
Migration of Legacy Applications to the Cloud

Pedro Nunes

Instituto Superior Técnico

Lisbon, Portugal

pedro.l.nunes@tecnico.ulisboa.pt

Prof. José Alves Marques

Instituto Superior Técnico

Lisbon, Portugal

ABSTRACT

Cloud computing has brought an opportunity for businesses

to modernize their legacy applications. Migrating legacy

applications to the cloud and being able to successfully

leverage its characteristics has become a major objective for

several companies whose systems rely on old technologies

and perform poorly when compared to what the cloud has

to offer. This project provides a general state-of-the-art

regarding this topic and proposes some alternative cloud-

oriented architectures for a specific legacy application -

EDOCLINK. It describes the process of migrating certain

components to the cloud as well as a performance

comparison of both its versions.

Author Keywords

Cloud Computing; Legacy Application; Cloud Migration

INTRODUCTION

Cloud computing is a term often used as a keyword that

represents a lot of different ideas which contributes to a

general confusion on what it really means. As provided by

NIST, the American National Institute of Standards and

Technology, cloud computing is a model for enabling

ubiquitous, convenient, on-demand network access to a

shared pool of configurable computing resources (e.g.,

networks, servers, storage, applications, and services) that

can be rapidly provisioned and released with minimal

management effort or service provider interaction [3]. This

definition points out some key characteristics of cloud

computing that are the reason for its growing popularity. It

provides on-demand access to computing resources which

means that even smaller scaled businesses are able to

leverage these resources into their favor since the cost of

such infrastructure is calculated in a pay-as-you-go

methodology, i.e. it is proportional to the capabilities of the

hardware and the amount of time in which it was effectively

used. When deploying an application, these companies

were often faced with a dilemma: they would either cut

costs in order to build an infrastructure as small as possible

to handle its current needs and face the risk of not being

able to scale if the demand for its application increases or

accommodate potentially heavier loads and face the risk of

never actually having big enough demand that justifies the

size of the infrastructure.

Cloud computing definition comprises both the applications

provided over the Internet and the infrastructure allocated in

the data centers that support them [1]. It allows services to

be deployed on the Internet without the need to build or

maintain the hardware required to run it. It also provides the

ability to deploy a service in a given environment whose

capabilities are not static i.e. the risk of building a huge

infrastructure for an application that turns out to be a failure

or, the opposite, building a small scale hardware that is only

able to provision a small fraction of its users is eliminated

by the elasticity of such resources. The hardware and

software stored in the data centers to which these

applications are deployed is called the Cloud. Companies

are actively trying to leverage this platform into their favor

[2] by either developing new software to specifically

operate in the cloud or by migrating legacy on-premise

applications to it.

This report focuses on the process of migrating a legacy

application to the cloud. Current state-of-the-art will be

presented containing some examples of methodologies and

techniques developed to guide the migration process, some

related technologies that are often compared to the cloud

and the clarification of what is the application to be

migrated and its current architecture. The next step is to

propose some new architectural approaches suitable for the

cloud, comparing them against each other and pick the most

suitable for this specific case. The main objective is to

achieve a functioning version of the application which

utilizes cloud services and whose performance is improved

when compared to the current version, measured by some

metrics that will be discussed further.

This idea of combining computing resources isn't new. For

example, Grid Computing is a model of distributed

computing that allows a user to access network resources

separated among several computing units whose

capabilities are combined in order to achieve a higher

processing power [3]. This model is related to cloud

computing since it also makes use of several resources

loosely distributed however, grid computing is often

owned, managed and used within an organization to process

a single task in opposition to cloud computing whose

infrastructure is owned by a central cloud provider and may

be in physically distant locations.

Besides its similarities to Grid Computing, Cloud

Computing relies on the key concept of Virtualization

which is a way to abstract the physical hardware and

provide virtualized resources to an application [3]. This is

often achieved by the introduction of a layer - the

Hypervisor or Virtual Machine Manager - that is

responsible for allowing multiple operating systems and the

applications that each of them is running to share the

resources of the hardware structures [4]. Virtualization

allows multiple applications to run on the same hardware

whose resources are more efficiently utilized. This

technology is one of the fundamentals of cloud computing

since it provides the capability of assigning computing

resources dynamically and on-demand to multiple

applications.

