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Abstract

This document describes the application and development of a TORCS robot that, on a racing
scenario, follows a determined trajectory (referred as racing line) calculated with the K1999 algorithm
and, in case of overtaking, one that is traced by a Rapidly-exploring Random Tree based algorithm called
Adapt and Overtake-RRT (ADOVER for short), working in two different modes that will later be compared.
It is meant to compete against other robots and also humans, having as a requirement maintaining an
acceptable performance throughout its execution. After some testing with static opponents, the robot was
unable to perform the desired task. On the other hand, it showed promising results in terms of speed and
efficiency. Possible improvements are discussed in the last segment.
Keywords: ADOVER-RRT, RRT, Overtaking, K1999

1. Introduction
Nowadays, AI has an increasingly important role in
motor racing. “Robots” (“bots” for short) are an im-
portant part racing games. These bots must have
some degree of competitiveness, characterised by
some key behaviours: following an optimised tra-
jectory, situational awareness, competition aware-
ness, are all part of a quality racing bot. These
are all important to achieve an extremely impor-
tant capability: overtaking. The automation of this
manoeuvre is still considered one of the toughest
challenges in the development of autonomous ve-
hicles [4], both in road and competitive scenarios,
due to the dynamics involved. All things consid-
ered, we thought this was a good problem to tackle.

There is also the need to explore the use of RSA
on kinodynamic environments, such as the ones
found in a racing game, where the optimal path
is key to a highly competitive bot. The one that
it is going to be focused is RRT, a randomised
data structure that is specifically designed to han-
dle nonholonomic constraints and high degrees of
freedom, capable of solving kinodynamic planning
problems, which seems fit to the environment in
context.

This work’s goal is to make the robot perform
an overtaking manoeuvre in a competitive set-
ting, and design, explore and study the use of
RRT algorithm to achieve it, or to improve upon
an already implemented technique. This study can
be divided in these two main aspects:(1) Quality

of the solution: Can the robot initially avoid a colli-
sion with a static object, adapting his path, to later
improve and be able to overtake a dynamic op-
ponent? (2) Algorithm performance impact: Can
all this be made while maintaining an acceptable
game performance, meaning, a smooth framerate
is achieved, being possible for a human to compete
against it? A good platform to develop this work is a
racing video game TORCS [1]. Its a multi-platform
(best compatible with Linux platform) open source
game that presents developers with an API con-
ceived for the development of racing robots. Pro-
grammers have access to core procedures and al-
ready implemented robots that can serve as basis,
has a tutorial that details installation and develop-
ment of a basic car.

2. Proposed solution
This section details the processes that work to-
gether to accomplish this study objective. These
algorithms rely on the available track information,
shown in the official TORCS APIDOC [1]. Since
it was picked to trace the initial line the car fol-
lows, and the implemented car controller receives
its states in order to guide the car through the track,
the K1999 will be briefly detailed in TORCS con-
text, adding information to what was already de-
tailed.

2.1. K1999
Considering the K1999 description present in [2]
and track description in TORCS APIDOC [1], this
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technique applied to TORCS (together with some
supporting functions) works as follows: (1) When
the track gets loaded, its description and each seg-
ment physical characteristics get stored; (2) An ob-
ject of the car class is created, it containing the
physical information about the car, its current situ-
ation, and its plan (path); (3) The opponents, track,
pit, and current situation information are passed to
the plan, and the initial static route is created, with
one path segment per track segment; (4) The race
starts and the robot starts updating his status and
environment situation; (5) With the new informa-
tion, the dynamic route is updated. It tries to main-
tain this on-race route as similar to its static coun-
terpart, since its considered the optimal path; (6)
In case it finds an obstacle within a predetermined
range, it slowly converges the route to the new best
one, maintaining smoothness; (7) The servo-motor
controller receives each path segment information
and responds accordingly, applying input to match
the desired car state (speed and position).

The result for the in-game track E-Track 1 is dis-
played in Fig.2. A diagram that shows this algo-
rithm cycle can be seen in Fig.3. The difference
between the two traced paths can be seen in Fig.1.

Figure 1: The blue dots represent the cars corners, the dy-
namic path is represented in green and the static, optimal path
in pink. The agent using the K1999 retraces its current path
and redraws it around the opponent it finds withing look-ahead
distance.

Figure 2: Both lines (dynamic in green and static in pink) traced
by K1999 at the start of the race.

