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Supervisor: Prof. José Raul Carreira Azinheira
Member of the Committee: Prof. Duarte Pedro Mata de Oliveira Valério
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Abstract

Nonlinear control techniques stand out for responding to the linear controllers weakness and also because

it is possible to design a single nonlinear controller that ensures the validation of a single control action for

the entire flight envelope. During this study and within the Innovative High Altitude Balloon for Atlantic

Observation (HABAIR) project, the nonlinear model of a flying wing will be analysed and controlled.

The linearization of this model for trim conditions over the flight envelope results in the decoupling of

the longitudinal and lateral motions. Considering this decoupling, not only a detailed analysis of the

flying wing motions over the flight envelope is performed but also a stability analysis. The Flying Wing

control is implemented considering three stages: a rate control to stabilise the flight, an attitude control

and a flight path control. The control methodologies developed in this thesis are Gain Scheduling and

Incremental Nonlinear Dynamic Inversion (INDI). Within the scope of this project is intended to study

the gliding flight of the flying wing when it is released from a High Altitude Balloon (HAB). This analysis

is based on the simulation results of a path-following mission. During this study the performance of each

control approach is analysed, as well as how each one responds in the presence of external perturbations.
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Resumo

Técnicas de controlo não linear aplicadas ao controlo de voo têm ganho expressão nas mais recentes inves-

tigações no âmbito da aeronáutica. Estas técnicas de controlo destacam-se por responderem às limitações

que os controladores lineares apresentam e também por ser posśıvel desenvolver um único controlador não

linear que garante a validação de uma única ação de controlo para todo o envelope de voo. Durante este

estudo e no âmbito do projecto HABAIR (Innovative High Altitude Balloon for Atlantic Observation)

realiza-se a análise e o controlo do modelo não linear de uma asa voadora. A linearização deste modelo

para diferentes condições de equiĺıbrio resulta no desacoplamento dos movimentos longitudinal e lateral.

Considerando esta linearização e para todo o envelope de voo, realiza-se não só uma análise detalhada dos

movimentos como também uma análise de estabilidade do voo. O controlo da asa voadora é implemen-

tado considerando três estágios: controlo das razões angulares, para estabilizar o voo, controlo de atitude

e controlo de seguimento. As metodologias de controlo desenvolvidas nesta tese são o escalonamento de

ganhos e o controlo não linear incremental da dinâmica inversa, INDI. Ainda no âmbito deste projecto

pretende-se estudar o voo planado da asa voadora quando esta é largada de um balão atmosférico de alta

altitude HAB. Esta análise basea-se nos resultados de simulação para missões de guiamento. Durante este

estudo é ainda analisado de que forma é que cada um dos controladores satisfaz os objectivos definidos e

como reage a perturbações.

Palavras Chave

Asa Voadora; Controlo Clássico; Escalonamento de ganhos; Controlo Não Linear; INDI; Guiamento.
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1.1 Motivation and Mission

In the past years, important progresses have been made by the aeronautics industry. Despite those, fixed-

wing aircraft remain the most common aircraft configurations for aeronautical applications. Furthermore,

those aircraft configurations have not changed significantly since the beginning of the flight era. The high

confidence given to the conventional aircraft, the well-developed stability and control studies as well as

structural reliability are the evidences that support the popularity of using these configurations [3].

A flying wing is a tailless aircraft and represents the simplest design configuration of a flying machine.

Compared with the conventional aircraft, flying-wing aircraft has advantages on structural strength and

aerodynamic aspects. Its configuration minimizes the drag and the aircraft weight. However, cancelling

the tail leads to course stability weakness. Additionally, the coupling between lateral and longitudinal

motion is more pronounced on flying wings than that in conventional aircraft [4].

Currently, due to the excellent performance in the slow-to-medium speed range, the interest of using

flying wing aircraft to military and commercial applications has increased. Moreover, during the last

decade, the widespread development of increasingly advanced Unmanned Aerial Vehicles (UAVs) further

increased this design interest.

Recently, with the development of flight control techniques and high performance computational

technologies, the maneuverability of flying wing Unmanned Aerial Vehicle (UAV) has attracted attentions

[3]. Due to this growing interest in the applicability of a flying wing UAV and under the HABAIR

(Innovative High Altitude Balloon for Atlantic Observation: Fostering the Development of a Collaborative

Platform for Integrated Aerial and Oceanic Research) project, it is intended to combine a flying wing

UAV to respond to this project’s aim: the design and the development of an aerial hybrid platform

that allows the precise positioning of scientific payloads for atmospheric and/or oceanic monitoring. The

proposed solution consists of a High Altitude Balloon (HAB) that will carry a flying wing UAV to be

released and guided to a predetermined location [5]. With this intention, the HABAIR mission admits

essentially two steps to achieve a better atmospheric and oceanic monitoring with a precise acquisition

of data:

• The HAB motion responsible for the ascent in altitude of the payload.

• The flying wing UAV motion responsible for the guided descent and controlled release of probes.

The considered solution provides an economic and viable option of scientific payload transportation to

remote areas and the acquisition of data otherwise unreachable. This platform is an innovative solution

because it is a cost-effective way of covering an extensive area for different altitudes and velocities [6].

Moreover, it has a high range of applications. Some of the advantages of this data acquisition platform

are the atmosphere monitoring, the study of the volcanic activity and the assistance in rescue missions.

Considering a typical mission, the flying wing’s motion includes essentially three stages. As mentioned
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before, the first step is the ascent movement of the flying wing carried by the HAB. At a desired location

(defined by altitude or latitude/longitude coordinates), the UAV is released from the HAB. In this

transition phase, the UAV descent is supported by a parachute. When the UAV gains stability and lift

in its descent, it can then be released from the parachute and start its controlled flight. This study deals

with this last phase, developing control solutions to guarantee a waypoint-defined controlled descent of

the UAV. During this study is intended to guarantee a guidance by waypoints.

Figure 1.1: Flying Wing Mission 1: HAB and UAV ascent; 2: UAV release and descent with parachute; 3: UAV
controlled descent

Besides its structural robustness and simplicity, an important reason for choosing the flying wing

aircraft is its higher aerodynamic lift when compared with other fixed-wing aircraft. This capacity allows

to save the UAV power during the descent, thus extending its range, by defining a trajectory achievable

using only the control surfaces.The motor is used only as last resource, namely for landing or for more

(and usually rare) demanding trajectories.

Considering the objective mission, it is notable the high range of flight conditions under consideration

in the flying wing control design. The wide flight envelope, the existing nonlinearities and the mission-

dependent control allocation are some of the challenges faced, requiring that other solutions be considered

besides the well known gain-scheduling of linear controllers.
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1.2 Objectives

Considering the mission and the difficulties mentioned for the flying wing control, this work intends to

report and analyse the following points:

• Identify the flight conditions range (altitudes and airspeeds), flight envelope, for the flying wing

model;

• Develop a flight quality analysis;

• Obtain a feasible nonlinear controller for the flying wing stabilization that addresses the mentioned

challenges and compare its performance with a gain-scheduling control solution under wind distur-

bances;

• Develop a path-following algorithm to perform a guidance by waypoints of the flying wing descent

motion considering a gliding flight.

This report is presented considering the simulation results obtained by the utilization of a given flying

wing Matlab©/Simulink© model and whose design is not included in this thesis’ objectives.

1.3 Thesis Outline

In order to achieve the objectives previously defined, the structure of this thesis is divided into five

chapters.

• The first chapter introduce an overview about the problem and mission;

• The second chapter presents a state of the art on linear and nonlinear flight controllers;

• The third, presents a detailed analysis of the flying wing model;

• The fourth suggests a flying wing control in order to stabilize the flight and to guarantee a precise

path-following;

• Finally, in the last and fifth chapter the controllers developed to accomplish the objectives are

analyzed and compared.
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Linear control includes several approaches whose research has been greatly developed over the years.

Those have been used successfully for different control problems [7]. Linear control methods require an

operation range for which its implementation is considered valid. However, for a large operation range it

is necessary to analyse if the presence of nonlinearities in the system affect or not the success of the control

performance [8]. Moreover, using linear controllers it is assumed that the system is linearizable. However,

there are discontinuities that make this linearization difficult or impossible. Nonlinear controllers are able

to handle with the nonlinearities of the system. Also, many control problems involve uncertainties in

the model parameters, linear controllers are more sensitive to these uncertainties than the nonlinear

controllers [9]. Finally, depending on the system to be controlled linear controllers may present a design

more complex than nonlinear controllers and may require high quality actuators and sensors to produce

linear behavior in the specified operation range. Nevertheless, linear controllers are the most widely used

in automatic flight control systems. Considering this evidence, it is important to analyse the theory that

supports the linear and nonlinear controllers [1] [10].

2.1 Linear Flight Controllers

Physical systems are nonlinear systems that can be described by nonlinear differential equations. However,

it is also possible to approximate a nonlinear system into a linearized system if the nonlinearities of the

system does not affect the success of the control performance and if the operation range is reasonably

small.

According to Katsuhiko Ogata [11], a linear system assumes that the system response to multiple-

input is calculated by treating one input at a time and adding the results. Following this definition

a nonlinear system does not verify the principle of superposition, however, in control engineering it is

possible to obtain a linear mathematical model for a nonlinear system assuming that the variables deviate

only slightly from the operating condition.

Considering the design of linear controllers, it is possible to implement different control approaches

within the Classical and Modern control theories. Usually, the Polo Placement (PP) and the Linear

Quadratic Regulator (LQR) are the control approaches most used in linear control and for Multi-

Input/Multi-Output (MIMO) systems [2]. Moreover, in flight control, the desirable pole locations are

stated from the flying qualities specifications. The flight qualities’ specifications are setting according to

the formalization provided by Donald McLean [9]. Firstly, following this formalization, it is necessary

to establish the aircraft class and the flight phase. Then, the flying qualities are specified in terms of

parameters such as short period damping, natural frequency of yawing motion and roll subsidence time

constant. The conventional design control methods are used in Single-Input/Single Output (SISO) sys-

tems and it implementation requires considerable experience and time-consuming in order to achieve a

successful design control.
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Furthermore, Modern control theory can be implemented to optimize the design of the control system.

This theory is characterized as a parameter optimization [12]. Modern control or optimal control has as

main objective the determination of the control signals that satisfy the physical constraints and at the

same time minimize or maximize the performance index. This control theory deal with MIMO systems.

LQR is an optimal control approach that provides a stable closed-loop system and produce a full state

feedback. It aim is the minimization of a quadratic cost function restricted by the system dynamics and

based on the states and input weights [13]. The cost function minimization provides an optimal feedback

of the states. The cost function shapes the state evolution and the amplitude of the control action. Those

parameters have an associated weight: state and input weight. An optimal balance between both weights

determine the performance of the control law to achieve the desired control specifications.

As mentioned before, it is possible to control a nonlinear system performing linear control approaches.

However, it is important to take into account the operation range of a linear controller. For this mission,

the airspeed and the altitude are the parameters that define an equilibrium condition [14]. For this reason,

it is important to understand that a single linear controller is not valid for the entire flight envelope.

Changing the flight conditions, the control has to change. This solution is given by a gain scheduling

on the system. Implementing this technique the flight envelope is divided into several operation regimes

and for each one a conventional controller is designed. Establishing this scheduling a satisfactory control

performance over the flight envelope is guaranteed. Gain-scheduling is the solution commonly applied in

flight control, however, this technique presents some weaknesses: systems with a significant number of

nonlinearities require a complex scheduling to reduce the performance degradation between each central

solution choose to design the controller; a gain scheduling success depends on the division defined and

there is not a specific and systematic approach to define an optimized division; it is a time-consuming

technique and requires also an high computational power [15].

In order to improve those weaknesses and to increase the robustness of the control approach the

nonlinear controller are designed [16].
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2.2 Nonlinear Flight Controllers

According to Paul Acquatella [1] among the nonlinear control methods, Nonlinear Dynamic Inversion

(NDI) and Backstepping (BKS) are well-known nonlinear control approaches and the most common in

flight control problems. In the figure 2.1 it is presented a nonlinear control framework with the division

between the most common nonlinear control approaches for Aerospace applications. It is important to

empathize that there are more nonlinear control approaches that are able to be implemented to control

a nonlinear system: Neural Networks and Fuzzy Control methods are examples of nonlinear controllers.

In the Aerospace field, the application of Feedback Linearization (FBL) is commonly referred to as

Figure 2.1: Nonlinear Control Methods - (Adapted from [1])

NDI [1]. Considering the Lyapunov-based control methods it is possible to highlight the BKS control

approach [10], [17] as the control approach commonly used for flight control applications.

