA [17, 18]. Calculating second deriva-
tive spectra is especially effective in deconvoluting broad over-
lapping peaks and removing baseline trends. Furthermore, the
differentiated spectra present a negative band with minimum at
the same wavelength as the maximum on the original spectrum
and were, in this case, used to carry out a detailed analysis of
the NIR signal and to identify the various functional groups re-
sponsible for each of the absorption bands. Figure 5 portraits
the second derivative spectra, on which each region is properly
identified with the corresponding overtone or combination.

The combinations and first overtone of water (O-H stretch-
ing) are very easily identified, with a strong positive peak fol-
lowed by a major negative peak around 5,100 and 7,000 cm-1,
respectively. This was expected, since these regions were al-
ready prominent in the raw spectra. However, it is interesting
to see that a pair of very subtle positive and negative peaks
seems to be present around 10,500 cm-1, which might corre-
spond to the second O-H overtone. Regarding the functional
groups of interest, these mostly come down to aliphatic hydro-
carbons, since the effects of any carboxylic or amine groups
are completely masked by water absorption bands. Thus, only
three more spectral regions were identified: the C-H stretch-
ing combinations (4,500-4,100 cm-1), its first overtone (6,150-
5,500 cm-1) and second overtone (9,100-7,800 cm-1). All three
of these intervals comprehend fine peaks with variable intensity,
indicating that they might contain useful chemical information
regarding the intracellular PHA polymer.
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Figure 5: Second derivative NIR spectra from at-line monitoring of the
accumulation bioreactor during Operation 2 and absorption bands of
relevant functional groups in the NIR region. Red indicates the O-H
stretching absorption bands and orange refers to the C-H stretching ab-
sorption regions. ’Ov.’ stands for overtone and ’Comb.’ for combination.
Adapted from [27]

Principal Component Analysis A PCA was performed for
better data visualization and before moving on to a more quan-
titative sort of analysis. Primarily, only the second derivative
was used as preprocessing and the whole spectral region was
investigated, since the goal was to get a broad notion of data
trends, sample relationships and variable influence. Again, all
samples were further mean-centered.

In this case, two PCswere able to account for 99.0% of the
variance in the data. The scores plot 6 reveals that the first ac-
cumulations (1b to 8b), which correspond to the period of higher
cell densities prior to changing the C:N ratio, group on the first
and fourth quadrants, with positive scores on PC1. The remain-
ing accumulations (9b to 13b), comprehending lower cell den-
sities, score negatively on PC1 and seem to spread somewhat
randomly across the second and third quadrants, mostly due to
the scores on PC2.

A closer look at the scores across PC1 revealed a clear
trend among each of the accumulations. In fact, it seemed to be
the general case that samples increased their PC1 score along
an accumulation, stressing out, once more, the hypothesis that
the data is mostly being compared in terms of its biomass con-
centration. Outlier detection was carried out based on 95% con-
fidence limits on the Q residuals against Hotelling T2 statistic
and 5 samples were removed from the calibration set.
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Figure 6: Scores plot of the PCA model performed on NIR spectra
obtained from at-line monitoring of the accumulation bioreactor during
Operation 2.

Before moving on to the subsequent quantitative model
development, the PCA results were further used to decide on
which accumulation assays to leave out as an external valida-
tion set. It was determined that two assays would be excluded,
one corresponding to the first period with high cell densities
and the other to the latter period after biomass concentration
dropped. Based on the scores plot, accumulations 5b and 10b
were chosen for this purpose.

Partial Least Squares Regression and Optimization Given
that one of the most useful decision tools for process monitor-
ing is the knowledge of real-time PHA content in the biomass,
two different strategies were considered for the development of
a quantitative PLS model. The first option was to build a model
capable of directly predicting the PHA content (%), whereas the
second option was based on building two separate models, one
for TSS concentration (g/L) and another for PHA concentration
(g/L), and combining these two to obtain PHA content values.
Hence, three independent PLS regression models were devel-

oped, optimized and validated, one for each predicted variable.

With model optimization in mind, new preprocessing op-
tions were introduced and explored. Five different methods
were studied: SNV, first derivative, second derivative, first
derivative followed by SNV and second derivative followed by
SNV. These preprocessing strategies were further combined
with spectral truncation. Four different spectral truncations
were specifically selected for the TSS concentration model and
for the PHA content and PHA concentration models. Hence,
by combining both the preprocessing options and the spectral
ranges, a total of 20 models were developed and evaluated for
each predicted variable.

Regarding the models for PHA prediction, both content
and concentration, the four spectral ranges selected include
the whole spectrum, the C-H stretching first overtone (6150-
5500 cm-1), the first and second overtones simultaneously
(6150-5500 cm-1+9100-7800 cm-1) and, lastly, both overtones
together with the combinations region (6150-5500 cm-1+9100-
7800 cm-1+4500-4100 cm-1).