2.2. ADOVER-RRT
The RRT was the proposed algorithm to work on,
so it was developed and adapted to best fit the
needs of this work. As a result a variant of the RRT
was created, called Adapt and Overtake-RRT. The
adaptations will be described in this section, with
the implementation and further detailing of certain
characteristics in chapter 4.

2.2.1 Description

We want to compare on-race and pre-race situa-
tions. On-race refers to the tree being built while
the car is racing, meaning the expansion process

Figure 3: Scheme with the K1999 cycle, as implemented in
TORCS. The states are numbered according to the steps enu-
meration presented at the start of the section.

will be part of the car update cycle. Pre-built refers
to when the tree is completely expanded after the
track is loaded, before the race starts, meaning the
expansion process will not be concurrent to the car
update process. For both, the base algorithm might
remain the same, but some parameters change, as
the path adaptation process.

If we want to expand the tree to preferably com-
pletely fill the track - connecting two points in either
segment of it - the tree goal (and stopping condi-
tion), becomes the tree having a target number of
vertices. The time it takes can be ignored.

On the other hand, if we want the algorithm to
construct its tree while the robot is racing, we have
to look at the other side of the already stated trade-
off, and now the number of iterations per state (or
how long it takes to add a new vertex) matters,
meaning we have to limit how many executions per
frame or how long it takes to add a new state. The
pseudo code is described in algorithm 1:

This pseudo algorithm works according to the
two ”modes” presented as possibilities: with
!ON RACE or ON RACE and once every FREQ
FRAMES. The first option makes the tree ex-
pand completely offline, with xinit in the middle of
a predetermined track segment, and growing until
its size reaches at least K nodes. The second op-
tion is to expand the tree while the robot is racing,
starting only when we want to overtake. xinit and
goal will be offsets of the closest opponent position.
When the distance between the last node added
and the goal is less than a programmer-set dis-
tance, it stops expanding. Due to ADOVER-RRT
being similar to RRT - the tree is never retraced,
with distances and connections between already
added vertices never changing - paths traced by
this algorithm can possible be jagged. Since we
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begin
T .init(xinit);
for k = 1 to K do

angle = 0;
if (!ON RACE) or (ON RACE and
FRAME%FREQ == 0) then

repeat
xrand =
RANDOM STATE();
xnear =
NEAREST NEIGHBOUR();

xstep = STEP ();

if xstep@Xfree then

continue;
end

if xnear.parent 6= null then

angle =
BRANCH ANGLE();

if angle ≤ angleLimit then

continue
end

end
T =
INSERT NODE(T, xnear, xstep);

A state was added ;

until state added ;
end

end
return T

end
Algorithm 1: ADOVER-RRT

wanted to avoid this issue without introducing too
much overhead, an angle limitation was added :
xnew would have to make an angle, with xnear be-
ing the angle vertex, and its parent the third point,
of at least a programmer set angle, visualised in
5. If we consider P as the parent of xnear, N as
xnear and S as a proposed xnew , ]PNS angle is
calculated with:

arccos ((NS
2
+NP

2
+ PS

2
)/(2 ∗NS2 ∗NP 2

))
(1)

The effect is shown in 4 and its necessity to this
project in chapter ??. This angle value was de-
cided through trial and observation of the subse-
quent drawn trajectories. It always improves path
smoothness in a pre-race and on-race scenario,
but due to it reducing the probability a node is
added to the tree, it takes a toll on the expan-
sion speed, that affect primarily on-race genera-
tion. This method of angle calculation was cho-

sen, simply due to it being the first proposed, im-
plemented and tested, existing other viable calcu-
lation, for example vector dot product.

Although their working frequency and stop con-
ditions are different, both on-race and pre-race
trees share their expansion process:(1) xrand is
generated as a random position within map space
(inside and outside the racing track); (2) xnear is
the tree node that has the least euclidean dis-
tance;(3) xstep is a point, stepsize far from xnear,
collinear to xnear and xrand; (4) If xstep sits outside
Xfree, (Xobs detailed in chap. 4), xstep is rejected
and the process restarts; (5)If xnear has a parent,
to measure the angle ]PNS. If this angle is less
than the steer lock or a programmer defined angle,
xstep is rejected and the process restarts.(6) xstep
is added to T , becoming xnew.