2.2.1 BKS

BKS is a nonlinear control approach substantially modern. It first reference date back from the nineties

(1991) [18]. However, it implementation on flight control problems comes years later with the elimination

of overparameterization [19] [20].

The BKS control approach provides a systematic methodology based on the Lyapunov theory. Con-

sidering this method, it is possible to design a controller that guarantee a global stability [21] [22].
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BKS control approach can be summarized by two main ideas intrinsically related: the choice of a

Lyapunov function and the design of a feedback control. The control law is calculated together with a

Lyapunov function to ensure a global stability at each step. The BKS approach is defined essentially by

the following steps [23]:

• Rewrite a state equation in function of a scalar parameter and auxiliary states;

• Choose a Lyapunov function and treating it as a final stage;

• Choose an equation for the scalar parameter that stabilizes the selected Lyapunov function.

To represent the backstepping design approach as presented in [2], it is considered a generic problem with

an output y, a positive scalar parameter a and two auxiliary outputs y1 and y2.

y1 = ay + ẏ (2.1)

y2 = ẏ (2.2)

Deriving both equations,

ẏ1 = aẏ + ÿ (2.3)

ẏ2 = ÿ (2.4)

Considering a Lyapunov-candidate-function W0(x) (2.5) globally positive definite and radially unbounded

(‖x‖ → +∞⇒W0(x)→ +∞):

W0 =
1

2
y1
Ty1 +

1

2
y2
Ty2 (2.5)

Ẇ0 is defined by,

Ẇ0 = y1
T ẏ1 + y2

T ẏ2 = (ay + ẏ)
T

(aẏ + ÿ) + ẏT ÿ = (ay + 2ẏ)T (aẏ + ÿ)− aẏT ẏ (2.6)

Considering Λ as a positive definite matrix and defining,

aẏ + ÿ = −Λ(ay + 2ẏ) (2.7)

it is possible to rewrite the equation (2.6) as,

Ẇ0 = −(ay + 2ẏ)TΛ(ay + 2ẏ)− aẏT ẏ. (2.8)

Analysing the equation (2.8), it is seen that Ẇ0 is negative definite (Ẇ0 < 0) and for this reason,

considering the Lyapunov theory, the system is globally asymptotically stable.
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2.2.2 NDI

NDI has verified successful results in flight control researches [4], [24], [25], [26], [27]. The NDI may be

explained by a simple principle: the nonlinear system is inverted by means of state feedback resulting in

linear closed-loop dynamics. A NDI controller eliminates the nonlinearities in the model by cancel them

with state feedback. And then, a linear controller is designed considering classical control approach to

obtain the desired performance of the closed loop system.

The NDI principles are summarized in the equations (2.9)-(2.11): x is the state vector, u is the control

input, f(x) and g(x) are the nonlinear functions of the state vector and ν is the virtual control input.

The equation (2.9) summarizes the affine in control system dynamics. The equation (2.10) represents the

inversion step. And finally, the equation (2.11) presents the linear control approach. A NDI controller is

represented by the block diagram in figure 2.2.

ẋ = f(x) + g(x)u (2.9)

u = G−1(ν − f(x)) (2.10)

ν = Kp(xd − x)−Kd(ẋ) (2.11)

Figure 2.2: NDI representation

However, this control approach presents some limitations and weaknesses. Model mismatches and

measurement errors reduces the NDI performance. The dynamics of the system has to be well-known in

order to implement this methodology. In order to deal with those problems, an Incremental Nonlinear

Dynamic Inversion (INDI) approach can be implemented to control a nonlinear system. This approach
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decreases the model dependency and demonstrates a robustness performance regarding the uncertainties

and measurement errors.

Beside that, this control approach is considerably recent, according to Paul Acquatella [1] it date back

from the late nineties with the research performed by Smith [28]. However, the application of this control

method in flight control problems comes years later with the Smith Berry researches [29].

For aeronautical applications INDI has stood out as a very powerful control tool. In contrast with

regular NDI, this method is inherently implicit because closed-loop dynamics are obtained when the

loop is closed through feedback without explicit knowledge of the whole model [30]. An INDI approach

requires control increments that are obtained from the sensors data. Using the data that come from the

sensors instead of the information that comes from the nonlinear model is verified a reduction on the

model dependence.

For those reason, INDI is the nonlinear control approach used during this study to control the flying

wing flight. The theory that sustains this control approach is presented in the chapter 4.
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In order to describe the dynamic of a Flying Wing it is essential to define the referentials to which the

flying wing motion is associated. In this study two referentials are used: The North-East-Down (NED)

frame and the Body frame or Aircraft Body Centered (ABC) frame [31].

Figure 3.1: NED frame and the Body frame or ABC frame. (Adapted from [2])

The NED frame is connected to the Earth’s surface and it is defined by xE , yE and zE axes (figure

3.1). In this representation, the two first axes (xE and yE) are tangent to the meridian and to the parallel

of the Earth. The xE axis indicates the North and the yE axis indicates the East. This referential will

be assumed as inertial. The body frame is the local referential and it is centered on the Flying-Wing’s

center of gravity. This referential is known as moving referential and it is defined by the xB , yB and zB

axes (figure 3.1).

In order to transform one referential to another a rotation has to be performed. RB
E is the transfor-

mation matrix that allows this change: from the Earth’s referential to the Body’s referential (3.1). For

this reason, vB = RB
EvE and vE = RB

E

T
vB . B and E are the indexes to identify the frames: Body or

Earth frame, respectively. RB
E is expressed by quaternions:q0, q1, q2 and q3. The quaternions notation

is more difficult to visualize than the Euler notation, however, it provides a more compact, stable and

efficient spacial representation, avoiding singularity problems.

RB
E =

q02 + q1
2 − q22 − q32 2(q1q2 + q0q3) 2(q1q3 − q0q2)

2(q1q2 − q0q3) q0
2 − q12 + q2

2 − q32 2(q2q3 + q0q1)
2(q0q2 + q1q3) 2(q2q3 − q0q1) q0

2 − q12 − q22 + q3
2

 (3.1)

In order to facilitate the visualization, it is also possible to represent the orientation of the flying wing

by Euler notation. For this, it is only necessary to transform the quaternions into Euler angles according
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to,

φθ
ψ

 =


arctan(

RB
E(2,3)

RB
E(3,3)

)

arcsin(RB
E(1, 3))

arctan(
RB

E(1,2)

RB
E(1,1)

)




arctan( 2(q0q1+q2q3)

1−2(q12+q22) )

arcsin(2(q0q2 − q3q1))

arctan( 2(q0q3+q1q2)
1−2(q22+q32) )

 (3.2)

Figure 3.2: ABC referential and Euler angles in the Flying Wing

In the Euler angles representation, φ is the rolling angle (φ ∈ [−π, π]), θ is the pitch angle (θ ∈ [−π2 ,
π
2 ])

and ψ is the yaw angle (ψ ∈ [0, 2π]).

Finally, it is important to understand the nomenclature used to describe the Flying Wing motion.

Also, to describe the movement and to understand the Flying Wing model, the body frame is the

referential through that the forces, moments and velocities are referenced to. For this reason, it is

possible to describe the vectors bellow that describe the flying wing motion.

• Air Velocity: Va = [UVW ]B
T

• Angular Velocity: ω = [PQR]B
T

• External Force: F = [XY Z]B
T

• External Moment: M = [LMN ]B
T

• Position: P = [NED]E
T

Moreover, in order to represent the orientation of the airspeed it is important to represent the graphical

representation of the aerodynamic angles: the angle of attack, α, and the sideslip angle, β. As represented

in figure 3.3, α is the angle of rotation about the yB-axis in order to overlap the xB-axis plane and the

xa-axis plane. And finally, β is the angle of rotation about the z-axis in order to overlap the axis xB and

xa.
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Representing this transformation, the equation (3.3) presents the rotation of wind axes to body axes.

According to this nomenclature, the air velocity vector can be expressed in the body referential as

represented by the equation (3.4). Here, Vt is the air velocity vector norm.

RB
a =

cosα 0 − sinα
0 1 0

sinα 0 cosα

cosβ − sinβ 0
sinβ cosβ 0

0 0 1

 (3.3)

Figure 3.3: Aerodynamic Angles - Angle of Attack,α, and Sideslip Angle, β.

VaB = Vt

cos(α) cos(β)
sin(β)

sin(α) cos(β)


B

(3.4)

3.1 Nonlinear Model

The flying wing model is obtained by its dynamics and kinematics equations and the relation between

the model inputs and the variables [9] [14] [32]. The nonlinear flying wing model is a function of the

actuators input, u, the wind disturbances, D, and the state variables, x, all function of time, t.

ẋ = f(x, u,D, t) (3.5)

Flying-Wing dynamics

According to the Newton-Euler formulation it is possible to obtain the dynamic equations of the Flying

Wing. In this formulation, the linear and angular moment are distinguished. Firstly, from the inertial

referential, NED referential, the moment linear and angular are expressed by (3.6) and (3.7).

d

dt
[mV]E = F (3.6)
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d

dt
[Iω]E = M (3.7)

In the local referential, body frame, the linear and angular moments are expressed by (3.8) and (3.9),

respectively.
d

dt
[mV]B + ω × [mV]B = F (3.8)

d

dt
[Iω]B + ω × [Iω]B = M (3.9)

Flying-Wing kinematics

The position of the flying wing is expressed by P in the NED frame. The flying wing velocity vector, Vg,

is represented by the sum of the air and wind velocity vectors, Va and Vw, respectively. Considering the

inertial frame, NED, to represent these velocities,

VgE = VaE + VwE (3.10)

VaE = RB
E

T
VaB (3.11)

dP

dt
= VgE = RE

BVa + Vw (3.12)

In equation (3.12) Vw is expressed in the NED referential and Va is expressed in the ABC referential.

Here, RE
B represents the referential transformation: ABC to NED.

Considering the matrix Ω

Ω =


0 P Q R
−P 0 −R Q
−Q R 0 −P
−R −Q P 0

 (3.13)

and λ = 1− (q0
2 + q1

2 + q2
2 + q3

2), for a quaternions representation (q0, q1, q2 and q3), it is defined,

d

dt
q =

d

dt


q0
q1
q2
q3

 =


q̇0
q̇1
q̇2
q̇3

 = −1

2
Ωq + λq (3.14)

Forces and Moments

At this point, it is relevant to understand the forces to which the flying wing is subjected. The external

forces can be gravitational forces, aerodynamic forces and propulsive forces. For this reason, F, the sum

of the forces in the flying wing and M, the sum of the moments, are F = Fg + FAero + FProp and

M = Mg + MAero + MProp, respectively. Furthermore, the gravitational force (mg) is represented in

the NED frame. However, the forces have to be expressed in the ABC frame. In order to guarantee it, a
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referential transformation has to be preformed (3.15).

Fg,B = RB
EFg,E (3.15)

Beside that, the aerodynamic forces depend on the flying wing movement related to the air velocity,

angular rates and also depend on the control inputs: δA, δE and δT .

FAero,B = f(Vt, α, β, p, q, r, δA, δE , δT , ...) (3.16)

Finally, the propulsive forces are influenced by the air velocity, the altitude and by the flying wing motor.

FProp,B = h(Vt, α, β, h, δT ,Ω, Im, ...) (3.17)

Looking for each of the force types, firstly, the aerodynamic forces are given by (3.18),

FAero = PdynamicSRB
a

CDCY
CL

 ; (3.18)

In this equation, Pdynamic is the dynamic pressure,

PDynamic =
1

2
ρVt

2 (3.19)

S is the flying wing surface, RB
a is the transformation matrix from the wind axis to the body axis and

finally, CD is the drag coefficient, CY is the sideforce coefficient and CL is the lift coefficient. In addition,

the Aerodynamic moment is given by:

MAero = PdynamicS

 bClcCm
bCn,

 ; (3.20)

In this equation, Cl is the rolling moment, Cm is the pitching moment and Cn is the yawing moment. Also,

the coefficients b and c are respectively the flying wing span and the Mean Aerodynamic Chord (MAC).