Despite this being the most common definition of

Virtualization, the term itself has gained a new meaning

with the introduction of Container-based Virtualization. In

opposition to VMs, containers do not get their own

virtualized hardware; they use the hardware of the host

system. Containers offer a level of abstraction from the

environment in which the application is executed.

Containers are shipped with the whole package of libraries

and dependencies needed to run the application, which

avoids dependency conflicts and separates different projects

or applications easily [6]. They are extremely lightweight in

comparison to VMs since they do not need to contain every

component required to run the operating system. These

characteristics have made container-based virtualization

very popular in the last few years.

Cloud service providers, as are known the companies that

provide services to run application in the cloud, leverage

these virtualization technologies to offer computing

resources to its users that are adjusted on-demand and billed

in a pay-as-you-go method. However, IT organizations, as

any other type of organizations, have very different needs

and business models. Given this granularity, cloud

providers offer services that are grouped in mainly 3

different groups, which are:

Infrastructure as a Service which is a type of cloud

architecture in which the hardware/infrastructure is

virtualized in form of VM’s. Clients often choose this

architecture because it is easier and cheaper to deploy the

application in a remote infrastructure instead of having to

buy, build and manage it entirely. Example: Amazon Web

Services (AWS) although several available services in

AWS are comparable to PaaS.

Platform as a Service which is a type of cloud architecture

which introduces an additional level of abstraction

compared to IaaS, providing a development environment or

API allowing the customer to develop the desired

application within the given environment. In this

architecture, the provider hosts the application in its own

infrastructure and makes it available through the internet.

Example: Azure, Google App Engine.

Software as a Service which is a type of cloud architecture

in which the provider is responsible for managing and

controlling all the underlying infrastructure, providing a

software in the form of an internet service. The client does

not control any part of the stack since it is controlled by a

third party. Typically, the end user accesses the software

through a web browser or a simple terminal and updates

and upgrades are managed by the provider. Example:

iCloud, Microsoft Office.

Concerning cloud providers, there are 3 main players in the

Cloud Computing scene: Amazon with AWS (Amazon

Web Services), Google with Google Cloud and Microsoft

with Azure. These 3 main providers offer a lot of similar

features.

In the scope of this project, the main objective consists in

deploying a cloud version of EDOCLINK. EDOCLINK is a

document management platform which allows its users to

control the lifecycle and tasks related to a document. It also

allows the organization of a certain process and the tasks

and documents related to such process.

At its current state, EDOCLINK´s technical architecture is

composed by an Applicational Server, a Database and some

satellite components responsible for specific tasks. A main

installation of EDOCLINK in a client consists in deploying

a physical server containing an instance of SQL Server as

the database and the rest of the components. This type of

deployment is limited by the capabilities of such server and

adjusting its power to the changing needs of the

organization requires manually adjusting its hardware.

Figure 1 - EDOCLINK Logical Architecture

The figure above represents the current state of

EDOCLINK’s architecture. Starting from the satellite

components, the Helper Service is responsible for handling

alarms and background tasks periodically. It is deployed as

a Windows service in the physical service and, according to

the period configured, communicates with the Application

Server via SOAP service. Firstly, it retrieves a list of

pending alarms. According to the type of alarm retrieved, it

contacts another SOAP webservice in the Applicational

Server that is responsible for handling the execution of such

alarm. These alarms can range from sending internal

notifications to the user because a certain deadline is

reached to sending e-mails.

The Binary File Repository is responsible for storing the

documents introduced in EDOCLINK. In the current

development version, this component can be configured to

be filesystem based, meaning that the documents and files

are stored in a certain directory within the server, or Azure

based meaning that it is possible to use Azure Files or

Azure Blobs, both Azure services capable of storing files

and documents which can be accessed from anywhere.

Lastly, the Document Converter Service is responsible for

converting documents to an image format. This component

can also retrieve the total number of pages of a certain

document. It is used to convert the first page of a document

to an image and resize it to a thumbnail so that it can be

showed in the user interface. When browsing to a certain

document, the user is taken to a document visualizer. In this

visualizer, the Document Converter Service is, in the first

place, responsible for returning the total number of pages.

Then, it converts the first page and presents it. It also

immediately converts the second page, to have it ready once

the user requests it.