2.3. Characteristics
The presented algorithm is flexible, light and fast
enough to be run on-race, and with enough time it
can completely fill the track with nodes, allowing for
a trajectory between any track segments, which fits
an offline process. The algorithm speed may also
be attributed to its simple collision detection. There
are some wasted resources due to nodes getting
rejected, but the tracing of trajectories too close
to the borders is avoided, as well as some of the
tree jaggedness due to the branch angle bounds,
shown in Fig. 4.

Figure 4: With angle limited to 160 degrees

Figure 5: Considering B being xnear with parent A, D (xstep)
can only be extended inside d arch.

3. Path Adjustment
This process is what ties the racing line calculation
algorithm K1999 and the tree building algorithm
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ADOVER-RRT. The main reason of its existence is
due to the fact that the robot that serves as the ba-
sis for this project, inferno, follows the path K1999
generates with a servo-motor controller, that re-
ceives as target K1999 path segments, each en-
coded with a desired car position and velocity. This
means the tree algorithm only has to alter the po-
sition of these target nodes, and does not have to
encode velocity in its own states. The controller
complies with the modified positions, targets them,
and adapts the car speed to properly follow them.
This eased development, increased code readabil-
ity, and reduced tree expansion overhead. It is also
a simple process by itself, with a very low execution
time. The path adjustment is only needed when the
car detects it needs to overtake an opponent, and
it does that by checking if the closest opponent is
currently at look-ahead distance (a K1999 defined
constant), is slower than him and leaves room for
this manoeuvre to be executed (by measuring the
lateral distance between him and the closest track
border). If the opponent verifies all these three
conditions, its position is used to find the goal in-
dex (n track segments forward) and the start in-
dex (n track segments backwards). With these in-
dexes it is possible to find the respective K1999
optimal path segment, and the overtaking trajec-
tory will connect these two positions. It slightly dif-
fers between pre-built and on-race trees. If the tree
is fully expanded before the race, the adaptation
process starts by the time the car detects it needs
to overtake an opponent. The first node that is
copied to the new trajectory vector is the desired
goal, and from that vertex until the last node added
sits close enough to the desired start, it will check
if the current vertex has a parent and copy said
parent to the new vector. This backtracking pro-
cess is fast but not very reliable, since it does not
consider current opponent position, and that could
result in a collision. A possible improvement is pre-
sented in chapter 6. With on-race expansion, the
first node on the new trajectory, which is also xinit,
will be the desired start. The tree will begin to ex-
pand at a defined rate and it will only stop when
the last node added sits close enough to the de-
sired goal. When the tree stops expanding, xinit
is already connected to xgoal, so the backtrack-
ing that is done with the pre-race tree is also done
here, copying every node from xgoal to xinit. Dur-
ing the expansion, the opponent position is consid-
ered, with this tree building impacting update per-
formance, but better adapting to a dynamic situa-
tion. After either one of these processes are com-
plete, the copied vertices are used as references
to the new path. The K1999 path is retraced by
moving the optimal and dynamic path segments to
their respective closest copied vertices. These up-

dated segments are then sent to the control mod-
ule, allowing for the car to follow the new trajectory.
Notice that no velocity information is altered in this
process, but the updated path needs to be smooth
enough, else it will not follow these altered states,
or will fail to follow any one, loosing control. An
example of path retracing can be seen in Fig.6.

Figure 6: RRT path retracing, with the new trajectory in black,
with nodes in red. Notice how the K1999 then creates a return
path to the optimal trajectory, only at the end of the retraced
line.

4. Methodology
This chapter details the implementation of the de-
veloped robot using the ADOVER-RRT and K1999.

4.1. Bot Architecture
The TORCS bot is composed by several mod-
ules, with the developed algorithm functioning in
the Retracing Module. These consist of the fol-
lowing:TORCS back-end provides all the neces-
sary procedures and information to control the car
and it fully understand its environment.Racing line
module is where the K1999 Path Optimisation al-
gorithm calculates the racing line.Retracing mod-
ule where the ADOVER-RRT receives information
from the racing line, builds a tree, and retraces its
path when needed.Control Module uses a servo-
motor controller, destined to control every aspect
of the car, so to best match the target state sent
by the racing line module to the current state of
the car. This architecture is represented in the
scheme shown in Fig.7. It also applies to both of
the proposed on-race and pre-race modes, since
their changes are reflected inside the RRT sub-
module.

