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Abstract

The Integrated Modular Avionics architecture has replaced federated architectures in the avionic domain,
allowing significant weight and power savings and enabling more competitive application development.
The resource-sharing nature of this architecture requires robust temporal and spatial segregation between
applications, which is achieved by statically scheduling applications on shared avionic hardware. This
raises a multiprocessor scheduling problem, automation of which has seen limited progress in industry,
but representing a significant challenge for system integration. We propose a mathematical model for
the partition scheduling problem associated with an optimization criterion based on system scalability and
flexibility, and provide both heuristic and exact methods for its solution based on existing literature.
Keywords: Arinc specification 653, Integrated Modular Avionics, Scheduling, Optimization.

1. Introduction
Avionic systems have traditionally followed a federated
architecture, with each component or subsystem having
its dedicated hardware and software, in what is defined as
Line Replaceable Units (LRUs). Suppliers were respons-
ible for developing both the hardware and software, and
supply it as its own self-contained black-box component.
This “one function – one computer” concept coupled with
redundancy provided high safety and reliability. Applica-
tions have guaranteed, deterministic access to processor
resources, and Input/Output (I/O) with bounded latency
and jitter. Maintenance is straightforward and inexpens-
ive, as LRUs can be readily replaced by equivalent ones.
Most importantly, with loosely coupled LRUs, critical
functions cannot be impaired by low-criticality functions,
and the modularity increases fault containment.

However, the disadvantages of the federated archi-
tecture are evident. With a federated architecture, a
function being added to the avionic system requires the
addition of one of these LRUs, and this quickly escalates
the mass, volume, cost and power consumption of the
entire avionic system to infeasible amounts. Regarding
costs, functions sharing a processor must be certified to
the highest criticality level of those functions, and this
encourages the usage of many processors with decreased
utilization. On the other hand, modern processors have
far more capability than a single critical function requires,
and this constitutes an inefficient usage of resources [13].

The Integrated Modular Avionics (IMA) paradigm is
the aviation industry’s response to these problems, whose
architecture principle relies on resource sharing between
generally unrelated components, including computing
resources, power, and communication media, as roughly
demonstrated in figure 1. Functions which were previ-
ously implemented in isolated LRUs now coexist on shared
hardware, and in order to maintain isolation between com-
ponents, IMA adopts robust time and space partitioning

between applications. Space partitioning protects the
application’s data from corruption by unrelated applica-
tions that share the same hardware, and time partition-
ing ensures the required access to computing resources
and communication channels [10]. Due to this, loosely
coupled avionic applications are designated as partitions
in the context of IMA. Arinc specification 653 defines
a standard interface between the Real-Time Operating
System (RTOS) and partitions, being an enabler of the
IMA architecture.
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Figure 1: Overview of Federated and Integrated Modular
Avionics.

Current developments on the IMA concept aim to
further abstract the applications from the hardware. In
classic IMA, peripherals such as sensors and actuators are
connected directly to the Core Processing Input-Output
Modules (CPIOMs), the equivalent of LRUs in this ar-
chitecture, that often must contain specific hardware to
interact with these. The introduction of Remote Data
Concentrators (RDCs) allows to connect the peripher-
als directly to the avionic network. These are hardware
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devices that carry the necessary drivers for these peripher-
als and perform their I/O to the avionic network, hence,
the CPIOMs, now simply called Core Processing Modules
(CPMs), do not require specific hardware and are further
standardized. Another advantage of this is the reduced
cabling needed, since CPMs are usually confined to the
avionics bay, potentially far from the peripherals. These
systems are often called Distributed Integrated Modular
Avionics (DIMA) since they distribute I/O across the
aircraft [16].

Mairaj [13] compares federated and IMA architectures
having surveyed 35 projects that underwent the transition.
The results show weight reductions of around 50 % for
all cases, volume reductions of 30 % to 40 %, power
savings of 25 % to 30 %, and Mean Time Between Failures
(MTBF) increasing by a factor of 1.4 to 3.8. Nowadays,
all new passenger aircraft models employ a variant of
this architecture.

1.1. Problem description
An IMA system is composed of several CPMs with each
hosting a set of partitions, with a static, cyclic partition
schedule. The schedule is static because it is configured
at build time, and does not change at runtime. A partition
is forcefully stopped at the end of its allocated time
window, and control transferred to the next one to ensure
fault containment. It is cyclic because a representative
unit is continuously repeated while the system is active.

Scheduling partitions in IMA involves decisions in two
domains. Firstly, IMA makes it possible that partitions
are capable of running on many if not all available CPMs,
but the schedule restricts that each must run on only
one. Part of the scheduling problem consists in assigning
partitions to different processors, verifying their real-time
constraints. These can include memory, stack-size, band-
width, as well as other constraints related to redundancy
management. Also, each partition must be allocated
time windows to execute while also verifying time se-
gregation with other partitions in the same module, and
being able to communicate with other elements in the
avionic network.