Concerning the Applicational Server, it contains most of the

functionalities of EDOCLINK The Business Layer holds

most of the EDOCLINK’s logic, being responsible for

receiving requests from the user interface or from a SOAP

Web Service, process them and, if needed, conduct them to

the Data Access Layer that will be responsible for

triggering stored procedures in the database that collect

several information related to documents, users or

distributions. The Authentication Layer aims at providing

Single Sign-On capabilities to EDOCLINK by allowing

users from a certain organization to log in EDOCLINK by

using the same credentials in their own domain, using

Active Directory. If requested, it is also capable of

providing access to EDOCLINK via an external provider as

Twitter or Facebook.

EDOCLINK sets a GUID – Globally Unique Identifier – to

each object of its objects, such as users, documents or

distributions. This GUID identifies such object uniquely

and is used to request information regarding it.

EDOCLINK – New Architecture

Concerning the main objective of deploying a working

version of EDOCLINK in the Cloud, it was necessary to

modify its current architecture in order to maximize the

benefits that it has to offer. Currently, EDOCLINK follows

a monolithic architecture in which the core of its

functionalities are concentrated in a single module, the

Applicational Server. Although the migration of the entire

application was the main objective, it ended up being too

ambitious. In order to fit in the time constraints if this

project, there was the need to decide which components

should be the target of this migration. Given this, the option

went to the satellite components, because of the isolated

nature of their functionalities. The migration of such

components to Cloud services will maintain their

functionality while providing the opportunity to bring

improvements in its scalability and some room to apply

some changes to the way some modules are implemented.

After selecting the targets of the migration, there was the

need to select the most appropriate way to do it. Starting by

the Binary File Repository, as stated before, there was

already the option to use an Azure service to store

documents in the Cloud. So, in the version presented in this

report, this component will only be deployed as an instance

of Azure Blobs, that allows storing of large amounts of data

accessed by several ways including a library provided by

Azure to multiple programming languages. Despite the

migration process being relatively straightforward, it was

necessary to rearrange the way it communicated with the

Document Converter Service which was the target of the

most profound changes. In its actual architecture, the

Document Converter Service holds a cache of the images

previously converted. This cache consists in a configurable

directory which contains the documents whose conversions

were requested previously as well as the images of each

page as well. With the objective of improving the process

of deployment of a new version of this module in the

Cloud, it was decided to containerize it along with its

libraries and dependencies. The custom container image is

then stored in an Azure Container Registry, which is a

service capable of storing custom container images which

can be easily deployed by using the functionality Web App

for Containers. This functionality allows the creation of a

web application from a given container image using the

Azure App Service, capable of deploying the container as a

web application and providing several configurations as

well as the possibility of scalability. The objective with this

migration is to be able to scale to accommodate load peaks,

by improving the number of active instances able to process

a conversion or by increasing the capabilities of such

service in terms of the computing power assigned to it.

However, if the Document Converter Service consists in a

single module responsible for handling the cache

management and performing the actual conversion, the

creation of a mechanism that would replicate the cache state

to every active instance when scaling up would be

necessary. To avoid this problem, it was decided that the

functionalities of this module would be split in two: a sub-

module responsible for caching and managing the access of

a user to a document and another sub-module responsible

for the conversion itself.

Therefore, an API that receives requests from the

Applicational Server to convert a certain page of a

document was created. This module, defined as DCSLogic

from now on, receives request containing the GUID of the

document to convert, the page requested and a flag defining

the need to resize it into a thumbnail format. This request

should also contain an authentication header consisting in a

JSON Web Token. A JWT consists in string representing a

set of claims related to the identification of the user

requesting the conversion, in the form of its GUID.

DCSLogic is then responsible for confirming the

authenticity of such request by evaluating the expiration

timestamp of the JWT as well as comparing its contents to

its signature which was built using a secret string known to

both parties.

After confirming the access, it will then look for the

requested image in the cache and, if it does not exist,

request it to the second sub-module responsible for the

conversion itself, the DCSConverter. A more detailed

explanation a single conversion lifecycle will be offered

later.

Concerning the Helper Service and the need to periodically

trigger its execution, the most suitable Azure service for

this module is Azure Functions. It allows a certain

functionality to be ran according to a certain trigger. It can

be fired by the reception of a request by other application or

by performing a change in a certain file stored in Azure

Blobs or Azure Files. However, in this case, the trigger

used was a Timer Trigger to which we can assign a CRON

expression, which represents the amount of time between

executions of such function.