Figure 7: Solid lines represent continuous transmission, with
dashed lines being information sent once, when the sub module
starts.
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4.2. TORCS Back-end
It it composed by 3 main sub-modules; Track, Car
and Opponents. The first one sends to the Re-
tracing and Racing Line modules, after the track
is chosen and loaded into the race. The Car sub
module outputs the vehicle current information and
its constraints, and constantly receives commands,
driving the car. These commands are the gas
pedal, the brake pedal, the gear and the steering
angle. The Opponents sub-module is restricted to
showing information about the current adversaries
in race.

4.3. Racing Line
It traces a static and an initial dynamic path, built as
detailed in chapter 2. In race, it continuously com-
municates with both the back-end and control mod-
ule, updating the dynamic path information and car
situation, outputting the position and velocity the
car must reach in each segment. It actively tries
to maintain the dynamic path as close to its static
path when possible, as the second one is consid-
ered the optimal. It has a structure that uses the
data it gets from the Opponent sub module filled
with information, such as which car to overtake,
when to do it, where to do it, and when it is ex-
pected to complete it, among others, that are used
in the Retracing module. This module currently op-
erates with the K1999 Path Optimisation algorithm,
but it can hold other search algorithms or racing
line calculation techniques that perform the same
function. An example is the architecture used in [3],
where the planning is made by the IPS-RRT algo-
rithm.

4.4. Retracing
It outputs the adapted trajectory. If its working while
racing, it constantly receives information about its
environment and competitors, so to know when
and where to act. After tree expansion, the trajec-
tory will be traced between the detected start and
goal nodes, and the K1999 algorithm update will
be interrupted while the car is following it. A path
adjustment can be seen in Fig.6. If off-race, it only
retraces when needed, using the vertices already
created.

4.4.1 Control Module

The module that controls the car is divided in three
sub modules: pedals, steering, and gears. It drives
the car using the functions the TORCS Back-end
provides, and has as a target the information it re-
ceives from the Racing line module. It outputs the
commands and their values to the Back-end.This
module was not developed in this work, but it will
be described so to better understand some deci-
sions made relating to the other modules. For the

pedals, the actions regulated are acceleration and
braking. Acceleration command car. accelCmd will
be at 1 when possible. car. brakeCmd, has its
value regulated by an ABS system, preventing the
wheels from blocking and counteracting tire slip-
page, and it will use tyre trackiont and path seg-
ment top speed.

With the updated target position, the steer angle
will be obtained with the following formula:

trgAngle = arctan(trg.y − car.y, trg.x− car.x);
(2)

trgAngle = car.yaw; (3)

trgAngle = trgtAngle ∈ [−π, π]; (4)

steer = trgAngle/car.steerLock; (5)

So it is constantly checking for the next path seg-
ment position, its angle in relation to it, and steer-
ing the car, maintaining course. It is worth nothing
that the vehicle has a limited steering angle, repre-
sented by car. steerLock, meaning that its turn ra-
dius is physically limited, with smoother transitions
between segments being favoured. The Retracing
and Racing modules both respect this limitation,
the first updating its path segments positions with
smoothing operations, the second limiting the tree
new branch angle, ensuring there are no abrupt
steering changes in either situation. Finally, the
car. gear changes its gears when needed.

4.5. Search State Representation
When tracing the optimal static path, the K1999 al-
gorithm takes into account the track segment de-
scription and slowly converges the target velocity
to an optimal value for each path segment. The
dynamic path also updates each path segment ve-
locity, re-calculating it by updating the radius of the
offsetted segments. This means it can also adapt
to the trajectory changes made by the Retracing
module. This eases development and removes
the overhead from velocity calculations, with the
information encoded in each state coming down
to just global coordinates. They will always exist
within track boundaries defined by TORCS Back-
end, with the later path adjustment process being
viable anywhere in the track.

4.6. ADOVER-RRT applied to TORCS
This is the algorithm that has the function of re-
tracing the path initially calculated by the Racing
Line module. Considering its previously described
workings, it will be explained within TORCS con-
text. The complete state space X shares its limits
with the map boundaries, with xrand being created
within this region. xnear will be the closest already
existing node, and since each state only has the
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position representation, this vertex will be the clos-
est in terms of euclidean distance. A collinear point
to both of these points is created, with a fixed step
size distance from xnear. This point is then vali-
dated, i.e., the algorithm checks if this point does
not lie in Xobs. The invalid state space Xobs is de-
fined by three spaces/conditions that a new state
must not lie on or verify in order to be accepted
and added to the tree. The first space is defined
by the distance between the proposed position and
the two dimensional coordinates of the middle of
the closest-to-position segment. This is shown in
Fig.8. While this is not as precise has a boundary
check using segment corner positions, its is sim-
pler to implement and establish a safety margin.
Also, due to segment size, the arches seen around
the centre position in Fig.8 are negligible. These
track margins can be visualised in Fig.9.

