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Resumo

A arquitetura aviónica modular integrada substituiu as arquiteturas federadas no domínio aviónico, o que

permite obter reduções significativas em peso e consumo energético, além de permitir desenvolvimento

mais competitivo de aplicações.

A natureza de partilha de recursos desta arquitetura requer segregação temporal e espacial robusta

entre aplicações, o que é alcançado através de um escalonamento temporal estático em hardware

aviónico partilhado. Isto levanta um problema complexo de escalonamento em múltiplos processadores,

cujo progresso na indústria é limitado, mas que representa um desafio significativo para a integração de

sistemas aviónicos.

Esta dissertação propõe um modelo matemático para o problema de escalonamento temporal de

partições complementado com um critério de otimização baseado na escalabilidade e flexibilidade do

sistema, e propõe métodos exatos e heurísticos para a sua resolução baseados na literatura existente.

Palavras-Chave: Arinc 653, Aviónica Modular Integrada, Escalonamento, Otimização
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Abstract

The Integrated Modular Avionics architecture has replaced federated architectures in the avionic domain,

allowing significant weight and power savings and enabling more competitive application development.

The resource-sharing nature of this architecture requires robust temporal and spatial segregation

between applications, which is achieved by statically scheduling applications on shared avionic hardware.

This raises a multiprocessor scheduling problem, automation of which has seen limited progress in

industry, but representing a significant challenge for system integration.

This dissertation proposes a mathematical model for the partition scheduling problem associated with

an optimization criterion based on system scalability and flexibility, and provides both heuristic and exact

methods for its solution based on existing literature.

Keywords: Arinc specification 653, Integrated Modular Avionics, Scheduling, Optimiza-
tion
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Chapter 1

Introduction

1.1 Motivation

In the past decades, the avionic industry adopted the Integrated Modular Avionics (IMA) architecture,

replacing the older federated architectures.

In federated architectures, each avionic functionality is deployed as an independent black-box com-

ponent called a Line Replaceable Unit (LRU), with its own dedicated hardware and software. Despite

providing excellent safety and fault containment, each further addition of a function to the system requires

adding a new LRU, and this escalates the mass, weight, and power requirements of the avionic system,

not to mention it being an inefficient usage of resources. With the industry demanding more and more

functionality from avionic systems, the federated concept became unsustainable [38].

The IMA paradigm is the aviation industry’s response to these problems, whose architecture principle

relies on resource sharing between generally unrelated components, including computing resources,

power, and communication media, as roughly demonstrated in figure 1.1. Functions which were previously

implemented in isolated LRUs now coexist on shared hardware, and in order to maintain isolation between

components, IMA adopts robust time and space partitioning between applications. Space partitioning

protects the application’s data from corruption by unrelated applications that share the same hardware,

and time partitioning ensures the required access to computing resources and communication channels

[32]. Due to this, loosely coupled avionic applications are designated as partitions in the context of IMA.

Time and space partitioning is ensured through compliance with the Arinc 653 standard, which defines

a standardized interface between partitions and an underlying Real-Time Operating System (RTOS),

satisfying all safety-critical requirements of the avionic applications [17]. For this purpose, Arinc 653

requires that partitions execute in a static, periodic manner. Unlike regular operating systems, where

processes are scheduled at runtime, the time slots allocated to partitions are predefined in a static

schedule, and repetition is deterministic because this schedule is periodic. A special characteristic of

these schedules, imposed by Arinc 653, is that partitions should execute non-preemptively in strictly

periodic intervals, or in other words, there must be no jitter in the time between different executions of

the same partition, providing it unique access to resources in its given time budget. This, coupled with
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Figure 1.1: Simple overview of Federated and Integrated Modular Avionics.

distributing partitions among the available hardware, all while verifying the functional requirements of the

avionic system, consists in a complex multiprocessor scheduling problem, which for long has been known

to be NP-complete [7].

The schedule is determined by the system integrator at the system integration phase. It consists

in gathering all system characteristics and requirements from suppliers, distributing partitions over the

available hardware, and scheduling them in a strictly periodic manner, such that, on one hand, there is

no temporal overlap between two partitions in the same module, and also other requirements related

to inter-partition communications and an appropriate redundancy configuration are met. The resulting

schedule is then encoded in a specific XML format and integrated in the system configuration files at

build time, with any modifications requiring the complete reintegration of the system. This process is

insufficiently automated in industry, from the modelling of the problem requirements, to the scheduling

itself, and its certification. Overall, system integration is often a long, manual process, consequently

error-prone and inefficient, with modern systems requiring over 40 000 configuration entries.

Furthermore, as the IMA architecture matures, there is more demand to optimize this process, shorten

development cycles, and provide more flexible systems. For this, partition scheduling is a key component,

and modern approaches aim not only to satisfy all system requirements, but also to optimize them in a

relevant way.

Partition scheduling, in its simpler form, consists in assigning partitions to the available processors,

and defining a relative starting time offset, which implicitly defines all execution windows given the

strict periodicity of the setting. This must be done in a way that delivers an appropriate redundancy

configuration; hardware resources are not exceeded; time and space partitioning are maintained, meaning

that execution windows in the same module cannot overlap; and other functional requirements are assured

by guaranteeing timely communication between partitions.
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1.2 Objectives

The purpose of this dissertation is to provide a methodology for solving the partition scheduling problem

in IMA, that can cope with the increased complexity that modern avionic systems are experiencing.

Furthermore, we are interested not only in providing valid solutions, but also in finding one that provides

the system with more flexibility, thus an optimization criterion is considered which aims to increase system

flexibility and scalability by allowing the expansion of partition execution windows without having to

completely reschedule the whole system.

This thesis was produced in collaboration with GMV, inserted in its Aerospace and Defence department.

GMV is the supplier of an Arinc 653-compliant RTOS named XKY, and the goal is also to develop a

partition scheduler to be integrated in the configuration tool suite for this product.

1.3 Contributions

The contributions of this dissertation are as follows:

• A comprehensive mathematical model of the system is provided, containing distribution constraints,

which restrict the assignment of partitions to modules, communication constraints, via limiting the

delay in a chain of partition executions, and also a multiple window model is introduced, which

allows partition execution to be divided in multiple windows, where only some of them must be

scheduled strictly periodically.

• A Mixed Integer Linear Programming (MILP) formulation describes a subset of the overall problem.

• A sequential assignment algorithm and a Constraint Satisfaction Problem (CSP) formulation are

developed to produce an initial assignment of partitions to modules.

• A local optimization algorithm based on Game Theory [28] is used to improve the schedule for

a single model, and it is extended to accommodate inter-partition communications and multiple

windows.

• Stochastic optimization algorithms are added to complement local search and explore larger portions

of the search space.

1.4 Thesis outline

The present chapter introduces the motivation and objectives for this dissertation. The relevant concepts

already mentioned in the Introdduction, like federated and Integrated Modular Avionics, time and space

partitioning, and Arinc 653 are described in detail in chapter 2. Also in this chapter, the partition scheduling

problem is described, and the chapter concludes with a review of literature on the subject.
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Chapter 3 is dedicated to the mathematical representation of the problem, detailing the free variables,

problem variables, constraints and optimization criteria. A MILP formulation describes part of the overall

problem.

Chapter 4 describes the algorithms and strategies developed to heuristically solve generic problem

instances, with considerations for computational performance.

In chapter 5, the developed algorithms are evaluated, test cases of varying dimension are defined, and

the performance of the scheduling tool is analysed, by comparing it with exact approaches and related

work.

Chapter 6 is the conclusion to this dissertation, and includes a discussion about future work. Also

included in annex are pseudo-code for optimization algorithms (appendix A), and the complete dataset of

our test cases (appendix B).
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Chapter 2

Background

This chapter describes the state of the art regarding avionic system architectures and relevant concepts

to the partition scheduling problem. In section 2.5, an overview of literature centred around the partition

scheduling problem is given.

2.1 Evolution of avionic architectures

2.1.1 Federated avionics

Avionic systems have traditionally followed a federated architecture, with each component or subsystem

having its dedicated hardware and software, in what is defined as LRUs. Suppliers were responsible for

developing both the hardware and software, and supply it as its own self-contained black-box component.

This ‘one function – one computer’ concept coupled with redundancy provided high safety and reliability.

Applications have guaranteed, deterministic access to processor resources, and Input/Output (I/O) with

bounded latency and jitter. Maintenance is straightforward and inexpensive, as LRUs can be readily

replaced by equivalent ones. Most importantly, with loosely coupled LRUs, critical functions cannot be

impaired by low-criticality functions, and the modularity increases fault containment.

However, the disadvantages of the federated architecture are evident. With a federated architecture, a

function being added to the avionic system requires the addition of one of these LRUs, and this quickly

escalates the mass, volume, cost and power consumption of the entire avionic system to infeasible

amounts. Regarding costs, functions sharing a processor must be certified to the highest criticality level

of those functions, and this encourages the usage of many processors with decreased utilization. On the

other hand, modern processors have far more capability than a single critical function requires, and this

constitutes an inefficient usage of resources [38].

2.1.2 Integrated Modular Avionics

The aviation industry aimed to adopt a new paradigm that keeps the benefits of the federated concept

and solves the problems mentioned above. The industry has adopted the IMA concept starting with
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the F-22 project, and reaching passenger aircraft in the 1990’s, with the two best examples being the

Airbus A380 and the Boeing 787 [37]. Currently, all new passenger aircraft models employ a form of this

architecture. The main architectural principle is the introduction of shared computation resources, which

contain functions from multiple applications – a Core Processing Input-Output Module (CPIOM). It rests

on the concept of robust partitioning, specified in Arinc 651, which prevents a failure in a function or in

hardware unique to a function to cause another function to fail, thus inducing fault containment. With this,

each piece of software can be certified independently to a proper criticality level, and risk is reduced since

critical software is isolated.

Early iterations of the IMA concept failed to achieve this desired feature, and combined industry

effort pushed the establishment of the Arinc 653 standard, which specifies a standard interface between

partitions and the underlying RTOS, called the Application Executive Interface (APEX). Arinc 653 and

APEX are described in the section 2.2.

The standardized interface allows for the development, testing and certification of avionic hardware

and software to be made independently, which means smaller companies can supply just a specific

part of software, being it a RTOS or functionality packaged in a partition, which in turn increases market

competitiveness and leads to reduced costs. With respect to hardware, weight and power requirements

are substantially reduced, as well as the different types of hardware which are closer standardized, and

this leads to decreased integration and maintenance effort.

Mairaj [38] compares federated and IMA architectures having surveyed 35 projects that underwent the

transition. The results show weight reductions of around 50 % for all cases, volume reductions of 30 % to

40 %, power savings of 25 % to 30 %, and Mean Time Between Failures (MTBF) increasing by a factor of

1.4 to 3.8.

Adoption of IMA has been gradual, with developers adding higher criticality applications as confidence

in the architecture was gained, and today, the overwhelming majority of avionic systems in passenger

aircraft follows this architecture. However, one should note that even on modern aircraft, flight control

systems are still implemented on a federated architecture, due to the need of tight synchronization and

minimal jitter, as well as to concerns about redundancy management [37].

2.1.3 Improvements to Integrated Modular Avionics

Current developments on the IMA concept aim to further abstract the applications from the hardware. In

classic IMA, peripherals such as sensors and actuators are connected directly to the CPIOMs, that often

must contain specific hardware to interact with these. The introduction of Remote Data Concentrators

(RDCs) allows to connect the peripherals directly to the avionic network. These are hardware devices

that carry the necessary drivers for these peripherals and perform their I/O to the avionic network, hence,

the CPIOMs, now simply called Core Processing Modules (CPMs), do not require specific hardware and

are further standardized. Another advantage of this is the reduced cabling needed, since CPMs are

usually confined to the avionics bay, potentially far from the peripherals. These systems are often called

Distributed Integrated Modular Avionics (DIMA) since they distribute I/O across the aircraft [48].

6



This finally accomplishes another goal for IMA, increased flexibility and reconfigurability. Addition or

removal of functionality does not necessarily require recertification of the entire avionic system, and with

efficient usage of the computational resources, addition of functionality does not require more hardware.

A particular segment that is often overlooked is that of multi-mission Unmanned Aerial Vehicles

(UAVs). These are especially constrained in terms of weight and power, and benefit from expedite

reconfigurability. There is an industry effort to enable automatic reconfiguration, via implementing multiple

partition schedules that are switched when required. Albeit the schedules are static in the way that

they are determined and validated in the system integration phase, the goal is that they can be loaded

automatically at runtime when required.

Also in the space segment, where weight minimization is even more critical, IMA is known by the

designation ‘Integrated Modular Avionics for Space (IMA-SP)’. In this domain there are substantial

differences, mainly because space systems do not have the opportunity for human intervention, and their

mass, volume and power are tightly constrained. In the case of satellites, this leads to there being typically

one or two main computing modules connected to the payloads with robust data buses [31]. As a result,

applications are integrated into a single binary, increasing the risk of fault propagation and forcing all

software components to be certified to the highest criticality level. The adoption of IMA-SP would provide

a hardware abstraction layer which in turn would allow software development for these applications to be

divided among several teams, as well as reducing the integration effort and decreasing the overall system

complexity due to its partitioning system [27].

Another active field in IMA is the inclusion of multicore processors. Multicore processors are replacing

uniprocessor analogues in many application domains, with clear advantages in performance, weight,

energy consumption, volume and cooling requirements [46]. However, safety-critical systems and in

particular avionics have delayed its adoption, with the current cases where multicore processors are used

disabling all but one core on each processor. It is clear that the technical advantages of multicore hardware

and the manufacturing market moving away from uniprocessor technology are incentives for the aviation

industry to adopt this technology. The main technical challenges to multicore technology in IMA stem from

interference between applications, and loss of determinism. Multicore platforms allow true parallelism

with multiple threads existing simultaneously on separate cores, but with shared access to physical

resources still being serialized [35]. Possible solutions to these include new processor designs that

focus on predictability rather than optimizing for the average-case, but the ideal is still to use Commercial

off-the-Shelf (COTS) processors. Other non-technical difficulties include the burden of migrating legacy

software and complicated certification [46]. Scheduling tasks for multi-core IMA systems is a complex

problem which is not addressed in this dissertation.

2.2 Arinc 653

Arinc specification 653 [36] standardizes the interface between the RTOS and avionic application software.

It is the product of joint effort by many major parties in the air transport industry, including airframe

manufacturers, avionics and RTOS suppliers, governmental entities, and academia [17]. Figure 2.1
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Figure 2.1: Arinc 653 architecture.

sketches the Arinc 653 architecture in one CPM, where the RTOS handles the partition management and

exposes services to these partitions via the APEX. Internally, each partition consists an arbitrary number

of periodic and aperiodic processes.

At the time of writing, the specification is composed of 6 parts, with part 1 being of special interest to

this dissertation.

Part 0 is a global overview of the standard.

Part 1 specifies the set of required services the interface must implement.

Part 2 specifies extended services that can be optionally implemented.

Part 3 provides guidance for testing a RTOS conformity to the standard.

Part 4 includes a subset of Arinc 653 for simplified application domains, enabling formal methods for

analysis.

Part 5 specifies the core software recommended capabilities.

On systems with shared resources, there are a number of ways one function can do damage to another

one of higher criticality, resulting in an unexpected failure. These include: a function erroneously writing

on memory belonging to another function; stealing processor time from a critical function, or crashing

the processor; corrupting I/O, by either outputting data appearing to come from the critical function or

corrupting it before that function uses it.

To remove these risks, the Arinc 653 specification resides on the concept of robust partitioning, which

consists on spatially and temporally isolating applications, referred to as partitions. These are portions of

software which bundle avionic functionality, and are analogous to processes in regular operating systems.

However, a partition has internal processes, which divide functionality into smaller logical units, and the

analogous of these in regular operating systems would be threads.
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The partitioning is two-dimensional: space partitioning ensures protection of the program’s data,

dedicated I/O and registers, and time partitioning ensures unrestricted access to the processor and

sufficient communication bandwidth in a given time window.

2.2.1 Space partitioning

Space partitioning should ensure that software in one partition cannot change data from another partition,

either in memory or in transit, nor interact with private devices of another partition, i.e. peripherals

[32]. This is achieved by providing each partition with exclusive access to certain memory regions. The

implementation is software based, via high-integrity write protection and separate virtual memory spaces

managed by the RTOS. The two key principles are: any persistent storage location must only be writeable

by one function, and any temporary storage location used by a function, for example processor registers,

must be saved when control is transferred away from that function and restored before resuming.

2.2.2 Time partitioning

Time partitioning is required so that a function has the necessary access to hardware resources for

whatever time it requires, and doing so in a predictable way. The way this is achieved is by deterministically

scheduling processor time to functions. At the partition level, static schedules are created at the system

integration phase, assigning time windows or frames to partitions in such a manner that its correct

functioning is assured. This is the origin of scheduling problem on which this dissertation focuses. On the

process level, scheduling is done at runtime, via fixed priority task scheduling algorithms, namely rate

monotonic scheduling.

2.2.3 Interface

The standard interface is known as APEX, and is composed of several main components [26, 36]:

• partition management,

• process management,

• time management,

• memory management,

• inter-partition communication,

• intra-partition communication,

• health monitoring.

Partition management services are related to running modes, and allow the system to start, restart or stop

a partition when needed. The RTOS selects the process with the highest priority to run within a partition,
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and APEX provides services to manage processes, like creating processes and collecting their status,

changing priorities, and changing preemption status.

Time management allows managing deadlines, periodicity and budget times given to processes, as

well as time-outs for communications.

Memory management is a major component of any operating system, however, in order to enforce

space partitioning, APEX does not provide any memory management services. Instead, the partition

memory space is statically reserved at build time.

Inter-partition communications allows for exchanging messages between partitions on the same or

on different modules. These services preserve message ordering and hide any underlying division of

large messages in smaller ones from the application. Communications are based on channels, which are

logical links between a source and one or more destination partitions, and determine the characteristics

of the messages being sent. APEX provides partitions access to channels via ports, which are configured

by the system integrator and not the application developer. Two different kinds of ports exist: sampling

ports store the message along with a freshness parameter (i.e. a timestamp) which can be queried by

the destination application. Each message sent on that port overwrites the previous one, and these are

meant for the kinds of channels that carry identical but updated data, such as sensor measurements.

Queuing ports allow buffering of multiple messages in a First-In First-Out (FIFO) queue, which assures

that every message is carried in the channel with preserved order, as long as the buffer memory is not full.

Adding to these mechanisms, on certain cases, communication between partitions in the same module

can be implemented with shared memory regions.

Finally, health monitoring periodically checks the system for errors or exceptions and dispatches the

appropriate error handler, which can log the error, stop or restart the failed process or the whole partition.

2.3 Communications network

Communication buses for IMA systems have different requirements than older avionic systems. In

particular, federated systems accept a one-to-one or one-to-many network topology, where any two nodes

that must be connected require a dedicated cable with its own interface. The de-facto bus used until

the adoption of IMA was Arinc 429. Since IMA systems eliminate many of these physical links between

nodes, the data buses must offer higher bandwidth than Arinc 429, and the shared nature of these devices

demands robustness and determinism.

Today, many competitive standardized data buses exist, with the most prevalent being Avionics Full-

Duplex Switched Ethernet™ (AFDX). AFDX™ was developed by Airbus and later became standardized

in the Arinc specification 664 [18], its main motivation was integration with IMA and usage of COTS

components, namely Ethernet technology, while maintaining the required reliability. Determinism is

guaranteed by the definition of virtual links, which emulate the point-to-point nature of an Arinc 429 bus,

offering full-duplex capabilities. The virtual links are defined with a configuration table that specifies the

network configuration, and through bandwidth reservation services, the bus guarantees bounded End-to-

End (ETE) latencies in the network [12]. However, determining these worst-case ETE latencies still poses
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a significant challenge in the system integration phase, and is also required for certification purposes;

see Benammar et al. [44] for the problem of determining the worst case latencies, and Annighöfer and

Thielecke [33] for an optimized approach to determining the network topology under AFDX™ and IMA.

Many other technologies with limited to considerable presence in the industry exist, we raise attention

to Time-Triggered Ethernet (TTEthernet), which is used in distributed systems where tight synchrony

is required. Messages on this network are statically scheduled, which guarantees they are correctly

transmitted in the time slot they are given [34, 42].

2.4 Partition scheduling

An IMA system is composed of several CPMs with each hosting a set of partitions, with a static, cyclic

partition schedule. The schedule is static because it is configured at build time, and does not change at

runtime. A partition is forcefully stopped at the end of its allocated time window, and control transferred

to the next one to ensure fault containment. It is cyclic because a representative unit is continuously

repeated while the system is active.

2.4.1 Partition scheduling model

Scheduling partitions in IMA involves decisions in two domains. Firstly, IMA makes it possible that partitions

are capable of running on many if not all available CPMs, but the schedule restricts that each must run on

only one. Part of the scheduling problem consists in assigning partitions to different processors, verifying

their real-time constraints. These can include memory, stack-size, bandwidth, as well as other constraints

related to redundancy management. Also, each partition must be allocated time windows to execute while

also verifying time segregation with other partitions in the same module, and being able to communicate

with other elements in the avionic network.

Partitions are characterized by a period and an execution requirement, which are measured in integer

units of time, noting that the highest precision for time measurements in real-time computing systems is

the CPU clock period. Partitions are executed strictly periodically, which means that the time separating

two consecutive execution windows (or instances, jobs) of the same partition is exactly the partition period.

The period is defined based on functional requirements of the application, and is considered a step prior

to scheduling. For information on this step, see for example Nasri and Fohler [39]. This strict periodicity is

common in real-time systems as it is required by control loops for example, but it must be noted that the

Arinc 653 standard does not enforce this. What is required is that there is a ‘periodic processing start’, a

point in a partition schedule coinciding with the beginning of a window where the internal periodic process

scheduling is allowed to start [36]. The execution requirement is taken as the Worst-Case Execution Time

(WCET) of the partition and can be provided by the application developer, or determined through testing

since it is dependent on the hardware. The smallest unit of repetition of the schedule in one CPM is called

the Major Time Frame (MTF), or in other words the hyper-period of the partitions scheduled in that CPM.

This is the smallest time window that is indefinitely repeated, and is equal to the Least Common Multiple
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(LCM) of the partition periods, which guarantees that at least one partition time window be allocated

to each partition in the duration of one MTF. The MTF concept is shown in figure 2.2, with all partition

periods sharing a factor of 2, making the MTF equal to the largest one.
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Figure 2.2: Example schedule with 3 partitions.