Partitions are characterized by a period and an execu-
tion requirement, which are measured in integer units of
time, noting that the highest precision for time measure-
ments in real-time computing systems is the CPU clock
period. Partitions are executed strictly periodically, which
means that the time separating two consecutive execu-
tion windows (or instances, jobs) of the same partition
is exactly the partition period. This strict periodicity is
common in real-time systems as it is required by control
loops for example, but it must be noted that the Arinc
653 standard does not enforce this. What is required
is that there is a “periodic processing start”, a point in
a partition schedule coinciding with the beginning of a
window where the internal periodic process scheduling is
allowed to start [12]. The execution requirement is taken
as the Worst-Case Execution Time (WCET) of the parti-
tion and can be provided by the application developer, or
determined through testing since it is dependent on the
hardware. The smallest unit of repetition of the schedule
in one CPM is called the Major Time Frame (MTF), or in
other words the hyper-period of the partitions scheduled
in that CPM. This is the smallest time window that is
indefinitely repeated, which must guarantee that at least
one partition time window be allocated to each partition

in the duration of one MTF. An example of a partition
schedule for one CPM is shown in figure 2.

Given the strict periodicity of partition executions,
once an execution window is defined, all subsequent ones
are implicitly defined, thus the starting time offset with
respect to the MTF is sufficient to fully describe the
schedule of a partition. The typical partition scheduling
problem is combining this with distributing the partitions
among the available CPMs, complying with some con-
straints. This is part of the problem we aim to solve,
and the constraints considered are exclusion, inclusion
(or cohabitation), domain, memory, temporal segregation
and communication constraints. Furthermore, this is
transformed into a Combinatorial Optimization Problem
(COP), by the defining an optimization criterion based on
flexibility, as introduced in [5], which intuitively consists
in providing each partition with room to increase its exe-
cution window without interfering with other partitions.
In addition to this, we also investigate the possibility of
splitting partition execution in multiple windows.

1.2. Related work
The first efforts to automate partition scheduling for IMA
is that of Lee et al. [3], which lay a framework for the
deployment of this task in the system integration phase.
Some approaches attempt to minimize the number of
processors used, in the style of the bin-packing problem.
See for example Eisenbrand et al. [6] and Eisenbrand
et al. [7].

Our approach is most similar to Al Sheikh et al. [9],
who aim to minimize the worst-case scalability potential
of every partition, but they do not consider communic-
ation constraints. They present a Mixed Integer Linear
Programming (MILP) formulation which fails to provide
solutions in acceptable time, and develop a heuristic
based on Game Theory. The same heuristic is improved
in Pira and Artigues [15].

Other methodologies include that of Beji et al. [11]
who use Satisfiability Modulo Theories (SMT) and aim
to minimize integration costs, and that of Blikstad et al.
[17], which uses a MILP formulation to model low-level
system requirements without a particular optimization
goal.

Also in the scheduling domain but not related to IMA or
real-time systems, we refer to Pinedo [4]. Some method-
ologies which inspire the present work include scheduling
with generic optimization algorithms, including Simulated
Annealing (SA), Tabu-search and genetic algorithms.

1.3. Contributions
The contributions of this paper are as follows:

• A comprehensive mathematical model of the sys-
tem is provided, containing distribution constraints,
which restrict the assignment of partitions to mod-
ules, communication constraints, via limiting the
delay in a chain of partition executions, and also a
multiple window model is introduced, which allows
partition execution to be divided in multiple win-
dows, where only some of them must be scheduled
strictly periodically.

• A MILP formulation describes a subset of the overall
problem.

• A sequential assignment algorithm and a Constraint
Satisfaction Problem (CSP) formulation are de-
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veloped to produce an initial assignment of partitions
to modules.

• A local optimization algorithm based on Game The-
ory [9] is used to improve the schedule for a single
model, and it is extended to accommodate inter-
partition communications and multiple windows.

• Stochastic optimization algorithms are added to
complement local search and explore larger portions
of the search space.

1.4. Outline
This work was developed in collaboration with GMV, a
supplier of an Arinc 653-compliant RTOS named XKY.
We have presented the fundamental concepts and the
necessity for partition scheduling. Section 2 is dedicated
to the mathematical representation of the problem, and
a MILP formulation which describes part of the overall
problem is included. Section 4 describes the algorithms
and strategies developed to heuristically solve generic
problem instances, with considerations for computational
performance, and section 5 evaluates these methodolo-
gies. Section 6 is the conclusion to this work.

2. Problem definition and modelling
Consider a set of 𝑁𝑝 partitions 𝒫 = {𝑝1, 𝑝2, … 𝑝𝑁𝑝

}
to be scheduled in 𝑁𝑐 modules 𝒞 = {𝑐1, 𝑐2, … 𝑐𝑁𝑐

}.
Partitions 𝑝𝑖 ∈ 𝒫 are characterized by:

• 𝑒𝑖 – execution requirement in units of time, taken
as its WCET.

• 𝑇𝑖 – period, in units of time.
• 𝑠𝑖 – memory requirement, in arbitrary units.
Modules 𝑐𝑚 ∈ 𝒞 are characterized by:
• 𝑆𝑚 – memory capacity, in the same units as 𝑠.
• 𝜀𝑚 – context switching cost, in units of time.

This context switching cost is a time penalty added to
the partition execution when it is divided in multiple
windows, corresponding to the time taken to restore the
execution state.