The Applicational Server and the database were only

deployed to a VM in Azure, having suffered no changes.

The final EDOCLINK’s architecture in this Cloud version

is as follows:

Figure 2 - EDOCLINK Cloud Architecture

The first step of this migration consisted in deploying a

working version of EDOCLINK in a Azure VM. This VM

holds the Applicational Server and the database as a SQL

Server instance. At first, the hardware provided to this VM

was not enough to provide a smooth user experience. In

order to get closer to what resembles a production

environment of EDOCLINK, it was necessary to increase

the capabilities of such VM to the category F2S provided

by Azure, which uses 2 virtual CPU cores and 4GB of

RAM, as well as a data disk with 6400 IOPS. Every test

executed in the scope of this project uses this VM

configuration.

Concerning the migration of the Document Converter

Service, the following figure represents its technical

architecture as well as the lifecycle of a conversion:

1. The DCSLogic receives a conversion request from the

Applicational Server containing the document GUID, a

thumbnail flag and the page to convert as parameters. It

should also contain na authentication header containing

the JWT with the user GUID.

2. Using the document and the user GUID, query the

database to verify if such user can access the

document.

3. In case the access is denied, respond to the request

with a 401 HTTP status code. Else, verify is the

selected page exists in the cache.

4. In case the selected page exists in cache, respond to

the request with such image encoded in base-64. In

case it doesn’t, a new request is made to the

DCSConverter.

5. The DCSConverter accesses the document and

converts the desired page, returning it encoded in base-

64.

6. The DCSLogic receives the response to the request

from the DCSConverter and stores the image in the

cache along with the parameters of the request such as

page number and the thumbnail flag.

7. The DCSLogic responds to the original request with

the requested image encoded in base-64.

One of the biggest changes applied to this module, apart

from the decomposition in 2 smaller modules, was the

cache. It is now composed by a smaller size, faster access

cache and a bigger size but slower access cache as a file

repository in Azure Files. The new version of the cache

consists in a set of key-value pairs stored in memory. The

key to each entry is built from the document GUID, the

thumbnail flag and the page number. The value of each

entry consists in an object containing the image encoded in

base-64, two Booleans representing the existence of such

image in memory or in the Azure Files repository and a

string containing the URL to the image encoded in base-64

in the Azure Files repository. The maximum cache size as

well as the maximum amount of time that a certain entry

should be kept in cache is configurable. When it is reached,

the memory cache instance automatically removes the least

used entries and a callback is triggered. This callback was

programmed to reintroduce the same exact entry in the

cache but erasing the field containing the image in base-64.

Since most of the memory space occupied by a given entry

is used to store this field. Re-adding it to the cache will

maintain the converted image in the Azure Files repository

and the URL to access it. If such image is requested, the

DCSLogic will transfer it from the Azure files repository

and populate the field containing it in the memory cache

again, updating the Boolean values. When a new image is

converted, its base-64 encoded string is added to both the

memory cache and the Azure Files repository. The only

way for a given entry to reside only in the Azure Files

repository is when the maximum amount of time is reached

or the maximum cache size is surpassed and that entry is

selected as one of the least accessed ones, removing it from

the memory cache but keeping it in the persistent module of

the cache.

Concerning the DCSConverter, the conversion process was

kept the same, using Aspose which supports manipulation

and conversion of several different file types. It receives

requests containing the path in which the file is stored in the

Azure Blobs repository, accesses it, converts it to jpeg and

resizes it to a thumbnail format of necessary. This module

is completely stateless, meaning that each request is

handled completely separately from the next ones and the

previous ones. This property will come in handy when

scaling it horizontally i.e. increasing the number of

instances of the DCSConverter able to process conversion

requests.

In terms of the migration of the Helper Service, besides

migrating the code as-is to an Azure Function, there were a

couple of changes that had to be made. The current version

of the Helper Service was built under a Provider model.