Given the strict periodicity of partition executions, once an execution window is defined, all subsequent

ones are implicitly defined, thus the starting time offset with respect to the MTF is sufficient to fully

describe the schedule of a partition. The typical partition scheduling problem is combining this with

distributing the partitions among the available CPMs, complying with some constraints. This is part of

the problem we aim to solve, and the constraints considered are exclusion, inclusion (or cohabitation),

domain, memory, temporal segregation and communication constraints, these are described in detain

in chapter 3. Furthermore, this is transformed into a Combinatorial Optimization Problem (COP), by the

defining an optimization criterion based on flexibility, as introduced in [20], which intuitively consists in

providing each partition with room to increase its execution window without interfering with other partitions.

In practice, this is achieved by scheduling idle time in-between partition executions, and this is described

in detail in section 3.3. In addition to this, we also investigate an extended problem variant explained next.

2.4.2 Extended model

This work expands on classical partition scheduling problem by allowing each partition instance to be split

in multiple windows at the partition schedule, maintaining strict periodicity for the first window, as sketched

in figure 2.3. This requires suspending a partition in the middle of its execution, which is ultimately

preemption, therefore the cost associated with preemption must be evaluated and prevented from affecting

the system behaviour. In general, preemption is undesirable in real-time systems due to the following

issues:

• Preemption destroys program locality, increasing cache misses and ultimately the execution time,

making WCETs harder to characterize [29].

• For control applications, the I/O delay and jitter should be minimized, and this is achieved when the

process is allowed to run continuously and non-preemptively [29].

• The actual context-switching mechanism takes time, and is not negligible compared to the partition

execution requirements.

However, it improves schedulability and allows for higher processor usage loads. The first issue on

the previous list can be tackled by implementing cache restoration on context switches, and the third
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by experimentally evaluating the time expended on context switching, similarly to how the WCETs are

determined, and taking this time into account. Additionally, we can control exactly where preemptions are

possible, thus forbidding interruption on critical sections and I/O, but the disadvantage is that the system

integrator needs to have knowledge of the partition internal details. Control-related applications remain

unsuitable to have their execution instances split into multiple windows.
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Figure 2.3: Partition schedule with some executions split in two windows.

One specific motivation for introducing multiple windows per instance is the case shown in figure

2.3, where the gaps left by the periodic execution of a partition with a small period are smaller than the

execution requirement of another partition. In this case, maintaining both temporal segregation and strict

periodicity is only achievable by using multiple windows per instance.

Using more execution windows as described adds complexity to the problem, for the solution will

also need to specify the subdivision in windows, and any additional one can be freely scheduled as

strict periodicity does not apply. Throughout this dissertation, this extension to the problem is considered

separately.

2.4.3 Multiple schedules in DIMA

As stated in section 2.1.3, one goal in the future of DIMA is for the CPMs to autonomously react to a

change in configuration, such as introduction of mission specific payloads, by loading the necessary

applications and thus changing the partition schedule. Additionally, changing schedules can be a form of

fault management, for example by having specific schedules that are loaded to compensate for partitions

or CPMs failing.

However, all the possible configurations are static and still require independent certification, hence,

from the point of view of this problem, they are considered distinct scheduling problems altogether.

2.5 Related work

2.5.1 Scheduling in real-time systems

The pioneering work of Liu and Layland [2] proves the completeness of the earliest deadline first scheduling

algorithm for the dynamic scheduling of real time preemptive tasks on a single processor, that is, the

algorithm always finds a valid solution if one exists. Considerable amount of work was devoted to
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preemptive runtime scheduling, for a sample see Buttazzo [24], and Easwaran et al. [19] in the avionic

domain.

Strictly periodic scheduling has received less attention in comparison. Korst [4] introduced this problem

in the context of digital signal processing, deriving a necessary and sufficient condition for schedulability

of two tasks. Following work by Korst et al. [7] proves that the problem is NP-complete even for the case

of one processor.

Several authors [13, 21, 45, 47] approach real-time multi-processor scheduling as a case of the bin-

packing problem, with the ultimate goal being to minimize the number of processors needed to schedule

all tasks. Mayank and Mondal [45] focus on non-preemptive periodic tasks, their approach consists in

sequentially assigning tasks to processors using variations of the best-fit and first-fit heuristics, followed by

scheduling using a non-preemptive earliest deadline first algorithm. Zheng et al. [47] study the scheduling

problem of non-preemptive strictly periodic tasks on multiple processors, modelling it with MILP which can

yield optimal solutions. A heuristic sequential task assignment algorithm is proposed which compares

favourably to the exact one, in the sense that it offers inferior time complexity at an acceptable cost in

optimality.

Schedulability conditions for the strictly periodic non-preemptive case are derived in Marouf and Sorel

[25], motivated by the avionics domain. The analysis is done separately for harmonic and non-harmonic

periods, with the schedulability conditions for the former being necessary and sufficient. For the latter,

only a sufficient condition exists, which can be used to assert if a set of tasks remains schedulable after

the addition of a new task, thus a sequential process can prove schedulability for any task set.

2.5.2 Partition scheduling for Integrated Modular Avionics

Authors model the partition scheduling problem in different ways, including mixing process and partition-

level scheduling. The prevalent modelling methods used are MILP and one instance of Satisfiability Modulo

Theories (SMT), as well as other heuristic approaches. MILP or Integer Programming (IP) formulations

are the preferred choice for general discrete COPs, and are able to reach optimal solutions via branch

and bound or branch and cut algorithms. However, for intractable problems like this one, large dimension

problems cannot be tackled by these methodologies in acceptable time, therefore there is a global effort

in literature to employ heuristic algorithms for partition scheduling.

Lee et al. [10] represent the first efforts to automate scheduling for IMA platforms. They address the

problem of scheduling partitions as well as the corresponding tasks in a two-level schedule, considering

also message transmission between tasks. Tasks are scheduled with a fixed-priority preemptive schedule,

and partitions are iteratively assigned a starting time until the requirements are met. The partitions are

assumed to have harmonic, strict periods, and part of their execution time is dedicated to communications.

Practical constraints to the IMA domain are suggested: the replication of partitions as a redundancy

mechanism; the possibility to modify partition characteristics without redoing the schedule as a means to

decrease recertification costs; and the time tick based schedule, which means that all variables with units

of time must be integer numbers, usually of microseconds. Although this work laid the groundwork for the
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formal definition of the requirements for partition scheduling, the iterative algorithm used is insufficiently

robust for modern instances of the problem, given that it is essentially brute-force search.

Easwaran et al. [19] focus on the scheduling of partition processes, considering a pre-defined partition

scheduling policy, using the deadline monotonic algorithm. Each process is subject to a periodic release

time that is affected by a maximum amount of jitter, which consists in loose periodicity. The description is

accurate such that it considers communications by limiting the time of processing chains, and considers

the impact of preemption overheads and blocking times, yielding formal guarantees for certification

purposes. However, it is incomplete as scheduling is carried out independently for each module, and a

simplistic solution is taken for partition-level schedules.

Eisenbrand et al. [22] solve the problem of scheduling partitions with strict periodicity requirements in

the minimum number of processing modules using an IP formulation. They show that their formulation

optimally solves this bin-packing problem and outperforms similar implementations, with computation

times taking less than 15 min for large examples provided by Boeing. The constraints supported are mostly

Knapsack constraints, by limiting memory and bandwidth at each module, but there are also redundancy

and cohabitation constraints. What is missing is inter-partition communications, as it is only considered

that not exceeding the modules’ bandwidth is considered sufficient to guarantee communication. Overall,

this work is shown superior to other approaches to the problem of minimizing the number of modules.

This optimization is of undeniable interest for applications where weight minimization is paramount.

However, often the hardware configuration is defined even before the scheduling phase, and in any case

the resulting schedules are congested, leaving the system difficult to adjust.

Al Sheikh et al. [20] deal with partition scheduling with strict periodicity constraints and inter-partition

communications. The optimization criterion consists in maximizing the worst-case scalability potential of

every partition. The communication model is based on processing chains, and considers an asynchronous

network. An exact MILP formulation is used which solves the problem for small scale examples, however,

it fails to converge for fairly large problems in acceptable time. A preprocessing step based on graph

theory is proposed, and it achieves a substantial reduction in computation times, provided all CPMs have

identical characteristics.

This optimization criterion is valuable to avionic systems because it facilitates integration and mainten-

ance, as small adjustments to partition execution budgets are possible. The approach is also extensive

with respect to the constraints supported, however, the concept under the communication model is ques-

tionable, as supplementary delay is assumed for all communications to account for asynchrony between

CPMs, even if the communication is performed within one CPM. Also, being a purely exact approach, it

is unable to handle cases with modern dimension, notwithstanding the great reduction in solution time

achieved by the preprocessing step.

On their following paper, Al Sheikh et al. [28] introduce an alternative method to perform local search

based on the best response algorithm coming from Game Theory. An initial schedule is found from

a greedy algorithm, then partitions update, one at a time, their allocations and starting times until no

changes can be made that benefits any of them individually. It is shown that this algorithm converges in

a finite number of steps to a local maximum, and that the optimal solution is found for a good enough
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starting point. A multi-start method with Bayesian stopping rules is used to explore a greater portion of

the search space and stop when some probabilistic certainty is obtained that the solution found is optimal.

However, communication constraints are dropped to accommodate this heuristic.

Results show that the described heuristic compares favourably to the exact formulation, reaching

optimal or close to optimal solutions much quicker. Since this essentially depends on the initial state, the

authors attempt to increase the likelihood of finding the optimum by using more starting states. However,

this consists in solving the whole problem many times, and could be improved.

On a completely different paradigm, Beji et al. [34] aim to minimize the cost of integration in IMA systems,

considering the partition scheduling and network topology based on TTEthernet. They distinguish hard

constraints, related to the network and the usual partitions segregation requirements, and soft constraints,

related to the integration costs. Hard constraints should always be satisfied whilst soft constraints only

impose a penalty if they are not. The approach is a holistic scheduling of partitions and messages in

the TTEthernet network, with detailed constraints related to the TTEthernet technology. Distribution

constraints are restricted to redundancy at the partition level, and in fact for some cases it is required that

the different partition instances run synchronously, on different CPMs. The problem is encoded in SMT

language, a form of constraint programming, and solved with an SMT-based tool for a relatively small

example.

The optimization performed is interesting as it aims to minimize costs, and this work also showcases

the relevancy of TTEthernet in the avionic domain. This is also the main disadvantage, as the model is

specific to this technology, hence it is not portable to other IMA implementations.

Pira and Artigues [41] also use a Game Theory heuristic proposed in [28] for scheduling strictly

periodic tasks on multiprocessors, and compare it to an exact MILP solution. In particular, they found

that for large-scale examples, the heuristic could yield at least a feasible solution in minutes, while the

number of variables was too large to even load the MILP solver. Their contribution consists of detailing

efficient methods for computing the optimal partition offsets in this heuristic, which are based on linear

programming, improving the performance of the methodology presented in Al Sheikh et al. [28].

Melani et al. [46] explore multicore scheduling in the context of IMA. The authors propose to mitigate

the introduced temporal unpredictability by forcing synchronous context switching across cores, and

splitting the partition execution times in a critical section and an optional section. The solution is a mixed

pre-runtime and runtime scheduler, partitions are still assigned fixed slots in a conservative manner, but at

runtime, a resource reclaiming mechanism redistributes the unused time budgets. The simulation results

show that this approach is a promising solution for implementing IMA on multicore platforms, and a valid

framework for describing these systems. On the other hand, a runtime component of this schedule is not

anticipated in Arinc 653, and as a result, a solution like this cannot be implemented in the foreseeable

future.

Blikstad et al. [49] approach the problem of pre-runtime scheduling of tasks with loose periods on an IMA

platform with a MILP formulation. This is done at the process level and also considering communication

between tasks, which are characterized explicitly by their release times, deadlines, and execution times,

as well as knapsack and other distribution constraints. The approach consists on a comprehensive
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mathematical model of the whole avionic system, with a constraint generation procedure to supply the

MILP-encoded model. Given this, no particular optimization goal is given, and the execution time is

significantly higher than the other approaches – ranging up to weeks for larger examples.

The main issue, in my opinion, is the excessive abstraction used, which does not clearly distinguish

partitions and processes in the context of Arinc 653. Also, as with the other approaches that use IP/MILP,

the solution time is substantial, although for the author’s industrial application with Saab, this was deemed

acceptable.

Table 2.1 summarizes the different approaches in literature, by the order they were introduced.

2.5.3 Relevant scheduling work in other domains

The present scheduling problem is rather specific to the avionic domain. Below we list two contributions

in the general domain of scheduling that are somewhat similar to ours.

For scheduling in more general applications the reader can refer to Pinedo [16], providing a full overview

of the topic, with special attention to the manufacturing and service industries. Stochastic models are

used for dealing with uncertainty, something that sees no application in real time systems, except when

determining worst-case values for quantities like communication delays and execution times. Special

attention is called to heuristic methods for undertaking optimization problems in general, such as genetic

algorithms, Ant Colony Optimization (ACO), Simulated Annealing (SA), Tabu-search, beam-search, and

agent-based and machine learning methods, which inspired the approach in this dissertation.

At last, an alternative approach to periodic scheduling is done in Bar-Noy et al. [11], which represent

the problem using trees (acyclic directed graphs). Their problem consists of a set of clients requesting

from a service a fraction of the available bandwidth, for example in broadcast disks or Bluetooth ‘park

mode’. Every client should get a strictly periodic time slot to access the service, and the goal is to minimize

the difference between the clients’ assigned and requested bandwidths. It is shown how to construct

periodic schedules from trees, where each client is a leaf node and its period proportional to the degree

of the nodes leading to it. An optimal algorithm for constructing the optimal tree is given, which runs in

exponential time, and several heuristic algorithms approximate the optimal solution in polynomial time. It

is noted, however, that not every periodic schedule has a tree representation.

2.5.4 Contributions

This dissertation follows a problem model similar to Al Sheikh et al. [20] and with the same optimization

goal, but considering synchronous communication between partitions, and additional constraints restricting

on which CPMs partitions can be scheduled.

Identically, the MILP model is adapted to our variant of the problem, and the best response heuristic

algorithm [28, 41] is adapted to perform local search. For global search, stochastic optimization algorithms,

namely SA, Tabu-search and a genetic algorithm are used to complement global search, as presented by

Pinedo [16].

We also include an extended model where partition execution can be divided in multiple windows, and
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this component is novel in literature. The best response algorithm is adapted to solve this case as well.

However, this analysis is done separately and is not included in the MILP model.

Table 2.1: Summary of related work in IMA partition scheduling.

Reference Optimization Methodology
Constraints

Timing Distribution Communication

Lee et al. [10] – Constraint-
based

Strict periods Redundancy Process-level

Easwaran et al. [19] – Runtime
scheduling
with deadline
monotonic,
process-level

Loose periods
with minimum
jitter

– Process-level

Eisenbrand et al. [22] Minimize the
number of
CPMs

IP Strict periods Redundancy,
cohabitation,
Knapsack

–

Al Sheikh et al. [20] Scalability MILP Strict periods Redundancy,
Knapsack

Partition-level

Al Sheikh et al. [28] Scalability MILP and
best response
heuristic

Strict periods Redundancy,
Knapsack

–

Beji et al. [34] Integration
cost

SMT Strict periods,
synchronous
redundancies

Redundancy Partition-level

Pira and Artigues [41] Scalability MILP and
best response
heuristic

Strict periods – –

Melani et al. [46] – Dedicated
algorithms

Multicore,
synchronous
context switch-
ing

– –

Blikstad et al. [49] – MILP Loose periods Redundancy,
cohabitation,
Knapsack

Partition-level

This dissertation Scalability MILP, best
response
heuristic,
stochastic
optimization

Strict periods Redundancy,
cohabitation,
Knapsack

Partition-level
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Chapter 3

Problem Model

This chapter presents the mathematical model for the partition scheduling problem. We define the problem

variables, constraints, and an optimization criterion, describing how these relate to the motivation for this

problem. Feasibility and schedulability conditions are given in section 3.2, and the problem is summarized

in section 3.4 in the form of a Mixed Integer Linear Program.

3.1 Problem Definition

Consider a set of 𝑁𝑝 partitions 𝒫 = {𝑝1, 𝑝2, … 𝑝𝑁𝑝
} to be scheduled in 𝑁𝑐 modules 𝒞 = {𝑐1, 𝑐2, … 𝑐𝑁𝑐

}.

Partitions 𝑝𝑖 ∈ 𝒫 are characterized by:

• 𝑒𝑖 – execution requirement in units of time, taken as its WCET.

• 𝑇𝑖 – period, in units of time.

• 𝑠𝑖 – memory requirement, in arbitrary units.

Modules 𝑐𝑚 ∈ 𝒞 are characterized by:

• 𝑆𝑚 – memory capacity, in the same units as 𝑠.

• 𝜀𝑚 – context switching cost, in units of time.

This context switching cost is a time penalty added to the partition execution when it is divided in multiple

windows, corresponding to the time taken to restore the execution state. In usual real life instances, these

quantities would be the same for every module.

The assignment of partitions to modules is represented by variables 𝑓𝑖, ∀𝑝𝑖 ∈ 𝒫, which denotes that

partition 𝑝𝑖 is assigned with the module with index 𝑚 = 𝑓𝑖. For convenience, we also define 𝒫𝑚 ⊆ 𝒫 as

the subset of partitions scheduled in module 𝑐𝑚. That is,

𝒫𝑚 ≡ {𝑝𝑖 ∈ 𝒫, 𝑓𝑖 = 𝑚}. (3.1)
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The module MTF is the hyper-period of the partition periods hosted in each module:

𝐻𝑚 ≡ lcm {𝑇𝑖}, 𝑝𝑖 ∈ 𝒫𝑚, (3.2)

where lcm denotes the least common multiple operator. Under this, a partition executes 𝐾𝑖 = 𝐻𝑚/𝑇𝑖

times, and these individual executions are called jobs (notice 𝐾𝑖 is an integer due to the definition of

𝐻𝑚). Let now 𝑡𝑖 be the starting offset for partition 𝑝𝑖, such that this partition is scheduled to start at strict

periodic instants 𝑡𝑖 + 𝑘𝑇𝑖, 𝑘 = 0, 1, … 𝐾𝑖 − 1. To verify that all 𝐾𝑖 jobs fit in one hyper-period, one must

have

𝑡𝑖 + (𝐾𝑖 − 1)𝑇𝑖 + 𝑒𝑖 ≤ 𝐻𝑚, (3.3)

which represents the finishing time of the last job. Plugging 𝐻𝑚 = 𝐾𝑖𝑇𝑖 yields the important condition:

𝑡𝑖 ≤ 𝑇𝑖 − 𝑒𝑖. (3.4)

Figure 3.1 shows the introduced timing notation in a schedule with non-harmonic periods. By definition,

periods 𝑇𝑖, 𝑇𝑗 are harmonic if and only if 𝑇𝑖 divides 𝑇𝑗 or 𝑇𝑗 divides 𝑇𝑖.
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Figure 3.1: Schedule with annotated timing variables. Partitions have non-harmonic periods.

Assuming single execution windows, a partition executes in time windows [𝑡𝑖+𝑘𝑇𝑖, 𝑡𝑖+𝑘𝑇𝑖+𝑒𝑖], 𝑘 =

0, 1, … 𝐾𝑖, and temporal segregation requires that these windows do not overlap for partitions in the same

module. Partition execution in multiple windows is considered a different problem and is described in

section 3.1.3. All timing variables are integers, and in particular periods and durations are strictly positive.

3.1.1 Distribution constraints

The assignment of partition to modules is restricted by constraints which we call distribution constraints.

Exclusion – Two partitions are said to be in exclusion if they cannot be assigned to the same module.

This covers, but is not restricted to, the redundancy requirements of an avionic system, where

safety-critical functionality must be replicated in different machines. An exclusion constraint between

partitions 𝑝𝑖, 𝑝𝑗 is denoted by 𝑓𝑖 ≠ 𝑓𝑗.

Inclusion – Two partitions are said to be in inclusion if they must be placed in the same module, which
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is useful for applications that are tightly coupled. Similarly to exclusion, an inclusion constraint

between partitions 𝑝𝑖, 𝑝𝑗 is denoted by 𝑓𝑖 = 𝑓𝑗.

Domain – A partition can only be assigned to a subset of all modules, called the partition’s domain. That

is the case in some architectures where applications require specific hardware that is only installed

in some modules, like peripherals. The domain 𝐷𝑖 of a partition 𝑝𝑖 is essentially a list of modules it

can be assigned to. Formally, 𝐷𝑖 ⊆ 𝒞 such that:

𝑐𝑚 ∉ 𝐷𝑖 ⟹ 𝑓𝑖 ≠ 𝑚. (3.5)

Memory – This is the only Knapsack constraint considered. For each module, the sum of the partitions’

memory sizes much not exceed that module’s memory capacity:

∑
𝑝𝑖∈𝒫𝑚

𝑠𝑖 ≤ 𝑆𝑚. (3.6)

Uniqueness – This constraint simply imposes that each partition is assigned to exactly one module.

Using 𝑓𝑖 notation, this constraint is implicit, but with the abbreviated 𝒫𝑚 notation it is expressed as:

⎧{{
⎨{{⎩

𝒫1 ∪ 𝒫2 ∪ … ∪ 𝒫𝑁𝑐
= 𝒫

∀𝑐𝑚, 𝑐𝑛 ∶ 𝒫𝑚 ∩ 𝒫𝑛 = ∅.
(3.7)

3.1.2 Communication constraints

Accounting for inter-partition communications can initially be interpreted as precedence relations, where

the execution of one partition depends on the previous execution of another partition. However, since the

schedule is cyclic, these are always true given enough time.

More thoroughly, inter-partition communications are often represented as processing chains, consisting

of some kind of data being treated by successive partitions. One can think of data originating from a

sensor or user input, being processed by one or more partitions, then originating a certain response in its

final destination [28].

For this problem, we will consider such chains, but limit them to two partitions only, such that the time

taken to process the data from its origin in the sender partition to its consumption in the receiver partition

is bounded.

A chain linking 𝑝𝑖 to 𝑝𝑗 is subject to a maximum delay 𝐸max
𝑖,𝑗 , so we can describe all communication

constraints by a matrix [𝐸max], with entries being infinity when there is no communication between

partitions. The chain processing time is denoted 𝐸𝑖,𝑗, measured from the start of 𝑝𝑖 to the end of 𝑝𝑗,

and must verify

𝐸𝑖,𝑗 ≤ 𝐸max
𝑖,𝑗 . (3.8)

This definition is agnostic to which jobs actually participate in the chain. If the two partitions have equal
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periods, then the delay between two consecutive jobs is constant, but if the periods are not equal but still

harmonic, then 𝐸𝑖,𝑗 is defined as the shortest delay, and the chain can occur with a period equal to the

larger of the two partition periods. When the two partition periods are non-harmonic, then for simplicity we

consider also the smallest delay, and the chain shall be repeated with a period equal to the hyper-period

of these two partitions. See figure 3.2 for clarification.
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(b) Chain with 2𝑇1 = 𝑇2.
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(c) Chain with 2𝑇1 = 3𝑇2.