For the TSS concentration model, the selected spectral re-
gions were significantly different from the previous ones. Apart
from the whole spectral range, the region between 9000 and
7200 cm-1 was one of the studied options, to evaluate how the
baseline shift in that region was indicative of TSS concentra-
tion changes. Furthermore, the water absorption peaks (7200-
6800 cm-1+5300-5000 cm-1) were also chosen for the same pur-
pose, since they might serve as an indirect measure of biomass
concentration. Lastly, the C-H stretching regions (6150-5500
cm-1+9100-7800 cm-1+4500-4100 cm-1) were also one of the
selected truncation solutions, since biomass comprises a signif-
icant fraction of organic matter.

Table 3 summarizes the most relevant details of the best
five models for PHA concentration, PHA content and TSS con-
centration. It should be highlighted that before moving on to
an external test set validation, the calibration models were val-
idated with the PLS toolbox default cross-validation method
(venetian blinds, 8 splits and 1 sample per split). In fact, the
most promising models were selected based on both calibration

Table 3: Models selected for PHA concentration (g/L), PHA content (%) and TSS concentration (g/L) with corresponding parameters and results

Y Model Preprocessing Spectral Region (cm-1) %VarX %VarY #LVs RMSEC RMSECV R2 Cal R2 CV

PHA

(g/L)

8 1st derivative 6150-5500+9100-7800+4500-4100 100 97.63 13 0.2112 0.6626 0.9763 0.7746

11 2nd derivative 6150-5500+9100-7800 99.86 97.63 10 0.2114 0.6410 0.9763 0.7851

12 2nd derivative 6150-5500+9100-7800+4500-4100 99.88 99.97 19 0.0227 0.4753 0.9997 0.8832

19 2nd der+SNV 6150-5500+9100-7800 99.1 97.26 10 0.2271 0.6221 0.9726 0.7969

20 2nd der+SNV 6150-5500+9100-7800+4500-4100 98.94 98.96 13 0.1406 0.5558 0.9896 0.8394

PHA

(%)

25 1st derivative Global 100 99.24 16 0.0186 0.0924 0.9924 0.8133

28 1st derivative 6150-5500+9100-7800+4500-4100 99.99 96.74 12 0.0397 0.0914 0.9674 0.8296

31 2nd derivative 6150-5500+9100-7800 99.83 94.17 8 0.0530 0.1134 0.9419 0.7419

32 2nd derivative 6150-5500+9100-7800+4500-4100 99.86 99.78 17 0.0103 0.0915 0.9978 0.8270

36 1st der+SNV 6150-5500+9100-7800+4500-4100 99.93 93.5 11 0.0560 0.1159 0.9350 0.7398

TSS

(g/L)

48 1st derivative 7200-6800+5300-5000 100 98.52 19 0.2377 0.6688 0.9852 0.8919

52 2nd derivative 7200-6800+5300-5000 100 98.48 19 0.2408 0.6631 0.9848 0.8979

53 1st der+SNV Global 99.94 96.71 9 0.3548 0.6266 0.9668 0.8974

57 2nd der+SNV Global 99.68 96.25 8 0.3789 0.5947 0.9625 0.9080

60 2nd der+SNV 7200-6800+5300-5000 99.99 96.73 11 0.3539 0.6012 0.9673 0.9065
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Figure 7: Prediction performance of the models selected for each predicted variable: model 8 was chosen for PHA concentration (a), model 28 for
PHA content (b) and model 53 for TSS concentration (c); (d) refers to PHA content values predicted through the combination of model 8 and model
53. Sample 5.0 indicates a sample collected before the first pulse of accumulation 5b, 5.1 a sample collected before the second pulse, of the same
accumulation, and so on. Sample 5.5 corresponds to a sample collected at the end of the assay. The rationale is analogous for accumulation 10b.

and cross-validation performace, namely regarding their RM-
SEC, RMSECV, calibration R2 and cross-validation R2 values.

External Test Set Validation In the final phase of model de-
velopment, accumulations 5b and 10b, which had been previ-
ously excluded from the calibration block, were used as an in-
dependent set for validation. Prediction was carried out for all
5 models selected for each variable and the best model was
chosen based on the minimal RMSEP. The values predicted by
each model were plotted against sample number in the test set,
together with the true measured values, and are displayed in
Figure 7 (a) to (c). This representation allows for the evaluation
of the trend in predicted values along both test accumulation
assays, in comparison with the expected trend.

The final PHA concentration model (model 8) refers to a
preprocessing comprising the first derivative alone, and uses
all three C-H stretching absorption regions. A RMSEP of 0.693
g/L and a prediction R2 of 0.888 were obtained. This means
that the RMSE of cross-validation and prediction are compara-
ble and the prediction R2 is actually higher than that of cross-
validation. This is probably because the desired trend can be
found across the predicted values, but these values are slightly
underestimated, especially for accumulation 10b. Overall, the
model seems to perform better for accumulation 5b and is partic-
ularly inappropriate for very low PHA concentrations, predicting
a negative concentration for the first sample in accumulation
10b. In fact, the model is likely to be poor at predicting low PHA
concentration, namely those obtained after the first few accumu-

lation pulses, given that the RMSEP is considerably high. How-
ever, it should provide amore or less significant prediction of the
final accumulation pulses. It should be noted that the PHA con-
centration range in the calibration data set was between 0.16
g/L and 6.16 g/L, which means that sample 10b.0 (0.10 g/L)
was extrapolated.