This is a design pattern created by Microsoft which allows a

certain component to have multiple implementations. At

runtime, the adequate provider is used to perform a certain

task. This model was used to create multiple

implementations of the handler of an alarm so that,

according to its type, the correct provider was used to

handle it. With the changes that this component has

suffered throughout the years, such model is not used

anymore. In fact, the Helper Service is now responsible for

periodically executing a SOAP web service call to retrieve

the list of pending alarms and then, for each alarm, execute

another SOAP web service call that handles the treatment

of such alarm. This way, this model was removed from the

Helper Service.

When deploying a new Azure Function, one must choose

between version 1.x or version 2.x. Version 1.x only exists

to provide compatibility with older applications, being in

version 2.x where updates are constantly being made.

However, for C# applications, version 1.x targets .NET

Framework and version 2.x target .NET Core. Given the

effort being made in the migration of these components, it

was decided that the new Helper Service Azure Function

should be as updated as possible and so, must use version

2.x. In the process of porting the codebase from .NET

Framework to .NET Core, one of the libraries used by the

Helper Service that was responsible for the web service

calls was not supported in .NET Core which is a rather

common problem in these types of migrations. This one in

particular was solved by adding this responsibility to the

Helper Service but it is important to expect this kind of

issues.

The rest of the migration was very straightforward and

there is now a working version of the Helper Service

running as an Azure Function.

EVALUATION

In order to quantify how the migration of the components

above impacted its performance, several tests were

performed. The objective of these tests was to guarantee

that the scalability on-demand offered by these Cloud

services was being used to increase the performance of such

components.

The evaluation processes focused on the Document

Converter Service since it is the component that has more

room to benefit from such Cloud characteristics. As

presented above, the Document Converter Service is

composed by 2 different sub-modules: the DCSLogic and

the DCSConverter. Given the different perks of each sub-

module the scalability strategy has to take them into

account. Two types of scalability were used in this

evaluation process: vertical and horizontal scalability. In

horizontal scalability, the number of instances of the given

component is increased and decreased based on the load

introduced in it, In vertical scalability, the computing power

i.e. the hardware used to host such component is switched

to a more powerful one to assess if it impacts its

performance.

Concerning the DCSLogic, horizontal scalability would

imply the need to replicate the image cache through every

active instance. In order to avoid this problem, scalability

was not the main concern for this sub-module. The main

objective here was to verify that the introduction of an

image cache had translated in increased performance when

receiving requests to a previously converted image. This

test was run with a single instance of the DCSLogic and 10

active instances of the DCSConverter. 20 requests were

concurrently made to convert a single page of a docx

document with 1MB. In the following test, the cache was

disabled so that a baseline could be drawn of what the

system performs like in the absence of a cache.

Figure 3 - 20 Requests with Disabled Cache

The figure above shows the results obtained. Despite

having 10 different instances able to convert, the time spent

in the DCSConverter is still very high compared to the total

time of a request. The 20 requests took 19 seconds to be

processed. In the following figure the exact same conditions

were kept but with the cache enabled. The results were as

follows:

Figure 4 - 20 Requests with Enabled Cache

For the exact same test but with the cache enabled, the 20

requests were processed in less than a second. The

introduction of the image cache resulted in a 95% faster

response to each request.

Having concluded that, the focus turns now to the study of

scalability in the heaviest part of the conversion process

that happens in the DCSConverter. First concerning the

horizontal scalability, the objective is to conclude if

increasing the number of instances of the DCSConverter

able to convert images has a toll on performance. To do

this, 20 requests were concurrently made directly to the

DCSConverter to convert a single page of a docx document

while only 1 instance was active. The results are expressed

in the following figure:

Figure 5 - 20 Requests with 1 Instance

The total of 20 requests took 1 minute and 17 seconds to be

processed. As there’s only 1 active instance, the requests

are processed consecutively, making the whole process way

slower. The first 10 requests took around 40 seconds to be

processed. This will be valuable when comparing with the

next test performed. This next test replicates the exact same

condition as the previous one, however, there are now 10

different active DCSConverter instances ready to process a

request. The results are as follows:

Figure 6 - 20 Requests with 10 Instances

In this case the differences are quite evident. The total of 20

requests were processed in a total of 16 seconds, in

opposition to the 1 minute and 17 seconds that the same 20

requests took in the previous test. As a request is received

by the DCSConverter, the load balancer existing in the

Azure App Service where the DCSConverter is deployed is

responsible for semding it to a free instance of the

DCSConverter. This enables the processing of at most 10

different requests simultaneously. In this case, the first 10

requests took a total of 5.2 seconds to be processed with an

average of 4.3 seconds. The similarities in these values

show that the requests were processed concurrently by each

of the 10 active instances. Moving from 1 to 10 active

instances results in a performance increase of around 80%

which is extremely significant.