The assignment of partitions to modules is represented
by variables 𝑓𝑖, ∀𝑝𝑖 ∈ 𝒫, which denotes that partition
𝑝𝑖 is assigned with the module with index 𝑚 = 𝑓𝑖. For
convenience, we also define 𝒫𝑚 ⊆ 𝒫 as the subset of
partitions scheduled in module 𝑐𝑚. That is,

𝒫𝑚 ≡ {𝑝𝑖 ∈ 𝒫, 𝑓𝑖 = 𝑚}. (1)

The module MTF is the hyper-period of the partition
periods hosted in each module:

𝐻𝑚 ≡ lcm {𝑇𝑖}, 𝑝𝑖 ∈ 𝒫𝑚, (2)
where lcm denotes the least common multiple operator.
Under this, a partition executes 𝐾𝑖 = 𝐻𝑚/𝑇𝑖 times, and
these individual executions are called jobs (notice 𝐾𝑖
is an integer due to the definition of 𝐻𝑚). Let now
𝑡𝑖 be the starting offset for partition 𝑝𝑖, such that this
partition is scheduled to start at strict periodic instants
𝑡𝑖 + 𝑘𝑇𝑖, 𝑘 = 0, 1, … 𝐾𝑖 − 1.

Assuming single execution windows, a partition ex-
ecutes in time windows [𝑡𝑖 + 𝑘𝑇𝑖, 𝑡𝑖 + 𝑘𝑇𝑖 + 𝑒𝑖], 𝑘 =
0, 1, … 𝐾𝑖, and temporal segregation requires that these
windows do not overlap for partitions in the same module.
All timing variables are integers, and in particular periods

and durations are strictly positive. Figure 2 shows this
nomenclature on a partition schedule.
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Figure 2: Schedule with annotated timing variables.
Partitions have non-harmonic periods.

2.1. Distribution constraints
The assignment of partition to modules is restricted by
constraints which we call distribution constraints.
Exclusion – Two partitions are said to be in exclusion

if they cannot be assigned to the same module.
This covers, but is not restricted to, the redundancy
requirements of an avionic system, where safety-
critical functionality must be replicated in different
machines. An exclusion constraint between parti-
tions 𝑝𝑖, 𝑝𝑗 is denoted by 𝑓𝑖 ≠ 𝑓𝑗.

Inclusion – Two partitions are said to be in inclusion if
they must be placed in the same module, which is
useful for applications that are tightly coupled. Sim-
ilarly to exclusion, an inclusion constraint between
partitions 𝑝𝑖, 𝑝𝑗 is denoted by 𝑓𝑖 = 𝑓𝑗.

Domain – A partition can only be assigned to a subset
of all modules, called the partition’s domain. That
is the case in some architectures where applications
require specific hardware that is only installed in
some modules, like peripherals. The domain 𝐷𝑖 of
a partition 𝑝𝑖 is essentially a list of modules it can
be assigned to. Formally, 𝐷𝑖 ⊆ 𝒞 such that:

𝑐𝑚 ∉ 𝐷𝑖 ⟹ 𝑓𝑖 ≠ 𝑚. (3)

Memory – This is the only Knapsack constraint con-
sidered. For each module, the sum of the parti-
tions’ memory sizes much not exceed that module’s
memory capacity:

∑
𝑝𝑖∈𝒫𝑚

𝑠𝑖 ≤ 𝑆𝑚. (4)

Uniqueness – This constraint simply imposes that each
partition is assigned to exactly one module. Using
𝑓𝑖 notation, this constraint is implicit, but with the
abbreviated 𝒫𝑚 notation it is expressed as:

⎧{
⎨{⎩

𝒫1 ∪ 𝒫2 ∪ … ∪ 𝒫𝑁𝑐
= 𝒫

∀𝑐𝑚, 𝑐𝑛 ∶ 𝒫𝑚 ∩ 𝒫𝑛 = ∅.
(5)

2.2. Communication constraints
Inter-partition communications are often represented as
processing chains, consisting of some kind of data being
treated by successive partitions. One can think of data
originating from a sensor or user input, being processed
by one or more partitions, then originating a certain
response in its final destination [9]. For this problem, we
will consider such chains, but limit them to two partitions
only, such that the time taken to process the data from
its origin in the sender partition to its consumption in
the receiver partition is bounded.

A chain linking 𝑝𝑖 to 𝑝𝑗 is subject to a maximum delay
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𝐸max
𝑖,𝑗 , so we can describe all communication constraints

by a matrix [𝐸max], with entries being infinity when
there is no communication between partitions. The chain
processing time is denoted 𝐸𝑖,𝑗, measured from the start
of 𝑝𝑖 to the end of 𝑝𝑗, and must verify

𝐸𝑖,𝑗 ≤ 𝐸max
𝑖,𝑗 . (6)

This definition is agnostic to which jobs actually par-
ticipate in the chain. If the two partitions have equal
periods, then the delay between two consecutive jobs is
constant, but if the periods are not equal but still har-
monic, then 𝐸𝑖,𝑗 is defined as the shortest delay, and the
chain can occur with a period equal to the larger of the
two partition periods. When the two partition periods
are non-harmonic, then for simplicity we consider also
the smallest delay, and the chain shall be repeated with a
period equal to the hyper-period of these two partitions.

If the two communicating partitions are assigned to
different modules, the network delay between these two
modules must be considered. The network is character-
ized by a matrix [Τ] with elements 𝜏𝑚,𝑛 of maximum
End-to-End (ETE) delays, which are upper bounds to
the actual communication delay between modules 𝑐𝑚, 𝑐𝑛.
Communications between partitions in the same mod-
ule are not subject to network delays, thus we define
𝜏𝑚,𝑚 = 0, ∀𝑚. We can also assume 𝜏𝑚,𝑛 ≪ 𝑇𝑖, ∀𝑚, 𝑛, 𝑖,
by at least one order of magnitude.