Figure 3.2: Duration of chains for different periods.

The examples in figure 3.2 show chains where the partitions involved are assigned to the same

module. If they are assigned to different modules, the network delay between these two modules must be

considered. The network is characterized by a matrix [Τ] with elements 𝜏𝑚,𝑛 of maximum ETE delays,

which are upper bounds to the actual communication delay between modules 𝑐𝑚, 𝑐𝑛. Communications

between partitions in the same module are not subject to network delays, thus we define 𝜏𝑚,𝑚 = 0, ∀𝑚.

We can also assume 𝜏𝑚,𝑛 ≪ 𝑇𝑖, ∀𝑚, 𝑛, 𝑖, by at least one order of magnitude.

Communications between modules are fundamentally different depending on the specific implement-

ation. If the modules run asynchronously, independent of the network delay, the message can arrive

at an arbitrary instant in the second module’s schedule, thus the worst case must be considered. This

corresponds to the message arriving immediately after the second partition checks for messages, in which

case the processing chain can only complete in the next job of this partition. These are the circumstances

considered in Al Sheikh et al. [20].

The situation considered here is when the modules run synchronously. Intuitively, this means the two

modules’ schedules are aligned, and the instant when the message arrives in the second module is known.

In this case, we do not need to consider the worst case at all times, the message is only processed in the

next job when it arrives past the time the receiving partition checks for messages. It is also considered

that all messages are sent and received in the end and beginning, respectively, of a partition’s execution

window. The earlier assumption 𝜏𝑚,𝑛 ≪ 𝑇𝑖 is meant to prevent messages from being delayed for more

than one period.
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Figure 3.3 sketches both cases, where we have 𝑒1 = 2, 𝑒2 = 1, 𝑇1 = 12, 𝑇2 = 6, 𝑡1 = 0, 𝑡2 = 4,

and 𝜏1,2 = 1. In figure 3.3a, the modules are operating with an arbitrary offset, thus the worst case is to

consider module 𝑐2 to be running 1 time unit ahead, such that the message arrives in the critical instant

that 𝑝2 is checking for messages, and must wait for the next job of this partition. In contrast, in figure 3.3b

the modules are synchronized and the message arrives in time to be processed in the current job of 𝑝2.
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(a) Chain between modules running asynchronously with an arbitrary offset.
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(b) Chain between synchronous modules.

Figure 3.3: Inter-module communications example.

To be noted that in the asynchronous variant, the actual schedule is irrelevant for chains when the two

partitions are assigned to different modules, and it is sufficient that the network delay is compatible with

the maximum processing time:

𝐸𝑖,𝑗 = 𝑒𝑖 + 𝜏𝑚,𝑛 + 𝑇𝑗 + 𝑒𝑗, 𝑚 ≠ 𝑛. (3.9)

This entails that schedules complying with the asynchronous model will also comply with the same

requirements considering the synchronous model.

3.1.3 Multiple window model

For the extended model, it is considered that partition jobs (instances) can be divided in more than one

window of execution, hence we introduce an extended model with specific constraints such that the

real-time requirements of these partitions are verified. Henceforth, this is referred to as simply ‘multiple

windows’.

Consider now that, for each job 𝑘 of a partition 𝑝𝑖 ∈ 𝒫𝑚, there are 𝑀𝑖,𝑘 execution windows, with
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lengths (𝑒𝑖,𝑘,1, 𝑒𝑖,𝑘,2, … , 𝑒𝑖,𝑘,𝑀𝑖,𝑘
), such that:

𝑀𝑖,𝑘

∑
𝑢=1

𝑒𝑖,𝑘,𝑢 = 𝑒𝑖 + (𝑀𝑖,𝑘 − 1)𝜀𝑚, ∀𝑘. (3.10)

The windows are represented as 𝜆𝑖,𝑘,𝑢, and each has its own offset 𝑡𝑖,𝑘,𝑢, defined with respect to the

hyper-period. Additionally, all windows that compose the partition are denoted by the set Λ𝑖. Since the

first window at each job must be executed strictly periodically, its offset is not independent for all jobs, and

is constricted by:

𝑡𝑖,𝑘,1 = 𝑡𝑖,1,1 + (𝑘 − 1)𝑇𝑖, ∀𝑘. (3.11)

The problem is greatly complicated because we require vector variables to completely represent the

schedule, in particular because the number of jobs depends on the hyper-period, which is a function of

the periods of all partitions assigned to that module, and the number and sizes of each window are also

variable.

We require that the partition splitting be done only in predetermined points in order to limit the problem

complexity, as well as due to reasons covered in section 2.4.2. These set of possible points for splitting

is represented for each partition 𝑝𝑖 as ℬ𝑖. Splitting a partition at job 𝑘 in a subset of preemption points

b ⊆ ℬ𝑖 yields the window sizes e𝑖,𝑘 = (𝑏1, 𝑏2 − 𝑏1 + 𝜀𝑚, … , 𝑏𝑁 − 𝑏𝑁−1 + 𝜀𝑚), where we consider

without loss of generality that b has 𝑁 sorted elements.

The response time of a task is defined as the time taken from the task activation to when the task

completes, and clearly, this concept is not relevant if the execution is made in a single window. With

more than one window per job, the partition finishes executing in instants {𝑡𝑖,𝑘,𝑀𝑖,𝑘
+ 𝑒𝑖,𝑘,𝑀𝑖,𝑘

}, which

prompts the definition of the response time, 𝑟𝑖, as

𝑟𝑖 = max
𝑘

{𝑡𝑖,𝑘,𝑀𝑖,𝑘
+ 𝑒𝑖,𝑘,𝑀𝑖,𝑘

− 𝑡𝑖,𝑘,1}, (3.12)

restricted by a relative deadline, 𝑑𝑖:

𝑟𝑖 ≤ 𝑑𝑖, (3.13)

which is measured with respect to to the job start, 𝑡𝑖,𝑘,1. All partitions have the implicit deadline 𝑑𝑖 ≤ 𝑇𝑖

to ensure that all windows finish before the next job starts.

Figure 3.4 sketches the new notation introduced in this section, where the windows corresponding to

a subdivision of a job are represented with rounded edges.

3.2 Schedulability

The feasibility of the subproblem of assigning partitions to modules such that the distribution constraints

are verified is analysed in section 4.1.
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𝑡

MTF MTF

𝜆𝑖,1,1 𝜆𝑖,2,1 𝜆𝑖,2,2

𝑇𝑖

𝑒𝑖,1,1 𝑒𝑖,2,1 𝑒𝑖,2,2

𝑡𝑖,1,1
𝑡𝑖,2,1

𝑡𝑖,2,2

𝜀

𝑟𝑖

Figure 3.4: Multiple window execution notation.

A necessary and sufficient condition for two strictly periodic tasks to not overlap in time is derived in

Korst et al. [7], which we reiterate for partitions. For two partitions 𝑝𝑖, 𝑝𝑗 ∈ 𝒫𝑚, let 𝑔𝑖,𝑗 be the Greatest

Common Divisor (GCD) of the two partition periods,

𝑔𝑖,𝑗 = gcd {𝑇𝑖, 𝑇𝑗}. (3.14)

Then, the partitions do not overlap in time if and only if:

𝑒𝑖 ≤ mod{𝑡𝑗 − 𝑡𝑖, 𝑔𝑖,𝑗} ≤ 𝑔𝑖,𝑗 − 𝑒𝑗, (3.15)

where mod denotes the modulo operator (remainder after division). In particular, the unsigned modulo

function is used, meaning that the result has the same sign as the divisor. In fact, the term

𝑙𝑖,𝑗 ≡ mod{𝑡𝑗 − 𝑡𝑖, 𝑔𝑖,𝑗}, (3.16)

is the smallest separation between the start times of 𝑝𝑖 and 𝑝𝑗, to which we call latency delay after Pira

and Artigues [41]. From the properties of the modulo function and noting that 𝑔𝑖,𝑗 = 𝑔𝑗,𝑖, equation 3.15

can be expressed as:

⎧{{
⎨{{⎩

𝑙𝑖,𝑗 ≥ 𝑒𝑖

𝑙𝑗,𝑖 ≥ 𝑒𝑗

. (3.17)

Figure 3.5 marks the latency delays for two partitions with 𝑇𝑗 = 2𝑇𝑖.

MTF MTF

𝑡
𝑝𝑖 𝑝𝑖𝑝𝑗

𝑡𝑖

𝑡𝑗

𝑙𝑖,𝑗
𝑙𝑗,𝑖

Figure 3.5: Latency delays, adapted from [28].

This condition is extendable to any set of partitions. For a set 𝒮, we denote by 𝒮2 the set of every

combination of two distinct elements belonging to 𝒮. Then, a partition schedule for module 𝑚 verifies

temporal segregation if and only if equation 3.17 (or equivalently 3.15) is true ∀𝑝𝑖, 𝑝𝑗 ∈ 𝒫2
𝑚.

From equation 3.15, it can be deduced that two partitions are schedulable in the same module if and
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only if

𝑒𝑖 + 𝑒𝑗 ≤ 𝑔𝑖,𝑗. (3.18)

This becomes a sufficient condition for more than two partitions: 𝒫𝑚 is schedulable if

∑
𝑝𝑖∈𝒫𝑚

𝑒𝑖 ≤ 𝑔, (3.19)

where 𝑔 = gcd{𝑇𝑖, 𝑝𝑖 ∈ 𝒫𝑚}. In practice, this condition proves to be too strict, as there are many sets

that do not verify this condition but that are easily schedulable. As an example, the schedule in figure 3.1

has ∑ 𝑒 = 7 and 𝑔 = 2. Stronger schedulability conditions are derived in Marouf and Sorel [25]. The

most general one asserts if a new candidate partition, 𝑝𝑗, can be added to an already schedulable set

𝒫𝑚:

𝑒𝑗 ≤ ∑
𝑝𝑖∈𝒫𝑚

𝑒𝑖 ⋅ 𝛿 [mod{𝑇𝑗, 𝑇𝑖} ⋅ (mod{𝑇𝑗, 2𝑔} + mod{𝑇𝑖, 2𝑔})] , (3.20)

where 𝛿 is the Kronecker delta:

𝛿(𝑥) =
⎧{{
⎨{{⎩

1, if 𝑥 = 0

0, otherwise
. (3.21)

Still, it remains a sufficient condition only, and it is unpractical since it should be applied iteratively to the

set.

As a remark, an important motivation for the partition periods to be harmonic is schedulability, as this

ensures that

𝑔 = min
𝑝𝑖∈𝒫𝑚

{𝑇𝑖}, (3.22)

which is the maximum value it can take. In the other extreme case, if there are co-prime periods then

𝑔𝑖,𝑗 = 1, and these two tasks are not schedulable.

Schedulability can also be analysed with the processor usage fraction, 𝑈𝑚, given by:

𝑈𝑚 = ∑
𝑝𝑖∈𝒫𝑚

𝑒𝑖
𝑇𝑖

. (3.23)

This can be seen as the percentage of time that a processor is active, and for single core processors the

set is clearly not schedulable when 𝑈𝑚 > 1. For the complete problem, it is infeasible if:

∑
𝑐𝑚∈𝒞

𝑈𝑚 > 𝑁𝑐. (3.24)
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Schedulability with communications

Using the definition of the latency delay, the chain processing time is given as:

𝐸𝑖,𝑗 =
⎧{{
⎨{{⎩

𝑙𝑖,𝑗 + 𝑒𝑗, if 𝑙𝑖,𝑗 − 𝑒𝑖 ≥ 𝜏𝑚,𝑛

𝑙𝑖,𝑗 + 𝑒𝑗 + 𝑇𝑗, otherwise
, (3.25)

with 𝑝𝑖 ∈ 𝒫𝑚, 𝑝𝑗 ∈ 𝒫𝑛. When there is enough leeway between the two partitions to accommodate

the communication delay 𝜏𝑚,𝑛, the chain can complete at the next instance of 𝑝𝑗, otherwise the chain

prolongs for additional period of the second partition. We reiterate an assumption that 𝜏 ≪ 𝑇, which just

prevents prolonging the chain by two or more periods instead.

From its definition, a chain is only possible when

𝑒𝑖 + 𝑒𝑗 ≤ 𝐸max
𝑖,𝑗 , (3.26)

and additionally it is definitely possible if this is verified and 𝑝𝑖, 𝑝𝑗 can be scheduled in the same module.

On the other hand, the latency delay between two partitions is bounded by 𝑔𝑖,𝑗, therefore a chain is

always verified (independently from respective offsets) when:

𝑔𝑖,𝑗 + 𝑒𝑗 + 𝑇𝑗 ≤ 𝐸max
𝑖,𝑗 , (3.27)

if scheduled in the same module, otherwise when:

𝑒𝑖 + 𝑒𝑗 + max{Τ} + 𝑇𝑗 ≤ 𝐸max
𝑖,𝑗 . (3.28)

The term max{Τ} represents the maximum element of this matrix, which corresponds to the highest ETE

delay in the network.

3.3 Optimization criterion

The optimization criterion chosen is one that aims to increase flexibility, by providing each partition a

potential to increase its execution time. This is accomplished by leaving some idle time after each partition

execution windows, and has two benefits,

• upon system maintenance or modification, one can add functionality to partitions, increasing their

execution requirement, without having to recompute a new schedule,

• it mitigates uncertainty on the determined WCETs.

Possibly, it could also be viewed as allowing for the usage of slower, cheaper hardware, where the

execution requirements would increase.
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The evaluation function used is the 𝛼-parameter, which is the maximum factor that scales all partition

execution requirements, such that the schedule becomes borderline valid [20]. It can be defined for each

module, or for the whole system:

𝛼𝑚 = min{
𝑙𝑖,𝑗
𝑒𝑖

}, ∀𝑝𝑖, 𝑝𝑗 ∈ 𝒫𝑚, 𝑖 ≠ 𝑗 (3.29)

𝛼 = min
𝑐𝑚∈𝒞

{𝛼𝑚}. (3.30)

This yields each partition further execution time in proportion to the original execution requirement, which

is appropriate since more complex applications with longer execution requirements are more likely to

need to be updated and/or expanded.

The single processor scheduling problem is formulated as:

max 𝛼

s.t. 𝛼 ≥ 0

𝑒𝑖𝛼 ≤ 𝑙𝑖,𝑗

0 ≤ 𝑡𝑖 ≤ 𝑇𝑖 − 𝑒𝑖

𝑝𝑖, 𝑝𝑗 ∈ 𝒫𝑚 𝑖 ≠ 𝑗

𝑡𝑖 ∈ ℤ

(3.31)

A useful property of the 𝛼-parameter is that it is able to rate even invalid solutions. A value 𝛼 = 1 means

a borderline valid schedule, a value 𝛼 > 1 a valid schedule that has some slack, and a value 𝛼 < 1 an

invalid schedule which has overlaps. If we are not interested on the maximization problem but instead in

the feasibility problem, plugging 𝛼 ≥ 1 in the previous model transforms it into a CSP, for which many

complete algorithms exist. Related work on this problem either uses the same optimization criterion [20,

28, 41], or instead aims to minimize the number of modules [21, 22, 47].

Figure 3.6 illustrates the optimization criterion. Note that in this figure, 𝑝2 actually can increase its

execution further, but the critical factor for the 𝛼-parameter is 𝑝1. Also note the solution presented is

sub-optimal, it is clear that shifting 𝑝2 to the right increases 𝛼.

𝑡
𝑝1 𝑝1𝑝2

𝑒1 𝑒2

𝛼𝑒1 𝛼𝑒2

Figure 3.6: Effect of the 𝛼-parameter.

A concept that will be used in the next chapter is the partition utility, 𝛼𝑖, defined as follows,

𝑤(𝑖, 𝑗) = min{
𝑙𝑖,𝑗
𝑒𝑖

,
𝑙𝑗,𝑖
𝑒𝑗

} (3.32)

𝛼𝑖(𝑡𝑖) = min
𝑗

{𝑤(𝑖, 𝑗)}, (3.33)

for 𝑝𝑗 ∈ 𝒫𝑚 ∖ {𝑝𝑖}. It represents the module’s 𝛼-parameter, as a function of the offset 𝑡𝑖, but considering
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only the partition pairs where 𝑝𝑖 is involved, and all other offsets fixed. It is distinct from simply the

execution potential for that partition, because it also accounts for the effect on the remaining partitions in

that module, as seen in expression 3.32.

Introducing chains and multiple windows adds some nuances to the 𝛼-parameter. With respect to

chains, increasing partition executions also increases the chain processing time, so it would be reasonable

to limit 𝛼 not only to avoid overlapping, but also to avoid chains exceeding their predefined delays. However,

the premise for 𝛼 is adding functionality to partitions, so we can consider that the processes depending

on the communication link still complete their tasks even if functionality is appended to the partition. This

still entails that messages must be sent in places other than the end of an execution window, but this was

only a simplification made for this model, and not a system requirement. The keynote here is that the

𝛼-parameter is not directly constricted due to chains.

Following the same idea, for partitions with multiple execution windows we consider that the execution

potential is appended only to the last window at every job. The definition of 𝛼 in this case is more

complicated, as each execution window needs to be considered independently. In particular, note that

since each partition job can have a different arrangement of execution windows, each window is only

repeated with a period of 𝐻𝑚, the hyper period of the module where it is scheduled. A good abstraction

to this is to define the window period to be this value, 𝑇𝑖,𝑘,𝑢 = 𝐻𝑚.

We begin by redefining the latency delays for specific partition windows, abbreviating 𝑎 ≡ 𝑖, 𝑘1, 𝑢1

and 𝑏 ≡ 𝑗, 𝑘2, 𝑢2,

𝑙𝑎;𝑏 ≡ mod{𝑡𝑏 − 𝑡𝑎, 𝑔𝑎;𝑏}, (3.34)

and for our purposes, the partitions will be assigned to the same module, thus 𝑔𝑎;𝑏 = 𝐻𝑚.

The utility is defined for each window as well:

𝑤(𝑎, 𝑏) =

⎧{{{{
⎨{{{{⎩

𝑙𝑎;𝑏
𝑒𝑎

, if 𝑢1 < 𝑀𝑖,𝑘1
∧ 𝑙𝑎;𝑏 < 𝑒𝑎

∞, if 𝑢1 < 𝑀𝑖,𝑘1
∧ 𝑙𝑎;𝑏 ≥ 𝑒𝑎

𝑙𝑎;𝑏−𝑒𝑎+𝑒𝑖
𝑒𝑖

, if 𝑢1 = 𝑀𝑖,𝑘1
,

(3.35)

𝛼𝑎(𝑡𝑎) = min{𝑤(𝑎, 𝑏1), 𝑤(𝑏1, 𝑎), 𝑤(𝑎, 𝑏2), 𝑤(𝑏2, 𝑎), …}. (3.36)

Additional execution is only appended to the last window of a job, so only the branch with 𝑢 = 𝑀𝑖,𝑘

in equation 3.35 computes the utility as expected. Here, the idle space is 𝑙𝑎;𝑏 − 𝑒𝑎, meaning that

proportionally to the original partition execution, it can be scaled by 1 + (𝑙𝑎;𝑏 − 𝑒𝑎)/𝑒𝑖. For all other

windows, we are only interested in avoiding overlaps, which happen when 𝑙𝑎,𝑏 < 𝑒𝑎. The value in this

case does not have any meaning, but it is convenient that it is less than 1.0 and proportional to the portion

of the window that is overlapping in order to classify this as an invalid solution. Otherwise we can ignore

the constraint, but note this will never cause the utility to be infinite, because it is defined as a minimum,

and at least one value will be finite.
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The simplest way to define the 𝛼-parameter of the module is as the minimum utility of all windows:

𝛼𝑚 = min{𝛼𝑖,𝑘,𝑢(𝑡𝑖,𝑘,𝑢)}, ∀𝑝𝑖 ∈ 𝒫𝑚, ∀𝜆𝑖,𝑘,𝑢 ∈ Λ𝑖. (3.37)

Figure 3.7 illustrates the concept of latency delays and utility when there are multiple windows. We

labelled the regions A, B and C, which correspond to the three branches of equation 3.35, in the same

order. Since there is overlap in region A, the utility (for either partition) is the minimum one between any

two windows, which is a value less than 1.0.

MAF MAF

𝑝2 𝑝2 𝑝2

𝜆1,1,1 𝜆1,1,2 𝜆1,1,3

𝑙1,1,1;2 𝑙1,1,2;2 𝑙1,1,1;2

𝑙1;1,1,2 𝑙1;1,1,3 𝑙1;1,1,1

A B C

Figure 3.7: Partition utility with multiple windows.

3.4 MILP formulation

In this section we detail a MILP formulation that models the multiprocessor partition scheduling problem

with communication constraints, but does not consider multiple execution windows. The classification

as a Mixed Integer Linear Program comes from the fact that the formulation uses both integer variables

(offsets and assignments) as well as real variables (the 𝛼-parameter) involved in linear constraints. This

serves as a proof of concept that MILP can be used for combinatorial optimization problems, as every

NP-complete problem is known to have a polynomial-sized ILP representation [14], and is commonly used

for comparing with lighter, heuristic methods. The performance of a solver using this model is compared

to other developed methods in chapter 5. The formulation follows closely that in [20], and uses the natural

encoding of binary variables, 1-true and 0-false.

We begin by reformulating the assignment of partitions to modules. Let 𝑎𝑖,𝑚 be a binary variable

expressing that partition 𝑝𝑖 is assigned to module 𝑐𝑚,

𝑎𝑖,𝑚 =
⎧{{
⎨{{⎩

1, if 𝑝𝑖 ∈ 𝒫𝑚

0, otherwise
, (3.38)

which requires 𝑁𝑝 × 𝑁𝑐 variables. The distribution constraints expressed with this new notation take the
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following form:

Uniqueness ∶ ∀𝑖 ∑
𝑚

𝑎𝑖,𝑚 = 1. (3.39a)

Memory ∶ ∀𝑚 ∑
𝑖

𝑎𝑖,𝑚𝑠𝑖 ≤ 𝑆𝑚 (3.39b)

Exclusion ∶ 𝑓𝑖 ≠ 𝑓𝑗 ∶ ∀𝑚 𝑎𝑖,𝑚 ≤ 1 − 𝑎𝑗,𝑚 (3.39c)

Inclusion ∶ 𝑓𝑖 = 𝑓𝑗 ∶ ∀𝑚 𝑎𝑖,𝑚 = 𝑎𝑗,𝑚 (3.39d)

Domains ∶ ∀𝑖 ∑
𝑐𝑚∈{𝒞∖𝐷𝑖}

𝑎𝑖,𝑚 = 0. (3.39e)

Temporal segregation is ensured by equation 3.15, which is non-linear due to the modulo function.