Finally, the propulsive forces and moments are given by:

FProp =

 4
π2 ρRProp

4Ω2CT
0
0

 ; (3.21)

MProp =

− 4
π3 ρRProp

5Ω2CP
0
0

 ; (3.22)
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At this point it is possible to define the derivative of the air velocity and angular rate vectors, (3.23) and

(3.24), respectively. In equation (3.24), Ib is the inertia matrix.

d

dt
V =

d

dt

uv
w

 =

u̇v̇
ẇ

 = −

 0 −r q
r 0 −p
−q p 0

uv
w

+
1

m
(Fg + FAero + FProp) (3.23)

d

dt
ω =

d

dt

pq
r

 =

ṗq̇
ṙ

 = −

 0 −r q
r 0 −p
−q p 0

pq
r

+ Ib
−1(Mg + MAero + MProp) (3.24)

3.2 Flying Wing Simulator

Figure 3.4: Nonlinear Model - Flying Wing Open-Loop Model

During this study and to test the control implementation, a Matlab©/Simulink© mode is used, built

taking into account the mathematical formulation previously presented. The simulator block diagram of

the flying wing open-loop model is represented in figure 3.4. In this simulation the sensors are considered

ideal while the actuator model refers to the control surfaces dynamics. This work only addresses the

flying wing missions achievable by control surfaces alone, reason for which the motor is not represented

in this model.

Actuator

In the simulator model, the actuator dynamics for control surface deflections is described by a first order

linear model. For each control surface deflection (δi), and for a actuator time constant, Tact, of 0.01s,

the relation between the commanded actuator positions (ui) and the control surface deflections is:

δ̇i = − 1

Tact
δi +

1

Tact
ui (3.25)
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Moreover, each control surface has physical limitations, maximum deflection of ±25◦and a rate limit of

1rad/s.

Figure 3.5: Actuator Block

Sensors

The main control and navigation sensors currently used on the flying wing are [33] [34] [35]:

• Global Positioning System (GPS) that provides the inertial position coordinates and velocity;

• Inertial Measurement Unit (IMU) using a combination of accelerometers, gyroscopes, and mag-

netometers, which provides the roll, pitch and yaw angles, the angular rates and the body linear

accelerations;

• And a Pivot tube that provides the airspeed.

In order to consider the influence of the sensors, in the chapter 5, it is analysed the sensors’ noise influence

on the flying wing motion.

At this point, taking into account the mathematical formulation that underlies the flying wing model,

it is already possible to analyse the conditions, altitude and airspeed, for those the flight can be analysed:

the flight envelope.

3.3 Flight Envelope

In order to identify the flying wing airspeed range for each altitude it is necessary to introduce the concept

of stall velocity. Stall is a condition in aerodynamics such that if the angle of attack exceeds its maximum

value, αmax, then lift begins to decrease.

This condition is also linked with the consideration of a minimum airspeed for each altitude. It means,

there is a minimum velocity that defines the necessary lift for the flight. This minimum velocity is known

as stall velocity [9]
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Figure 3.6: CL − α

Figure 3.7: Theoretical Flight Envelope

It is possible to identify the boundary for the minimum velocity mentioned above for each altitude

h calculating the stall velocity, Vst. Firstly, it is seen that the critical angle of attack is reached when

it is verified the maximum lift coefficient, CLmax. The figure 3.6 represents the relation between the lift
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coefficient and the angles of attack for the flying wing model [36]. Here it is seen that the critical angle

of attack is approximately 15◦. Also, CL, the lift coefficient is a dimensionless coefficient given by,

CL =
L

PDynamicS
=

L
1
2ρVt

2S
(3.26)

Here, L is the lift force, PDynamic is the dynamic pressure (3.19) and S is the surface area. As seen

before, for the maximum elevation coefficient value, the angle of attack is also as high as possible (αmax).

Consequently, this characterizes the stall condition. (CLmax ⇔ αmax ⇔ Stall). Moreover, balancing the

forces on the flying wing, the lifting force is equal to the gravitational force: L = mg. Rewriting the

equation (3.26),

CL =
L

PDynamicS
=

mg
1
2ρVt

2S
(3.27)

For this reason, a stall velocity is calculated directly from the equation (3.27) considering CLmax,

Vst =

√
2mg

ρSCLmax
(3.28)

In fact, the air density, ρ, is not a constant value. The air density is a function of the altitude, h, and for

this reason it is possible to specify a minimum airspeed for each altitude of the flying wing.

In figure 3.7, the airspeed boundary is presented. The dash line represents the airspeed boundary for

each altitude. The white area in figure 3.7 represents the flight conditions (altitude and airspeed) when

the loss of lift occurs. The blue area represents the flight envelope.

As it is expressed in this figure, the airspeed has not only a minimum value but also a maximum

value. This maximum airspeed value of 50m/s represents the structural limits of the flying wing, in

fact, there is insufficient information so this speed is selected arbitrarily. An airspeed higher than 50m/s

is not possible to reach because of the flying wing structure specifications (materials and the structure

resistance, for example).

Beside the airspeed limit it is also relevant the determination of the maximum altitude for the flying

wing. This maximum altitude is constrained by the maximum deflection of the control surface deflections.

A flight condition that require a deflection that exceed the maximum limit of 25◦ is excluded for the flight

envelope. Introducing this limit in the flight envelope determination is verified a maximum altitude of

approximately 20000m for the flight envelope.
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Figure 3.8: Flight Envelope

However, it is also important to emphasise that this boundary is obtained by a theoretical concept.

Because of that, it is important to guarantee if the flight envelope previously presented is suitable for

this flying wing. For this reason, from the theoretical flight envelope presented in 3.7 it is analysed if

those flight conditions have a trim evolution as expected or not. The figure 3.9 presents the expected

trim evolution. Testing the theoretical flight envelope, it is seen that it has to be re-established in order

to guarantee a trim evolution as expected. The problem at this point is the definition of an algorithm to

rectify the flight envelope.

The rectification process developed for this study intends to analyse the boundary calculated by the

equation (3.28). Starting from a flight condition on the flight envelope boundary (dash line in the figure

3.7), it is tested if this condition, with an airspeed of Vt1 and an altitude of h1, has the expected behavior

or not. Then, if the behavior is as expected it means that the chosen condition belongs to the flight

envelope boundary. Otherwise, it is necessary a flight envelope boundary rectification: considering the

same altitude h1 it is chosen a new airspeed Vt2 - a slightly higher airspeed - Vt2 = Vt1 + v. For this new

condition (h1 and Vt2) the validation procedure is repeated.

Implementing this test algorithm for several conditions of the theoretical flight envelope boundary

(figure 3.7) it is possible to re-establish a new flight envelope, the real flight envelope (figure 3.8).
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3.4 Trim or Equilibrium Conditions

For the model linearization it is necessary the determination of the trim conditions. A trim or equilibrium

condition is defined by [3] [14]:

ẏTrim = CẋTrim = 0 (3.29)

With, ẋTrim = f(xTrim, uTrim), where ẋ is considered here as only function of the states and inputs,

f(x, u). However, this trim condition is not solved analytically, it is performed by a numerical procedure:

an optimization methodology.

For a straight trim flight, the values for the variables that describe the lateral flight are equal to zero

(v = p = r = φ = ψ = δA = 0), so, in order to obtain a flight in equilibrium conditions, it is necessary to

find the values for the longitudinal variables.

It is relevant to look for the flying wing problem with and without motor to understand the trim

condition determination. Considering the motor: w, Ω, δE and δT are the variables to define in order

to obtain a zero value for u̇, ẇ, q̇, Ė, Ḋ, θ̇ and Ω̇. In this case it is also important to set some extra

condition: the flying wing has a level flight, it means, θ = α.

Figure 3.9: Trim condition for the flying wing model without motor varying the airspeed and setting an altitude.
(h=500; h=2500; h=5000m; h=7500m; h=10000m; h=12500m; h=15000m; h=16000m; h=17500m;
h=20000m.)

However in this study and as mentioned before, the control is projected for the case without the motor.

In a flight without motor, α, θ and δE are the variables to define in order to obtain a zero value for u̇, ẇ,
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q̇, Ė, and θ̇ [2]. In the figure 3.9 it is possible to verify the trim values of α0, θ0 and δE0 for the flying

wing varying the airspeeds, Vt, and setting an altitude h. The figure 3.9 presents the evolution of the

trim values for altitudes of: h = 500m; h = 2500m; h = 5000m; h = 7500m; h = 10000m; h = 12500m;

h = 15000m; h = 16000m; h = 17500m and h = 20000m.

3.5 Flying-Wing Linearized Model

Usually, to deal with the complexity of the nonlinear dynamic equations a linearization of the problem

is made in order to evaluate and analyse the flying wing dynamics. Typically, it is assumed that each

variable is composed by a sum of an equilibrium term, X0, and a perturbation term, x. Considering a

generic variable, X, the linearization considers:

X = X0 + x (3.30)

A nonlinear function, f , can be linearized according to Taylor’s first order expansion (3.31).

f(X,Y, ...) = f(X0, Y0, ...) +
∂f

∂X
(X −X0) +

∂f

∂Y
(Y − Y0) + ... (3.31)

As seen before, the nonlinear function ẋ = f(x, u) can be defined by the equation (3.31). Applying the

nomenclature used, the nonlinear function can be rewritten to (3.32).

f(x, u) ≈ f(xTrim, uTrim) +
∂f

∂x
(x− xTrim) +

∂f

∂u
(u− uTrim) (3.32)

In addiction, ∂f
∂x for x = xTrim and for u = uTrim, is known as an A matrix, the dynamic matrix, and

∂f
∂u for x = xTrim and for u = uTrim is known as a B matrix, input matrix.

Assuming that x = x− xTrim and u = u− uTrim, it is possible to define the flying wing motion by a

state space formulation neglecting the disturbances:

ẋ = Ax+ Bu (3.33)

However, this methodology is only possible if the data values for the dynamic model are obtained ana-

lytically. But, in fact, the aerodynamic parameters are obtained by lookup tables. For this reason, the

process to obtain the matrices mentioned above, dynamic matrix, A, and input matrix, B, has to be

numerical instead of analytical. As a consequence, A and B are obtained by a finite difference. Each

matrix entry, Aij and Bij is calculated by [9],

Aij =
fi(∆xj)− fiTrim

∆xj
(3.34)
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Bij =
fi(∆uj)− fiTrim

∆uj
(3.35)

fi(∆xj) and fi(∆uj) are the acceleration terms at the disturbed state and input, respectively. ∆xj is

the perturbation value for the state j and ∆uj is the perturbation input. Finalized the model lineariza-

tion, the model decoupling between the longitudinal and lateral motion is a natural consequence of the

linearization.

3.6 Model Analysis

The set of dynamics and kinematics equations results in 4 matrices equations: V, ω,P,Φ or 12 real

equations with 12 unknown variables: u, v, w, p, q, r,N,E,D, φ, θ and ψ. The process of modelling and

linearization of the dynamics equations and angular kinematics leads to describe the flying wing movement

with two decoupled systems: Lateral and Longitudinal system.

Moreover, both models are decoupled into a set of simpler motions. Those are characterized by their

frequency and damping ratio, which, in turn, are determined by the value of the associated eigenvalue.

The Lateral Model is defined as presented in (3.36) - (3.38). Usually, the lateral movement of an

aircraft is defined by 3 modes: Rolling subsidence mode; Dutch-roll mode; and finally, Spiral mode. The

identification of those modes is relevant to characterize the stabilization objectives and to verify if the

model is or is not stable.

xLateral = [v, p, r, φ, ψ]T (3.36)

uLateral = δA (3.37)

ẋLateral = ALatxLat +BLatuLat (3.38)

The Rolling subsidence mode consists in considering only the rotation about the longitudinal axis and

to neglect the sideslip angle, β, and the yaw rate, r. This motion is non-oscillatory and it consists of

almost pure rolling motion. The Dutch-roll mode is described by a second order approximation. In this

mode, the movement in the horizontal plan is considered and the rolling is neglected. It is an oscillatory

motion. And the Spiral mode, for this mode the rolling and yawing motion are predominant although

the mode is usually unstable. This mode consists on considering the rotation about the longitudinal axis

and the rolling angle, φ, as a pure integrator of the rolling ratio, p, φ̇ = p. Also, the Spiral mode neglect

the sideslip angle, β, and the yaw rate, r.

The Longitudinal Model is defined as presented in (3.39) and (3.41). Usually, the longitudinal move-

ment of an aircraft is defined by 2 modes: Short Period mode and Phugoid mode.

xLongitudinal = [u,w, q, θ]T (3.39)
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uLongitudinal = δE (3.40)

ẋLongitudinal = ALonxLon +BLonuLon (3.41)

The Short Period mode consists in neglecting the variations of the longitudinal velocity, u = 0 and the

pitch angle, θ = 0, and considering only the equations in w (vertical velocity) and q (pitch rate). This

motion has high damping and very short period.

Finally, the Phugoid mode neglect the vertical velocity, w, and the pitch rate ,q, considering only the

u (longitudinal velocity) equation and θ (pitch angle) equation. This motion has low damping and very

long period.