The situation considered here is when the modules run
synchronously. Intuitively, this means the two modules’
schedules are aligned, and the instant when the message
arrives in the second module is known. It can be the case
that messages arrive at the destination partition after
the instant where it starts to process incoming messages,
meaning that the message will only be processed in the
next job of this partitions, we say it is delayed for one
period. It is also considered that all messages are sent
and received in the end and beginning, respectively, of
a partition’s execution window. The earlier assumption
𝜏𝑚,𝑛 ≪ 𝑇𝑖 is meant to prevent messages from being
delayed for more than one period.

2.3. Multiple window model
For the extended model, it is considered that partition
jobs can be divided in more than one window of execution,
hence we introduce an extended model with specific
constraints such that the real-time requirements of these
partitions are verified. Henceforth, this is referred to as
“multiple windows”.

Consider now that, for each job 𝑘 of a partition 𝑝𝑖 ∈
𝒫𝑚, there are 𝑀𝑖,𝑘 execution windows, with lengths
(𝑒𝑖,𝑘,1, 𝑒𝑖,𝑘,2, … , 𝑒𝑖,𝑘,𝑀𝑖,𝑘

), such that:
𝑀𝑖,𝑘

∑
𝑢=1

𝑒𝑖,𝑘,𝑢 = 𝑒𝑖 + (𝑀𝑖,𝑘 − 1)𝜀𝑚, ∀𝑘. (7)

The windows are represented as 𝜆𝑖,𝑘,𝑢, and each has its
own offset 𝑡𝑖,𝑘,𝑢, defined with respect to the hyper-period.
Additionally, all windows that compose the partition are
denoted by the set Λ𝑖. Since the first window at each
job must be executed strictly periodically, its offset is not
independent for all jobs, and is constricted by:

𝑡𝑖,𝑘,1 = 𝑡𝑖,1,1 + (𝑘 − 1)𝑇𝑖, ∀𝑘. (8)

The problem is greatly complicated because we require

vector variables to completely represent the schedule, in
particular because the number of jobs depends on the
hyper-period, which is a function of the periods of all
partitions assigned to that module, and the number and
sizes of each window are also variable.

We require that the partition splitting be done only
in predetermined points in order to limit the problem
complexity. These set of possible points for splitting
is represented for each partition 𝑝𝑖 as ℬ𝑖. Splitting a
partition at job 𝑘 in a subset of preemption points b ⊆ ℬ𝑖
yields the window sizes e𝑖,𝑘 = (𝑏1, 𝑏2 −𝑏1 +𝜀𝑚, … , 𝑏𝑁 −
𝑏𝑁−1 +𝜀𝑚), where we consider without loss of generality
that b has 𝑁 sorted elements.

The response time of a task is defined as the time taken
from the task activation to when the task completes, and
clearly, this concept is not relevant if the execution is
made in a single window. With more than one win-
dow per job, the partition finishes executing in instants
{𝑡𝑖,𝑘,𝑀𝑖,𝑘

+ 𝑒𝑖,𝑘,𝑀𝑖,𝑘
}, which prompts the definition of

the response time, 𝑟𝑖, as

𝑟𝑖 = max
𝑘

{𝑡𝑖,𝑘,𝑀𝑖,𝑘
+ 𝑒𝑖,𝑘,𝑀𝑖,𝑘

− 𝑡𝑖,𝑘,1}, (9)

restricted by a relative deadline, 𝑑𝑖:
𝑟𝑖 ≤ 𝑑𝑖, (10)

which is measured with respect to to the job start, 𝑡𝑖,𝑘,1.
All partitions have the implicit deadline 𝑑𝑖 ≤ 𝑇𝑖 to ensure
that all windows finish before the next job starts.

Figure 3 sketches the new notation introduced in this
section, where the windows corresponding to a subdivi-
sion of a job are represented with rounded edges.

𝑡

MTF MTF

𝜆𝑖,1,1 𝜆𝑖,2,1 𝜆𝑖,2,2

𝑇𝑖

𝑒𝑖,1,1 𝑒𝑖,2,1 𝑒𝑖,2,2

𝑡𝑖,1,1
𝑡𝑖,2,1

𝑡𝑖,2,2

𝜀

𝑟𝑖

Figure 3: Multiple window execution notation.

2.4. Schedulability
From Korst et al. [2], we can derive a necessary and
sufficient condition for two partitions, 𝑝𝑖, 𝑝𝑗, assigned to
the same module to not overlap in time:

𝑒𝑖 ≤ mod{𝑡𝑗 − 𝑡𝑖, 𝑔𝑖,𝑗} ≤ 𝑔𝑖,𝑗 − 𝑒𝑗, (11)

with 𝑔𝑖,𝑗 = gcd {𝑇𝑖, 𝑇𝑗}, and mod denoting the modulo
operator. We further define 𝑙𝑖,𝑗 ≡ mod{𝑡𝑗 − 𝑡𝑖, 𝑔𝑖,𝑗},
called a latency delay, which represents the minimum
delay between any two job starts of the two partitions.