Linearisation requires the introduction as free variables of the quotient from the division,

𝑞𝑖,𝑗 = ⌊
𝑡𝑗 − 𝑡𝑖

𝑔𝑖,𝑗
⌋, (3.40)

which enables rewriting condition 3.15 as

𝑒𝑖 ≤ 𝑡𝑗 − 𝑡𝑖 − 𝑞𝑖,𝑗𝑔𝑖,𝑗 ≤ 𝑔𝑖,𝑗 − 𝑒𝑗. (3.41)

The 𝛼-parameter multiplies the partition executions, and these constraints should only apply to partitions

in the same module, thus a ‘Big-M’ constant 𝑍 is used to trivially satisfy these inequalities when the

partitions are not assigned to the same module. So, constraints 3.41 can be divided as follows:

∀𝑝𝑖, 𝑝𝑗 ∈ 𝒫, 𝑐𝑚 ∈ 𝒞 ∶
𝑡𝑗 − 𝑡𝑖 − 𝑞𝑖,𝑗𝑔𝑖,𝑗 ≥ 𝛼 ⋅ 𝑒𝑖 − 𝑍 (2 − 𝑎𝑖,𝑘 − 𝑎𝑗,𝑘)

𝑡𝑗 − 𝑡𝑖 − 𝑞𝑖,𝑗𝑔𝑖,𝑗 ≤ 𝑔𝑖,𝑗 − 𝛼 ⋅ 𝑒𝑗 + 𝑍 (2 − 𝑎𝑖,𝑘 − 𝑎𝑗,𝑘) .

(3.42a)

(3.42b)

This also shows that only one quotient 𝑞 is needed for each pair of partitions, so to reduce the number of

variables, it is defined only for 𝑗 > 𝑖. The reciprocal variable would be 𝑞𝑗,𝑖 = −1 − 𝑞𝑖,𝑗, thus the latency

delays are:

𝑙𝑖,𝑗 = 𝑡𝑗 − 𝑡𝑖 − 𝑞𝑖,𝑗𝑔𝑖,𝑗

𝑙𝑗,𝑖 = 𝑡𝑖 − 𝑡𝑗 + 𝑞𝑖,𝑗𝑔𝑖,𝑗 + 𝑔𝑖,𝑗.
(3.43)

Bounds for 𝑞 can be supplied from

𝑡𝑗 − 𝑡𝑖
𝑔𝑖,𝑗

− 1 <⌊
𝑡𝑗 − 𝑡𝑖

𝑔𝑖,𝑗
⌋ ≤

𝑡𝑗 − 𝑡𝑖
𝑔𝑖,𝑗

, (3.44)

noting that 𝑡𝑖 ∈ [0, 1, … , 𝑇𝑖 − 𝑒𝑖], which gives

𝑒𝑖 − 𝑇𝑖
𝑔𝑖,𝑗

− 1 <𝑞𝑖,𝑗 ≤
𝑇𝑗 − 𝑒𝑖

𝑔𝑖,𝑗
. (3.45)

The strict inequality in 3.45 can be replaced by a regular inequality without compromising the solution.
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Regarding the communications constraints, for each chain, let the new binary variable 𝑥𝑖,𝑗 denote that

the chain being delayed for one period. This is used to eliminate the branching in equation 3.25, having:

𝑙𝑖,𝑗 + 𝑒𝑗 + 𝑥𝑖,𝑗𝑇𝑗 ≤ 𝐸max
𝑖,𝑗 . (3.46)

The network delay affecting the two partitions is denoted by the auxiliary variable �̂�𝑖,𝑗, defined as:

�̂�𝑖,𝑗 = ∑
𝑐𝑚,𝑐𝑛∈𝒞

𝑎𝑖,𝑚𝑎𝑗,𝑛𝜏𝑚,𝑛, (3.47)

but this is non-linear in terms of our free variables. Linearisation is done by introducing new binary

variables 𝑦𝑖,𝑗,𝑚,𝑛:

𝑦𝑖,𝑗,𝑚,𝑛 =
⎧{{
⎨{{⎩

1, if 𝑝𝑖 ∈ 𝒫𝑚 ∧ 𝑝𝑗 ∈ 𝒫𝑛

0, otherwise
, (3.48)

which yields:

�̂�𝑖,𝑗 = ∑
𝑐𝑚,𝑐𝑛∈𝒞

𝑦𝑖,𝑗,𝑚,𝑛𝜏𝑚,𝑛. (3.49)

Since 𝑦𝑖,𝑗,𝑚,𝑛 = 𝑎𝑖,𝑚 ∧ 𝑎𝑗,𝑛, the logical ‘and’ can be expressed as:

𝑦𝑖,𝑗,𝑚,𝑛 ≥ 𝑎𝑖,𝑚 + 𝑎𝑗,𝑛 − 1 (3.50a)

𝑦𝑖,𝑗,𝑚,𝑛 ≤ 𝑎𝑖,𝑚 (3.50b)

𝑦𝑖,𝑗,𝑚,𝑛 ≤ 𝑎𝑗,𝑛. (3.50c)

Finally, when a chain is not delayed for one period, then it must verify 𝑙𝑖,𝑗 + 𝑒𝑖 − �̂�𝑖,𝑗 ≥ 0, so we introduce

𝑙𝑖,𝑗 + 𝑒𝑖 − �̂�𝑖,𝑗 + 𝑥𝑖,𝑗𝑍 ≥ 0, (3.51)

where again, the ‘Big-M’ constant 𝑍 is used to ignore this constraint when 𝐸max
𝑖,𝑗 is respected in equation

3.46 with the chain being delayed one period.

The full model is:

max 𝛼

s.t. 0 ≤ 𝛼 ≤ min
𝑝𝑖∈𝒫

{𝑇𝑖
𝑒𝑖

}

∀𝑝𝑖 ∈ 𝒫 ∶ ∑
𝑐𝑚∈𝒞

𝑎𝑖,𝑚 = 1

0 ≤ 𝑡𝑖 ≤ 𝑇𝑖 − 𝑒𝑖

∀𝑐𝑚 ∈ {𝒞 ∖ 𝐷𝑖} ∶ 𝑎𝑖,𝑚 = 0
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∀𝑐𝑚 ∈ 𝒞 ∶ ∑
𝑝𝑖∈𝒫

𝑎𝑖,𝑚𝑠𝑖 ≤ 𝑆𝑚

∀𝑝𝑖, 𝑝𝑗 ∈ 𝒫2 ∶ 𝑓𝑖 ≠ 𝑓𝑗, ∀𝑐𝑚 ∈ 𝒞 ∶ 𝑎𝑖,𝑚 ≤ 𝑎𝑗,𝑚

𝑓𝑖 = 𝑓𝑗, ∀𝑐𝑚 ∈ 𝒞 ∶ 𝑎𝑖,𝑚 = 𝑎𝑗,𝑚

∀𝑝𝑖, 𝑝𝑗 ∈ 𝒫, 𝑗 > 𝑖 ∶ ∀𝑐𝑚 ∈ 𝒞 ∶ 𝑡𝑗 − 𝑡𝑖 − 𝑞𝑖,𝑗𝑔𝑖,𝑗 ≥ 𝛼𝑒𝑖−

− 𝑍 (2 − 𝑎𝑖,𝑚 − 𝑎𝑗,𝑚)

∀𝑐𝑚 ∈ 𝒞 ∶ 𝑡𝑗 − 𝑡𝑖 − 𝑞𝑖,𝑗𝑔𝑖,𝑗 ≤ −𝑔𝑖,𝑗𝛼𝑒𝑗−

− 𝑍 (2 − 𝑎𝑖,𝑚 − 𝑎𝑗,𝑚)

𝑒𝑖 − 𝑇𝑖
𝑔𝑖,𝑗

≤ 𝑞𝑖,𝑗 ≤
𝑇𝑗 − 𝑒𝑖

𝑔𝑖,𝑗

0 ≤ 𝑡𝑗 − 𝑡𝑖 − 𝑞𝑖,𝑗𝑔𝑖,𝑗 ≤ 𝑔𝑖,𝑗

∀𝑝𝑖, 𝑝𝑗 ∈ 𝒫, 𝐸max
𝑖,𝑗 < ∞ ∶ 𝑡𝑗 − 𝑡𝑖 − 𝑞𝑖,𝑗𝑔𝑖,𝑗 + 𝑒𝑗 + 𝑥𝑖,𝑗𝑇𝑗 ≤ 𝐸max

𝑖,𝑗

𝑡𝑗 − 𝑡𝑖 − 𝑞𝑖,𝑗𝑔𝑖,𝑗 + 𝑒𝑖 − ∑
𝑐𝑚,𝑐𝑛∈𝒞

(𝑦𝑖,𝑗,𝑚,𝑛𝜏𝑚,𝑛) +

+ 𝑥𝑖,𝑗𝑍 ≥ 0

∀𝑐𝑚, 𝑐𝑛 ∈ 𝒞 ∶ 𝑦𝑖,𝑗,𝑚,𝑛 ≥ 𝑎𝑖,𝑚 + 𝑎𝑗,𝑛 − 1

∀𝑐𝑚, 𝑐𝑛 ∈ 𝒞 ∶ 𝑦𝑖,𝑗,𝑚,𝑛 ≤ 𝑎𝑖,𝑚

∀𝑐𝑚, 𝑐𝑛 ∈ 𝒞 ∶ 𝑦𝑖,𝑗,𝑚,𝑛 ≤ 𝑎𝑗,𝑛

𝑎𝑖,𝑚 ∈ {0, 1}, 𝑡𝑖 ∈ ℤ, 𝑞𝑖,𝑗 ∈ ℤ

𝑥𝑖,𝑗 ∈ {0, 1}, 𝑦𝑖,𝑗,𝑚,𝑛 ∈ {0, 1}
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Chapter 4

Methodology

This chapter describes the heuristic methods developed to solve the problem presented in chapter 3. As

seen by the complexity of the MILP formulation in section 3.4, approaching the problem globally would be

virtually infeasible, in the sense that solutions are not available in admissible time. Experimentation with

solving this problem directly with generic optimization algorithms showed no promising results, therefore

we opt to divide the problem into subproblems and provide specialized methods for solving these. The

three subproblems are: assigning partitions to modules to verify the distribution constraints, performing

local optimization on a single module, and performing global optimization, which are detailed in the

following sections.

4.1 Partition assignment

The partition assignment problem aims to distribute the partitions among the available modules in a way

that verifies the distribution constraints. For a problem with 𝑁𝑝 partitions and 𝑁𝑐 modules, there are

𝑁𝑐
𝑁𝑝 possible configurations. Even if we assume that most of these are valid, it is infeasible to analyse

each of these and obtain a schedule on top of that.

Following this, the first step is to find one viable assignment of partitions to modules, which essentially

consists in assigning values to 𝑓𝑖, ∀𝑝𝑖 ∈ 𝒫, such that an initial solution can be created. At the same

time, tackling this reduced problem allows us to quickly prove infeasibility for certain problem instances

without entering the additional complexity of considering the actual schedules.

Two different methods are implemented for this subproblem: a constraint programming approach, and

a sequential assignment similar to those used for the bin-packing problem.

4.1.1 Constraint programming

Constraint programming is a generic framework to solve combinatorial problems like this one, modelling

as a CSP.

The formulation as a CSP is straightforward from the MILP model, but here we rearrange it to use 𝑓

nomenclature. The formulation is:

34



Variables : 𝑓𝑖, ∀𝑝𝑖 ∈ 𝒫

Domains : {𝑚}, ∀𝑐𝑚 ∈ 𝐷𝑖

Constraints :

memory: ∀𝑚 ∑
𝑖

{𝑠𝑖 ⋅ 𝛿 (𝑓𝑖 − 𝑚)} ≤ 𝑆𝑚 (4.1)

inclusion: 𝑓𝑖 = 𝑓𝑗 (4.2)

exclusion: 𝑓𝑖 ≠ 𝑓𝑗 (4.3)

This problem can be solved using a general purpose CSP search algorithm. Algorithm 1 is a recursive

implementation of a backtracking search algorithm, where in each call a new variable is assigned a value

in its domain. One advantage of CSPs is they are able to perform search using generalized heuristics not

dependant on the problem structure.

Algorithm 1 Generic recursive backtracking search algorithm with forward checking, adapted from [43].
1: procedure Backtracking-search(𝑃𝑟𝑜𝑏𝑙𝑒𝑚)
2: return Backtrack({}, 𝑃𝑟𝑜𝑏𝑙𝑒𝑚)
3: end procedure
4:
5: procedure Backtrack(𝐴𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡, 𝑃𝑟𝑜𝑏𝑙𝑒𝑚)
6: if 𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡 is complete then return 𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡
7: end if
8: 𝑣𝑎𝑟 ← unassigned-variable(𝑃𝑟𝑜𝑏𝑙𝑒𝑚)
9: for each 𝑣𝑎𝑙𝑢𝑒 ∈ 𝑣𝑎𝑟.domain do

10: if 𝑣𝑎𝑙𝑢𝑒 is consistent with 𝐴𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡 then
11: add {𝑣𝑎𝑟 = 𝑣𝑎𝑙𝑢𝑒} to 𝐴𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡
12: if Forward_check(𝑃𝑟𝑜𝑏𝑙𝑒𝑚, 𝐴𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡, 𝑣𝑎𝑟) then
13: 𝑟𝑒𝑠𝑢𝑙𝑡 ← Backtrack(𝐴𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡, 𝑃𝑟𝑜𝑏𝑙𝑒𝑚)
14: if 𝑟𝑒𝑠𝑢𝑙𝑡 ≠ 𝑓𝑎𝑖𝑙𝑢𝑟𝑒 then
15: return 𝑟𝑒𝑠𝑢𝑙𝑡
16: end if
17: end if
18: remove {𝑣𝑎𝑟 = 𝑣𝑎𝑙𝑢𝑒} from 𝐴𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡
19: end if
20: end for
21: return 𝑓𝑎𝑖𝑙𝑢𝑟𝑒
22: end procedure

Another important characteristic of using backtracking search to solve this CSP is completeness, as

we are able to prove infeasibility of the whole partition scheduling problem if the partition assignment

subproblem is infeasible. Therefore, the first step in the scheduling tool will be to find a valid solution to

this subproblem.

4.1.2 Sequential assignment

On approaches to similar scheduling problems, the hardware available is not defined, and the goal is to

distribute partitions in a way that minimizes the required number of modules. This can be considered an
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instance of the bin-packing problem, common techniques for solving these include sequential assignment

algorithms. In fact, Eisenbrand et al. [21] demonstrates that the simple First-Fit heuristic is a 2-

approximation algorithm, i.e. it produces a solution with at most twice the cost of the optimal one, also

showing that no polynomial-time algorithm can do better.

In this section we study a solution of the partition assignment subproblem using sequential algorithms.

The differences in context are evident, notably that ours is a decision problem whereas these heuristics

are aimed at an optimization problem, the existence of other kinds of constraints, and the fact that the

modules (bins) are not identical. Additionally, bin-packing requires a measure of capacity. It would seem

natural that memory be used as capacity, but for two reasons we choose to use the usage fraction instead,

𝑈 from equation 3.23. The first is it makes every module similar in the sense of the bin-packing problem,

as all have a limit usage fraction of 1; the second is it being a valid indicator for feasibility for the following

scheduling problem.

Starting with First-Fit, the algorithm takes items in an arbitrary order, and assigns them sequentially

to a bin, always choosing the first bin where it fits, and if the item does not fit in any, a new bin is opened.

In our context, the items are partitions and the bins are modules, and since there is a known number of

modules defined, the algorithm fails if the partition does not fit in any. Additionally, by fitting, it is meant

that constraints 4.1 to 4.3 are verified, and the usage fraction is not exceeded.

Another heuristic algorithm with similar behaviour is Best-Fit. Here, for each item, all bins where it fits

are determined, and the item is assigned to the bin that is left with lowest capacity after this assignment.

Other variations of these algorithms exist, however, since they are designed to minimize the number

of bins, the solutions will naturally tend to pack more partitions in a few modules. For our optimization

criterion, it is beneficial that the partitions are more evenly distributed among the hardware, which motivates

a heuristic sequential assignment algorithm that takes this into account. We name it Best-Fit-Inverse,

and similarly to Best-Fit, it determines all bins where it fits, but then chooses the one which is left with

highest capacity after the assignment. This achieves our goal of favouring solutions with 𝑈𝑚 being

balanced among the modules. See algorithm 2 for an implementation for this specific problem.

Finally, the ordering which the partitions are assigned is significant in any of these algorithms. With

experimentation, it is determined that ordering by number of constraints involved produces more consistent

results.

The preferred choice for solving the partition assignment subproblem is via a CSP solver, due to it

being more robust for highly constricted cases, and able to prove infeasibility. The performance advantage

of sequential assignment with Best-Fit-Inverse is negated by the fact that this step only needs to be

carried out once. Also, we empirically verify that the CSP approach is also able to produce a solution with

balanced usage fractions if the variable domains are randomized, since algorithm 1 selects values for

assignment in the order they are provided.

A note should be made that the MILP model presented in section 3.4 can be simplified to solve

this subproblem, and in fact it would become an Integer Program. However, since this is a discrete

combinatorial problem and optimization is not required, the CSP approach with its associated heuristics is

superior.
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Algorithm 2 Best-Fit-Inverse sequential assignment algorithm, applied to the partition distribution
problem.

1: procedure best-fit-inverse(𝒫, 𝒞, 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠)
2: 𝑖𝑡𝑒𝑚𝑠 ←order_by_#_constraints(𝒫, 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠)
3: 𝑏𝑖𝑛𝑠 ← 𝒞
4: 𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡 ← {}
5: for each 𝑖𝑡𝑒𝑚 ∈ 𝑖𝑡𝑒𝑚𝑠 do
6: for each 𝑏𝑖𝑛 ∈ 𝑏𝑖𝑛𝑠 do
7: 𝑏𝑖𝑛.𝑓𝑖𝑡 ← fits?(𝑖𝑡𝑒𝑚, 𝑏𝑖𝑛, 𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡, 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠)
8: 𝑏𝑖𝑛.𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 ← ∑𝑖∈𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡{𝑒𝑖/𝑇𝑖 × 𝛿(𝑏𝑖𝑛.𝑖𝑛𝑑𝑒𝑥 − 𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡[𝑖])}
9: end for

10: 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 ← min_by_capacity(filter(𝑏𝑖𝑛𝑠, 𝑓𝑖𝑡 = 𝑡𝑟𝑢𝑒))
11: if 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 then
12: add {𝑖𝑡𝑒𝑚 = 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑} to 𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡
13: else
14: return 𝑓𝑎𝑖𝑙𝑢𝑟𝑒
15: end if
16: end for
17: return 𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡
18: end procedure

4.2 Local optimization

Another subdivision of the overall problem is optimization of the schedule for one module. This procedure

is done for a certain assignment of partitions to modules, and aims to find the optimal schedule for that

configuration, which is why it is named local optimization. Until section 4.2.4, we focus the description on

instances without communication between modules or multiple windows.

4.2.1 CSP formulation

For the sake of completeness, we list the constraint satisfaction variant of the problem:

Variables : 𝑡𝑖, ∀𝑝𝑖 ∈ 𝒫𝑚

Domains : {0, 1, … , 𝑇𝑖 − 𝑒𝑖}

Constraints :

No-overlap ∶ 𝑒𝑖 ≤ 𝑙𝑖,𝑗 ≤ 𝑔𝑖,𝑗 − 𝑒𝑗, ∀𝑝𝑖, 𝑝𝑗 ∈ 𝒫2
𝑚 (4.4)

Chains ∶ 𝐸𝑖,𝑗 ≤ 𝐸max
𝑖,𝑗 , 𝑝𝑖, 𝑝𝑗 ∈ 𝒫𝑚 (4.5)

This has the advantage of having only binary constraints between variables, but the fact that the offsets

take integer values upwards to the partition period makes the search space very large. As such, this

formulation serves no purpose.
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4.2.2 Best response algorithm

Optimizing the offsets for all partitions such that 𝛼 is maximized is a complex problem. However, optimizing

the offset of one partition in the schedule while taking the other partition offsets as fixed is feasible. The

strategy is to iteratively update the offset of each partition to a better value, and due to the similarities with

game theory, the procedure is called the best response algorithm. This solution was studied separately in

[28, 41].

Consider the partitions players in a game. The game is played in turns, each player updates its strategy

knowing the current strategy for the other players, and the game is played until the strategies converge. In

particular, each player chooses the offset that maximizes its utility (defined in equation 3.33), which is the

factor by which all executions can be multiplied without overlapping with its own execution window. Since

partitions choose their offset independently, this game is categorically non-cooperative, and the optimal

solution lies on an equilibrium point, which in game theory is known as a Nash Equilibrium Point, from

Nash [1]. However, a partition’s utility maximizes not only the partition’s window of execution, but also

other partitions’ interactions with its own, therefore, it has a cooperative trait. This is an important aspect

that guarantees that, with a few nuances, this procedure converges to one of these equilibrium points,

and additionally, this point will be at a local optimum with respect to the 𝛼-parameter. The converse is

also true, any local optimum solution will be an equilibrium point.

Convergence is proved in the before-mentioned references for the simplest problem definition, without

chains (equation 4.5), and with extended domains (𝑡𝑖 can take values up to 𝑇𝑖). This also requires that

when choosing the best strategy, and if the player’s previous strategy is equally good to the best one,

then the player does not change its strategy. This prevents the game from entering loops, and speeds up

convergence.

In general, problem instances have many equilibrium points, which are all locally optimal solutions

to the scheduling problem. Finding the optimal solution consists in finding the best of these equilibrium

points, and is achieved by providing different starting points to the best response algorithm.

The introduction of chains (with equation 4.5) will simply restrict which offsets are valid. This has the

effect of speeding up convergence since it restricts the problem further, however, it also increases the

number of equilibrium points, making the procedure more dependant on the initial state.