3.6.1 Lateral Model

Considering the lateral model it characteristic equation is of fifth degree and it is obtained by:

det(ALatλ−ALat) = 0 (3.42)

Factorizing this equation into the following form: λ(λ+a)(λ+ b)(λ2 + 2ξDωDλ+ωD
2) = 0, it is obtained

the dissociation of the characteristic roots of each lateral mode. According to this dissociation, it is

identified:

• λ+ a = 0 - Corresponds to the Spiral mode;

• λ+ b = 0 - Corresponds to the Rolling Subsidence mode;

• λ2 + 2ξDωDλ+ ωD
2 = 0 - Corresponds to the Dutch Roll motion.

In conclusion, it is seen that the Spiral mode and the Rolling Subsidence mode are characterized by real

poles and the Dutch Roll mode by a complex conjugate pole pair. Moreover, the pole that characterize

the Spiral mode is the closest to the origin and sometimes is characterized by an unstable real pole.

At this moment it is important to analyse the poles location over the flight envelope and if the poles

location is as expected. Firstly, setting an altitude h and varying the airspeed in intervals of 1m/s it is

possible to verify the evolution of the poles location as presented in the figures 3.10 and 3.11.
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(a) Evolution of the lateral poles for h = 5000m
and varying the airspeed

(b) 3.10(a) figure zoom - 0.05 < Re(z) < 0.15

Figure 3.10: Evolution of the poles for h = 5000m and varying the airspeed in intervals of 1m/s, from Vt =
20m/s (X) to Vt = 50m/s (O). (4) - Vt = 25m/s; (4) - Vt = 35m/s; (4) - Vt = 45m/s

(a) Evolution of the lateral poles for h =
10000m and varying the airspeed

(b) 3.11(a) figure zoom - 0.06 < Re(z) < 0.13

Figure 3.11: Evolution of the poles for h = 10000m and varying the airspeed in intervals of 1m/s, from Vt =
25m/s (X) to Vt = 50m/s (O). (4) - Vt = 30m/s; (4) - Vt = 40m/s.

Beside that, it is important to understand how is the evolution of the poles with altitude variations

by setting an airspeed Vt. This representation is presented in the figures 3.12 and 3.13.
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(a) Evolution of the lateral poles for Vt = 30m/s
and varying the altitude

(b) 3.12(a) figure zoom - 0.08 < Re(z) < 0

Figure 3.12: Evolution of the lateral poles for Vt = 30m/s varying the altitude in intervals of 100m and from
h = 1m (X) to h = 10000m (O). (4) - h = 500m; (4) - h = 2500m; (4) - h = 5000m; (4) -
h = 7500m

(a) Evolution of the lateral poles for Vt = 47m/s
and varying the altitude

(b) 3.13(a) figure zoom - 0.08 < Re(z) < 0.105

Figure 3.13: Evolution of the lateral poles for Vt = 47m/s varying the altitude in intervals of 500m and from
h = 1m (X) to h = 20000m (O). (4) - h = 500m; (4) - h = 5500m; (4) - h = 10500m; (4) -
h = 15500m

In the previous figures it is concluded that increasing the airspeed maintaining the altitude (figures

3.10 and 3.11), the poles will move away from the origin. Increasing the altitude for a constant airspeed

(figures 3.12 and 3.13), the poles will move to the origin direction, once again, through a linear behaviour.

In both analyses it is seen that the Spiral mode is characterized by the real pole closest to the origin, this

pole varying the airspeed or the altitude is unstable: it belongs to the right half of the complex plane.
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The Rolling subsidence mode is characterized by the real pole more distant from the origin. And finally,

the Dutch roll mode is characterized by the complex conjugate pole pair. After this analysis, it can be

concluded that the poles that characterize the modes of the lateral motion present the expected structure

as presented at the beginning of this section.

3.6.2 Longitudinal Model

Considering the longitudinal model it characteristic equation is of fourth degree and it is obtained by:

det(ALonλ−ALon) = 0 (3.43)

Factorizing this equation into the following form: (λ2 + 2ξphωphλ + ωph
2)(λ2 + 2ξspωspλ + ωsp

2) = 0,

it is obtained the dissociation of the characteristic roots of each longitudinal mode. According to this

dissociation, it is identified:

• λ2 + 2ξphωphλ+ ωph
2 = 0 - Corresponds to the Phugoid mode.

• λ2 + 2ξspωspλ+ ωsp
2 = 0 - Corresponds to the Short Period mode.

It is seen that each mode is characterised by a complex conjugate pole pair. The Phugoid mode is

characterized by an oscillation of long period, defined by the low frequency of it natural frequency ωph.

The damping of this mode is usually very low, and sometimes it is negative, so that the mode is unstable.

The Short Period mode corresponds to a rapid and relatively well-damped motion.

Applying the methodology used in the lateral model analysis, in the next figures represent the poles

position changing the airspeed 3.14-3.15 and the altitude 3.16-3.17. Analysing this figures is confirmed

a linear behaviour in the evolution of the poles over the flight envelope for an altitude and airspeed

variation. Setting an altitude and varying the airspeed (figures 3.14-3.15) it is seen that increasing the

airspeed the real pole most distant from the origin will move to the left, the real pole closest to the origin

will move to the right. And it is also verified that the complex poles will move to the origin until they

become real poles and follow opposite directions: one pole will move to the left and the other pole to the

right.
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(a) Evolution of the longitudinal poles for h =
5000m and varying the airspeed

(b) 3.14(a) figure zoom - −0.16 < Re(z) <
−0.02

Figure 3.14: Evolution of the longitudinal poles for h = 5000m and varying the airspeed in intervals of 1m/s,
from Vt = 20m/s (O) to Vt = 50m/s (X). (4) - Vt = 25m/s; (4) - Vt = 35m/s; (4) - Vt = 45m/s

(a) Evolution of the longitudinal poles for h =
10000m and varying the airspeed

(b) 3.15(a) figure zoom - −0.4 < Re(z) < −0.05

Figure 3.15: Evolution of the longitudinal poles for h = 10000m and varying the airspeed in intervals of 1m/s,
from Vt = 25m/s (X) to Vt = 50m/s (O). (4) - Vt = 30m/s; (4) - Vt = 40m/s.
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(a) Evolution of the longitudinal poles for Vt =
30m/s varying the altitude

(b) 3.16(a) figure zoom - −1 < Re(z) < 0

Figure 3.16: Evolution of the longitudinal poles for Vt = 30m/s varying the altitude in intervals of 100m and
from h = 1m (X) to h = 10000m (O). (4) - h = 500m; (4) - h = 2500m; (4) - h = 5000m; (4) -
h = 7500m

(a) Evolution of the longitudinal poles for Vt =
47m/s varying the altitude

(b) 3.17(a) figure zoom - −20 < Re(z) < 0

Figure 3.17: Evolution of the longitudinal poles for Vt = 47m/s varying the altitude in intervals of 500m and
from h = 1m (X), to h = 20000m, (O). (4)- h = 500m; (4) - h = 5500m; (4) - h = 10500m; (4)
- h = 15500m

Moreover, setting an airspeed and varying the altitude (figures 3.16-3.17) it is seen that increasing

the altitude the initial real pole most distant from the origin will move to the right and the pole closest

to the origin will move to the left. And finally, the remaining two real poles converge to a point from

which they dissociate into a pair of conjugated poles. The longitudinal model is an unconventional model

for this reason it is necessary to verify how is the poles’ behaviour for a specific feedback to understand
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the correspondence between the longitudinal poles and the longitudinal modes. A pitch rate (q) feedback

improves essentially the short period mode response [14]. Implementing this feedback in the longitudinal

model it is verified that the complex poles’ location changes substantially. Regarding this behavior it is

possible to identify the correspondence between the longitudinal poles and the longitudinal modes: the

Short period mode is characterised by the complex poles and the Phugoid mode is characterised by the

real poles. In the next chapter the influence of the longitudinal model feedback is presented more in

detail.

3.7 Flight Quality Analysis

Before the control implementation it is relevant to evaluate the flight quality for the flying wing.

The flight qualities’ specifications are defined according to the formalization provided by Donald

McLean [9]. Firstly, following this formalization, it is necessary to establish the aircraft class and the

flight phase. According to the methodology provided, the analysis is proceeded for lateral and longitudinal

motion, separately. Moreover, this methodology is characterized by a set of parameters related to the

damping ration, natural frequency and time to double. The knowledge of those parameters is important

to understand the flying wing response to a specific command or disturbance.

(a) Evolution of the lateral poles (b) 3.18(a) figure zoom

Figure 3.18: Evolution of the lateral poles for different flight conditions. o - h = 1m and 15m/s 6 Vt 6 50m/s;
o - h = 500m and 15m/s 6 Vt 6 50m/s; o - h = 1000m and 20m/s 6 Vt 6 50m/s; o - h = 5000m
and 25m/s 6 Vt 6 50m/s; o - h = 15000m and 30m/s 6 Vt 6 50m/s; o - h = 20000m and
47m/s 6 Vt 6 50m/s
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(a) Evolution of the longitudinal poles (b) 3.19(a) figure zoom

Figure 3.19: Evolution of the longitudinal poles for different flight conditions. o - h = 1m and 15m/s 6 Vt 6
50m/s; o - h = 500m and 15m/s 6 Vt 6 50m/s; o - h = 1000m and 20m/s 6 Vt 6 50m/s; o -
h = 5000m and 25m/s 6 Vt 6 50m/s; o - h = 15000m and 30m/s 6 Vt 6 50m/s; o - h = 20000m
and 47m/s 6 Vt 6 50m/s

According to the procedure used for this analysis, the flying wing belongs to the IV state of the

aircraft class, aircraft with high manoeuvrability, and an A category for the flight phase: flight non-

terminal, rapid manoeuvring, precision tracking and precise control of the flight path. This evaluating

process output is the characterization of the flight quality level, level 1 2 or 3, where level 1 corresponds

to an aircraft with better handling qualities. Furthermore, the control will be implemented to ensure a

level 1 flight.

As seen before the lateral model has 3 modes: Rolling subsidence mode, Dutch-roll mode and Spiral

mode.

The Rolling subsidence mode is evaluated by the constant time T ; The Dutch-roll mode is evaluated

by the damping coefficient, ξ, and the natural frequency, ωn; And finally, the Spiral mode is evaluated

by the time to double, T2.

Mathematically, the parameters are represented by the expressions (3.44) to (3.48). A pole in the

complex plan is expressed by the equation (3.44).

s = −ξωn ± ωdj (3.44)

ωd = ωn
√

1− ξ2 (3.45)

ωn =
2π

T
(3.46)

ξ = sin(θ) (3.47)
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T2 =
ln(2)

ξωn
(3.48)

Previously it was presented how the poles location is influenced by the flight conditions and also it is

also identified the poles that characterize each mode.

Figures 3.18 and 3.19 summarizes the evolution of the poles by setting different flight conditions. In

blue for an h = 1m and for 15m/s 6 Vt 6 50m/s; In red for an h = 500m and for 15m/s 6 Vt 6 50m/s;

In green for an h = 10000m and for 20m/s 6 Vt 6 50m/s; In yellow for an h = 5000m and for

25m/s 6 Vt 6 50m/s; In cyan for an h = 15000m and for 30m/s 6 Vt 6 50m/s; In magenta for an

h = 20000m and for 47m/s 6 Vt 6 50m/s.

Table 3.1: Rolling Subsidence Mode - Flight Quality Level

Aircraft Class and Flight Phase Level 1 Level 2 Level 3
IV and A TMax = 1s TMax = 1.4s TMax = 10s

Table 3.2: Dutch Roll Mode - Flight Quality Level

Aircraft Class and Flight Phase Level 1 Level 2 Level 3

IV and A
ξ ξωn ωn ξ ξωn ωn ξ ωn

0.19 0.35 1 0.02 0.05 0.5 0.02 - 0.4

Table 3.3: Spiral Mode - Flight Quality Level

Flight Phase Stable or unstable spiral Level 1 Level 2 Level 3

A
Unstable T2 > 12s T2 > 8s T2 > 5s

Stable Level 1 N/A N/A

Table 3.4: Short Period Mode - Flight Quality Level

Flight Phase Level 1 Level 2 Level 3

A
ξ ξ T

0.35 < ξ < 1.3 0.25 < ξ < 2 ξ > 0.1
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Table 3.5: Phugoid Mode - Flight Quality Level

Level 1 Level 2 Level 3
ξ ξ T

> 0.04 > 0 > 55s

Firstly, and regarding the formulation used to evaluate the flight quality level, the Rolling Subsidence

mode is classified by the constant time value. In the table 3.1 the maximum time value for each level is

presented.