Schedulability can also be analysed with the processor
usage fraction, 𝑈𝑚, given by:

𝑈𝑚 = ∑
𝑝𝑖∈𝒫𝑚

𝑒𝑖
𝑇𝑖

. (12)

This can be seen as the percentage of time that a pro-
cessor is active, and for single core processors the set is
clearly not schedulable when 𝑈𝑚 > 1. For the complete
problem, it is infeasible if ∑𝑐𝑚∈𝒞 𝑈𝑚 > 𝑁𝑐.

Using the definition of the latency delay, the chain
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processing time is given for 𝑝𝑖 ∈ 𝒫𝑚, 𝑝𝑗 ∈ 𝒫𝑛:

𝐸𝑖,𝑗 =
⎧{
⎨{⎩

𝑙𝑖,𝑗 + 𝑒𝑗, if 𝑙𝑖,𝑗 − 𝑒𝑖 ≥ 𝜏𝑚,𝑛
𝑙𝑖,𝑗 + 𝑒𝑗 + 𝑇𝑗, otherwise

. (13)

2.5. Optimization criterion
The optimization criterion chosen is one that aims to
increase flexibility, by providing each partition a potential
to increase its execution time. This is accomplished by
leaving some idle time after each partition execution win-
dows, and has some benefits: upon system maintenance
or modification, one can add functionality to partitions,
increasing their execution requirement, without having
to recompute a new schedule; it mitigates uncertainty on
the determined WCETs; and possibly, it can allow for the
usage of slower, cheaper hardware, where the execution
requirements would be greater.

The evaluation function used is the 𝛼-parameter, which
is the maximum factor that scales all partition execution
requirements, such that the schedule becomes borderline
valid [5]. It can be defined for each module, or for the
whole system:

𝛼𝑚 = min{
𝑙𝑖,𝑗
𝑒𝑖

}, ∀𝑝𝑖, 𝑝𝑗 ∈ 𝒫𝑚, 𝑖 ≠ 𝑗 (14)

𝛼 = min
𝑐𝑚∈𝒞

{𝛼𝑚}. (15)

This yields each partition further execution time in pro-
portion to the original execution requirement, which is
appropriate since more complex applications with longer
execution requirements are more likely to need to be
updated and/or expanded.

Figure 4 illustrates the optimization criterion. Note
that in this figure, 𝑝2 actually can increase its execution
further, but the critical factor for the 𝛼-parameter is 𝑝1.
Also note the solution presented is sub-optimal, it is clear
that shifting 𝑝2 to the right increases 𝛼.

𝑡

𝑝1 𝑝1𝑝2

𝑒1 𝑒2

𝛼𝑒1 𝛼𝑒2

Figure 4: Effect of the 𝛼-parameter.

We also define the partition utility, 𝛼𝑖:

𝑤(𝑖, 𝑗) = min{
𝑙𝑖,𝑗
𝑒𝑖

,
𝑙𝑗,𝑖
𝑒𝑗

} (16)

𝛼𝑖(𝑡𝑖) = min
𝑗

{𝑤(𝑖, 𝑗)}, (17)

for 𝑝𝑗 ∈ 𝒫𝑚 ∖ {𝑝𝑖}. It represents the module’s 𝛼-
parameter, as a function of the offset 𝑡𝑖, but considering
only the partition pairs where 𝑝𝑖 is involved, and all other
offsets fixed. It is distinct from simply the execution
potential for that partition, because it also accounts for
the effect on the remaining partitions in that module, as
seen in expression 16. For partitions with multiple execu-
tion windows we consider that the execution potential is
appended only to the last window at every job.

3. MILP formulation
In this section we detail a MILP formulation that models
the multiprocessor partition scheduling problem with com-
munication constraints, but does not consider multiple
execution windows. The classification as a Mixed Integer
Linear Program comes from the fact that the formulation

uses both integer variables (offsets and assignments) as
well as real variables (the 𝛼-parameter) involved in linear
constraints. The formulation follows closely that in [5],
and uses the natural encoding of binary variables, 1-true
and 0-false.

Let 𝑎𝑖,𝑚 be a binary variable expressing that partition
𝑝𝑖 is assigned to module 𝑐𝑚,

𝑎𝑖,𝑚 =
⎧{
⎨{⎩

1, 𝑝𝑖 ∈ 𝒫𝑚
0, otherwise

. (18)

With this reformulation of the partition assignment, The
distribution constraints take the following form:

Uniqueness ∶ ∀𝑖 ∑
𝑚

𝑎𝑖,𝑚 = 1. (19a)

Memory ∶ ∀𝑚 ∑
𝑖

𝑎𝑖,𝑚𝑠𝑖 ≤ 𝑆𝑚 (19b)

Exclusion ∶ 𝑓𝑖 ≠ 𝑓𝑗 ∶ ∀𝑚 𝑎𝑖,𝑚 ≤ 1 − 𝑎𝑗,𝑚 (19c)
Inclusion ∶ 𝑓𝑖 = 𝑓𝑗 ∶ ∀𝑚 𝑎𝑖,𝑚 = 𝑎𝑗,𝑚 (19d)
Domains ∶ ∀𝑖 ∑

𝑐𝑚∈{𝒞∖𝐷𝑖}
𝑎𝑖,𝑚 = 0. (19e)

Temporal segregation is ensured by equation 11, which
is non-linear due to the modulo function. Linearisation
requires the introduction as free variables of the quotient
from the division, 𝑞𝑖,𝑗 ≡ ⌊

𝑡𝑗−𝑡𝑖
𝑔𝑖,𝑗

⌋, which enables rewriting
condition 11 as:

𝑡𝑗 − 𝑡𝑖 − 𝑞𝑖,𝑗𝑔𝑖,𝑗 ≥ 𝛼 ⋅ 𝑒𝑖 − 𝑍 (2 − 𝑎𝑖,𝑘 − 𝑎𝑗,𝑘)

𝑡𝑗 − 𝑡𝑖 − 𝑞𝑖,𝑗𝑔𝑖,𝑗 ≤ 𝑔𝑖,𝑗 − 𝛼 ⋅ 𝑒𝑗 + 𝑍 (2 − 𝑎𝑖,𝑘 − 𝑎𝑗,𝑘) .