Algorithm 3 lists the best response algorithm. A counter for the number of stable partitions is kept, and

is reset every time a partition changes its offset. Equilibrium is reached when no partition changes its

offset, and this counter equals the number of partitions, terminating the algorithm. On line 6, the domain

is restricted in order to verify communications constraints, and on line 7, the partition determines the best

offset in this domain. Section 4.2.3 is entirely dedicated to procedures that determine this value. Partitions

are cyclically visited, the next() operator on line 5 can be thought as getting the next element on a circular

queue of partitions.

The ordering by which partitions are cycled would seem to affect the solution, by favouring the first

partition. However, we corroborate the findings in [41] that no significant improvements in the solution

process are found by introducing randomness in this ordering. In contrast, the randomness included in

the initial state is the main factor that allows different solutions to be found.
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Algorithm 3 Best response algorithm.
1: procedure Best_response_optimization(partitions, chains, offsets)
2: 𝑁 ←length(partitions)
3: 𝑁stable ← 1
4: while 𝑁stable < 𝑁 do
5: 𝑝 ← next(partitions)
6: domain ← valid_offsets(𝑝, chains, offsets)
7: 𝑡new ← best_value(𝑝, domain, offsets)
8: if 𝑡new = offsets[𝑝] then
9: 𝑁stable ← 𝑁stable + 1

10: else
11: offsets[𝑝] ← 𝑡new
12: 𝑁stable ← 1
13: end if
14: end while
15: return offsets
16: end procedure

Figure 4.1 shows the progress of this algorithm for a particular case with no chains. In 4.1a, an initial

state is given, which does not need to be a valid solution, as seen by the overlap between partitions 1 and

3. The iteration order is 𝑝2 → 𝑝3 → 𝑝1 → 𝑝2 …, and for this starting state, any other ordering leads to a

solution with the same 𝛼-value. The first iteration (in 4.1b) maximizes the utility of 𝑝2 by moving to 𝑡2 = 7,

and this is dominated entirely by the relation with 𝑝1. Notice that 𝑡2 = 19 would be an equally good

move here, the selection between these is arbitrary. In 4.1c, the utility of 𝑝3 is maximized, and again,

the dominant relation is with 𝑝1. Finally, 𝑝1 does not change its offset in 4.1d, as its current position is

already maximizing its utility. Convergence is reached in this step, and in fact 𝑝2 and 𝑝3 are checked

again before the procedure terminates, these steps were omitted from the figure. The final solution has

𝛼 = 7/3, and is optimal.

MTF MTF

𝑝1 𝑝1𝑝2 𝑝3a)

𝑝1 𝑝1𝑝2 𝑝3b)

𝑝1 𝑝1𝑝2 𝑝3c)

𝑝1 𝑝1𝑝2 𝑝3d)

(1 − 𝛼2)𝑒1

(1 − 𝛼2)𝑒2
(1 − 𝛼3)𝑒1 𝛼3𝑒3

Figure 4.1: Progress of the best response algorithm.

4.2.3 Linear search

The best_value procedure consists in finding 𝑡𝑖 which maximize utility, by solving the following program:

max 𝛼𝑖

s.t. 𝛼𝑖 ≥ 0

𝛼𝑖𝑒𝑗 ≤ mod{𝑡𝑖 − 𝑡𝑗, 𝑔𝑖,𝑗} ≤ 𝑔𝑖,𝑗 − 𝛼𝑖𝑒𝑖, ∀𝑝𝑗 ∈ 𝒫𝑚 ∖ {𝑝𝑖}

𝑡𝑖 ∈ 𝒯𝑖,

(4.6)
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with 𝒯𝑖 ≡ [0, 1, … , 𝑇𝑖 − 𝑒𝑖] being the valid offsets to consider. This is trivially solved by computing 𝛼𝑖

for all possible values of 𝑡𝑖 and choosing the best one. However, this procedure will be repeated many

times inside the local and global search procedures, therefore a faster method is paramount. An efficient

method is based on linear programming, and the previous program is in fact a linear program if we relax

the offset to be a real number: 0 ≤ 𝑡𝑖 ≤ 𝑇𝑖 − 𝑒𝑖.

First, we look into the structure of the solution. Considering only a pair of constraints, we have

the line 𝛼𝑖 = mod{𝑡𝑗 − 𝑡𝑖, 𝑔𝑖,𝑗}/𝑒𝑖, which is discontinuous at its zeros, 𝑡𝑖 = 𝑡𝑗 + 𝑔𝑖,𝑗𝑛, 𝑛 ∈ ℤ, but

strictly decreasing in other regions. Likewise for the other part of the same constraint, we have the line

𝛼𝑖 = mod{𝑡𝑖 − 𝑡𝑗, 𝑔𝑖,𝑗}/𝑒𝑗 that is strictly increasing but discontinuous at the same zeros (from the

property mod{−𝑎, 𝑏} = 𝑏 − mod{𝑎, 𝑏}). The overall value of 𝛼𝑖 will then lie in the minimum of these two

lines, as seen in figure 4.2a, and with multiple partitions, the solution will be the minimum of all these

lines, as seen in figure 4.2b.

0 𝑇𝑖
0

1

2

𝑡𝑗 𝑡𝑗 + 𝑔𝑖,𝑗

mod{𝑡𝑗−𝑡𝑖,𝑔𝑖,𝑗}
𝑒𝑗

mod{𝑡𝑖−𝑡𝑗,𝑔𝑖,𝑗}
𝑒𝑖

𝑡𝑖

𝛼𝑖

(a) Solution set with one other partition

0 𝑇𝑖
0

5

10

15

𝑡𝑖

𝛼𝑖

(b) Solution set with five other partitions.

Figure 4.2: Structure of the best_value solution set, adapted from [41].

The solution set is composed of adjacent polyhedra, separated by zeros of the utility. Moreover, an

important property in the solution set is that inside each polyhedron, the utility is strictly increasing until

the local maximum, then strictly decreasing until the next zero. This in turn guarantees that every local

maxima, including the global maximum, lie at the intersection of an ascending line and a descenting line.

The solution to this problem, as proposed in Al Sheikh et al. [28], is to determine the subset of intersection

points ℐ𝑖 ⊂ 𝒯𝑖, and compute the utility only for these points.

The intersection points can be determined for each polyhedron. Locally, the constraint mod{𝑡𝑖 −

𝑡𝑗, 𝑔𝑖,𝑗} ≥ 𝛼𝑖𝑒𝑗 is bounded by an increasing line, of the form 𝑡𝑖 − 𝑜𝑖𝑛𝑐
𝑗 = 𝑒𝑗𝛼𝑖. Given a reference offset
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𝑡𝑟𝑒𝑓
𝑖 in the polyhedron, the value of 𝑜𝑖𝑛𝑐

𝑗 is given as:

𝑜𝑖𝑛𝑐
𝑗 = 𝑡𝑟𝑒𝑓

𝑖 − mod{𝑡𝑟𝑒𝑓
𝑖 − 𝑡𝑗, 𝑔𝑖,𝑗}. (4.7)

Identically, the decreasing line is 𝑡𝑘 − 𝑜𝑑𝑒𝑐
𝑘 ≥ 𝛼𝑖𝑒𝑖, with 𝑜𝑑𝑒𝑐

𝑘 = 𝑜𝑖𝑛𝑐
𝑘 + 𝑔𝑖,𝑘. Proof of 4.7 is derived

from modulo properties, see Pira and Artigues [41] for details. With this, the intersection point between

these two lines is:

̂𝑡 =
𝑒𝑗𝑜𝑑𝑒𝑐

𝑘 + 𝑒𝑖𝑜𝑖𝑛𝑐
𝑗

𝑒𝑗 + 𝑒𝑖
, (4.8)

with 𝑝𝑗, 𝑝𝑘 ∈ 𝒫𝑚 ∖ {𝑝𝑖}, possibly having 𝑗 = 𝑘. The intersection point is in general a rational number,

therefore for each ̂𝑡, the points ⌈ ̂𝑡⌉ and ⌊ ̂𝑡⌋ must be added to ℐ𝑖. In order not to check repeated polyhedra,

the reference offset 𝑡𝑟𝑒𝑓
𝑖 can be taken at the zeros of the utility, which are located at 𝑡𝑗 + 𝑛𝑔𝑖,𝑗, ∀𝑛 ∈

ℤ, ∀𝑗 ≠ 𝑖.

Other methods exist that allow to skip some polyhedra after a lower bound for the utility is found, using

line search [41], and performance is superior to the method described above. To the best of my knowledge,

these methods cannot be applied with communication constraints so they were not investigated. Another

simple method that improves the simple solution of checking every possible offset consists in checking

offsets only while the utility increases, and jump to the next zero when it starts to decrease, taking

advantage of the structure of the problem.

The actual calculation of the utility is done in 𝒪(𝑁𝑝) time (see equation 3.33), therefore both exhaustive

search and its improved version run in 𝒪(𝑁𝑝𝑇𝑖). For the method based on intersection points, we first

note that for 𝑁 constraining partitions, there will be 𝑁2 intersection points in each polyhedron, with the

number of polyhedra being trivially bounded by 𝑇𝑖, so actually this algorithm runs in 𝒪(𝑇𝑖𝑁𝑝
3). Despite

this asymptotic time complexity being clearly worse, for usual problem instances with limited 𝑁𝑝, we

verify that this version is superior to exhaustive search, as will be seen in chapter 5.

On the implementation level, the utility at each intersection point can be computed directly with the

intersection point, or the set of intersection points can be stored in memory and the utility calculated

afterwards. The benefit of the latter is that we can avoid inspecting the utility at repeated intersection

points, at the cost of using more memory. Experimentation showed that the former approach is superior.

4.2.4 Extending the search with chains

For chains, different approaches are possible, the most general is, for each partition, to consider all chains

that affect it, which will possibly depend on partitions in modules other than the one we try to optimize.

This is the approach followed here, and we maintain the same goal that is computing the offset that yields

maximum utility, considering all other variables fixed.

As with the CSP approach, communication constraints do not affect the utility of a partition or the

𝛼-parameter of the whole schedule, their effect simply restricts the problem by forbidding certain invalid

offsets. Equation 3.25 is the important one here, restricting 𝒯𝑖 to a series of feasible intervals, as seen in

41



figure 4.3. The number of these intervals depends on the periods of the partitions involved in the chain.

In the figure, two intervals are seen because in this example the chain is done with a partition with period

𝑇𝑗 = 𝑇𝑖/2.

Clearly, only the intersection points that belong to the feasible region need to be considered, but

in addition to these, the boundary points in each segment become interest points. This includes the

boundary points of 𝒯𝑖, {0, 𝑇𝑖 − 𝑒𝑖}.

0 𝑇𝑖
0

1

2

3

4

𝑡𝑖

𝛼𝑖

Figure 4.3: Feasible region (red) constrained by one chain, with all interest points (blue).

Computing these feasible regions is not straightforward because different cases apply when the delay

allows for delaying one period. The easiest case is with harmonic partition periods and when delaying a

period never happens, for which the feasible region consists in all intervals:

[𝑎 + 𝑘𝑔𝑖,𝑗, 𝑏 + 𝑘𝑔𝑖,𝑗] , 𝑘 ∈ ℤ. (4.9)

The values 𝑎, 𝑏 depend on whether 𝑝𝑖 is the sender or the receiver in the chain:

𝑝𝑖 → 𝑝𝑗 ∶
⎧{{
⎨{{⎩

𝑎 = 𝑡𝑗 + 𝑒𝑗 − 𝐸max
𝑖,𝑗

𝑏 = 𝑡𝑗 − �̂�𝑖,𝑗 − 𝑒𝑖

(4.10)

𝑝𝑗 → 𝑝𝑖 ∶
⎧{{
⎨{{⎩

𝑎 = 𝑡𝑗 + �̂�𝑗,𝑖 + 𝑒𝑖

𝑏 = 𝑡𝑗 − 𝑒𝑖 + 𝐸max
𝑗,𝑖

. (4.11)

Proof. We consider the case where the chain is processed as 𝑝𝑖 → 𝑝𝑗 and 𝑡𝑗 being fixed, with the other

case having an identical derivation. The first branch in equation 3.25 is linearised as:

𝑡𝑗 − 𝑡𝑖 − 𝑞𝑔𝑖,𝑗 + 𝑒𝑗 ≤ 𝐸max
𝑖,𝑗 , (4.12)

which yields an upper bound on 𝑡𝑖:

𝑡𝑖 ≥ 𝑡𝑗 − 𝑞𝑔𝑖,𝑗 − 𝐸max
𝑖,𝑗 + 𝑒𝑗. (4.13)
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Identically, the constraint that prevents a chain from being delayed one period is:

𝑙𝑖,𝑗 − 𝑒𝑖 ≥ �̂�𝑖,𝑗, (4.14)

is linearised as:

𝑡𝑖 ≤ 𝑡𝑗 − 𝑞𝑔𝑖,𝑗 − �̂�𝑖,𝑗 − 𝑒𝑖. (4.15)

The interval becomes:

[𝑡𝑗 + 𝑒𝑗 − 𝐸max
𝑖,𝑗 − 𝑞𝑔𝑖,𝑗, 𝑡𝑗 − �̂�𝑖, − 𝑒𝑖 − 𝑞𝑔𝑖,𝑗] . (4.16)

It was seen in section 3.1.2 for the specific case of harmonic periods that the chain is repeated with a

period equal to the greatest period among the two partitions, or equivalently, 𝑔𝑖,𝑗. Therefore, the previous

interval can be shifted by 𝑔𝑖,𝑗 units as necessary, yielding:

[𝑡𝑗 + 𝑒𝑗 − 𝐸max
𝑖,𝑗 + (𝑘 − 𝑞)𝑔𝑖,𝑗, 𝑡𝑗 − �̂�𝑖, − 𝑒𝑖 + (𝑘 − 𝑞)𝑔𝑖,𝑗] , ∀𝑘 ∈ ℤ. (4.17)

Finally, 𝑞 can be removed since it is an integer value by definition, leaving an equivalent to expression

4.9.

The limits of these intervals in expression 4.9 become interest points that possibly result in a local

maximum of the utility. Evidently, each partition is not restricted to be involved in only one chain, and in

fact all of them can be considered at this step. If this is the case, all regions from expression 4.9 should

be intersected, and the interest points are the boundary points of the resulting region, plus the intersection

points, ℐ𝑖, determined in section 4.2.3 that are contained in this region.

To reiterate, chains do not need to be considered for local optimization, although this is favourable

in order to find a solution faster. Introducing chains restricts the search space and thus speeds the

computation of the best offset, and it also promotes partitions to stick together faster, which speeds the

convergence of the best response algorithm. However, this also leads to more equilibrium points, hence

more restarts are required to find the optimal solution with this procedure when compared to not including

chains. Also, issues arise in tightly constricted problems when there are no viable offsets for a partition,

as will be discussed in section 4.2.7. Here it would make sense to either keep the current offset in order to

promote convergence, or alternatively, select the best offset with respect to the 𝛼-parameter regardless of

the constraining chains. Empirically, we found better results for the latter option, which can be explained by

it allowing the solution to escape the current bad region, and also improving the utility for other partitions

in the module.
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4.2.5 Extending the search with multiple windows

The best response procedure is also able to optimize a module’s schedule with multiple partition windows

per job when using the more complex form of utility, from equation 3.36. However, this function does

not share the same properties as the simpler version which allowed for efficient computation of the best

offset. In particular, being defined by branches, the function is not continuous, and loses the interesting

polyhedron-shape of the curves shown in figures 4.2 and 4.3, thus the linear programming approach

discussed in section 4.2.3 is no longer applicable. For this reason, the best value calculation is done

exhaustively for every offset when any of the partitions in the module has multiple windows of execution

per job.

At the level of the best response procedure, the approach is to consider all windows independent

players, but similarly to chains, some strategies will be tightly constrained by strategies of other players

because we want to maintain the ordering of windows and respect the maximum response time. The

exception is the first window at each job; seeing that the offsets for these are all strictly related (by the

partition period), it makes sense to consider them a single player. For the purpose of computing the utility,

the worst among the 𝐾𝑖 jobs is counted. As for the ordering, there is no theoretical or empirical reason to

enforce a particular playing order. For simplicity of implementation, we define that all windows for the

same partition play in chronological order.

The more inefficient calculation of the best offset compared to the case with simple partitions is

combatted by the restricted domains due to window ordering and response times. Window ordering is

represented by having:

𝑡𝑖,𝑘,𝑢 < 𝑡𝑖,𝑘,𝑢+1 (4.18a)

𝑡𝑖,𝑘,𝑀𝑖,𝑘
< 𝑡𝑖,𝑘+1,1, (4.18b)

so when determining the best offset for 𝜆𝑖,𝑘,𝑢, 𝑢 > 1, it is possible to restrict the calculation to offsets:

[𝑡𝑖,𝑘,𝑢−1, 𝑡𝑖,𝑘,𝑢+1] . (4.19)

Additionally, the maximum response time is limited to 𝑑𝑖, so we can further restrict the offsets for all

windows 𝑢 > 1 to guarantee that the following ones can all be placed in the remaining time:

𝑡𝑖,𝑘,𝑢 ≤ 𝑡𝑖,𝑘,1 + 𝑑𝑖 −
𝑀𝑖,𝑘

∑
𝑣=𝑢

{𝑒𝑖,𝑘,𝑣 + 𝜀𝑚}. (4.20)

In fact, since 𝑑𝑖 ≤ 𝑇𝑖 and 𝑡𝑖,𝑘+1,1 = 𝑡𝑖,𝑘,1 + 𝑇𝑖, inequality 4.18b is redundant.

Convergence of the best response algorithm for the restricted problem has been formally proven

[28]. For the extended model presented here, it was experimentally verified that about 6 % of randomly

generated cases do not converge. We cope with this by discouraging changing the offsets as the best

response algorithm progresses. A threshold is introduced after a few iterations, and players only change

their strategy if the gain in utility is greater than this threshold. However, the equilibrium solution might not
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be at a local optimum anymore, although the penalty in terms of the 𝛼-parameter should be minimal.

Algorithm 4 lists these modifications to the best response algorithm (algorithm 3), but it should be

viewed as an alternative to be used when needed rather than a generalization of 3, as it is clearly less

efficient when the simpler one applies.

Algorithm 4 Adapted best response algorithm.
1: procedure Best_response_multiple_windows(partitions, chains, offsets)
2: players ← empty list
3: for each 𝑝𝑖 ∈ partitions do
4: Add Λ𝑖 to players
5: end for
6: 𝑁 ←length(players)
7: 𝑁stable ← 1
8: 𝑖 ← 0
9: threshold ← 0

10: while 𝑁stable < 𝑁 do
11: 𝑝 ← next(players)
12: domain ← valid_offsets(𝑝, chains, offsets)
13: 𝑡new ← best_value_b(𝑝, domain, offsets, threshold)
14: if 𝑡new = offsets[𝑝] then
15: 𝑁stable ← 𝑁stable + 1
16: else
17: offsets[𝑝] ← 𝑡new
18: 𝑁stable ← 1
19: end if
20: // Once every full cycle around the players, after the 15th
21: if mod{𝑖, 𝑁} = 0 ∧ 𝑖/𝑁 > 15 then
22: threshold ← threshold + 0.005
23: end if
24: 𝑖 ← 𝑖 + 1
25: end while
26: return offsets
27: end procedure
28:
29: function best_value_b(𝑝, domain, offsets, threshold)
30: 𝑡best ← offsets[𝑝]
31: 𝛼now ← compute_utility(𝑡best, offsets)
32: 𝛼best ← 𝛼now
33: for each 𝑡 ∈ domain do
34: 𝛼new ← compute_utility(𝑡, offsets)
35: if 𝛼new − 𝛼now > threshold and 𝛼new > 𝛼best then
36: 𝑡best ← 𝑡
37: 𝛼best ← 𝑎𝑙𝑝ℎ𝑎new
38: end if
39: end for
40: return 𝑡best
41: end function

4.2.6 Parallel best response

Parallel best response is the procedure of applying local optimization to several modules simultaneously,

an important component in our methodology for global optimization. Since it is based on the best response

algorithm, we describe it now.
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The previous description of the effects of chains in the best response algorithm focused on restricting

the offsets a partition could select at each iteration. However, it is fair to say that when a chain is

performed across two modules, then their respective schedules are not independent, hence performing

local optimization independently for these does not, in general, result in an overall local optimum. The

alternative approach which we explore here is to optimize the modules connected by chains in parallel,

which means we take all partitions scheduled in those modules as our set of players, and apply the best

response algorithm to this set.

Fundamentally, the best response algorithm is unchanged, the only nuance here is for computing the

best offset (and therefore the utilities), only the partitions scheduled in the same module are considered,

but the viable offsets are restricted by all partitions in the set. It was noted before that the best response

algorithm has worst-case complexity that is exponential with the number of players, which seems a

deterrent towards this strategy, however, this complexity arrives from having to verify the strategy against

every other player, which is not the case here. In fact, players on separate modules do not influence each

other’s strategies, they just restrict which strategies are even possible, which is no different from solving

the modules independently.

That is not to say the performance is unaffected, just not as critically as it may be apparent. When

some modules schedules converge faster than others, we are still checking every best strategy on the

converged players at every cycle around the players, which represents wasted computations. Additionally,

there is an extra step needed, determining which modules need to be optimized in parallel and which

can be optimized independently. If we form an undirected graph where the modules are vertices and

any chain creates an edge between the modules where the partitions are assigned to, then this problem

consists in enumerating all unconnected subgraphs, easily solved by either breadth-first or depth-first

search. This is solvable in linear time since each node only needs to be visited once. In figure 4.4 we

see an example of this, where modules 𝑐2, 𝑐3, 𝑐4 form an unconnected subgraph and thus should be

scheduled in parallel, while module 𝑐1 can be scheduled independently.

Of course, in general, we can just optimize all modules in the system in parallel and skip the uncon-

nected subgraph problem, especially considering that often in problems with many chains there are no

unconnected subgraphs. However, the gains in performance by decreasing the number of players in the

best response algorithm are appealing, so the previous solution was implemented.

4.2.7 Limitations

Performance of the best response algorithm is evaluated in chapter 5. Here we identify some conceptual

limitations of this heuristic. Firstly, the non-cooperative nature leads to deadlocks, cases where partitions

do not have a good option to move when considered individually, but one with an easy solution if the

problem were considered globally. A simple example of this idea is shown in figure 4.5. If using the utility

given by equation 3.33, one can see that none of these partitions have an option to improve it, so the

best response procedure converges immediately for the current non-feasible solution, even though a valid

solution is trivial. This issue escalates for similarly tightly packed cases (𝑈 ≈ 1), and this algorithm can
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Figure 4.4: Modules scheduled in parallel due to chains, represented as arrows.

only solve these cases starting from already good starting points.
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Figure 4.5: Special case where the best response algorithm fails.