Although the previous tests concluded that increasing the

number of active instances impacts the performance

significantly, having a fixed number of instances active at a

given time does not go in line with the on-demand

capabilities of the cloud. The objective is that the number of

instances can automatically adjust to the load introduced in

the application. To do this, the auto-scale capabilities of an

Azure App Service were used. The auto-scale provided by

Azure allows the number of active instances to scale up and

down based on a certain metric. The metric is related to the

usage of the hardware used to deploy it, like CPU usage or

memory usage. This metric is calculated based on the

results of the last 5 minutes. If such metric reaches the

configured threshold, the auto-scale manager will increase

the number of instances by a certain number previously

configured. If the value of the configured metric drops

below the threshold the number of instances will also be

scaled down accordingly.

At first, the tests that were run using this auto-scale

followed the same pattern as the previous ones: 20

concurrent requests to convert a single page of a 1MB docx

document. However, the total execution time of these tests

is not enough for the auto-scale manager to calculate that

the metric threshold was reached, since it needs data from

at least the last 5 minutes. The results obtained in these tests

were very similar to the ones obtained in the test where

there was only 1 active instance, meaning that the auto-

scale was never being triggered.

To better compare the current version of the Document

Converter Service with the one deployed on the Azure

Cloud, making sure that the auto-scale capabilities were

being used, it was necessary to increase the total number of

requests made, so that the total time of the test enabled the

triggering of the auto-scale configuration.

For the next tests, instead of a fixed number of 20

concurrent requests, a concurrent thread group was used.

This thread group was configured so that at any given

moment there are always 20 concurrent requests being

processed. When one of the requests receives a response,

another one is fired so that there is a constant rate of 20

requests at the same time for 30 minutes. The requests were

of the same kind of the previous ones, a single page of a

1MB docx document. However, instead of targeting the

DCSConverter itself, it follows the same path that a normal

conversion request would. This test starts with the

Applicational Server building the request to the DCSLogic,

which has its cache disabled. Then, the DCSLogic routes

the request to the DCSConverter that processes it using one

of the available instances.

The auto-scale configuration used was based on the CPU

usage being above 60%. This was due to the conversion

process being very CPU intensive which means that when a

certain instance is handling too many requests, its CPU

usage spikes.

When this threshold is reached the number of instances is

increased by 3, until a total of 10 instances. This means that

at any given moment, the DCSConverter can have 1, 4, 7 or

10 active instances.

The following figure shows the results obtained for the first

test in this scenario:

Figure 7 - Cloud Version Document Converter Service without

Vertical Scaling

The evolution of the processing time of the requests shows

that the auto-scale threshold was reached 3 times. There is

the first leap from 1 to 4 instances at around the first

minute, the leap from 4 to 7 at around the seventh minute

and the final leap to 10 instances at around the thirteenth

minute. As expected, the increasing number of

DCSConverter instances able to process a conversion

request results in a lower and lower average processing

time. These results show that the use of the auto-scale

capabilities provided by the Azure App Service do translate

into a better performance.

In the second scenario for this test, the objective was to

conclude if horizontal and vertical scaling capabilities could

be combined in order to increase the performance even

more. In this case, the exact same test configuration was

kept with the difference that the vertical scaling category in

which the DCSConverter was deployed was changed to one

with double the processing power. Due to the conversion

process being so CPU-heavy, the question is if doubling the

CPU power translates into lower average conversion times.

The results are presented in the following figure:

Figure 8 - Cloud Version Document Converter Service with

Vertical Scaling

As in the previous test scenario, the auto-scale threshold

was once again reached at around the first minute, the

eighth minute and the fifteenth minute. There is a clear

distinction between the average conversion time with the

different number of instances available. However, the

average conversion time is more than cut in half when

compared to the previous test. This is due to the fact that a

higher processing power given to the App Service running

the DCSConverter, makes the conversion process much

faster which proves that besides scaling horizontally, the

Document Converter Service performance is also able to

scale vertically.