(20a)
(20b)

In this step, we also introduce the 𝛼-parameter mul-
tiplying the partition executions, and these constraints
should only apply to partitions in the same module, thus
a “Big-M” constant 𝑍 is used to trivially satisfy these
inequalities when the partitions are not assigned to the
same module. Bounds for 𝑞 can be found by noting that
𝑡𝑖 ∈ [0, 1, … , 𝑇𝑖 − 𝑒𝑖], which gives:

𝑒𝑖 − 𝑇𝑖
𝑔𝑖,𝑗

− 1 <𝑞𝑖,𝑗 ≤
𝑇𝑗 − 𝑒𝑖

𝑔𝑖,𝑗
. (21)

Regarding the communications constraints, for each
chain, let the new binary variable 𝑥𝑖,𝑗 denote that the
chain being delayed for one period. This is used to
eliminate the branching in equation 13, having:

𝑙𝑖,𝑗 + 𝑒𝑗 + 𝑥𝑖,𝑗𝑇𝑗 ≤ 𝐸max
𝑖,𝑗 . (22)

The network delay affecting the two partitions is denoted
by the auxiliary variable �̂�𝑖,𝑗, defined as:

�̂�𝑖,𝑗 ≡ ∑
𝑐𝑚,𝑐𝑛∈𝒞

𝑎𝑖,𝑚𝑎𝑗,𝑛𝜏𝑚,𝑛, (23)

but this is non-linear in terms of our free variables. Lin-
earisation is done by introducing new binary variables
𝑦𝑖,𝑗,𝑚,𝑛 ≡ 𝑎𝑖,𝑚 ∧ 𝑎𝑗,𝑛, which yields:

�̂�𝑖,𝑗 = ∑
𝑐𝑚,𝑐𝑛∈𝒞

𝑦𝑖,𝑗,𝑚,𝑛𝜏𝑚,𝑛. (24)

Finally, when a chain is not delayed for one period, then
it must verify 𝑙𝑖,𝑗 + 𝑒𝑖 − �̂�𝑖,𝑗 ≥ 0, so we introduce

𝑙𝑖,𝑗 + 𝑒𝑖 − �̂�𝑖,𝑗 + 𝑥𝑖,𝑗𝑍 ≥ 0, (25)
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where again, the “Big-M” constant 𝑍 is used to ignore
this constraint when 𝐸max

𝑖,𝑗 is respected in equation 22
with the chain being delayed one period.

The full model is:
max 𝛼

s.t. 0 ≤ 𝛼 ≤ min
𝑝𝑖∈𝒫

{ 𝑇𝑖
𝑒𝑖

}

∑
𝑐𝑚∈𝒞

𝑎𝑖,𝑚 = 1; 0 ≤ 𝑡𝑖 ≤ 𝑇𝑖 − 𝑒𝑖

∀𝑐𝑚 ∈ {𝒞 ∖ 𝐷𝑖} ∶ 𝑎𝑖,𝑚 = 0; ∑
𝑝𝑖∈𝒫

𝑎𝑖,𝑚𝑠𝑖 ≤ 𝑆𝑚

𝑓𝑖 ≠ 𝑓𝑗, ∀𝑚 ∶ 𝑎𝑖,𝑚 ≤ 𝑎𝑗,𝑚

𝑓𝑖 = 𝑓𝑗, ∀𝑚 ∶ 𝑎𝑖,𝑚 = 𝑎𝑗,𝑚

𝑗 > 𝑖 ∶ 𝑡𝑗 − 𝑡𝑖 − 𝑞𝑖,𝑗𝑔𝑖,𝑗 ≥ 𝛼𝑒𝑖−

− 𝑍 (2 − 𝑎𝑖,𝑚 − 𝑎𝑗,𝑚)

𝑗 > 𝑖 ∶ 𝑡𝑗 − 𝑡𝑖 − 𝑞𝑖,𝑗𝑔𝑖,𝑗 ≤ −𝑔𝑖,𝑗𝛼𝑒𝑗−

− 𝑍 (2 − 𝑎𝑖,𝑚 − 𝑎𝑗,𝑚)