Other deadlocks happen due to chains with tight delays. When partitions are involved in tight chain

delays, it can happen than only a few offsets are feasible, and the partitions will not be able to leave this

region. For instance, consider the extreme case where only one offset satisfies a certain chain, then, the

partition is assigned this offset and will be locked there. We can move the two partitions together, but not

one individually as required by the best response procedure.

Another limitation comes from the complexity of the problem when there are multiple windows of

execution, since for this heuristic, each window is considered a different player altogether. The worst-case

complexity of the standard best response algorithm is known to be 𝒪(𝑁𝐴𝑁−1), with 𝑁 being the number

of players and 𝐴 the number of strategies per player [40], evidencing that the performance is especially

sensitive to the number of players.
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4.3 Global optimization

Local optimization allows us to efficiently generate schedules for a single module after having defined

the partitions that are assigned to this module as well as their configuration with respect to windows.

In fact, the optimal schedule for each module is within reach of the local optimization procedure, given

sufficient restarts from different starting configurations. Therefore, the remaining task is finding the partition

assignment and window configuration that enables us to find an optimized solution to the overall problem.

A viable distribution of partitions among modules can be found via methods described in section 4.1;

furthermore the number of viable configurations can be as high as 𝑁𝑐
𝑁𝑝 with no distribution constraints,

so the goal in this section is to develop a strategy to explore a relevant portion of the search space.

The best response algorithm has been used to not only select the best offset, but also the best module

for each partition [28, 41]. Generating initial states becomes more troublesome as a random assignment

of partitions to modules in general will not produce a feasible assignment, and the CSP procedure from

section 4.1 would need to applied at each restart. Also, the algorithm would not be applied to a single

module but to the whole system, and as seen before, the complexity is exponential with the number of

partitions. The present work decides to investigate a different solution, the main reason being that we

consider more comprehensive distribution constraints, which would lead to different kinds of deadlocks in

the best response algorithm.

The followed strategy is based on stochastic optimization algorithms, in particular SA, Tabu-search

and a genetic (or evolutionary) algorithm. These are of course classified as local search algorithms, but

the fact that we are applying them only to a subtask in our problem, namely exploring starting points

for a dedicated local optimization procedure, makes it adequate to use them for global search. These

algorithms operate on a complete solution and gradually improve it, and this allows for the usage of the

modularity of the local optimization procedure to improve only the needed modules. Another reason for

this choice is we lack a proper way to evaluate partial solutions, that is, not all problem variables being

assigned a value, which means a constructive algorithm is not appropriate.

A set of operators are defined which navigate the search space, and a set of rules (meta-heuristics) for

applying them are described in this section. The algorithms themselves are very similar, and have been

implemented on a wide range of well known problems, so only the key differences and implementation

details are described here; the full pseudo-code is included in appendix A.

4.3.1 Evaluation function

The evaluation function of a solution is the metric we try to optimize, which naturally corresponds to the

𝛼-parameter. However, the problem representation allows for invalid states, and the 𝛼-parameter does

not account for unmet distribution constraints in its definition. For usage with the global optimization

algorithms which can spontaneously generate infeasible solutions from a feasible one, it is necessary to

penalize the infeasible solutions with a more generic evaluation function. We represent this by 𝑒𝑣(𝑆),
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where 𝑆 is the state (or solution), and define it here as follows:

𝑒𝑣(𝑆) =

⎧{{{{
⎨{{{{⎩

𝛼, 𝑛𝑐 = 0

𝛼
𝑛𝑐+1 , 𝛼 < 1 ∧ 𝑛𝑐 > 0

1
𝑛𝑐+1 , otherwise,

(4.21)

where 𝑛𝑐 is the total number of unmet constraints.

This definition allows us to maintain the property of having a valid solution when 𝛼 ≥ 1, which is now

𝑒𝑣(𝑆) ≥ 1. Additionally, we also know that for 0.5 ≤ 𝑒𝑣(𝑆) < 1, we have all constraints (except for no

execution overlap) satisfied.

4.3.2 Operators

A state is a possible solution to the problem, and consists of a complete assignment of the problem

variables: offsets, partition assignment to modules, and partition windows. Note that on other problems or

fields a state does not need to be complete, i.e., not all variables need to be assigned, but throughout our

implementation we only deal with complete assignments thus we keep this definition of state. States have

neighbourhoods, a number of other states that differ to the current one by only a few variables, and the

process of moving to another state in the neighbourhood is called an operation.

The operators apply to states and produce a new state, as 𝑜𝑝(𝑆1) → 𝑆2. Six operators are defined

and detailed below: the move operator, 𝑀𝑜𝑣(𝑆, 𝒳, 𝑚, 𝑛), the swap operator, 𝑆𝑤(𝑆, 𝒳1, 𝒳2, 𝑚, 𝑛), the

shuffle operator, 𝑆ℎ(𝑆, 𝑚), the local optimization operator, 𝐿𝑜𝑝(𝑆, ℳ), the slice operator, 𝑆𝑙(𝑆, 𝑖), and

the crossover operator, 𝐶𝑟(𝑆1, 𝑆2), which is the only binary operator and combines two states to produce

a new one.

These operators may change both the offsets and the assignments to modules, and without special

consideration, it is possible to obtain a state which does not respect the distribution constraints from a

state that does. A reduction in the dimension of the search space is thus achievable by restricting that the

partition distribution always remains valid with respect to the distribution constraints when applying an

operator, which essentially means we are only navigating valid solutions. In practice, this will apply to

𝑀𝑜𝑣 and 𝑆𝑤, which change the partition assignments, while for 𝐶𝑟 this is in general unavoidable. The

disadvantage is this can lead to deadlocks if the distribution constraints are tight, where another valid

solution cannot be reached from a given state by applying only one of these operators. Henceforth we

refer to the operators as coherent if they require the distribution constraints to remain valid.
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Operator 𝑀𝑜𝑣

The move operator changes the assignment of a group of partitions, 𝒳 ⊆ 𝒫, essentially moving from one

module to the other. The definition below uses the assignment notation from section 4.1:

𝑀𝑜𝑣(𝑆1, 𝒳, 𝑚, 𝑛) → 𝑆2

Precondition: ∀𝑝𝑖 ∈ 𝒳, 𝑓𝑖 = 𝑚, in 𝑆1

Effects: 𝑓𝑖 = 𝑛, in 𝑆2.

A few heuristics are possible. Firstly, the 𝛼 optimization goal is the minimum among the available modules,

thus a move is more likely to improve a solution if it relieves this module, i.e. selecting 𝑚 as this module.

Also, if the operation must be coherent, all partitions that share an include constraint should be moved

in the same operation. Other than that, the arguments can be chosen at random, but there is a nuance

depending on whether we select a module from 𝒞 at random and then a partition assigned to it, or if we

just select a partition at random from 𝒫 and take its assignee module as well. The advantage of the latter

approach is the assignee modules are more likely to be the modules hosting more partitions, hence these

moves will normally lead to more uniform distributions of partitions among modules, which is generally

desirable.

Operator 𝑆𝑤

The swap operator swaps the assignment of two partitions, or two groups of partitions, virtually chaining

two move operators:

𝑆𝑤(𝑆1, 𝒳1, 𝒳2, 𝑚, 𝑛) → 𝑆2

Preconditions: ∀𝑝𝑖 ∈ 𝒳1, 𝑓𝑖 = 𝑚, in 𝑆1

∀𝑝𝑗 ∈ 𝒳2, 𝑓𝑗 = 𝑛, in 𝑆1

Effects: 𝑓𝑖 = 𝑛, 𝑓𝑗 = 𝑚, in 𝑆2

This operator is useful for reaching certain states without passing through worse intermediary states,

having either low 𝛼 or just invalid distribution constraints, and also when we mean to keep all operations

coherent, since it is applicable even in situations with tight distribution constraints. For instance, it can be

directly applied to partitions that are in exclusion, or between modules that are near their memory limits,

both cases where a move operator would not be coherent. Just as with the move operator, partitions that

share an includes constraint must be moved as a group if the operator must be coherent.
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Operator 𝑆ℎ

The shuffle operator provides a new start point for the local optimization procedure, by assigning random

offsets to all partitions and all partition windows assigned to a certain module:

𝑆ℎ(𝑆1, 𝑚) → 𝑆2

Preconditions:

Effects: ∀𝑝𝑖 ∈ 𝒫𝑚, ∀𝜆𝑎 ∈ Λ𝑖 ∶ 𝑡𝑎 = random in 𝑆2.

This random selection is wrapped to the possible values following equation 3.4, which in general do not

contemplate communication constraints.

Operator 𝐿𝑜𝑝

The local optimization operator is applicable to a group of modules, ℳ ⊆ 𝒞, as described in section 4.2.6,

or a single module as described in section 4.2.

𝐿𝑜𝑝(𝑆1, ℳ) → 𝑆2

Preconditions:

Effects: Modules 𝑐𝑚 ∈ ℳ in a local optimum in 𝑆2.

Operator 𝑆𝑙

The slice operator changes the window configuration of a partition.

𝑆ℎ(𝑆1, 𝑖) → 𝑆2

Preconditions: ℬ𝑖 ≠ ∅

Effects: Λ𝑖 = select, in 𝑆2.

Here, select is the procedure of creating windows from a set of available preemption points, ℬ𝑖, as is

exemplified in section 3.1.3. This is done randomly, but heuristically we can prefer the single window

configuration more often when the execution is already sliced. Even though this configuration does not

necessarily lead to an optimal result, it is important to decrease complexity.

Applying this operator can also follow heuristic rules, favouring partitions with larger executions, or

partitions assigned to the module with smallest 𝛼.

Operator 𝐶𝑟

The crossover operator is a binary operator specific to the genetic algorithm that combines two states into

one. It relies on a gene-based representation of the problem variables, and generally a new solution is

made by combining at random some genes from one parent and some from the other. Alternatively, there
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are ‘blend crossover’ operators that assign new values to genes, in between the values of those genes

from the originating states, especially used for real-valued variables [5].

For this specific problem, the only viable gene representation considers tuples (𝑓𝑖, 𝑡𝑖) for each partition,

representing the module and the offset, respectively. Essentially, we combine a subset of partitions from

one state with the remaining from the other state:

𝐶𝑟(𝑆1, 𝑆2) → 𝑆3

Preconditions: 𝒳1 ∪ 𝒳2 = 𝒫, 𝒳1 ∩ 𝒳2 = ∅

Effects: ∀𝑝𝑖 ∈ 𝒳𝑗 ∶ (𝑓𝑖, 𝑡𝑖) in 𝑆3 = (𝑓𝑖, 𝑡𝑖) from 𝑆𝑗, 𝑗 = 1, 2.

In general, this operator is incoherent, and we can expect all modules to be affected. In order to use

the strengths of genetic algorithms, the genes should represent good solution characteristics with some

modularity, such that they can be transmitted to new solutions, and be gradually improved. In this

regard, the chosen representation is flawed, as the optimization criteria fundamentally evaluates groups

of partitions. To gain some value from the crossover operator, we can favour in the selection of 𝒳1, 𝒳2

that partition pairs constrained by chains are present in the same group. Another option which would

benefit our optimization criterion would be to define genes from modules and the partitions assigned to

them. However, this is not feasible since in the created solution some partitions can be missing or appear

duplicated.

Also note that this operator has no effect when applied to two identical solutions.

Operator selection

The main idea is to apply one of the operators 𝑀𝑜𝑣, 𝑆𝑤, 𝑆ℎ, 𝑆𝑙, 𝐶𝑟 at each iteration, followed by

𝐿𝑜𝑝 only on the modules which were affected. The overlying meta-heuristic algorithm is responsible for

choosing which operators are used, to which variables, and also whether or not to accept the resulting

solution. The operator selection is done mostly randomly as is characteristic of the class of algorithms

used, but the heuristics described for each operator affect the selection. Essentially, the operator is

chosen according to a fixed probability vector:

• 𝑀𝑜𝑣 a random partition: 20 %

• 𝑀𝑜𝑣 a partition scheduled in the module with lowest 𝛼: 40 %

• 𝑆𝑤 on two random partitions: 17 %

• 𝑆𝑤 on two partitions in exclusion: 2 %

• 𝑆𝑤 on the module with the least memory remaining: 1 %

• 𝑆ℎ on the module with lowest 𝛼: 10 %

• 𝑆𝑙 on the module with lowest 𝛼: 10 %
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Of course these values might not be the most favourable ones for every problem instance, however, a

suitable rule for dynamically adjusting these probabilities was not found, so these values were determined

empirically.

Strategy

Upon description of these operators, one should intuitively notice that these operators are sufficient

for reaching any possible distribution of partitions among modules. In particular, just applying 𝑀𝑜𝑣 at

random visits every possible state with respect to the partition assignment to modules, given enough time.

Furthermore, with 𝐿𝑜𝑝 we can reach every equilibrium point corresponding to local maxima.

The implemented algorithms are identical in most aspects. A copy of the best state so far is kept at all

times, and is returned if the stopping condition is verified or the algorithm is stopped early. Additionally, a

current state (or a population of states) is kept, and the algorithm traverses the search space by applying

the operators to generate new states. The new states can be better (in the sense of the optimization

criterion) or worse than the current state, and the policy that decides whether to accept or reject a new

state is the main distinguishing factor between the meta-heuristic algorithms.

4.3.3 Simulated Annealing

Simulated Annealing is a probabilistic optimization meta-heuristic with an analogy from the cooling of

materials. Essentially conceived for minimization problems, states are characterized by their energy

which is meant to be minimized. At each iteration, the algorithm generates a candidate state through a

given operation. If this has lower energy, then the algorithm always moves to this state, but even if the

energy is higher it will move to this state with probability 𝑃𝑎. This probability of accepting a higher energy

state is a function of the increase in energy and of the temperature. The temperature is initially high and

decreases with successive iterations, with higher temperatures allowing for more likely accepting higher

energy states, which is analogous to how minerals form in cooling materials. For maximization problems

it is usual to simply flip the sign of the evaluation function [3].

What this means is the algorithm is non-greedy at the start, but becomes progressively more greedy

as it progresses. It is essential for any algorithm of this type that worse states are sometimes accepted,

as this is important for the search to overcome local maxima. The algorithm is tuned by defining the initial

temperature, cooling schedule, and acceptance function [15].

The initial temperature, 𝑇0, should be high to allow exploration of the search space. If too low, the

optimization procedure will be greedy and unable to escape local maxima, but if too high, the procedure

is essentially random search, and initial iterations are useless. The most common cooling schedule which

is used here is the geometric cooling schedule,

𝑇(𝑖) = 𝑇0𝑞
𝑖

𝑁 , (4.22)

where 𝑁 is the number of iterations, 𝑖 the current iteration, and 𝑞 < 0 the geometric ratio. With this

schedule, the temperature decrease quickly and converges to 𝑞𝑇0.
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The acceptance function used is the normalized exponential form [15],

𝑃𝑎 = exp{𝑐 − 𝑐new
𝑘 ⋅ 𝑇(𝑖) }, (4.23)

where 𝑐 denotes cost (𝑐 ≡ −𝑒𝑣(𝑆)), and 𝑘 is a scaling factor. This acceptance function has the

characteristic that a sideways move, 𝑐 = 𝑐new, is always taken. The parameters 𝑇0, 𝑞, 𝑘 can be

determined experimentally to suit the specific problem. Some authors recommend that, at the highest

temperature, the probability associated with the worst expected change in cost should be 50 % [15]. For

reference, in this implementation at the starting temperature, a probability of 𝑃𝑎 = 50 % is verified for a

decrease ∆𝛼 = −0.4.

Several stopping conditions can be used, such as thresholds for temperature and energy, or mechan-

isms to detect convergence such as consecutively rejecting too many states or not finding an improving

solution in many iterations [15]. Here we use a maximum number of iterations, which is equivalent to

defining a final temperature, and a target value for 𝛼 as the stopping criterion. The implemented algorithm

is shown in appendix A.1.

4.3.4 Tabu-search

Tabu-search is another generic optimization algorithm similar to SA. The main difference is that, at

each iteration, Tabu-search generates many neighbour states through some permutation of the problem

variables and moves to the best one [9]. Ideally, all neighbour states would be generated, however

in problems like this one the neighbourhood is large and computationally expensive to explore, thus

the search can be restricted to a beam of neighbours. To avoid getting stuck at a certain region of the

state-space, the algorithm avoids revisiting solutions by keeping the most recently visited states in memory,

in what is called the Tabu list. This is usually implemented as a Last-In First-Out (LIFO) queue of previous

states, hashes of states or history of operations. It is updated at each iteration and has a size between 6

and 9 previous states [16].

The rule to always select the best neighbour characterizes this as a greedy algorithm, but the fact

that only a limited number of neighbours are explored at a time also helps in combatting this, due to the

possibility that all the randomly selected neighbours be worse than the current one. On the other hand, it

also becomes possible to miss an improving solution with this mechanic.

The stopping condition is essentially the same as for SA, but one should note that this algorithm is

steady-state and thus can run indefinitely without the converging nature of SA. The implemented algorithm

is shown in appendix A.2.

4.3.5 Genetic algorithm

Genetic (or evolutionary) algorithms are inspired by the process of evolution through natural selection.

Unlike SA and Tabu-search, genetic algorithms operate on multiple states at a time, here called individuals

on a population [8].
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The strength of a genetic algorithm comes from its exploration and exploitation capabilities. Exploration

of the search space is achieved by maintaining a diverse population and inserting random mutations [6].

In this context, mutation consist in modifying states by applying the 𝑀𝑜𝑣, 𝑆𝑤, 𝑆ℎ, and 𝑆𝑙 operators.

Additionally, genetic algorithms perform exploitation or intensification of solutions by combining parts of

different solutions, which is the crossover operator detailed in section 4.3.2.

There are different ways of implementing a genetic algorithm, mostly with respect to the population

type and size, the choice of operators, the population replacement strategy and the selection of individuals

for mating. The performance of the algorithm is greatly dependant on the previous criteria, and these are

empirically determined for each specific problem. In problems with an extensive search space and a low

ratio of feasible to infeasible solutions, a generic genetic algorithm does not perform better than random

search [8].

For this problem, we apply a steady-state genetic algorithm, meaning the populations are overlapping

between consecutive generations, as opposed to a classical algorithm where the population is entirely

replaced by a new one at each iteration. With this, at each iteration, the worst elements are removed

from the population and then the newly created individuals are inserted in their place. The ordering here

matters because this way the new individuals cannot be immediately removed. The population size and

number of individuals replaced at each iteration should ensure that the best individuals are kept every

time, so that there is more opportunity for these to contribute to improving solutions. However, a common

problem of this strategy is premature convergence, which happens when the population consists of copies

of the same sub-optimal solution. To balance this, a similarity measure between states is introduced, and

diversity is promoted by allowing a limited number of similar states in the population.

The similarity measure is based on the partition distribution. We define a cluster as a subset of

individuals in the population that share the same partition distribution. Then, we define the maximum

size for clusters, and preferentially remove the worst individual in the clusters with more individuals than

allowed, and only when all clusters have the allowed size, the worst individuals in the entire population

are removed. The implemented algorithm is shown in appendix A.3.

4.4 Summary

We conclude this chapter by summarizing the complete solution methodology, assisted by the flowchart in

figure 4.6.

From the problem specification, we first apply the schedulability conditions given in equations 3.24

and 3.25. These are simple, lightweight conditions that can prove a problem infeasible right away, but we

restate that these are not sufficient for schedulability. The CSP methodology described in section 4.1

follows, whose purpose is to assign values to 𝑓𝑖, ∀𝑝𝑖 ∈ 𝒫 such that the distribution constraints are met.

By using a backtracking algorithm for solving the CSP, which is complete, it is again possible to prove the

problem to be infeasible if this procedure fails.

Having found a valid assignment, we apply the 𝐿𝑜𝑝 operator to compute the offsets, 𝑡𝑖, ∀𝑝𝑖 ∈ 𝒫,

and find an initial solution 𝑆, which may or may not be valid already. From there, one of the meta-heuristic
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Figure 4.6: Problem solving methodology.

algorithms described in section 4.3 takes over. A new state 𝑆𝑛𝑒𝑤 is found, by applying one operator,

𝑀𝑜𝑣, 𝑆𝑤, 𝑆ℎ, 𝑆𝑙 on the current one, 𝑆, followed by local optimization (𝐿𝑜𝑝) on the modules which were

affected. Then the acceptance condition specific to the meta-heuristic determines whether or not this new

state is accepted, and the process repeats.

However, the flowchart is not accurate for the genetic algorithm which operates on a population of

states, for this one specifically consult appendix A.3. Also note Tabu-search generates multiple new

states, 𝑆𝑛𝑒𝑤 each iteration.

The solution process stops after a stopping condition is verified, which can be a maximum number of

iterations, elapsed time, or a solution as good as demanded is found. For the analysis of results in the

next chapter, the stopping condition used is this last one.
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Chapter 5

Results

In this chapter, we evaluate the computational performance of the procedures detailed in the previous

chapter, dividing this description between analysing some specific algorithms and evaluating the developed

scheduling tool as a whole. We define test cases of different scales, ranging from a trivial example to an

example with scale similar to contemporary industry instances, all generated randomly.

For benchmarking purposes, the results were taken in a machine equipped with an Intel® i7 CPU

rated @ 3.6 GHz with 8 MB cache and 16 GB RAM memory, running Linux. The tool and all algorithms

are implemented in Python 3.6 and the MILP-based solver used is the open source solver CBC [23]. All

time measurements are taken as the sum of processor time in user model and kernel mode on behalf of

the program, and every execution exceeding 24 h is aborted.

Since the meta-heuristics used are stochastic in nature and the search-space is large, the states

visited and the time needed to find a solution with some target value varies greatly for separate runs.

For this reason, the scheduler is run 20 times for each case, and performance evaluated via descriptive

statistics. In particular, without inferring on the statistical distribution, the most relevant parameter to

determine is the median solution time.

5.1 Local optimization algorithms

As a first analysis we evaluate the performance of some key algorithms that solve subproblems rather

than the complete scheduling problem, namely the best response algorithm and its important component,

the best value algorithm. Since these algorithms are deterministic, a statistical analysis is not relevant,

although the values presented are an average of a few samples with the purpose of mitigating some

inaccuracies present when measuring such short executions. In this section, we consider cases with a

variable number of partitions whose timing characteristics are listed in table 5.1.