Figure 8: The red dot is xrand. The closest segment to it is
outlined in red, with each segment mid position marked by a
blue dot. Since this position is close enough to the middle of its
segment, it sits in a valid position.

Figure 9: Tree built pre-race, with no angle limitation and 10000
nodes, and step size 6. Notice how no state is outside of the
track and it within track safe margins.

The second condition the state must verify is the
angle limitation introduced in chapter 2 and visu-
alised in Fig.5. This limits the new branch an-
gle, and results in smoother tree, and consequently
smoother paths. Taking in consideration what can
be seen in Fig.9, we can compare it to Fig.10 to
visualise the impact.

Finally, to better adapt to the situation faced
when the manoeuvre starts a third condition ap-
plies to the on-race tree. While expanding, a new

Figure 10: Although having the same step size and number of
nodes has the tree in 9, it only covers around half the track and
takes much longer to build, due to it having an angle limitation
of 165.

state cannot be closer than a programmer-defined
constant to the opponent it wants to overtake. This
is to avoid colliding with him and promote a safer
trajectory. Any state that sits too close is discarded.

Having successfully checked all of these condi-
tions, this new state is added to the tree and the
process gets repeated until a stopping condition is
reached. If the tree is being built while on race,
it will stop being built once the last state added
reaches a minimum programmable distance to the
found goal. Said goal is found similarly to the start
of this tree - both are positions that lie a certain
number of segments ahead and behind the oppo-
nent we want to overtake. If the tree is built before
the race starts, the root sits in the middle of a pre-
determined track segment, and the stopping con-
dition is it having a minimum K vertices. A better
way to determine K could have been developed,
but for now it is a simple integer, so the program-
mer needs to check manually, using the test mod-
ule, if the tree reaches every segment of the track.

The overtaking behaviour starts by detecting a
valid candidate. This opponent will be closest than
a defined distance, will be in a position where is
possible to complete the manoeuvre (meaning its
lateral distance to the track borders are enough to
fit my car), and its current speed will be lower than
ours. The closest opponent that respects these
conditions will be flagged as an overtakee, as it has
been referred until now. When an opponent gets
flagged, the tree starts building. When this process
finished, both start and goal positions are found by
simply adding and subtracting to the track segment
index the opponent currently is, and since there is
one K1999 path segment per track segment, they
both get set to static path segment positions.

The path adjustment then begins. While on-race,
it first saves the tree states that directly connect the
goal to the root, by copying the current state to a
new vector, changing the current state to its par-
ent, and repeat until it is null, a condition that only
root satisfies. Then the distances between the el-
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ements of this new vector, and the static path seg-
ments are measured. The closest path segment
of both dynamic and static path is then set to the
position of the closest vector, copying it. This in-
formation is sent to the control module, making the
car follow this new route. This can be seen in Fig.6,
and the pseudo-code in 2.

begin
if overtakee detected and tree has not
started then
startIndex =
overtakeeIndex− offset;
startSegment =
Optimal Path Segment[startIndex];

xnew = startSegment;
T = INSERT NODE(xnew);
goalIndex =
overtakeeIndex+ offset;
goalSegment =
Optimal Path Segment[goalIndex];

end
if tree started and goal not reached then

EXPAND TREE();
distToGoal =
EUCL DIST (lastTreeNode, goalSegment);

if distToG < constant then
goal reached;
adjust path;

end
end
if adjust path then

Find the closest tree node to
goalSegment;
BACKTRACK();
PATH ADAPTATION ;

end
end

Algorithm 2: On-race Path Adaptation

If off-race is selected, the tree expansion is first
completed and then the path is adapted. This
process is very similar to the previous one. The
pseudo-code is shown in 3.