Regarding the PHA content prediction, the final model
(model 28) also refers to a preprocessing strategy based on
the first derivative alone, and to a spectral truncation including
all three C-H stretching absorption regions. A RMSEP of 14.5%
and a prediction R2 of 0.864 were obtained. Again, the predic-
tion R2 is higher than that of cross-validation and the underlying
reason is probably the same. In this case, the underestimation
is more accentuated and negative PHA concentrations are pre-
dicted for the first samples of both accumulations. However,
it should be noted that sample 5b.0 (2.95%) is slighly outside
the PHA content range of the calibration set, which covers from
3.16% to 89.0%.

Likewise, the final TSS concentration model (model 53)
refers to a preprocessing strategy based on the first derivative
followed by SNV normalization, and made use of the whole
spectral range. A RMSEP of 1.03 g/L and a prediction R2 of
0.863 were obtained. Unlike with the previous two models,
there does not seem to be any underestimation (nor overesti-
mation) of the concentration values and, in this case, accumu-
lation 10b seems slightly better adjusted. However, since there
are no major variations in the TSS concentration values of the
test set samples, it is not clear how well the model would react
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to significant changes and trends in the data. It should be noted
that the TSS concentration values in the calibration set ranged
between 2.50 g/L and 11.1 g/L and that the reference values of
the test set are all within this interval.

Lastly, a final scenario was evaluated, regarding the com-
bination of the final models for PHA and TSS concentration.
Hence, the PHA concentration values predicted by model 8
were divided by the TSS concentration values predicted by
model 53 and the resulting PHA content predictions were also
plotted against the test set samples, along with the true mea-
sured values (Figure 7 (d)). The final model was surprisingly
accurate at predicting the PHA content in accumulation 5b, al-
though a considerable underestimation was again noticed in ac-
cumulation 10b. It is probably the case that the model performs
better at predicting the samples from high cell density accumu-
lations because a higher number of samples belonging to this
period was included in the calibration set. A RMSEP of 18.5%
was determined for this combined model. However, this value
is almost exclusively the result of predicting accumulation 10b.
In fact, a RMSEP of 4.52% and R2 of 0.960 are achieved if con-
sidering accumulation 5b alone.

Conclusions

Regarding the application of Raman spectroscopy, the in-
accuracy of the reference analytical techniques prevented the
development of a quantitative model and thus the suitability of
the technique for measuring PHA could not be inferred. Never-
theless, a qualitative analysis revealed some interesting shifts
in the shape of the spectral signal over the weeks. This was
believed to be caused by changes in the bacterial community,
which was not yet stable by the end of the operation period.
Since no FISH analyses were carried out during this time, it
was also not possible to corroborate this hypothesis. Future
work should fall upon gathering accurate analytical information
on PHA content and developing a PLS model. It might be nec-
essary to perform a rigorous spectral truncation, given the ap-
parent susceptibility of the equipment to changes in the culture.

On the contrary, NIR spectroscopy showed great promise
for the monitoring of the PHA production process. A PCA
model using the second derivative spectra revealed some sam-
ple grouping based on biomass concentration which essentially
separated the data in two sets of accumulations: before and af-
ter decreasing the nitrogen levels in the SBR feed. As for the
quantitative analysis, two different approaches were explored:
a model for predicting PHA content directly, and the combina-
tion of two models for predicting PHA and TSS concentration,
separately. Model optimization was carried out by investigat-
ing different preprocessing strategies and several spectral trun-
cations. Apart from cross-validation, the most promising mod-
els for PHA concentration, PHA content and TSS concentration
were successfully validated with an external test set. Overall,
the models performed better at predicting the accumulation be-
longing to the high cell density group, probably because more
calibration points were available regarding this period. In fact,
the model combining the PHA and TSS concentration models
revealed extraordinary results in the prediction of high cell den-
sity samples, with a RMSEP of 4.52% and a R2 of 0.96. It might
also be the case that the linear relationship between the NIR
signal and the analyte concentration depends on the TSS con-
centration range and then two different models would have to
be developed for higher and lower cell densities. Either way,
more samples need to be collected in order to develop a more

robust and reliable calibration model that can be actively used
for monitoring the accumulation stage.

As far the author is aware, this is the first time that a NIR-
based quantitative model has been reported for the monitor-
ing of a pilot-scale production of P(3HB-co-3HV) polymer using
MMC and a complex feedstock such as fruit pulp waste as sub-
strate.
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