In order to guarantee a flight quality level of 1 the real pole that characterize the Rolling Subsidence

mode has to have a value smaller than −2π (T = 1s = ξωn = 2π). In fact, this real pole is already in the

admissible area, so, a flight quality of level 1 is verified.

For the Dutch Roll mode, the conditions for each level are presented in the table 3.2. The values for

ξ, ξωn and ωn are the parameters to analyse for the flight level definition. The values in the table 3.2

are the minimum values for the parameters ξ, ξωn and ωn. In order to achieve a level 1, the poles for the

Dutch-Roll mode have to be out of the circle that determine the minimum limit for ωn, they have to be

on the left of the dash vertical line that determine the minimum limit of ξωn. And also, the maximum

slope between the poles and the origin is represented by the two dash obliques lines. Setting those limits

on the figure 3.20 it is possible to verify that from an altitude higher than 5000m it is not possible to

reach a flight quality of level 1.

Figure 3.20: Dutch Roll Mode poles

For the Spiral mode and if the analysis is performed for unstable poles, the time to double is the

parameter responsible to determine the flight quality level. In fact, in order to establish a level 1, the
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minimum time to double is equals to 12s. This limit is represented by a ξωn maximum. If the analysis

is performed for stable poles, the flight quality level is directly 1. The Spiral mode pole is unstable,

for this reason, to guarantee a level 1, the Spiral mode pole has to have a value smaller than −0.0578

(T = 12s = ξωn = 0.0578). And there are several flight conditions that does not reach this condition.

Moreover, the Longitudinal motion is represented by 2 modes: Short Period Mode and Phugoid Mode.

Those modes are evaluated by the damping coefficient.

The Short Period mode is characterized by complex poles. It is verified that increasing the flight

altitude the damping coefficient decreases. For this reason, a flight quality of level 1 is not reached for

the entire flight envelope.

The Phugoid mode is characterized by the real poles. For this reason, a flight quality of level 1 for

the Phugoid mode is verified for the entire flight envelope.

Finally, it is concluded that varying the flight conditions the level 1 for the flight quality may be

compromised.

Usually to guarantee a stable flight and to obtain a level 1 for the flight quality a correction of the

flying wing dynamics has to be performed. In order improve the dynamic it is implemented a Stability

Augmentation System (SAS).
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4.1 Control Approaches

In order to introduce the control action for flying wing, firstly, it is relevant to present an overview about

the control methodologies used in this work. In fact, the control methods can be divided in linear control

and nonlinear control approaches.

4.1.1 Classical Control Approach

The classical control approaches aggregate different methodologies. Between those methodologies in this

study, Root Locus and LQR are the classical control approaches used to control the flying wing flight.

4.1.1.A Root Locus

The project of the controller from the desired performance specifications of the system is facilitated by

the Root Locus implementation. Root Locus is a graphical representation of the poles for a closed loop

system by a gain variation in the system. In this method, the controller is designed from the specifications

of the dominant closed loop poles: the desired damping ratio ξ and natural frequency ωn. For this reason,

this control approach is a useful tool in order to analyse SISO linear dynamic systems [11].

4.1.1.B LQR

LQR is an optimal control approach. The results from this method may be applied in nonlinear systems.

In fact, LQR’s robustness suggest that the control for nonlinear systems may be achieved assuming that

the system is linear [13]. The LQR’s aim is to minimize a quadratic cost function (4.1) restricted by the

system dynamics (4.2). Typically, the cost function is the energy associated with the state and the input

in the system.

J =

∫
L(x, u, t)dt (4.1)

ẋ = Ax+Bu (4.2)

LQR is a cost function based on the state and input weights (4.3). The cost function’s minimization

provides an optimum feedback (4.4).

J =
1

2

∫ ∝
0

(xTQx+ uTRu)dt (4.3)

u◦ = −Kx (4.4)
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Examining the cost function J (4.3), the first term shapes the state evolution for a given initial con-

dition x(0) and the second term limits the amplitude of the control action. This weighting is represented

by the Q (state weight) and R (input weight) matrices.

The values of Q and R are chosen in order to achieve the desired behaviour in the system. The

precision is guaranteed increasing Q. However, increasing Q, the energy associated with the state also

increases. Rising the value of R, the system precision is jeopardized, however, the amount of energy

needed decreases. Attending to this behaviour, it is simple to understand that a jeopardize between the

Q and R values must be done in order to choose the weighting for Q and R. The objective is to minimize

the energy in the states without using too much control energy.

After the determination of the Q and R matrices and solving the algebraic Riccati equation (4.5) for

a symmetric positive definite matrix P the the Kalman gain K may be computed (4.6).

ATP + PA− PBR−1BTP +Q = 0 (4.5)

K = R−1BTP (4.6)

Systematically, in order to design a LQR, the following steps should be followed:

• Definition of the system (4.2).

• Characterization of the cost function, choosing Q and R matrices: state and control weighting

matrices, respectively (4.3).

• Resolution of the algebraic Riccati equation (4.5).

• Determination of the Kalman gain K (4.6).

• Implementation of the optimal feedback control in the system (4.4).
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4.1.2 Nonlinear Control Approach - INDI

Classical control approaches are the methodologies usually used for flight control systems. However, those

methods have also weaknesses. In order to deal with the classical control approach limitations: the non

inclusion of nonlinearities in the system and the dependence of local linearization points, the nonlinear

control strategies are implemented.

INDI considers the incremental dynamics of a nonlinear system and uses the data that comes from

the sensors. This method is an improvement of the NDI once INDI decreases the model dependency and

increases the controller robustness to uncertainties.

In order to schematize the INDI theory it is considered the state space formulation where u is the

system input and x the state [26].

ẋ = f(x, u) (4.7)

The system dynamics is approximated by incremental observations of the state. In order to apply

this strategy it is important to guarantee that the state is observable at the established sampling time.

Assuming the sampling time as T , t = t0 + T , where t0 is the previous instant of time.

Considering the first order approximation of ẋ from the Taylor series expansion of ẋ = f(x, u),

ẋ ≈ ẋ0 +
∂f

∂xx0,u0

(x− x0) +
∂f

∂ux0,u0

(u− u0) (4.8)

Assuming a small sampling time, x ≈ x0. The incremental term caused by the control input is the only

term that is taking into account: the incremental term caused by the system dynamics is neglected [37].

ẋ ≈ ẋ0 +
∂f

∂ux0,u0

(u− u0) = ẋ0 +B∆u (4.9)

Also, assuming that x0, u0 and ẋ0 are observable and the sampling time applied is small enough, the

state can be given by the ẋ0 values. This eliminates the urgency of an extensive system modeling what

promotes to an increase in robustness for modeling uncertainties. However, INDI would be more sensitive

to sensor performance.

Then, the incremental control law can be defined by the equation 4.10, where ν is the virtual control.

∆u = B0
−1(ν − ẋ0) (4.10)

Applying the control law above, the relation between the virtual control and the output is linear,

ẋ = ν (4.11)
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Figure 4.1: Linear control in the outer loop and Inner INDI loop

4.2 Control Objectives

To successfully complete the mission defined in chapter 1 the flying wing control is implemented gradually

(figure 4.2). Firstly, a SAS intends to increase the flight stability ensuring a flight quality of level 1 for

all the lateral and longitudinal modes, this stability is assured by a rate controller. Secondly, an attitude

controller is designed in order to improve the system dynamic and to enable the tracking of the roll

and pitch angles (φ and θ). And finally, the flight path controller is projected to guarantee a precise

guidance. Beside that, during this chapter the controller is projected in order to achieve a closed loop

system response with a null stationary position error, a settling time lower than 3s and a minimum

damping factor, ξ, of 0.5.

Figure 4.2: Flying Wing controller - Inner and outer system loops.

43



4.3 SAS - Stability Augmentation System

As mentioned in the previous chapter, it is necessary to implement a stability augmentation system to

improve the system dynamics in order to obtain a flight quality of level 1. Between the flight conditions

analysed in the previous chapter, it is seen that an altitude of h = 15000m, represented graphically in

figures 3.18 and 3.19 by cyan, does not verify a flight quality of level 1. For this reason, a flight condition

of h = 15000m and Vt = 35m/s is selected to introduce the SAS study.

Table 4.1 identify the poles for each mode, the parameters that guide the flight quality analysis and

the conclusion about the flight quality level. It is seen that a level 1 for the Dutch roll mode and Short

Period mode is not reached and a SAS has to be performed with this goal, the achievement of a flight

quality of level 1 for all the modes. Considering the lateral movement it is necessary to stabilize the

Table 4.1: Flight quality level for h = 15000m and Vt = 35m/s

Mode Poles ξ ωn Level

LATERAL
Rolling Subsidence Mode -14.7 1 14.7 1

Dutch Roll Mode 0.0417±10.5i -0.004 10.5 3
Spiral Mode 0.113 -1 0.113 1

LONGITUDINAL
Phugoid Mode

-16.1 1 16.1
1

-0.0968 1 0.0968
Short Period Mode 0.727±2.21i -0.313 2.33 3

Dutch roll mode. In order to achieve this stability a feedback of p and r is performed, the roll and the

yaw rates, respectively.

To design the SAS for the lateral movement a Root Locus is implemented using the Matlab® root-

locus tool, rlocus (figure 4.3). The gains obtained considering a negative feedback are: Kp = 0.0925 and

Kr = −0.0925. This feedback stabilize the Dutch roll mode. For this reason, considering this SAS, the

lateral movement achieves a flight quality of level 1.

For the Longitudinal model, and as seen before, the Short Period mode has to be stabilized. In order

to obtain a level 1 for this mode it is performed a feedback of q, the pitch rate. Once again, using the

Matlab® root-locus tool, a positive feedback of q with a Kq = 0.2396 guarantees a flight quality of level

1 (figure 4.4).
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Figure 4.3: Root-Locus - SAS Lateral Model

(a) Root-Locus to q (b) Zoom - Root-Locus to q

Figure 4.4: Root-Locus - SAS Longitudinal Model

Table 4.2: Flight quality level for h = 15000m and Vt = 35m/s - Level 1

Mode Poles ξ ωn Level

LATERAL
Rolling Subsidence Mode -32.6 1 32.6 1

Dutch Roll Mode -3.49±6.01i 0.5 6.96 1
Spiral Mode -3.75 1 3.75 1

LONGITUDINAL
Phugoid Mode

-112 1 112
1

-2.36 1 2.36

Short Period Mode
-0.176 1 2.33

1
-0.180 1 0.180
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The question at this moment is if the previous SAS is valid for all the flight conditions or if it is

necessary to define a gain scheduling. To understand how the stability is or is not affected varying the

flight conditions in the appendix A the tables A.1, A.2, A.3 and A.4 show the poles and the flight quality

levels for different flight conditions and for each pole over the flight envelope. As presented in those tables

the lateral and longitudinal stability is guaranteed with this feedback design and it is not necessary to

design a SAS depending on the flight conditions. At this point the flight stability is already defined and

in order to guarantee the reference tracking it is necessary to define the attitude control.

4.4 Attitude Control

The attitude controllers have essentially two aims: to improve the dynamic response and to follow the

reference precisely. In order to achieve those goals, the system configuration could be with the controller

in feedback control or with the controller in servomechanism - error feedback. It is also important to

clarify that the error feedback configurations are structured in order to implement the tracking of the

rolling angle, φ, or the pitch angle, θ. In those configurations are verified that the attitude control is

represented by the external feedback loop and the SAS is represented by the inner loop. The error

feedback for the lateral, longitudinal and the nonlinear model are represented in figures 4.5, 4.6 and 4.7,

respectively.

Figure 4.5: Linear attitude control and stabilization - Lateral Model

Figure 4.6: Linear attitude control and stabilization - Longitudinal Model
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Figure 4.7: Linear attitude control and stabilization - Nonlinear System

4.4.1 Classical Approach: Linear Control

4.4.1.A Lateral Model

In order to achieve the control objectives, a SISO approach is implemented: a Root Locus methodology.

For a flight condition for an altitude of h = 1500m and an airspeed of Vt = 35m/s and considering this

SISO methodology and the inner feedback loop, an external feedback control of φ, roll angle is designed.

Using the Matlab® root-locus tool the gain obtained for this system is: Kφ = 0.5186. As expected

introducing this gain in the system it is possible to highlight the improvements in the system dynamic.