5. Results & discussion
This sections describes and discusses the tests
made to study the technique speed, efficiency and
quality of results. The tests were made on a modi-
fied Toshiba SATELLITE L850-16Q with an Intel R©
CoreTM i5-3210M @ 2.5GHz, AMD RadeonTM HD
7670M with 2GB VRAM and 8GB RAM running
Lubuntu 18.10. It was programmed in C++ us-
ing Microsoft Visual Code and compiled with GNU
Make 4.2.1. This setup was chosen due to TORCS

begin
if overtakee detected and tree has not
started then
startIndex =
overtakeeIndex− offset
startSegment =
Optimal Path Segment[startIndex]
goalIndex = overtakeeIndex+offset
goalSegment =
Optimal Path Segment[goalIndex]

adjust path
end
if adjust path then

Find the closest tree node to
goalSegment

repeat
BACKTRACK()
distToStart =
EUCL DIST (lastPathNode, startSegment)

until distToStart < constant
PATH ADAPTATION

end
end

Algorithm 3: Off-race Path Adaptation

having compatibility issues with the latest versions
of Microsoft Visual Studio (as per the date of this
document).

Some proof-of-concept tests are presented first,
aimed to confirm some expectations about the al-
gorithm performance. Then, taking into account
the work’s goals present in section 1, these tests
will try to assert if the algorithm is fast enough to
trace a trajectory, if its light enough to be run while
on-race, and if the trajectory traced by it can be
followed to overtake an opponent. Following a re-
quirement order, the tests will check if it is possi-
ble to: (1)Build the tree while racing, with no re-
strictions applied;(2) Do the same but limiting the
expansion region to the inside of the track, with a
safety margin;(3) Cover the entire track with a high
enough K;(4) Adapt the path with a previously built
tree and a built-on-race tree; (5) Follow this path
(no angle limitation introduced);(6) Apply an angle
limitation without slowing the algorithm too much;
(7) Smooth the path with said limitation, and im-
prove the followed trajectory; (8)Avoid a collision
with a static opponent(9) Overtake the opponent,
now while both are moving.The impact that tree ex-
pansion parameters and some optimisations had
on execution/task time will also be evaluated. The
quality of the solution will be discussed along with
the tests. Since the algorithm has some param-
eters that, although possible to be automated, at
the moment are manually inserted to best fit a test-
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ing situation, only a track is tested, the E-Track 1.
Despite this, it can theoretically work in any track,
since none of them present limitations that could
possibly hinder its working. This track is 15 (fif-
teen) meters wide and has a long straight section
that eases the trajectory tracing.

5.1. Proof of concept testing
As stated in section ??, for this algorithm to be vi-
able a state, it cannot slow the frame update so it
takes more than ≈ 0.0417 seconds (41.7 millisec-
onds), maintaining it at at least 24 FPS. To assert
this, the average time it took to expand the tree
by one node while the car was racing was mea-
sured. Different step sizes, the distance between
the nearest already connected nodes and the new
nodes, were compared. The values 1, 6 and 12 will
be common, since they cover the range between a
close-to-excessive number of nodes per path, to a
close to the limit distance the car can go with no
target. The average time increase can be seen in
Fig.11. The test showed that a tree expansion with
no limit can be made while racing. Time measured
is the average time it takes to add nodes to the
tree, and this only a portion of the complete car cy-
cle, meaning that the limit for an expansion must
be (estimated after some tests and frame rate ob-
servation) ≤ 11 milliseconds.

Figure 11: Chart comparing mean update times between dif-
ferent step sizes. In Y axis, the average time a tree expansion
takes is in milliseconds. The X axis represent the tree size in
thousands.

Seeing that the time it took to update was ac-
ceptable, even with a high number of nodes, the
first expansion restriction - track limits - was intro-
duced to the test, and the results measured again,
shown in Fig. 12.

Due to only allowing states inside the track, gen-
eration times increases. It becomes harder to
expand with increased step sizes, explaining the
higher average times between the three tests. Al-
though taking close to 8 milliseconds, to complete
the expansions, it still does not impact the perfor-
mance enough so that the frame rate drops below
the acceptable limit. For the pre-generated tree, we
compared different trees with the same number of
nodes but different step sizes, aiming to find a good

Figure 12: Chart comparing mean update times, with track lim-
its. In Y axis, the average time a tree expansion takes is in
milliseconds. The X axis represent the tree size in thousands

combination, and a result to later compare and as-
sert the angle limit impact on tree reach. Since
each expansion has more reach, has expected,
with an increased step size comes a higher cover-
age rate. For the pre-built tree, generation time is
not an issue (it is not executed during play time), so
the number of nodes generated can be high, with
a short step size; but the path adaptation depend
heavily on these parameters, so they can only be
asserted after this final process test. For the on-
racing generation, the chart in 12 shows that the
step size has an impact, with values of above 8
being avoided, expected to take a longer time to
update than step size 6 with no considerable gain.