After observing the horizontal and vertical scaling

capabilities offered by the new version of the Document

Converter Service, there is the need to compare it with its

current version. The exact same test was performed using

the same 1MB DOCX document. A constant flow of 20

concurrent requests was kept and the performance results

obtained from the current Document Converter Service are

stated in the following figure.

Figure 9 - Current Document Converter Service

As observed in the graph above, the current Document

Converter Service is only able to reach an average value of

27 seconds in the processing time of the conversion

requests. Its inability to scale according to the load

introduced makes it extremely dependent on the VM

capabilities in which it is deployed. The following table

illustrates the comparison between the several tests

performed in terms of number of requests processed and

average processing time.

Table 1 - Document Converter Service Performance

Comparison

 Total Requests

Processed

Average Processing Time

Current Document

Converter Service

1314 27432

Cloud Version

without Vertical

Scaling

3404 24000/18000/12000/7000

Cloud Version with

Vertical Scaling
9007 11000/7000/4000/2900

The average processing times in the cloud version are

separated between the several instance number available (1,

4, 7 and 10 instances). There is a clear difference in terms

of the number of requests processed in the same 30

minutes, where the test without vertical scaling resulted in

almost 3 times the number of requests and the test with

vertical scaling resulted in almost 7 times the number of

requests compared to the current version. In terms of the

average processing time for 1 instance for the version

without vertical scaling, although it is very similar to the

current version, it progressively decreases while the number

of instances increases.

PRICE COMPARISON

Despite the performance improvements, the migration of

the Document Converter Service to the Cloud brought some

overall cost increase. In the following table, the cost to

execute the same 30 minutes load test in the current version

is compared to the Cloud version:

Table 2 - Price Comparison

Version Total Cost in

Euros

Cost per Request

Handled in Euros

Current

EDOCLINK

0.0814 6.19 x 10-5

Cloud Version

without Vertical

Scaling

0.459 1.34 x 10-4

Cloud Version

with Vertical

Scaling

0.791 8.78 x 10-5

Despite having a higher total price, the price per request of

the Cloud version with vertical scaling is extremely similar

to the current version. The number of requests handled in

the cloud version was almost 7 times bigger than its current

version for the same amount of time.

CONCLUSION

The existence of legacy application may become a problem

for organizations which need to scale their needs. Migrating

to the cloud provides on-demand scalability with flexibility

to choose the amount of changes that need to be made to the

application. The process of migrating some components of

EDOCLINK to the Cloud brought performance

improvements especially when under load. By deploying

the Document Converter Service in the Cloud, its was able

to scale vertically and horizontally. Despite the major

improvements in terms of performance. It comes at the cost

of some price increase when compared to the current

version. However, the price analysis is of extreme

importance to measure if the performance increases that it

has brought are enough to justify the price increase. It is the

responsibility of the organizations enrolling in the process

of migrating their legacy applications to analyze the cost-

performance of its Cloud version and decide if its is the

path to follow.

REFERENCES
1. A View of Cloud Computing By Michael Armbrust,

Armando Fox, Rean Gri_th, Anthony D. Joseph, Randy

Katz,Andy Konwinski, Gunho Lee, David Patterson, Ariel

Rabkin, Ion Stoica, Matei Zaharia Communications of

theACM, April 2010, Vol. 53 No. 4, Pages 50-58

https://doi.org/10.1145/1721654.1721672

2. Jamshidi, Pooyan & Ahmad, Aakash & Pahl, Claus. (2014).

Cloud Migration Research: A Systematic Review. IEEE

Transactions on Cloud Computing. 1. 142 - 157.

https://doi.org/10.1109/TCC.2013.10.

3. Zhang, Qi & Cheng, Lu & Boutaba, R. (2010). Cloud

Computing: State-of-the-art and Research Challenges.

Journal of Internet Services and Applications. 1. 7-18.

https://doi.org/10.1007/s13174-010-0007-6.

4. Simon Crosby, Xensource and David Brown, Sun

Microsystems, 2006/2007 https://doi.org/1542-7730/06/1200

5. Michael Eder, Hypervisor- vs. Container-based

Virtualization, Seminars FI / IITM WS 15/16, Network

Architectures and Services, July 2016

https://doi.org/10.2313/NET-2016-07-1 01