5.1.1 Best value

The best value procedure (described in section 4.2.3) is repeated many times inside each 𝐿𝑜𝑝() method,

therefore its efficiency is critical to the scheduler performance. We evaluate two different algorithms for
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Table 5.1: Test case for algorithmic evaluation.

partition 𝑇 𝑒 partition 𝑇 𝑒

1 250 10 7 2000 10
2 1000 50 8 500 10
3 1000 20 9 250 20
4 250 10 10 1000 20
5 1000 100 11 2000 30
6 1000 10 12 500 40

determining the best value. Here, best_value_a is the exhaustive version which checks the partition utility

at each valid offset, having time complexity 𝒪(𝑇𝑖𝑁𝑝), and best_value_b is the algorithm that computes

the utility only in a set of interest points (not to be confused with the pseudo-code naming in algorithm

4), which has time complexity 𝒪(𝑇𝑖𝑁𝑝
3). Measurements are taken for several instances with 2 to 12

partitions, and the best value is computed with respect to the partition with index 1 from table 5.1.

Figure 5.1 presents these results. The results from figure 5.1a suggest that version ‘a’ has time

complexity linear with the number of partitions, while version ‘b’ is asymptotically worse, and for the

range where we evaluate it, it is consistent with the cubic complexity predicted in section 4.2.3. Still, for a

moderate number of partitions, version ‘b’ is superior, and the turning point for this example is observed

at 10 partitions.
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Figure 5.1: Performance of two methods for computing the best value for partition offsets.

Since both these versions are modular, it is possible to dispatch the most efficient algorithm at runtime

depending on the conditions. However, this is hard to implement correctly because of the number

of variables that have an impact on performance and the wide ranges of values these can take, and

experimentation showed that this introduces overhead that ultimately decreases performance for the

regular problem instances we consider.

Regarding the effects of chains, it can be seen in figure 5.1b that these speed up both algorithms, but

more significantly for version ‘a’. When looking quantitatively at these values, it should be noted that the

computation of the feasible region via expression 4.9 is done as a step prior to this algorithm. Also, it

must be noted that these chains were cherry-picked for this example in order to gradually impose more
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restrictiveness to the problem. In real-life instances, the chain delays are not particularly tight, therefore it

is common that some chains do not restrict this subproblem at all.

Another factor that influences this algorithm is the partition period for which we compute the best value.

To evaluate this, we measure performance when changing this period, 𝑇1, as shown in figure 5.2. Earlier,

we predicted linear complexity with respect to the partition period for version ‘a’, and this is what is verified

in figure 5.2a. For version ‘b’, the same is verified, but additionally, this algorithm also performs better if

the partition periods are harmonic, or otherwise if they share large factors with the remaining periods.

The figure suggests different slopes, the smallest is when 𝑇1 = 2𝑛 ⋅ 250, 𝑛 ∈ ℕ which is harmonic with

the periods of the remaining partitions from table 5.1. In figure 5.2b, we present results taken only for

these periods in a log-log plot, and this evidences the asymptotic linear complexity for both algorithms,

and additionally, it shows that version ‘b’ is superior. In real-life cases we expect periods in the order of

hundreds to hundreds of thousands, and we confirm for these values that version ‘b’ of the algorithm is

superior, even for cases with more partitions than presented.
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Figure 5.2: Effect of the partition period on the best response calculation, with 𝑁𝑝 = 8.

Finally, we analyse only cases with up to 12 partitions because in real-life instances the number of

partitions per CPM is consistently around this value. Even if future improvements to IMA motivate this

number to increase, we present an algorithm that has linear time complexity, so this methodology is not

invalidated in this case.

5.1.2 Best response

Evaluation of the performance of the best response algorithm is done for the single module case, as

described in section 4.2.2, and for multiple modules using a parallel approach as described in section

4.2.6. For the single module case, we use the same test case from table 5.1, and measure the time taken

for the best response algorithm to converge for randomly generated starting points, averaging the result.

The optimal 𝛼-parameter is determined using the MILP formulation, and we list the percentage of starting

points that lead to this optimal value, as well as the average final error in 𝛼-parameter and the average

time to convergence. The results are listed in table 5.2, and the time to convergence is also plotted in
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figure 5.3a.

Table 5.2: Performance of the best response algorithm as function of the number of partitions.

𝑁𝑝 𝛼𝑜𝑝𝑡 MILP time [s] convergence to 𝛼𝑜𝑝𝑡 [%] average error [%] average convergence
time [ms]

2 4.16 0.74 100 0 0.07
3 4.16 0.72 100 0 0.34
4 3.56 1.23 98.4 1.34 × 10−2 1.46
5 2.08 5.26 94.6 5.52 × 10−2 3.58
6 2.08 19.10 96.0 2.58 × 10−1 8.05
7 2.08 248.24 96.0 1.90 × 10−1 21.61
8 2.08 936.18 92.2 6.39 × 10−2 47.00
9 1.78 513.74 42.6 5.73 × 10−1 90.02
10 1.78 4514.53 41.4 6.43 × 10−1 108.10
11 1.78 3192.69 46.0 1.20 168.74
12 1.78 8048.55 10.4 14.70 278.35
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Figure 5.3: Performance of the best response algorithm as function of the number of partitions.

In terms of validity, the best response algorithm allows to find the optimal solution from a fraction

of starting points, which decreases as the number of partitions increases. Even when the converged

state is not an optimal solution, the error to the 𝛼-parameter remains small, but the optimal solution is

still expected to be found by restarting the algorithm multiple times. Likewise, each restart converges

in exponential time as was predicted, and corroborated by the results in figure 5.3a. The conclusion is

this algorithm is very efficient for scheduling or optimizing the schedule of a single module, with a small

compromise in optimality that is mitigated by repeating the algorithm for several starting points.

Let us analyse the hardest example shown, with 12 partitions. For each randomly generated starting

point there is a 10.4 % probability that an optimal solution is found, taking on average 278.35 ms. To

reach an optimal solution with a 99 % percent probability, 42 restarts are required, taking a total of 11.7 s.

For comparison, the MILP solver takes over 2 h to prove optimality for this example.

For the multi-module approach, we use 3 modules and make similar measurements for 9 to 36

partitions, such that the average number of partitions scheduled in each module remains similar to the

previous cases. Like in the previous analysis, the results are listed in table 5.3 and the time to convergence
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is plotted in figure 5.3b, however, we elect to omit results for numbers of partitions 29 to 36 for succinctness

and because for these large cases we are not able to prove optimality for the solutions found. For the

cases shown in table 5.3, optimality is proven by inference. Notice that adding an additional partition to a

problem with known 𝛼𝑜𝑝𝑡 creates a problem with at most this value for the 𝛼-parameter, thus if a solution

with this value is found, it is necessarily optimal. Knowing this, we only need to use the MILP solver for

the cases with 𝑁𝑝 = {9, 18}.

Table 5.3: Performance of the parallel best response algorithm as function of the number of
partitions.

𝑁𝑝 𝛼𝑜𝑝𝑡 convergence to 𝛼𝑜𝑝𝑡 [%] average error [%] average convergence time [ms]

9 2.08 90.0 1.41 9.04
10 2.08 84.0 3.42 9.45
11 2.08 87.0 1.91 13.14
12 2.08 82.0 2.88 17.20
13 2.08 75.0 4.16 17.52
14 2.08 88.0 3.15 26.64
15 2.08 75.0 2.41 31.90
16 2.08 68.0 4.02 41.67
17 2.08 62.0 4.37 58.96
18 1.55 62.0 5.51 61.95
19 1.55 53.0 7.07 88.56
20 1.55 56.0 5.65 79.08
21 1.55 55.0 7.62 116.77
22 1.55 44.0 8.51 148.68
23 1.55 56.0 7.08 136.21
24 1.55 42.0 9.98 201.41
25 1.55 45.0 8.10 249.87
26 1.55 47.0 8.50 279.59
27 1.55 19.0 13.94 330.34
28 1.55 2.00 12.72 427.48

It is clear that solving several modules in parallel increases the total number of equilibrium points for

the same total number of partitions, as there will be overall less restriction to each partition. However,

we observe that the fraction of starting points that lead to an optimal solution does not decrease as one

might expect. Instead, the main effect is the increased average error of the solutions found.

The most important remark is related to the time taken for convergence, which compares favourably

against the time for a single module considering the same total number of partitions. In fact, the determining

factor for the convergence speed of this algorithm, and consequently the overall scheduler, is the average

number of partitions per module. This is further illustrated by the fact that the convergence time is not

strictly increasing for this case, as seen in figure 5.3. Sometimes, adding a partition to a module with

few partitions can restrict the problem and speed up convergence, however, the overall trend remains an

exponential increase in convergence time.
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5.2 Complete scheduling tool

5.2.1 Test cases

We define five test cases for the problem without multiple windows, which are identified by the number of

modules and partitions, and one test case of moderate complexity for a problem where multiple windows

are allowed. The test cases are generated randomly, choosing periods from the set {100, 200, 500, 1000}

which allows non-harmonic periods, and durations up to 15 % of the respective period. With respect to the

distribution constraints, the memory requirements of the partitions are set to about 40 % of the modules’

capacity, thus imposing some restriction. About 20 % and 5 % of partitions are subject to an exclusion

and inclusion constraints, respectively, and the domains are not restricted. Regarding communications,

chains are defined with maximum delays in the order of magnitude of the partition periods, but always

in a way that some restriction is imposed. The network delays are in the order of magnitude of partition

execution requirements and required to be independent of the direction. The summary of these test cases

is presented in table 5.4 and the full characteristics for replication purposes are given in appendix B.

Table 5.4: Test cases definition.

Designation 𝑁𝑐 𝑁𝑝 Number of chains 𝛼𝑏𝑒𝑠𝑡

2𝑀6𝑃 2 6 0 5.5
4𝑀10𝑃 4 10 3 6.403
4𝑀20𝑃 4 20 8 2.875
8𝑀40𝑃 8 40 15 2.984

20𝑀100𝑃 20 100 40 2.325

3𝑀15𝑃-𝑆 3 15 3 1.26

The scheduling tool was repeatedly applied to these test cases in the course of gathering results, and

the value 𝛼𝑏𝑒𝑠𝑡 consists of the best solution ever found, but we do not guarantee that this is the optimal

solution, with the exception of 2𝑀6𝑃, for which the MILP model was able to prove optimality.

For the problem allowing multiple windows of execution, we define only one test case, 3𝑀15𝑃-𝑆,

which is generated similarly to the previous ones but with cherry-picked preemption points for 4 partitions,

and adjusted durations such that it is infeasible without multiple windows. This test case has 3 chains

constraining the partitions that cannot execute in multiple windows, and 𝜀𝑚 = 1 ∀𝑚.

5.2.2 Feasibility problem

As discussed, asserting feasibility is done by solving the problem until a solution with 𝑒𝑣(𝑆) ≥ 1 is found,

thus we begin by evaluating the scheduler for solving the test cases with an upper bound of 1 on the

evaluation function.

This is compared to the MILP implementation by adapting the model from section 3.4. We do this by

adding a constraint 𝛼 ≥ 1 and removing the optimization goal, which in contrast to the heuristic approach

consists in a rigorous method to determine feasibility.

Results are shown in table 5.5. This shows that both methods are effective for simple cases, but the
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Table 5.5: Scheduler performance finding the first valid solution.

Instance 𝑡𝑀𝐼𝐿𝑃 𝑡ℎ𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐 (median)

2𝑀6𝑃 1.00 s 0.593 s
4𝑀10𝑃 1.34 s 0.595 s
4𝑀20𝑃 6.29 s 0.830 s
8𝑀40𝑃 310.7 s 1.155 s

20𝑀100𝑃 > 24 h 23.32 s

3𝑀15𝑃-𝑆 NA 74.53 s

solution time increases more drastically for the MILP solver, finally not converging in useful time for the

hardest test case. One must note that all examples are subject to an approximately constant time that

is spent on parsing and validating the problem data. For example, the actual solution time for the MILP

solver (as interfaced by the software) for 2𝑀6𝑃 is 7.273 ms.

The performance of the scheduler is appropriate for the industry setting, where we can expect it to be

able to verify feasibility in seconds even for complex problem instances. This is certainly useful because

system integration depends on many interactions with the different suppliers to define all the parameters

and requirements, which are then translated into constraints accepted by this model. In this stage, the

problem changes quickly and having a tool to check feasibility and build a simple solution is of great

benefit to the system integrator.

Again, it must be stressed that only the MILP approach is able to prove infeasibility, in spite of the

heuristic approach failing to provide a valid solution being a strong indication that an instance is infeasible.

The MILP model does not support multiple windows and as such is not applicable to 3𝑀15𝑃-𝑆, however,

assuming single windows, the solver proves infeasibility for this case in 1.19 s.

These results already show the price of allowing multiple windows to the problem complexity, as we

see the solution time for 3𝑀15𝑃-𝑆 is superior to any of the other test cases that are substantially larger

in scale.

5.2.3 Optimization problem

For the optimization problem, we are interested in finding the optimal solution. Here, the MILP approach

does not converge in admissible time for any case other than 2𝑀6𝑃, thus the analysis in this section

focuses only on the heuristic scheduler, and we compare the implemented meta-heuristics.

Since it not possible to prove optimality with the heuristic scheduler, we settle for evaluating the solution

time to a good solution, characterized by a value close to 𝛼𝑏𝑒𝑠𝑡. For convenience in gathering results,

seen as the solution can take hours and must be repeated many times, we choose a target value of

0.9𝛼𝑏𝑒𝑠𝑡 for the test cases of larger scale.

The results are presented in figure 5.4 in the form of boxplots. For the reader not familiar with these,

boxplots present the quartiles of the data set, with the box detailing the first to third quartiles, divided

by the median value. The whiskers can represent different things depending on the author. Here, the

upper whisker details the highest data sample still within 1.5𝐼𝑄𝑅 of the lower quartile, 𝐼𝑄𝑅 being the

interquartile range, and the bottom whisker is defined identically, with any outliers marked in the plot.
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Boxplots do not make assumptions of the underlying statistical distribution, but make it possible to visualize

the spread and skewness in the data.

The results indicate that SA is best for smaller problems and Tabu-search more reliable for larger

problems, while the genetic algorithm shows no clear advantage compared to these two for any of these

test cases.

Tabu-search always computes a fixed number of different solutions at each iteration and only one is

really used, meaning that the others are effectively wasted. When the problem is easy and an improving

solution is likely to be found, this procedure wastes time computing many solutions at once. In contrast,

SA immediately accepts improving solutions, hence outperforms Tabu-search for easy problems.

For harder cases, the benefits of computing many solutions at each iteration start to show, and

Tabu-search shows better results for 8𝑀40𝑃 and 20𝑀100𝑃. Still, it is interesting to note that with

many attempts, SA likely achieves the minimum solution time of any meta-heuristic, happening when

the search progress is especially lucky, as is the case in figure 5.4e. The converse is also observed,

Tabu-search presents a higher maximum solution time than SA on all test cases up to 8𝑀40𝑃, and in

general presents more outliers than any other meta-heuristic, which seems to happen when the search

progress is particularly unlucky.

The genetic algorithm is comparable to the other two for easier cases, but for 8𝑀40𝑃 it performs

significantly worse, and for 20𝑀100𝑃 it does not reach the target value in useful time. Since the

distinguishing feature of the genetic algorithm as compared to the others is the crossover operator, the

conclusion is that combining two solutions in the way which was defined is not beneficial to the search

process.

As for the consequences to the industrial setting, based on the results for 20𝑀100𝑃, we can expect

to have a fairly optimized solution for the partition scheduling problem consistently in under an hour

of processor time (over 75 % of attempts), which is an excellent result. We further expect that real-life

cases may be slightly larger than 20𝑀100𝑃, but given the moderate scaling of the solution time when

going from 4𝑀20𝑃 to 8𝑀40𝑃 to 20𝑀100𝑃, it should remain in the order of hours. Regarding the

multiple window case, the solution time of 3𝑀15𝑃-𝑆 is located in between 8𝑀40𝑃 and 20𝑀100𝑃,

which demonstrates the expensive increase in complexity when we allow multiple windows, and this

indicates that, from the scheduling point of view, multiple windows should be avoided unless absolutely

necessary for problem feasibility.

Comparison with the exact model

As mentioned, the exact model only proves optimality for 2𝑀6𝑃 (subject to a 24 h timeout), taking 3.16 s.

A passing mention should be made that there is currently a huge gap in the performance of open source

MILP solvers and commercial ones [30], and even among the commercial ones, the performance varies

greatly depending on the specific problem, thus it is common practice to experiment with different solvers

to find the most suitable one for the specific problem. This means the MILP model can potentially perform

much better than reported here, and be a viable solution for the more complex examples.

Another clear difference is the heuristic method guarantees that each individual partition is scheduled
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Figure 5.4: Performance of the scheduler with different meta-heuristics.
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in a locally optimal slot that maximizes its own execution potential, whereas the exact solver settles for an

execution potential equal to the worst one in the system. In other words, the MILP approach maximizes

the partition utility in the worst case with no regard for the average case, as pointed out in Al Sheikh et al.

[28]. Going around this would require a multi-objective evaluation function. Here we look at the example

of 2𝑀6𝑃, in table 5.6. The solutions found by the MILP solver and the heuristic scheduler have 𝛼 = 5.5,

but the MILP model achieves an average partition utility �̄�𝑖 = 5.87, and the heuristic scheduler yields

�̄�𝑖 = 12.23.

Since the heuristic scheduler relies on the best response algorithm, it suffers from the same limitations

for cases with high processor usage fractions, while the exact model does not, being limited only by the

problem dimension.

Table 5.6: Two optimal solutions for 2𝑀6𝑃.

MILP Heuristic
𝑖 𝑓𝑖 𝑡𝑖 𝛼𝑖 𝑓𝑖 𝑡𝑖 𝛼𝑖

1 2 45 5.50 2 28 5.60
2 1 462 5.52 1 430 13.87
3 1 0 7.60 1 900 29.03
4 2 90 5.50 2 45 5.50
5 1 291 5.52 1 0 13.87
6 2 62 5.60 2 0 5.50

Comparison to related work

Comparison with related work, [28, 41], is not straightforward since there are differences in the models

considered. Particularly, we consider more comprehensive distribution and communication constraints,

and some sacrifices were taken to accommodate these differences.

Al Sheikh et al. [28] randomly generate several cases with 4 modules and 40 partitions and evaluate

the CPU time, reaching results between 5 min to 50 min and averaging at 27.4 min. Their methodology

does not consider communication constraints, multiple windows, inclusion and domains constraints, but

considers memory and exclusion constraints. Also, the scheduler is stopped after a given percentage of

the estimated equilibria are visited.

Since we are not able to replicate this stopping condition, we elect to use the same technique of

stopping after a solution with evaluation function close to 𝛼𝑏𝑒𝑠𝑡 is found. Given that this model is more

loosely constricted, we choose to stop at 0.95𝛼𝑏𝑒𝑠𝑡, and again it must be pointed out that the optimal

value of the cases considered in these experiments is not known.

Therefore, we generate 8 test cases as described in Al Sheikh et al. [28], however, we decide to

decrease the average partition execution time from 20 % of its respective period to 5 %, otherwise the

generated test cases are infeasible due to the processor usage fraction being too high. We run these

cases with the Tabu-search algorithm, whose results are listed in table 5.7.

Our results are similar, achieving almost identical minimum and maximum execution times, but we

obtain a lower mean execution time of 15.25 min. Despite the disputable stopping condition used in this

comparison, we can conclude that our methodology is an improvement on previous work.
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Table 5.7: Results for problem instances based on Al Sheikh et al. [28].

Case 𝛼𝑏𝑒𝑠𝑡 time to 0.95𝛼𝑏𝑒𝑠𝑡 [min] Case 𝛼𝑏𝑒𝑠𝑡 time to 0.95𝛼𝑏𝑒𝑠𝑡 [min]

4𝑀40𝑃 2.00 9.97 4𝑀40𝑃 2.54 13.36
4𝑀40𝑃 2.00 5.78 4𝑀40𝑃 1.29 23.67
4𝑀40𝑃 1.72 9.83 4𝑀40𝑃 1.42 8.34
4𝑀40𝑃 1.83 5.17 4𝑀40𝑃 1.72 45.85

Finally, Pira and Artigues [41] report results hundreds of times faster for their implementation that

is also based on the best response heuristic, but this work does not consider any kind of distribution or

communication constraints.
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Chapter 6

Conclusions

This chapter presents an overview of the topics discussed in this thesis and of the conclusions obtained,

and leaves suggestions for future work.

6.1 Overview

The research work presented in this dissertation focused on formally describing an avionics partition

scheduling problem, and providing methods for efficiently solving it. The final product is to be integrated

in GMV’s tool suite for system configuration.

A mathematical model is provided, detailing how to express high-level system requirements in terms

of problem variables and constraints. The overall problem is solved using different classes of algorithms.

A MILP formulation optimally solves the problem in its simplest form, but it is incapable of handling

large instances commonly encountered in this domain, thus heuristic methods are employed. We use a

constraint-based approach to build initial resource allocations or prove infeasibility on this subtask, and

general purpose stochastic optimization algorithms, namely SA, Tabu-search and a genetic algorithm

are adapted to perform exploration around this starting solution. Tabu-search is found to be suitable for

examples of modern scale, such as those encountered in modern avionic systems. In addition, we adapt

an existing local optimization procedure, called the best response algorithm, borrowed from the field of

game theory, that performs exploitation of solutions, and is shown superior to any other method for this

task.

6.2 Achievements

Firstly, the described model remains compatible with most similar approaches to the problem, while

supporting more kinds of constraints, which allow the user (the system integrator) to adequately specify

platform requirements, with respect to resource usage as well as the redundancy architecture.

The different methods implemented also allow the scheduling tool to be used for multiple purposes.

The heuristic methods are generally able to quickly provide a solution that verifies all constraints, and
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this is useful for determining feasibility of certain instances in the early stages of integration. Additionally,

in later phases of system integration, the heuristic methods are able to create optimized solutions in a

moderate amounts of time. If on the other hand optimality is the goal and time is not an issue, then any

external solver can take our MILP model and solve the problem to optimality.

The tool is also equipped with features that assist the user to make decisions along the project life

cycle, and in general decreases manual effort in this task:

• Easy to maintain problem definition based on configuration files.

• Evaluation of solutions and logs detailing which specific constraints are not met, and which pose no

restriction on the problem.

• Insight on the cause for infeasibility in certain cases.

• Visualisation of schedules in graphical format similar to the images included in this dissertation, and

in table format.

In conclusion, the objectives stated in the introduction were accomplished. In addition, this work

poses a contribution to academic research due to the novel changes imposed in our model, namely the

synchronous communications model and the possibility for splitting a partition’s execution in multiple

windows.