This final preliminary test will confirm if the car
can follow a path, with only the restrictions already
considered. The test situation will be the following:
a new race will be started with the car that imple-
ments this algorithm starting in first, with a player-
controlled car starting in second. This second car
will remain immobile, acting has a static obstacle.
The first car will have to leave its optimal path and
trace a trajectory around it. The average speed will
be measured, with a higher value being favoured,
and each step size will be tested three times. The
chart is present in Fig.13.

Figure 13: Chart comparing average speed while following the
adapted trajectory. For each step size 3 runs were made with
their average speed crossing the adapted path being recorded.
Collisions still counted, with them heavily reducing the average
speed, consequently the average of averages (the values pre-
sented in this chart).

With this chart we can conclude that adapting
the trajectory with an on-race is possible and the
step size matters. Too small (Step 1) and the car
will have to break too much due too constant small
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changes. Too large (Step 20) and the target will not
be updated enough, resulting in a collision. For the
pre-built counterpart, a higher stability was verified.
High speeds were achieved with step sizes from
0.5 to 15. The same issue was encountered with
a step size larger than 20: the nodes were too far
apart, not allowing an effective update, resulting in
a collision.

5.2. Tests
We first tested if the angle limitation was really
needed. We increased the path size to 200 seg-
ments and retested the same situation as before.
In pre-race, although a slight decrease in average
speed, the car was still able to follow the complete
trajectory. In on-race, the path took longer too long
too build with step sizes shorter than 6, and the
car went further than the start segment, before the
path could be adapted. But due to the fact it fin-
ished adaptation before it collided, the car was still
able to avoid the opponent by following the new
trajectory midway.The path then got again reduced
to 100 segments, and the obstacle was moved to
the apex of the first corner. It blocks the optimal
path and the trajectory the algorithm will need to
trace will differ from the close-to-straight lines out-
putted until now. We proceeded to test this new,
increased difficulty situation. The tests started with
the pre-race generation with no angle limitation and
increasing step sizes. Several tries were made with
each step size. A trajectory can be seen in Fig.14.

Figure 14: Step size 3

As expected, due to the path adaptation ignoring
opponent location, trajectory completion was not
guaranteed, and the car failed to overtake its oppo-
nent several times. The trajectory jaggedness and
nodes location made the car stop sometimes. Al-
though applying an angle limitation of 165 degrees
smoothed the path it was still too unreliable.

The pre-race method displayed excellent results
in terms of performance, with negligible perfor-
mance impact. It built the tree and adapted a tra-
jectory with it that the car could follow. But unfor-
tunately, due to it lacking updated opponent infor-
mation, it needs to be improved in order to be con-
sidered for future testing. With these results it was
predicted that it would not be possible to overtake
a dynamic opponent with this technique. Then the

on-race method was tested. As stated in the begin-
ning of this section, it avoided a collision with the
static opponent, even with a longer trajectory. So
it was tested in the same scenario as the pre-race
method. Due to no existing bias, the tree did not
finish building before the car collided with the op-
ponent. The tree would only finish in some tests,
this being too unreliable to be considered. With
step size 6 it did, but due to path jaggedness, it had
to brake too much on turn entrance and could not
complete the trajectory (due to it being a slight hill).
With step size 12 the car was able to complete the
trajectory, but only sometimes. The velocity was
not adequate and it almost left track.

We then tested with a 160 angle limitation.
Higher degree limitations were also tested, but due
to low frame rates on tree building, were consid-
ered invalid and ignored. This resulted in smoother
paths that were more reliably followed, still with
small performance impact (frame rate drops were
noticeable, but only for a very short moment). The
lack of bias still meant some nodes were built in the
wrong direction, representing wasted resources.
The primary task was tested : overtaking an op-
ponent. Unfortunately, even with parameter optimi-
sation, the robot was not able to overtake a moving
opponent. The reasons will be discussed in the fi-
nal section of this chapter.