In table 4.3 the poles location in the complex plan, the damping factor, natural frequency and also the

time constant for the uncontrolled and controlled system are presented. Analysing this table, the control

applied in the system improves significantly the response. The controlled system guarantees an overshoot

minimization and a significant improvement in the time response.

Table 4.3: Lateral Model - Uncontrolled and Controlled System

Poles ξ wn [rad/s] T [s]

Uncontrolled System (Open Loop System)

−23.3 1 23.3 0.043
0.153 −1 0.153 −6.53

−2.51± 11.9i 0.2061 12.2 0.398

Controlled System
−3.75 1 3.75 0.267

−3.49± 6.03i 0.501 6.96 0.287
−32.6 1 32.6 0.0306

4.4.1.B Longitudinal Model

Considering the longitudinal model, a LQR is the methodology implemented. The theory that underlies

the LQR methodology was previously presented. However, the real LQR implementation required a

more detailed and exhaustive approach. As it was seen before, the determination of Q and R matrices

is a crucial step. In order to support this choice and decrease the arbitrariness, the Bryson method is

implemented. This method suggests a definition for the weighting of the Q and R matrices. Following
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this approach, Q and R are defined as diagonal matrices (4.12) (4.14) and each term is the inverse of the

square of the maximum variation for each respective variable during the maneuver (4.13) (4.15).

Q = diag(Qi) (4.12)

Qi =
1

x2
i,max

(4.13)

R = diag(Ri) (4.14)

Ri =
1

u2
i,max

(4.15)

Implementing the Bryson method, firstly, it is necessary to define the maximum variation to each variable

in the system. Considering the flying wing, and attending to the variables from the longitudinal model,

the maximum variation estimation for each one is:

umax[m/s] = 0.1× Vtm/s

wmax[m/s] = 0.1× Vtm/s

qmax[rad/s] = 2◦/s× π

180
rad/◦

θmax[rad] = 2◦ × π

180
rad/◦

δemax[rad] = 0.1× 25◦ × π

180
rad/◦

At this moment, the determination of the Q and R matrices is given by:

QLon = diag(
1

u2
i,max

,
1

w2
i,max

,
1

q2
i,max

,
1

θ2
i,max

) (4.16)

RLon =
1

δe2i,max
(4.17)

However, Bryson’s method just supports the initial Q and R attempt. This method is not sufficient to

choose the weighting matrices. In fact, a Q and R correction is essential for an optimal system feedback.

Taking into account this evidence, and for a specific flight condition, it is necessary to study how much

the weighting matrices values should be modified in order to improve the system. Progressively, and to

implement this methodology, each input magnitude of the Q and R matrices is increased or decreased

and for each modification it is evaluated if the poles localization and the system response are or are not as

desired: the changes of the poles localization cannot be severely pronounced and the system response has

to met the control objectives. In fact, it is necessary to test several combinations to get some sensibility
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and to achieve both conditions. However, after this analysis the Q and R matrices are defined by:

QLon =


0.03 0 0 0

0 0.1 0 0
0 0 4 0
0 0 0 2

 (4.18)

RLon = 1000 (4.19)

Using the Matlab lqr function and the Q and R matrices (4.18)-(4.19), the next step is the determination

of the gain values for a longitudinal attitude control:

KLon = lqr(ALon, BLon, QLon, RLon) (4.20)

Applying this methodology, it is possible to itemize the location of the poles in the complex plan, the

damping factor, the natural frequency and also the time constant. In table 4.4 those parameters are

presented for the uncontrolled and controlled longitudinal system.

Table 4.4: Longitudinal Model - Uncontrolled and Controlled System

Poles ξ wn [rad/s] T [s]

Uncontrolled System
−25.7 1 25.7 0.0389
−0.169 1 0.169 5.93

−1.3± 2.12i 0.524 2.49 0.767

Controlled System
−0.350± 0.37i 0.721 0.486 2.86
−2.73 1 2.73 0.366
−116 1 116 0.00866

4.4.1.C Nonlinear Model

At this point, and after the lateral and longitudinal linear models analysis and control, it is relevant to

understand how the controllers projected for a linear problem are suitable for a nonlinear scenery. The

Nonlinear system implementation requires the consideration of more parameters in its construction. It is

necessary to add the initial values for each state (X0) and for each system input (U0). In this analysis,

the gain values considered, KX , were the gain values calculated for the linear control approach.

The Nonlinear system represented by a Nonlinear system block in the block diagram 4.7 has as

inputs X, U and D values. X, the state, is composed by [u, v, w, p, q, r, (NED), q0, q1, q2, q3, Ω, Im]

where u, v and w are the ground speed in body frame (ABC); p, q and r are the angular rates in body

frame; NED is the earth position; q0, q1, q2 and q3 are the quaternions of rotation from earth to body

frame; Ω is the propeller angular speed; and Im is the DC motor current.

U, [δA, δE , δT ], aileron, elevator and throttle deflections, respectively. And D, wind velocity in NED

coordinates, [ωN , ωE , ωD].

Is the control projected for the linear system adequate for the nonlinearized system? Repeating the
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previous control methodology, the time response for a flight condition: Vt = 35m/s and h = 15000m is

tested. The figure 4.8 presents this time domain response obtained by the nonlinear closed loop system

for φ and θ system inputs (φ: square input with φmaxRef = 20◦. θ: constant input equals to θTrim).

(a) φ time domain response (b) θ time domain response

Figure 4.8: Time Domain Responses for linear controller (figure 4.7). (...) - φRef = 20◦ and θTrim; (—) φ and
θ time domain responses.

Analysing this time domain response is verified the adequacy of a linear controller for a nonlinear

system: a satisfactory reference tracking without overshoot, a settling time equals to 2s and a null steady

state error.

However, is this control suitable for the entire flight envelope? To answer to this question, the control

designed previously is tested for different flight conditions. And in fact, the controller design must depend

on flight condition. This control is not suitable for the entire flight envelope.

To solve this limitation, a gain scheduling is performed to met a full achievement of the control

objectives for the entire flight envelope

4.4.2 Gain Scheduling

In order to simplify the methodology used to control the flying wing by classical control approaches, the

previous analysis was made for a flight condition of: Vt = 35m/s and h = 15000m. However, as seen, it

is necessary to understand that varying the flight conditions the flying wing control has to change: the

set of gains obtained for this flight condition should not be valid for the entire flight envelope.

In fact, the control for the longitudinal model was established by a LQR approach. The determination

of the gains for this model, as explained previously, is obtained directly solving the equations (4.5) and

(4.6). Or using the lqr Matlab function: KLon = lqr(ALon, BLon, QLon, RLon). For this reason, the set

of gains for the longitudinal attitude control is already conditioned by the flight conditions. Varying the
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flight conditions the matrices ALon and BLon change and consequently, KLon changes too following those

variations.

Attending to the attitude control for the lateral model it was seen that the set of gains for the lateral

model is obtained by a Root-locus approach and this approach requires more steps and it is not an

automatic approach.

However for both linear control approaches it is necessary to understand how sensitive is the control

efficiency to the flight condition variations.

In order to study this sensitivity a set of gains is fixed and changing the flight conditions is analysed

if the control objectives are or are not verified. After this analysis is concluded that it is necessary to

establish different set of gains for different airspeeds. And it is also verified that for the same airspeed and

decreasing the altitude, the flying wing performance improves. For this reason, the control is projected

for different airspeeds and for the maximum altitude of each airspeed.

Table 4.5 represents the algorithm defined for the gain scheduling. In this table the letter C represents

the flight conditions for which the control is projected and here is also represented the gain obtained for

φ. It is also seen that for the flight conditions in the table 4.5, the matrices Q (4.18) and R (4.19)

satisfy the requirements imposed. So, for these flight conditions, the set of gains of the longitudinal

state is calculated directly as shown above in equation (4.20). Figure 4.9 presents this time domain

Table 4.5: Gain Scheduling - Lateral attitude control design. The letter C represents the flight condition for
which the control was designed. Kφ for each airspeed

h(m)/
Vt(m/s)

1 500 1000 2500 5000 7500 10000 12500 15000 17500 20000

C
15

Kφ = 0.718
C

20
Kφ = 0.671

C
25

Kφ = 0.663
C

30
Kφ = 0.752

N/A

C
35

Kφ = 0.519
C

40
Kφ = 0.625

C
45

Kφ = 1.30
C

50
Kφ = 0.464

response obtained by the nonlinear closed loop system for φ and θ system inputs (φ: step input with

φmaxRef = 20◦. θ: constant input equals to θTrim) and for different flight condition: Vt = 15m/s and
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h = 100m (purple); Vt = 20m/s and h = 2500m (blue); Vt = 35m/s and h = 5000m (yellow); Vt = 40m/s

and h = 10000m (green).

(a) φ time domain response (b) φ time domain response

Figure 4.9: Time Domain Responses for the system configuration (figure 4.7).
(...) - φRef .
Vt = 15m/s and h = 100m (—); Vt = 20m/s and h = 2500m (—); Vt = 35m/s and h = 5000m
(—); Vt = 40m/s and h = 10000m (—).

(a) θ time domain response (b) θ time domain response

Figure 4.10: Time Domain Responses for the system configuration (figure 4.7).
(...) - θRef .
Vt = 15m/s and h = 100m (—); Vt = 20m/s and h = 2500m (—); Vt = 35m/s and h = 5000m
(—); Vt = 40m/s and h = 10000m (—).

Figure 4.10 presents this time domain response obtained by the nonlinear closed loop system for φ and
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θ system inputs (θ: step input with θminRef = −20◦. φ: constant input equals to zero) and for different

flight condition: Vt = 15m/s and h = 100m (purple); Vt = 20m/s and h = 2500m (blue); Vt = 35m/s

and h = 5000m (yellow); Vt = 40m/s and h = 10000m (green).

Considering the previous analysis a full achievement of the control objectives introducing a gain

scheduling on the system is guaranteed. A linear control approach implemented in a nonlinear system

has a satisfactory performance: a controller projected for a linear model is suitable for the nonlinear

model.

However, it is also unquestionable the time-consuming and the sensitivity required in order to project

a linear controller. Beside that, it is not possible to design a single controller for the entire flight

envelope. To improve the controller design and to provide an alternative solution that does not verify

those limitations and difficulties, a nonlinear control approach is implemented.

4.4.3 Nonlinear Control

Figure 4.11: INDI attitude control and stabilization

The proposed INDI control solution requires the measurement of all system states and states derivatives.

However to design an attitude INDI controller is defined a sub-state ξ = [pq]
T

to provide a directional

control and then allow the path-tracking control of the flying wing. Assuming that the desired dynamic

is obtained as a state error feedback with constant gains,

ξ̇ = ν =

[
ṗ
q̇

]
= K1

[
φd − φ0
θd − θ0

]
−K2

[
p0
q0

]
(4.21)
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Rewriting the equation (4.21) for φ̇ ≈ p and θ̇ ≈ q,

[
φ̈

θ̈

]
= K1

[
φd − φ0
θd − θ0

]
−K2

[
φ̇0
θ̇0

]
(4.22)

An INDI controller is designed considering a sample rate high enough and that the actuators present fast

dynamics when compared to the system. Increasing the sample rate or decreasing the sampling time, the

oscillatory response will decrease and the reference tracking is improved. The control frequency used in

this study is 100Hz, a sampling time of 0.01s. The assumption of a fast control and high sample rate

admit,

φ0 ≈ φ (4.23)

θ0 ≈ θ (4.24)

Which correspond to two desired second order responses for φ and θ.

φ

φd
=

K1(1, 1)

s2 +K2(1, 1)s+K1(1, 1)
(4.25)

θ

θd
=

K1(2, 2)

s2 +K2(2, 2)s+K1(2, 2)
(4.26)

s2 + 2ξωns+ ωn
2 = s2 +K2(2, 2)s+K1(2, 2) = s2 +K2(1, 1)s+K1(1, 1) (4.27)

K1(1, 1) = K1(2, 2) = ωn
2 (4.28)

K2(1, 1) = K2(2, 2) = 2ξωn (4.29)

Defining the control input matrix by B

B =

[
Bp
Bq

]
(4.30)

And the control input as u,

u = u0 + F−1(ξ̇d − ξ̇0) (4.31)

Being F−1 = λB0
−1, the closed loop system depends on the input scaling gain (λ) and on the desired

dynamic loop gains. Equation (4.31) shows that, contrary to regular NDI, the INDI allows dealing with

systems that are not affine in control and still obtain a valid input-output linearisation based only on

high sample rate and fast control assumptions [30].