𝑒𝑖 − 𝑇𝑖
𝑔𝑖,𝑗

≤ 𝑞𝑖,𝑗 ≤
𝑇𝑗 − 𝑒𝑖

𝑔𝑖,𝑗

0 ≤ 𝑡𝑗 − 𝑡𝑖 − 𝑞𝑖,𝑗𝑔𝑖,𝑗 ≤ 𝑔𝑖,𝑗

𝑡𝑗 − 𝑡𝑖 − 𝑞𝑖,𝑗𝑔𝑖,𝑗 + 𝑒𝑗 + 𝑥𝑖,𝑗𝑇𝑗 ≤ 𝐸max
𝑖,𝑗

𝑡𝑗 − 𝑡𝑖 − 𝑞𝑖,𝑗𝑔𝑖,𝑗 + 𝑒𝑖 − ∑
𝑐𝑚,𝑐𝑛∈𝒞

(𝑦𝑖,𝑗,𝑚,𝑛𝜏𝑚,𝑛) +

+ 𝑥𝑖,𝑗𝑍 ≥ 0

𝑦𝑖,𝑗,𝑚,𝑛 ≥ 𝑎𝑖,𝑚 + 𝑎𝑗,𝑛 − 1

𝑦𝑖,𝑗,𝑚,𝑛 ≤ 𝑎𝑖,𝑚; 𝑦𝑖,𝑗,𝑚,𝑛 ≤ 𝑎𝑗,𝑛

𝑎𝑖,𝑚 ∈ {0, 1}, 𝑡𝑖 ∈ ℤ, 𝑞𝑖,𝑗 ∈ ℤ

𝑥𝑖,𝑗 ∈ {0, 1}, 𝑦𝑖,𝑗,𝑚,𝑛 ∈ {0, 1}

4. Methodology
This section describes the heuristic methods developed
to solve the problem. We elect to divide the overall
problem into three smaller subproblems, and employ
specialized methods for tackling each of these. The
three subproblems are: assigning partitions to modules
to verify the distribution constraints, performing local
optimization on a single module, and performing global
optimization.

4.1. Partition assignment
The partition assignment problem aims to distribute the
partitions among the available modules in a way that
verifies the distribution constraints. Following this, the
first step is to find one viable assignment of partitions to
modules, which essentially consists in assigning values to
𝑓𝑖, ∀𝑝𝑖 ∈ 𝒫, such that an initial solution can be created.
At the same time, tackling this reduced problem allows us
to quickly prove infeasibility for certain problem instances
without entering the additional complexity of considering
the actual schedules.

The chosen approach is to use constraint programming,
which is a generic framework to solve combinatorial prob-
lems like this one, modelling as a CSP. The formulation
as a CSP is straightforward from the MILP model, but
here we rearrange it to use 𝑓 nomenclature. 𝛿(𝑥) denotes
the Kronecker delta.

Variables : 𝑓𝑖, ∀𝑝𝑖 ∈ 𝒫
Domains : {𝑚}, ∀𝑐𝑚 ∈ 𝐷𝑖
Constraints :

memory: ∀𝑚 ∑
𝑖

{𝑠𝑖 ⋅ 𝛿 (𝑓𝑖 − 𝑚)} ≤ 𝑆𝑚 (26)

inclusion: 𝑓𝑖 = 𝑓𝑗 (27)
exclusion: 𝑓𝑖 ≠ 𝑓𝑗 (28)

This problem can be solved using a general purpose
CSP search algorithm. One advantage of CSPs is they
are able to perform search using generalized heuristics not
dependant on the problem structure. Another important
characteristic of using backtracking search to solve this
CSP is completeness, as we are able to prove infeasibility
of the whole partition scheduling problem if the partition
assignment subproblem is infeasible. Therefore, the first
step in the scheduling tool will be to find a valid solution
to this subproblem.

Other options for solving this subproblem would be
using an Integer Linear Programming (MILP), or a se-
quential assignment algorithm, the latter of which was
verified to be effective for loosely constricted problem
instances.

4.2. Local optimization
Optimizing the offsets for all partitions such that 𝛼 is
maximized is a complex problem. However, optimizing
the offset of one partition in the schedule while taking the
other partition offsets as fixed is feasible. The strategy
is to iteratively update the offset of each partition to a
better value, and due to the similarities with game theory,
the procedure is called the best response algorithm. This
solution was studied separately in [9, 15].

Consider the partitions players in a game. The game
is played in turns, each player updates its strategy know-
ing the current strategy for the other players, and the
game is played until the strategies converge. In partic-
ular, each player chooses the offset that maximizes its
utility (defined in equation 17), which is the factor by
which all executions can be multiplied without overlap-
ping with its own execution window. Since partitions
choose their offset independently, this game is categor-
ically non-cooperative, and the optimal solution lies on
an equilibrium point, which in game theory is known
as a Nash Equilibrium Point, from Nash [1]. However,
a partition’s utility maximizes not only the partition’s
window of execution, but also other partitions’ interac-
tions with its own, therefore, it has a cooperative trait.
This is an important aspect that guarantees that this
procedure converges to one of these equilibrium points,
and additionally, this point will be at a local optimum
with respect to the 𝛼-parameter. The converse is also
true, any local optimum solution will be an equilibrium
point.

In general, problem instances have many equilibrium
points, which are all locally optimal solutions to the
scheduling problem. Finding the optimal solution consists
in finding the best of these equilibrium points, and is
achieved by providing different starting points to the best
response algorithm.

The introduction of chains restricts which offsets are
valid, which has the effect of speeding up convergence
since it restricts the problem further, however, it also
increases the number of equilibrium points, making the
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procedure more dependant on the initial state. Using mul-
tiple windows, we must consider each individual window
as a separate player, with the exception of all windows
with 𝑢 = 1, which are not independent.

Overall, the best response algorithm has complexity
𝒪(𝑁𝐴𝑁−1), where 𝑁 is the number of players and 𝐴 is
the number of strategies per player [14].