5.3. Discussion

In chapter 1 two questions were asked. In this
chapter they were tested and in this section they
will be answered according to the test results. The
first question, an objective regarding the quality of
the solution, was divided into two objectives. The
first objective was to avoid a collision with a static
object. The test results show that, as long the pa-
rameters take reasonable values, with step sizes
between 1 and 12, and the path adaptation pro-
cess considers the position of the obstacle it has
to avoid, it could complete said objective. But this
could only be made with a on-race tree; an off-race
tree was not stable enough to be considered in fu-
ture tests. The second objective in this question,
was to overtake a moving opponent, which unfor-
tunately was not possible. The overtaking detec-
tion occurred only once, with the desired trajec-
tory start and goal not changing until the path was
completely traced by the vehicle. This meant that,
in a race, were the overtakee position constantly
changes, this is not a viable practice. By the time
the robot followed the trajectory, its opponent was
already ahead of the goal.The robot was able to
follow only some trajectories, with many it being
either too slow to complete them, too fast with it
ending off track, or too jagged meaning the aver-
age speed was too low to be considered compet-
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itive. There was no path re-adaptation while the
first adapted path was being followed, meaning the
robot could be easily blocked if the overtakee stood
in the traced path. Some possible solutions are
discussed in the last chapter. The algorithm per-
formance impact was also queried, this time show-
ing promising results. With a light collision detec-
tion technique, and even with an angle limitation
that smoothed the path, the on-race tree was built
without affecting player gameplay. Some improve-
ments can be made to avoid wasted resources on
nodes. The off-race tree expansion had no impact
in race performance.

6. Conclusions
The goal for this work was to explore RRT and its
uses, and try to execute an overtaking manoeuvre
with it. ADOVER-RRT was designed, an algorithm
that, implemented in the base robot present in the
game TORCS inferno, hopefully could achieve this
task. Unfortunately it was not able to overtake a
moving opponent. But its performance was promis-
ing, with the game being playable while this robot
was running. It is a flexible and light algorithm,
able to be run off and on-race, with some flaws that
need to be improved.

Analysing its implementation and test results,
the main problem of this technique is its incom-
patibility with its task environment: a racing situ-
ation, with highly dynamic opponents and a track
with a diversity of segments, needs an equally dy-
namic algorithm. Robot position and speed, tar-
get status, opponent status, next opponent to over-
take, when to overtake, start and goal of the over-
taking manoeuvre, are all variables that are con-
stantly changing while the robot is racing, so the
number of constants that are considered while the
tree is being built and the path adapted need to,
preferably, be non existent. But is also important to
say that this algorithm approach contributed with
an interesting idea, that in our opinion, should be
explored. The combination of the tree building
process with a preceding optimal path tracing, in
this works case thanks to K1999 algorithm, meant
that the robot built a new path only when needed,
saving a great amount of processing power, and
achieving good results when racing alone. It was
proven to be highly beneficial to start the race with
an already built optimal path, that although not al-
ways followed, still encoded important information.

We predict that, with the improvements pre-
sented in the next section, this algorithm can com-
plete the objective that was initially given.

6.1. Notes for Future Work
Considering the main flaw pointed in the previous
section, the fact that this algorithm uses informa-
tion that should not be constant throughout its pro-

cess, some possible solutions are presented that
mainly tackle this issue, including others.

With the off-race method, its main flaw was
clearly not adapting to the situation the car was
currently facing. This can be solved by continu-
ously updating and using the opponent position in
the path adaptation process, ignoring the path if
blocked, possibly retracing it, or simply searching
for another available branch.

The on-race method needed its generation
speed increased. The angle limitation took a too
heavy toll on its performance, and without bias,
the tree was not able to connect the desired start
and goal before the robot collided with its oppo-
nent. Therefore, an expansion bias could be im-
plemented to increase its speed, with this also re-
ducing wasted resources. Considering the path
adaptation method, the start and goal that it de-
tects need to better fit the dynamic environment.
A better prediction on when the opponent will be
completely overtook needs to be made to find a
better goal. It also needs to be changed and the
path retraced if needed.

ADOVER-RRT could also improve if, after some
overhead tests, improve the base RRT section
to include the RRT* improvements. Paths would
be smoother and easier to follow. Path smooth-
ness can also be achieved with bezier curves or
clothoids, but further overhead tests need to be
made, considering that the tree expansion would
need more calculations.

Finally, a more advanced car control module
could be implemented. The current model present
in inferno, is easy to work with and flexible, but it
does not consider behaviours that would give him
a competitive edge, for example, engine breaking.
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