Input scaling gain (λ)

Given the incremental nature of the controller, one intuitive solution to reduce control oscillation is to

scale the incremental input [38]. The parameter λ is an adjustable input scaling gain and varies between 0

and 1. λ scales the control action: a low value of λ reduces the disturbances effect, however, the reference
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tracking gets worse. An input scaling gain of λ = 0.6 is used to design the INDI controller for the flying

wing.

Desired dynamic loop gains

Considering a ξ = 1 and T 2% = 4
ξωn

= 1s⇔ ωn = 4rad/s. According to the equations (4.28) and (4.29),

the linear gains, K1 and K2 are defined by

K1 =

[
16 0
0 16

]
K2 =

[
8 0
0 8

]
(4.32)

Angular accelerations - Filter

Moreover, according to the equation (4.31), the control input depends on the angular acceleration mea-

surements, ξ̇0 = [ṗ0 ˙q0]
T

. Those angular accelerations must be obtained from the angular rates using a

filter which estimates ṗ and q̇ since no angular acceleration sensor should be available. For this reason,

it is implemented a second order washout filter with a damping factor and a bandwidth of: ξ = 1 and

ωn = 50Hz, respectively.

Filter = H(s) =
ωn

2s

s2 + 2ξωns+ ωn2
=

502s

s2 + 100s+ 502
(4.33)

At this point is important to understand how is the system sensitivity by changing the flight conditions.

Repeating the analysis implemented in the previous chapters, figure 4.12 presents the time domain

response obtained by the nonlinear closed loop system for φ and θ system inputs (θ: step input with

θminRef = −20◦. φ: constant input equals to zero) and for different flight condition: Vt = 15m/s and

h = 100m (purple); Vt = 20m/s and h = 2500m (blue); Vt = 35m/s and h = 5000m (yellow); Vt = 40m/s

and h = 10000m (green).

And figure 4.9 presents the time domain response for φ and θ system inputs (φ: step input with

φmaxRef = 20◦. θ: constant input equals to θTrim) and for different flight condition: Vt = 15m/s and

h = 100m (purple); Vt = 20m/s and h = 2500m (blue); Vt = 35m/s and h = 5000m (yellow); Vt = 40m/s

and h = 10000m (green). Analysing those figures, it is seen that changing the flight conditions the system

response remains essentially unchanged.
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(a) φ time domain response (b) φ time domain response

Figure 4.12: Time Domain Responses for the system configuration (figure 4.1).
(...) - φRef .
Vt = 15m/s and h = 100m (—); Vt = 20m/s and h = 2500m (—); Vt = 35m/s and h = 5000m
(—); Vt = 40m/s and h = 10000m (—).

(a) φ time domain response (b) φ time domain response

Figure 4.13: Time Domain Responses for the system configuration (figure 4.1).
(...) - φRef .
Vt = 15m/s and h = 100m (—); Vt = 20m/s and h = 2500m (—); Vt = 35m/s and h = 5000m
(—); Vt = 40m/s and h = 10000m (—).
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4.5 Guidance

(a) ψ time domain response (b) χ time domain response

Figure 4.14: ψ and χ time domain responses for a Nonlinear Attitude Control (figure 4.11) and for h = 15000m
and Vt = 35m/s.

Until this moment, the flying wing control was designed without the consideration of the lateral state

ψ, yaw angle. It is seen that this ψ response is affected by a zero in the right half complex plane -

non minimum phase system. This response is defined by a negative derivative in the origin. This effect

represents a physical phenomenon in the lateral movement, the effect of the sideslip. For this reason, a

new output is defined, the course angle, χ. This angle is the sum of the yaw angle and the sideslip angle,

χ = ψ + β. The χ response considering the sideslip effect does not present a negative derivative in the

origin - the influence of the non minimum phase system is canceled.

4.5.1 Course Angle Control - χ

The first step in order to follow a reference path defined by waypoints is to guarantee that the flying wing

is capable of following the course angle reference. Considering this, in the next subsections the design of

a χ controller is detailed.

4.5.1.A Linear Control

Considering a Root Locus approach (figure 4.16) for the system represented in figure 4.15, it is determined

a Kχ that guarantees a satisfactory reference tracking. The closed loop system for this case is the closed

loop of the system represented in figure 4.7 - the closed loop system controlled by a classical control

approach.
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Figure 4.15: χ Control - Closed Loop System block represents the block diagram represented in figure 4.7

Figure 4.16: Root locus to χ (V t = 35m/s and h = 15000m)

As seen before, over the flight envelope a gain scheduling must be performed to guarantee the achieve-

ment of control objectives. For the same reason, it is necessary to implement a gain scheduling to calculate

Kχ. Repeating the strategy implemented before, it is necessary to define different Kχ values varying the

airspeed. Once again, it is also verified that for the same airspeed and decreasing the altitude, the

flying wing performance improves. For this reason, the control is projected for different airspeeds and

for the maximum altitude of each airspeed. Figure 4.16 represents the Root locus approach for an air-

speed of 35m/s. The methodology used to define the different Kχ values varying the flight conditions is

summarized in table 4.6.
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Table 4.6: Gain Scheduling - χ control design. The letter C represents the flight condition for which the control
was designed. Kχ for each airspeed. The N/A area represents flight conditions that do not belong
to the flight envelope.

h(m)/
Vt(m/s)

1 500 1000 2500 5000 7500 10000 12500 15000 17500 20000

C
15

Kχ = 0.71
C

20
Kχ = 1.37

C
25

Kχ = 2.22
C

30
Kχ = 3.50

N/A

C
35

Kχ = 4.76
C

40
Kχ = 6.26

C
45

Kχ = 7.89
C

50
Kχ = 8.31

(a) χ time response for the system controlled by
a linear controller (figure 4.15).

(b) θ time response for the system controlled by
a linear controller (figure 4.15).

Figure 4.17: χ and θ time responses for a flight condition of Vt = 35m/s and h = 15000m for a Linear controller.
(—) - θTrim and φRef = 20◦; (—) - θ and φ time responses.

Figure 4.17(a) represents the χ time domain response for a flight condition of Vt = 35m/s and

h = 15000m. Analysing this figure, a satisfactory reference tracking without overshoot, a settling time

equals to 6s and a null steady state error are verified.

59



4.5.1.B Nonlinear Control

Once again, to perform a path-following the Kχ determination for the system obtained by a Nonlinear

control approach must be done. The system 4.18 enables the course angle, χ, tracking. Applying a Root

Locus approach to define this Kχ value it is obtained a Kχ = 2.65. Regarding the INDI’s characteristics

previously seen, the system is not influenced by changing the flight conditions for this reason, changing

the flight conditions, the Kχ value does not change and the control objectives are also verified. Figure

4.19(b) it is possible to verify the satisfactory χ tracking: response without overshoot, a sampling time

equals to 6s and a null stationary error.

Figure 4.18: χ Control - considering the approximation of a coordinated flight for a φ-χ transformation. Low
Level (LL) INDI defined by the 2nd order transfer function (4.25)

(a) χ time response for the system controlled by
an INDI controller (figure 4.18).

(b) θ time response for the system controlled by
an INDI controller (figure 4.18).

Figure 4.19: χ and θ time responses for a flight condition of Vt = 35m/s and h = 15000m and for a Linear and
an INDI controller. (—) - θTrim and φRef = 20◦; (—) - θ and φ time responses.

4.5.2 Guidance by Waypoints

The flying wing path as mentioned before is defined by a reference trajectory defined by waypoints. The

problem at this point is define a algorithm that guarantees that the flying wing passes by these predefined
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conjunct of points - directional lateral control - with a stable longitudinal flight. It is also important to

emphasize that in this study it is considered a gliding flight. For this reason, without the motor influence,

the flying wing altitude during the flight is not defined [39].

The first step is define a conjunct of waypoints (waypoints with lateral and longitudinal coordinates)

in the NED frame. Then, the path between two consecutive waypoints define a trajectory segment. In

order to improve the reference tracking it is considered a influence circular area rounding each waypoint

(circumferences centered in each waypoint). When the flying wing’s position is in the interior of a

waypoint influence area, the flying wing should follows the next waypoint - going through the next

trajectory segment.

(a) Trajectory defined by waypoints (A,B,C and D). Representa-
tion of the trajectory segments between the waypoints. χRef
measurement. The circumferences around each waypoint rep-
resent each incidence area: a flying wing position inside the
area limited by the circumferences is sufficient to admit that
the flying wing has reached the desired waypoint.

(b) χ measurement - course
angle of the current flying
wing position. Angle be-
tween the North and the
flying wing velocity vector.

Figure 4.20: Path Following - Waypoints; Segments; Incidence area of each waypoint; χRef and χ measurement.

The desired course angle, χRef is measured as an angle relative to North, 0◦ < χ < 360◦ (angle

measured in the clockwise direction). However it is necessary to consider the course angle discontinuity

otherwise the flying wing turning movement is not optimised: the rotation angle is not minimized. For

example, if the angle relative to North for the waypoint that the flying wing has to reach is 355◦ and

the actual course is 5◦, the flying wing should turn left 10◦ (−10◦) instead of turn 350◦. The graphical

representation of these considerations is presented in figures 4.20(a).
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4.5.3 Path-following Performance

(a) (b)

Figure 4.21: 2D and 3D trajectory for a no-wind flight controlled by a linear control approach.
Waypoints - (X). Flying wing trajectory - (—).

(a) (b)

Figure 4.22: 2D and 3D trajectory for a no-wind flight controlled by a nonlinear control approach.
Waypoints - (X). Flying wing trajectory - (—).

As explained in the chapter 1, one of the study’s objectives is guarantee that the flying wing with a gliding

flight is able to reach several predefined waypoints. To test if this objective is or is not verified, it is defined

a specific horizontal trajectory by a set of waypoints. Then, considering that the first waypoint given

by the horizontal trajectory is the actual flying wing position, it is presented the flying wing trajectory

tracking. Figure 4.21 and 4.22 represent the flying wing flight controlled by a linear and nonlinear control

approach, respectively, for a no-perturbed flight. Tables B.2 and B.1 represent the instant of time of each

waypoint achievement and also the error between the real and the desired lateral and longitudinal flying
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wing positions.

4.5.3.A Wind Disturbances

Until this point the wind disturbance is not considered. However, the wind effect has to be analysed

to understand how is the performance of the controller under real conditions. The flying wing dynamic

model is designed from the no-wind assumption. For this reason the wind is considered was a external

system perturbation. In fact, one of the most relevant perturbation parameters is the wind. According

to Instituto Português do Mar e da Atmosfera (IPMA) the wind is classified by the orientation and the

intensity [40]:

• Light wind: wind speed < 4.2m/s

• Moderate wind: 4.2m/s < wind speed < 9.8m/s

• Strong wind: 9.8m/s < wind speed < 15.4m/s

• Super strong wind: 15.4m/s < wind speed < 21m/s

• Extreme wind: wind speed > 21m/s

(a) Path-following considering a 10m/s North
wind

(b) Figure 4.23(a) Zoom

Figure 4.23: Path-following considering a 10m/s North wind: INDI control for a r1 boundary (. . . ); Linear
control for a r1 boundary (—); Linear control for a r2 boundary (...). (r2 > r1)

Setting different simulations considering a North wind step for different speeds it is concluded that winds

with a velocity up to 30% of the airspeed (≈ 0.3Vt) do not jeopardize a good attitude reference tracking.

For this reason, to guarantee a satisfactory performance the wind has to be light or moderate. This

assumption is valid for both controllers. For a flight disturbed by wind and according to the path-

following algorithm mentioned before, considering two waypoints, the waypoint A and the waypoint B,
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when the flying wing reaches the proximity of the waypoint A (boundary defined by a circumference

centered in A), it is considered that the flying wing is already able to move to the waypoint B. Regarding

this assumption and setting a North wind step, it is seen that the flying wing flight controlled by linear

controllers is more sensitive to wind perturbations than the flying wing controlled by an INDI controller.

(Figure 4.23). Implementing the path-following methodology considering two different conditions for

each waypoint boundary: r1 and r2 with r2 > r1, and for linear and nonlinear control approaches, it

is seen that the entire set of waypoints is just reached for a flight controlled by a linear controller if

it is considered a waypoint boundary radius of r2 (condition 2). However, performing an INDI control

methodology with a tighter boundary a successful path-following is achieved.