6.3 Future work

Scheduling for IMA platforms remains an open area of research. One of the main difficulties faced is the

non-existence of a standardized model that accurately expresses the functional requirements of these

systems. Ultimately, some of these requirements are implementation-specific, and this means research

effort is spread over many slightly different scheduling problems.

This model considers that the avionic architecture is already defined, including the available hardware

and communications infrastructure. There are techniques for defining and optimizing IMA architectural

topologies [33]; and parametrizing network delays [44], which are tasks that are tightly coupled with

partition scheduling. However, these are currently approached independently, so a holistic approach

integrating these tasks would be relevant.

Other smaller modifications to the described model are also interesting to consider. Namely, our

optimization criterion aims to maximize the worst case partition utility, but a weighed sum of all partition

utilities could be more relevant as it gives the user the decision of which partitions are more relevant to give

larger execution budgets. Other criteria can also apply, namely minimizing the usage of the communications

network. Finally, more comprehensive modelling of communication constraints is required, and this likely

requires that we specify and schedule each individual message, rather than setting maximum time

separation between partitions that exchange messages.

Finally, I consider that given the recent additions to Arinc specification 653 and the lacklustre per-

formance observed in our scheduler with the addition of multiple partition execution windows, the most

important future work on partition scheduling should be dedicated to multicore IMA systems.
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Appendix A

Optimization algorithms

A.1 Simulated Annealing algorithm

Algorithm 5 SA algorithm for the partition scheduling problem.
Require: 𝑁 ←maximum number of iterations

Require: 𝛾 ← upper bound on the target function (𝛼) ▷ Optional

Require: state ← initial state

Require: 𝑇0 ← Initial temperature

1: procedure Simulated_Annealing(state)

2: best ← state

3: 𝛼best ← 𝑒𝑣(state)

4: 𝑒 ← −𝑒𝑣(state) ▷ Energy

5: 𝑖 ← 0

6: while 𝑖 < 𝑁 do

7: 𝑇 ← 𝑇0𝑞
𝑖

𝑁

8: 𝑜𝑝 ←random_choice(𝑀𝑜𝑣, 𝑆𝑤, 𝑆ℎ, 𝑆𝑙)

9: candidate ← 𝑜𝑝(state)

10: 𝐿𝑜𝑝(candidate)

11: 𝑒𝑐 ← −𝑒𝑣(candidate)

12: if 𝑒𝑐 < 𝑒 then

13: state ← candidate

14: 𝑒 ← 𝑒𝑐

15: else

16: 𝑃𝑎 ← exp ( 𝑒−𝑒𝑐
𝑘⋅𝑇 )

17: if true with probability 𝑃𝑎 then

18: state ← candidate

19: 𝑒 ← 𝑒𝑐
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Algorithm 5 SA algorithm for the partition scheduling problem. (cont.)
20: end if

21: end if

22: if −𝑒 > 𝛼best then

23: best ← state

24: 𝛼best ← −𝑒

25: end if

26: if 𝛼best ≥ 𝛾 then

27: return best

28: end if

29: 𝑖 ← 𝑖 + 1

30: end while

31: return best

32: end procedure

A.2 Tabu search algorithm

Algorithm 6 Tabu search algorithm for the partition scheduling problem.
Require: 𝑁 ← maximum number of iterations

Require: 𝛾 ← upper bound on the target function (𝛼) ▷ Optional

Require: state ← initial solution

Require: tabu_size ← size of the tabu-list

Require: beam ← beam width ▷ Number of neighbors expanded at each iteration

1: procedure Tabu_Search(state)

2: best ← state

3: 𝛼best ← 𝑒𝑣(state)

4: current ← state

5: tabu_list ← a LIFO queue with size tabu_size, filled with dummy data

6: 𝑖 ← 0

7: while 𝑖 < 𝑁 do

8: 𝑒best ← −∞

9: for 𝑗 ← 1 … beam do

10: 𝑜𝑝 ←random_choice(𝑀𝑜𝑣, 𝑆𝑤, 𝑆ℎ, 𝑆𝑙)

11: candidate ← 𝑜𝑝(state)

12: 𝐿𝑜𝑝(candidate)

13: 𝑒 ← 𝑒𝑣(candidate)

14: if 𝑒 > 𝑒best and candidate ∉ tabu_list then

15: next ← candidate

16: 𝑒best ← 𝑒
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Algorithm 6 Tabu search algorithm for the partition scheduling problem. (cont.)
17: end if

18: end for

19: state ← next

20: push state into tabu_list

21: pop from tabu_list

22: if 𝑒best > 𝛼best then

23: best ← state

24: 𝛼best ← 𝑒best

25: end if

26: if 𝛼best ≥ 𝛾 then

27: return best

28: end if

29: 𝑖 ← 𝑖 + 1

30: end while

31: return best

32: end procedure

A.3 Genetic algorithm

Algorithm 7 Genetic algorithm for the partition scheduling problem.
Require: 𝑁 ← maximum number of generations

Require: state ← initial solution

Require: 𝑃 ← population size

Require: 𝑀 ← maximum cluster size

Require: overlap ← population overlap between generations

Require: 𝑝𝑚 ← mutation probability

1:

2: procedure Genetic_Algorithm(state)

3: population ← list of size 𝑃 filled with copies of state

4: 𝑛𝑟𝑒𝑝 ← ⌊(1 − overlap) × 𝑃⌋ ▷ number of new individuals created at each generation

5: while 𝑖 < 𝑁𝑔𝑒𝑛 do

6: for 𝑗 ∈ 𝑛𝑟𝑒𝑝 do

7: 𝑆1 ← random_choice(population)

8: 𝑆2 ← random_choice(population)

9: 𝑐ℎ𝑖𝑙𝑑𝑗 ← crossover(𝑆1, 𝑆2)

10: if true with probability 𝑝𝑚 then

11: 𝑜𝑝 ←random_choice(𝑀𝑜𝑣, 𝑆𝑤, 𝑆ℎ, 𝑆𝑙)
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Algorithm 7 Genetic algorithm for the partition scheduling problem. (cont.)
12: 𝑐ℎ𝑖𝑙𝑑𝑗 ← 𝑜𝑝(𝑐ℎ𝑖𝑙𝑑𝑗)

13: end if

14: 𝐿𝑜𝑝(𝑐ℎ𝑖𝑙𝑑𝑗)

15: end for

16: replace(population, 𝑐ℎ𝑖𝑙𝑑1, 𝑐ℎ𝑖𝑙𝑑2, … )

17: 𝑖 ← 𝑖 + 1

18: end while

19: return max𝛼(population)

20: end procedure

21:

22: function replace(population, children)

23: clusters ← group population by similarity

24: for each 𝑖 ← 1 … length(children) do

25: 𝑐 ← largest(𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠)

26: if size(𝑐) > 𝑀 then

27: Remove worst from 𝑐

28: else

29: Remove worst from 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛

30: end if

31: end for

32: insert children into population

33: end function
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Appendix B

Test Cases

B.1 2𝑀6𝑃

Table B.1: Problem specification for 2𝑀6𝑃.

Partition Period Duration Memory Domain

1 1000 1 9 All modules
2 1000 31 9 All modules
3 500 5 5 All modules
4 100 3 4 All modules
5 100 10 1 All modules
6 100 5 1 All modules

(a) Partition information.

Module Memory

1 36
2 36

(b) Module information.
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B.2 4𝑀10𝑃

Table B.2: Problem specification for 4𝑀10𝑃.

Partition Period Duration Memory Domain

1 1000 23 8 All modules
2 1000 41 7 All modules
3 1000 56 8 All modules
4 1000 77 6 All modules
5 1000 35 8 All modules
6 500 14 7 All modules
7 500 14 5 All modules
8 200 1 7 All modules
9 200 12 3 All modules
10 100 8 7 All modules

(a) Partition information.

Module Memory

1 32
2 31
3 32
4 31

(b) Module information.

Chain Delay

𝑝8 → 𝑝7 121
𝑝3 → 𝑝1 842
𝑝8 → 𝑝6 123

(c) Chain constraints.

𝑚, 𝑛 1 2 3 4
1 - 25 5 12
2 25 - 6 6
3 5 6 - 12
4 12 6 12 -

(d) Network delays.

Other constraints: 𝑓8 ≠ 𝑓9, 𝑓5 ≠ 𝑓10.
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B.3 4𝑀20𝑃

Table B.3: Problem specification for 4𝑀20𝑃.

Partition Period Duration Memory Domain

1 1000 46 6 All modules
2 1000 29 8 All modules
3 1000 73 1 All modules
4 500 16 4 All modules
5 500 29 9 All modules
6 500 29 3 All modules
7 500 5 6 All modules
8 500 40 8 All modules
9 500 24 1 All modules
10 200 1 3 All modules
11 200 21 9 All modules
12 200 18 8 All modules
13 200 21 2 All modules
14 200 15 7 All modules
15 200 23 2 All modules
16 200 3 7 All modules
17 100 9 6 All modules
18 100 1 6 All modules
19 100 2 5 All modules
20 100 11 8 All modules

(a) Partition information.

Module Memory

1 60
2 63
3 62
4 63

(b) Module information.

Chain Delay

𝑝7 → 𝑝14 98
𝑝13 → 𝑝9 125
𝑝18 → 𝑝5 459
𝑝9 → 𝑝2 550
𝑝10 → 𝑝11 134
𝑝19 → 𝑝3 582
𝑝15 → 𝑝1 1003
𝑝5 → 𝑝19 52
(c) Chain constraints.

𝑚, 𝑛 1 2 3 4
1 - 13 10 13
2 13 - 11 18
3 10 11 - 16
4 13 18 16 -

(d) Network delays.

Other constraints: 𝑓6 ≠ 𝑓19, 𝑓14 ≠ 𝑓4, 𝑓12 ≠ 𝑓18, 𝑓15 ≠ 𝑓14, 𝑓7 ≠ 𝑓2, 𝑓13 ≠ 𝑓11.
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B.4 8𝑀40𝑃

Table B.4: Problem specification for 8𝑀40𝑃.

Partition Period Duration Memory Domain

1 1000 1 1 All modules
2 1000 64 4 All modules
3 1000 80 1 All modules
4 1000 42 6 All modules
5 1000 37 3 All modules
6 1000 49 8 All modules
7 1000 16 2 All modules
8 500 8 6 All modules
9 500 23 1 All modules
10 500 10 7 All modules
11 500 37 7 All modules
12 500 29 7 All modules
13 500 35 6 All modules
14 500 18 5 All modules
15 500 34 8 All modules
16 500 15 1 All modules
17 500 11 2 All modules
18 500 30 3 All modules
19 500 22 3 All modules
20 500 30 3 All modules
21 500 31 1 All modules
22 200 2 3 All modules
23 200 9 5 All modules
24 200 21 3 All modules
25 200 21 5 All modules
26 200 13 8 All modules
27 200 19 9 All modules
28 200 18 8 All modules
29 200 12 3 All modules
30 200 22 7 All modules
31 200 8 9 All modules
32 100 2 8 All modules
33 100 5 8 All modules
34 100 2 3 All modules
35 100 14 1 All modules
36 100 13 3 All modules
37 100 9 8 All modules
38 100 14 2 All modules
39 100 10 2 All modules
40 100 2 7 All modules

(a) Partition information.

Module Memory

1 61
2 64
3 59
4 64
5 65
6 60
7 62
8 60

(b) Module information.

Chain Delay

𝑝21 → 𝑝26 252
𝑝23 → 𝑝7 215
𝑝37 → 𝑝18 424
𝑝1 → 𝑝30 166
𝑝10 → 𝑝25 50
𝑝27 → 𝑝6 706
𝑝28 → 𝑝34 119
𝑝30 → 𝑝20 259
𝑝17 → 𝑝14 321
𝑝21 → 𝑝38 109
𝑝8 → 𝑝18 309
𝑝5 → 𝑝30 204
𝑝18 → 𝑝23 205
𝑝8 → 𝑝28 157
𝑝32 → 𝑝24 243
(c) Chain constraints.
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𝑚, 𝑛 1 2 3 4 5 6 7 8
1 - 9 25 16 10 11 10 7
2 9 - 23 11 18 18 7 15
3 25 23 - 15 11 15 20 11
4 16 11 15 - 5 6 17 7
5 10 18 11 5 - 5 7 23
6 11 18 15 6 5 - 25 17
7 10 7 20 17 7 25 - 21
8 7 15 11 7 23 17 21 -

(d) Network delays.

Other constraints: 𝑓31 ≠ 𝑓29, 𝑓34 ≠ 𝑓9, 𝑓15 ≠ 𝑓25, 𝑓11 ≠ 𝑓40, 𝑓38 ≠ 𝑓29, 𝑓35 ≠ 𝑓10, 𝑓32 ≠ 𝑓9,
𝑓4 ≠ 𝑓25, 𝑓12 ≠ 𝑓30, 𝑓16 ≠ 𝑓25, 𝑓28 = 𝑓29, 𝑓2 = 𝑓8, 𝑓4 = 𝑓15, 𝑓31 = 𝑓38.
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B.5 20𝑀100𝑃

Table B.5: Problem specification for 20𝑀100𝑃.

Partition Period Duration Memory Domain

1 1000 55 2 All modules
2 1000 78 1 All modules
3 1000 28 4 All modules
4 1000 2 6 All modules
5 1000 75 6 All modules
6 1000 53 7 All modules
7 1000 47 7 All modules
8 1000 32 2 All modules
9 1000 46 1 All modules
10 1000 42 1 All modules
11 1000 68 6 All modules
12 1000 48 7 All modules
13 1000 79 2 All modules
14 1000 45 8 All modules
15 1000 74 9 All modules
16 1000 12 7 All modules
17 1000 46 7 All modules
18 1000 80 5 All modules
19 1000 24 6 All modules
20 1000 38 1 All modules
21 1000 45 8 All modules
22 1000 78 9 All modules
23 1000 21 8 All modules
24 500 24 1 All modules
25 500 23 9 All modules
26 500 37 2 All modules
27 500 15 4 All modules
28 500 40 4 All modules
29 500 40 8 All modules
30 500 11 1 All modules
31 500 13 8 All modules
32 500 7 2 All modules
33 500 17 7 All modules
34 500 9 3 All modules
35 500 24 6 All modules
36 500 40 5 All modules
37 500 4 6 All modules
38 500 24 4 All modules
39 500 34 7 All modules
40 500 11 6 All modules

(a) Partition information. (1/3)

Module Memory

1 62
2 63
3 60
4 59
5 65
6 60
7 63
8 65
9 62
10 62
11 62
12 65
13 63
14 61
15 62
16 63
17 60
18 65
19 59
20 59

(b) Module information.
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Partition Period Duration Memory Domain

41 500 5 4 All modules
42 500 31 1 All modules
43 500 16 1 All modules
44 500 17 2 All modules
45 500 6 3 All modules
46 500 30 2 All modules
47 500 23 6 All modules
48 500 3 6 All modules
49 200 11 4 All modules
50 200 9 4 All modules
51 200 19 2 All modules
52 200 12 2 All modules
53 200 16 7 All modules
54 200 15 2 All modules
55 200 15 7 All modules
56 200 13 4 All modules
57 200 16 9 All modules
58 200 21 1 All modules
59 200 17 2 All modules
60 200 9 2 All modules
61 200 18 6 All modules
62 200 17 9 All modules
63 200 17 6 All modules
64 200 12 3 All modules
65 200 16 5 All modules
66 200 12 9 All modules
67 200 23 9 All modules
68 200 3 6 All modules
69 200 4 2 All modules
70 200 23 9 All modules
71 200 20 4 All modules
72 200 18 4 All modules
73 100 8 5 All modules
74 100 4 4 All modules
75 100 12 4 All modules
76 100 8 2 All modules
77 100 1 4 All modules
78 100 1 6 All modules
79 100 3 6 All modules
80 100 8 2 All modules
81 100 15 3 All modules
82 100 1 9 All modules
83 100 3 4 All modules
84 100 10 9 All modules
85 100 10 2 All modules
86 100 2 2 All modules
87 100 5 5 All modules
88 100 14 4 All modules
89 100 10 8 All modules
90 100 7 3 All modules

(c) Partition information. (2/3)

Chain Delay

𝑝85 → 𝑝86 120
𝑝39 → 𝑝54 143
𝑝41 → 𝑝1 684
𝑝12 → 𝑝50 217
𝑝78 → 𝑝100 118
𝑝70 → 𝑝68 56
𝑝83 → 𝑝24 111
𝑝94 → 𝑝79 96
𝑝6 → 𝑝60 141
𝑝36 → 𝑝56 87
𝑝3 → 𝑝89 77
𝑝57 → 𝑝67 130
𝑝95 → 𝑝43 324
𝑝9 → 𝑝64 242
𝑝73 → 𝑝36 481
𝑝8 → 𝑝33 285
𝑝21 → 𝑝43 264
𝑝75 → 𝑝25 384
𝑝29 → 𝑝33 423
𝑝5 → 𝑝30 260
𝑝53 → 𝑝8 788
𝑝5 → 𝑝44 215
𝑝4 → 𝑝73 52
𝑝19 → 𝑝96 100
𝑝38 → 𝑝13 640
𝑝46 → 𝑝19 528
𝑝67 → 𝑝70 180
𝑝82 → 𝑝33 460
𝑝56 → 𝑝74 84
𝑝82 → 𝑝99 98
𝑝1 → 𝑝42 425
𝑝69 → 𝑝99 118
𝑝60 → 𝑝33 500
𝑝99 → 𝑝86 61
𝑝30 → 𝑝33 165
𝑝73 → 𝑝70 229
𝑝6 → 𝑝96 77
𝑝54 → 𝑝1 642
𝑝68 → 𝑝60 138
𝑝2 → 𝑝21 704
(d) Chain constraints.
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Partition Period Duration Memory Domain

91 100 15 5 All modules
92 100 1 6 All modules
93 100 13 4 All modules
94 100 7 5 All modules
95 100 14 1 All modules
96 100 7 9 All modules
97 100 3 8 All modules
98 100 1 2 All modules
99 100 6 6 All modules
100 100 2 3 All modules

(e) Partition information. (3/3)

𝑚, 𝑛 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
1 - 17 11 12 12 8 25 16 19 11 21 17 23 12 5 17 12 18 6 8
2 17 - 6 11 25 18 13 24 11 18 24 6 22 11 6 7 23 11 5 17
3 11 6 - 20 15 5 5 8 22 17 24 20 5 17 25 16 6 13 13 20
4 12 11 20 - 14 16 24 6 21 22 20 7 16 13 11 19 11 23 18 25
5 12 25 15 14 - 20 23 6 11 20 14 21 9 7 25 15 6 24 20 15
6 8 18 5 16 20 - 15 24 8 13 8 17 6 6 21 24 6 9 17 25
7 25 13 5 24 23 15 - 16 5 9 12 23 23 18 9 13 9 19 20 12
8 16 24 8 6 6 24 16 - 20 23 18 25 22 21 10 7 7 10 10 13
9 19 11 22 21 11 8 5 20 - 5 19 15 5 18 23 25 8 15 14 9
10 11 18 17 22 20 13 9 23 5 - 21 5 21 20 19 20 12 22 19 21
11 21 24 24 20 14 8 12 18 19 21 - 14 24 11 16 19 19 18 21 19
12 17 6 20 7 21 17 23 25 15 5 14 - 17 17 19 18 18 13 23 23
13 23 22 5 16 9 6 23 22 5 21 24 17 - 21 14 15 9 22 20 22
14 12 11 17 13 7 6 18 21 18 20 11 17 21 - 8 19 16 13 24 6
15 5 6 25 11 25 21 9 10 23 19 16 19 14 8 - 5 7 9 23 15
16 17 7 16 19 15 24 13 7 25 20 19 18 15 19 5 - 7 10 15 25
17 12 23 6 11 6 6 9 7 8 12 19 18 9 16 7 7 - 12 12 15
18 18 11 13 23 24 9 19 10 15 22 18 13 22 13 9 10 12 - 9 16
19 6 5 13 18 20 17 20 10 14 19 21 23 20 24 23 15 12 9 - 9
20 8 17 20 25 15 25 12 13 9 21 19 23 22 6 15 25 15 16 9 -

(f) Network delays.

Other constraints: 𝑓10 ≠ 𝑓5, 𝑓39 ≠ 𝑓53, 𝑓49 ≠ 𝑓40, 𝑓74 ≠ 𝑓4, 𝑓92 ≠ 𝑓31, 𝑓40 ≠ 𝑓12, 𝑓46 ≠ 𝑓19,
𝑓35 ≠ 𝑓23, 𝑓95 ≠ 𝑓6, 𝑓32 ≠ 𝑓45, 𝑓59 ≠ 𝑓76, 𝑓51 ≠ 𝑓37, 𝑓87 ≠ 𝑓9, 𝑓41 ≠ 𝑓61, 𝑓58 ≠ 𝑓8,
𝑓24 ≠ 𝑓56, 𝑓22 ≠ 𝑓11, 𝑓9 ≠ 𝑓25, 𝑓17 ≠ 𝑓68, 𝑓34 = 𝑓82, 𝑓65 = 𝑓77, 𝑓86 = 𝑓90, 𝑓29 = 𝑓97,
𝑓34 = 𝑓54, 𝑓54 = 𝑓82, 𝑓33 = 𝑓96.
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B.6 3𝑀15𝑃-𝑆

Table B.6: Problem specification for 3𝑀15𝑃-𝑆.

Partition Period Duration Memory Domain Preemption points Deadline

1 1000 100 5 All modules {40, 80} 200
2 1000 50 3 All modules {} –
3 1000 100 3 All modules {25, 40, 50, 60, 75} 300
4 1000 70 3 All modules {20, 40} 220
5 500 35 4 All modules {} –
6 500 25 4 All modules {} –
7 500 50 2 All modules {} –
8 250 50 5 All modules {20, 25, 30, 35} 175
9 250 20 6 All modules {} –
10 200 30 7 All modules {} –
11 100 10 4 All modules {} –
12 100 20 2 All modules {} –
13 100 5 5 All modules {} –
14 100 10 5 All modules {} –
15 50 2 6 All modules {} –

(a) Partition information.

Module Memory

1 33
2 35
3 30

(b) Module information.

Link Delay

𝑝6 → 𝑝15 48
𝑝10 → 𝑝5 125
𝑝11 → 𝑝12 119
(c) Link constraints.

Modules 1 2 3
1 - 12 7
2 12 - 14
3 7 14 -
(d) Network delays.

Other constraints: 𝑓8 ≠ 𝑓1, 𝑓9 ≠ 𝑓5, 𝑓10 ≠ 𝑓8, 𝑓1 = 𝑓12, 𝜀 = 1.
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