4.5.3.B Sensor Noise

(a) Time domain responses considering the sensor noise effect - Linear Controller

(b) Time domain responses considering the sensor noise effect - INDI Controller

Figure 4.24: Time domain responses considering the sensor noise effect for Linear and Nonlinear Controllers.
(... No-Sensor Noise; — Sensor Noise.)
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Considering white noise to simulate the sensors inaccuracies on the path-following performance it is con-

cluded that the presence of inaccuracies on the sensors measures affects considerably both controllers

performance. However, both controllers ensure the achievement of the defined set of waypoints as rep-

resented in figure 4.25. Figure 4.24 represents the effect of the sensors on the time response. For the

accelerations are added a white noise of 0.1m/s2 rms; For the angular rates a 0.1◦/s rms; For the Euler

angles a white noise of 0.3◦ rms; And finally, for the velocities a 2.5m/s rms [37].

Figure 4.25: Sensor noise effect on the path-following for a no-wind gliding flight. (—) -INDI control approach;
(—) -Linear control approach.

4.5.4 Actuators Request

(a) Actuators request for a no-wind gliding
flight controlled by a linear control ap-
proach.

(b) Actuators request for a no-wind gliding
flight controlled by an INDI control ap-
proach.

Figure 4.26: Actuators request during the path-following: (—) -δA; (—) -δE ; (—) -δT
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Comparing the actuators request made by each controller during the performance of the predefined path,

as represented in the figure 4.26, it is verified a similar actuators request for both control approaches,

however, the INDI controller shows a smaller actuators request than the linear controller. Nevertheless,

both have a smooth behaviour.
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5
Final Conclusion and Future Work
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Table 5.1: Controllers’ comparison summary

INDI CONTROLLER LINEAR CONTROLLER

Path-Following
Performance

Position errors + +
Tracking smoothness + +

Requested control effort + ±

Robustness
Wind + -

Sensors ± ±

Control Design
Code simplicity + -

Design parameter tunning ++ -

Regarding those considerations the flying wing is controlled by a classical controller and an INDI con-

troller. Both controllers, as mentioned, have some advantages and disadvantages. In order to introduce

an overall controllers comparison, table 5.1 represents a qualitative evaluation for each controller and for

some parameters. The symbols ’+’, ’±’ and ’-’ are used to represent a good, an average and a poor perfor-

mance, respectively, for each parameter [2]. This overall comparison presents three qualitative parameters

under analysis: the path-following performance, the robustness and the control design. In the previous

sections, the performed analysis focused primarily on the first two topics: path-following performance

and robustness. However, as introduced in the state of the art, one of the major improvements and inno-

vations achieved with nonlinear flight control is the design of it controllers. Using an INDI controller the

model dependency is greatly reduced and an independency of the system is verified by changing the flight

conditions. For this reason, this control approach does not need a design parameter tuning. However, for

a linear controller it is necessary to perform a gain scheduling to deal with the nonlinearities in the model:

varying the flight conditions the flying wing control was to change. For this reason, the flight envelope is

divided into several operation regimes and for each one of those a linear controller is designed. This gain

scheduling is time-consuming and for models with significant nonlinearities it requires an exhaustive and

well defined operation regimes division. The fact that this gain scheduling procedure is not required for

an INDI control leads to one of the most relevant advantages of this control methodology. Considering

the study developed, and reflecting about possible improvements and future works, the following topics

enumerate some of the suggestions:

• Implementation of experimental tests to confirm the results obtained by simulation;

• Sensors modeling to perform a more detailed study of the sensors effect on the flight control;

• Consideration of the motor influence on the flying wing flight control;

• Introduction of a more conservative gain scheduling. Divide the flight envelope into more range

conditions;

• Design different nonlinear controllers and analyse those controllers contribution on the flying wing

flight. According to the researches developed and reported in: [1] [2] [17] [20], it could be relevant
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the design of a Incremental Backstepping (IBKS).
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A.1 Flight Quality Level

Table A.1: Flight Quality Level - Lateral Model (h=1m - h=7500m)

h(m)/
Vt(m/s)

1 L 500 L 1000 L 2500 L 5000 L 7500 L

-53 1 -51 1 -48 1
-8.8+3.9i 1 -8.4+4.1i 1 -8.1+4.2i 1
-8.8-3.9i 1 -8.4-4.1i 1 -8.1-4.2i 1

15

-1.4 1 -1.4 1 -1.4 1

N/A

-87 1 -83 1 -79 1 -67 1 -51 1 -37 1
-11+4.7i 1 -11+5.1i 1 -10+5.3i 1 -8.9+5.7i 1 -7.1+5.8i 1 -5.7+5.4i 1
-11-4.7i 1 -11-5.1i 1 -10-5.3i 1 -8.9-5.7i 1 -7.1-5.8i 1 -5.7-5.4i 1

20

-1.9 1 -1.9 1 -1.9 1 -1.9 1 -2 1 -2.1 1
-130 1 -120 1 -120 1 -99 1 -76 1 -56 1
-2.3 1 -13+5.8i 1 -12+6.1i 1 -11+6.9i 1 -8.4+7.1i 1 -6.6+6.8i 1

-13+5.3i 1 -13-5.8i 1 -12-6.1i 1 -11-6.9i 1 -8.4-7.1i 1 -6.6-6.8i 1
25

-13-5.3i 1 -2.3 1 -2.3 1 -2.3 1 -2.3 1 -2.4 1
-180 1 -170 1 -160 1 -140 1 -110 1 -78 1

-16+5.6i 1 -15+6.3i 1 -14+6.8i 1 -12+7.8i 1 -9.5+10i 1 -7.6+8.1i 1
-16-5.6i 1 -15-6.3i 1 -14-6.8i 1 -12-7.8i 1 -9.5-10i 1 -7.6-8.1i 1

30

-2.6 1 -2.6 1 -2.6 1 -2.6 1 -2.3 1 -2.7 1
-230 1 -220 1 -210 1 -180 1 -140 1 -100 1
-2.9 1 -17+6.7i 1 -16+7.4i 1 -14+8.8i 1 -11+9.5i 1 -8.6+9.3i 1

-18+5.7i 1 -17-6.7i 1 -16-7.4i 1 -14-8.8i 1 -11-9.5i 1 -8.6-9.3i 1
35

-18-5.7i 1 -2.9 1 -2.9 1 -2.9 1 -2.9 1 -3 1
-300 1 -280 1 -270 1 -230 1 -180 1 -130 1

-20+5.7i 1 -20+7i 1 -19+7.9i 1 -16+9.6i 1 -13+11i 1 -9.6+10i 1
-20-5.7i 1 -20-7i 1 -19-7.9i 1 -16-9.6i 1 -13-11i 1 -9.6-10i 1

40

-3.1 1 -3.1 1 -3.1 1 -3.1 1 -3.1 1 -3.2 1
-370 1 -350 1 -330 1 -290 1 -220 1 -160 1

-23+5.5i 1 -22+7.2i 1 -21+8.3i 1 -18+10i 1 -14+12i 1 -11+12i 1
-23-5.5i 1 -22-7.2i 1 -21-8.3i 1 -18-10i 1 -14-12i 1 -11-12i 1

45

-3.3 1 -3.3 1 -3.3 1 -3.3 1 -3.3 1 -3.3 1
-450 1 -430 1 -400 1 -350 1 -270 1 -200 1
-3.4 1 -24+7.3i 1 -23+8.7i 1 -20+11i 1 -15+13i 1 -12+13i 1

-25+5.2i 1 -24-7.3i 1 -23-8.7i 1 -20-11i 1 -15-13i 1 -12-13i 1
50

-25-5.2i 1 -3.4 1 -3.4 1 -3.4 1 -3.5 1 -3.5 1
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Table A.2: Flight Quality Level - Lateral Model (h=10000m - h=20000m)

h(m)/
Vt(m/s)

10000 L 12500 L 15000 L 17500 L 20000 L

-40 1
-5.2+6.1i 1
-5.2-6.1i 1

25

-2.6 1

N/A

-57 1
-5.8+7.4i 1
-5.8-7.4i 1

30

-2.8 1

N/A

-76 1 -51 1 -33 1
-6.5+8.6i 1 -4.8+7.4i 1 -3.5+6i 1
-6.5-8.6i 1 -4.8-7.4i 1 -3.5-6i 1

35

-3 1 -3.3 1 -3.7 1

N/A

-97 1 -66 1 -43 1
-7.3+9.7i 1 -5.3+8.5i 1 -3.8+7.1i 1
-7.3-9.7i 1 -5.3-8.5i 1 -3.8-7.1i 1

40

-3.2 1 -3.4 1 -3.7 1

N/A

-120 1 -83 1 -54 1 -91 1
-8+11i 1 -5.8+9.6i 1 -4.1+8i 1 -1.3+14i 1
-8-11i 1 -5.8-9.6i 1 -4.1-8i 1 -1.3-14i 1

45

-3.4 1 -3.5 1 -3.8 1 -3.8 1

N/A

-150 1 -100 1 -67 1 -43 1 -27 1
-8.8+12i 1 -6.3+11i 1 -4.4+8.9i 1 -3.2+7.3i 1 -2.3+5.8i 1
-8.8-12i 1 -6.3-11i 1 -4.4-8.9i 1 -3.2-7.3i 1 -2.3-5.8i 1

50
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Table B.1: Path-Following Performance - Linear Control Approach

|N −Ni|
[m]

|E − Ei|
[m]

t
[s]

A-B 4.39 0.41 13.18
B-C 2.64 1.09 31.12
C-D 2.92 3.36 50.47
D-E 1.03 3.55 69.42
E-F 0.11 2.04 89.73
F-G 0.18 2.27 104.20
G-H 1.86 4.50 125.60
H-I 2.82 2.44 149.80
I-J 2.08 0.57 172.60
J-K 2.97 0.03 193.30
K-L 1.73 0.01 206.80
L-M 3.50 1.01 241.70
M-N 3.51 3.24 265.90
N-O 1.66 4.18 288.70
O-P 0.15 2.21 312.10
P-Q 0.33 4.64 327.80
Q-R 0.89 2.78 351.10
R-S 1.58 1.60 401.80
S-T 2.49 0.90 431.04

Table B.2: Path-Following Performance - INDI Control Approach

|N −Ni|
[m]

|E − Ei|
[m]

t
[s]

A-B 4.95 0.47 20.52
B-C 4.38 1.76 33.05
C-D 3.20 3.55 44.75
D-E 1.35 4.53 56.86
E-F 0.22 4.53 65.87
F-G 0.38 4.68 82.78
G-H 1.80 4.26 92.77
H-I 3.61 3.14 103.60
I-J 4.45 1.21 113.80
J-K 4.90 0.14 132.60
K-L 4.90 0.01 150.80
L-M 4.71 1.42 170.60
M-N 3.60 3.34 190.50
N-O 1.79 4.59 210.20
O-P 0.22 4.91 229.10
P-Q 0.37 4.87 247.00
Q-R 1.60 4.71 266.20
R-S 3.37 3.39 276.50
S-T 4.48 1.57 285.00

82


	Titlepage
	Acknowledgments
	Abstract
	Abstract
	Resumo
	Resumo
	Contents
	List of Figures
	List of Tables
	Acronyms

	1 Introduction
	1.1 Motivation and Mission
	1.2 Objectives
	1.3 Thesis Outline

	2 State of the Art
	2.1 Linear Flight Controllers
	2.2 Nonlinear Flight Controllers
	2.2.1 BKS
	2.2.2 NDI


	3 The Flying-Wing Model
	3.1 Nonlinear Model
	3.2 Flying Wing Simulator
	3.3 Flight Envelope
	3.4 Trim or Equilibrium Conditions
	3.5 Flying-Wing Linearized Model
	3.6 Model Analysis
	3.6.1 Lateral Model
	3.6.2 Longitudinal Model

	3.7 Flight Quality Analysis

	4 Flying Wing Control
	4.1 Control Approaches
	4.1.1 Classical Control Approach
	4.1.1.A Root Locus
	4.1.1.B LQR

	4.1.2 Nonlinear Control Approach - INDI

	4.2 Control Objectives
	4.3 SAS - Stability Augmentation System
	4.4 Attitude Control
	4.4.1 Classical Approach: Linear Control
	4.4.1.A Lateral Model
	4.4.1.B Longitudinal Model
	4.4.1.C Nonlinear Model

	4.4.2 Gain Scheduling
	4.4.3 Nonlinear Control

	4.5 Guidance
	4.5.1 Course Angle Control - 
	4.5.1.A Linear Control
	4.5.1.B Nonlinear Control

	4.5.2 Guidance by Waypoints
	4.5.3 Path-following Performance
	4.5.3.A Wind Disturbances
	4.5.3.B Sensor Noise

	4.5.4 Actuators Request


	5 Final Conclusion and Future Work
	Bibliography
	Appendix A

	A Appendix
	A.1 Flight Quality Level
	Appendix B

	B Appendix