4.2.1. Linear search
The “best value” procedure consists in finding 𝑡𝑖 which
maximizes utility 𝛼𝑖 of a given partition. We call it
linear search because linear programming can be used to
compute this value. This is trivially solved by computing
𝛼𝑖 for all possible values of 𝑡𝑖 and choosing the best
one, however, this procedure will be repeated many times
inside the local and global search procedures, therefore a
faster method is paramount.

The solution to this problem, as investigated in Al
Sheikh et al. [9] and Pira and Artigues [15], is to de-
termine intersection points of the partition utilities based
on knowledge from the solution set, and compute the
partition utility only in these intersection points. The
solution set is composed of adjacent polyhedra, with the
maximum value on each polyhedra being located at an
intersection of an ascending and descending line of the
partition utility.

The actual calculation of the utility is done in 𝒪(𝑁𝑝)
time (see equation 17), therefore the exhaustive search
runs in 𝒪(𝑁𝑝𝑇𝑖). For the method based on intersection
points, we first note that for 𝑁 constraining partitions,
there will be 𝑁2 intersection points in each polyhedron,
with the number of polyhedra being trivially bounded by
𝑇𝑖, so actually this algorithm runs in 𝒪(𝑇𝑖𝑁𝑝

3). Despite
this asymptotic time complexity being clearly worse, for
usual problem instances with limited 𝑁𝑝, we verify that
this version is superior to exhaustive search, as will be
seen in section 5.

The effects of chains in liner search is constricting the
partition offsets to valid regions that verify the maximum
processing time. Multiple windows, however, degenerate
the solution set and thus linear search cannot be applied;
for these we must use exhaustive search.

4.2.2. Parallel best response
Parallel best response is what we define by applying local
optimization to several modules simultaneously, motiv-
ated by the fact that when there are chains spanning two
modules, their respective schedules are not independent.
The approach in this case is to take all partitions as-
signed to a certain group of modules as the set of players,
and proceed with the best response algorithm as normal,
with the new nuance being that for determining the best
value, only the partitions in the same module should be
considered.

Preceding this, an extra step is needed, which is to
determine which modules need to be optimized in parallel
and which can be optimized independently. If we form
an undirected graph where the modules are vertices and
any chain creates an edge between the modules where
the partitions are assigned to, then this problem consists
in enumerating all unconnected subgraphs, solvable in
linear time with depth-first search, for example.

4.3. Global optimization
Local optimization allows us to efficiently generate sched-
ules for a single module after having defined the partitions
that are assigned to this module as well as their configur-
ation with respect to windows. The followed strategy is
based on stochastic optimization algorithms, in particular
we implement SA, Tabu-search and a genetic (or evolu-
tionary) algorithm. These are of course classified as local
search algorithms, but the fact that we are applying them
only to a subtask in our problem, namely exploring start-
ing points for a dedicated local optimization procedure,
makes it adequate to use them for global search. These
algorithms operate on a complete solution and gradually
improve it, and this allows for the usage of the modularity
of the local optimization procedure to improve only the
needed modules. Another reason for this choice is we
lack a proper way to evaluate partial solutions, that is,
not all problem variables being assigned a value, which
means a constructive algorithm is not appropriate.

4.3.1. Operators
Operators allow us to move from a state, 𝑆, which is
a not necessarily valid solution, represented by a com-
plete assignment of our problem variables, to another
state differing by only some values of these variables.
The operators apply to states and produce a new state,
as 𝑜𝑝(𝑆1) → 𝑆2. Six operators are defined and de-
tailed below: the move operator, 𝑀𝑜𝑣(𝑆, 𝒳, 𝑚, 𝑛), the
swap operator, 𝑆𝑤(𝑆, 𝒳1, 𝒳2, 𝑚, 𝑛), the shuffle operator,
𝑆ℎ(𝑆, 𝑚), the local optimization operator, 𝐿𝑜𝑝(𝑆, ℳ),
the slice operator, 𝑆𝑙(𝑆, 𝑖), and the crossover operator,
𝐶𝑟(𝑆1, 𝑆2), which is the only binary operator and com-
bines two states to produce a new one.

The move operator changes the assignment of a group
of partitions, 𝒳 ⊆ 𝒫, essentially moving from one mod-
ule to the other. When applying it, we can use a few
heuristics. Most importantly, we can attempt to move a
partition away from the most constrained module, but
also, in order to comply with the distribution constraints,
partitions subject to 𝑓𝑖 = 𝑓𝑗 should be moved in the
same group.

The swap operator swaps the assignment of two parti-
tions, or two groups of partitions, virtually chaining two
move operators. This operator is useful for reaching cer-
tain states without passing through worse intermediary
states, having either low 𝛼 or just invalid distribution
constraints.

The shuffle operator provides a new start point for the
local optimization procedure, by assigning random offsets
to all partitions and all partition windows assigned to a
certain module.

The local optimization operator is essentially the local
optimization described before, applicable to a group of
modules in parallel, or a single module as needed.

The slice operator changes the window configuration
of a partition, essentially selecting different preemption
points from ℬ𝑖. This is done randomly, but heuristically
we can prefer the single window configuration more often
when the execution is already sliced, because even though
this configuration does not necessarily lead to an optimal
result, it is important to decrease complexity. We can
also preferentially slice partitions with large executions.

The crossover operator is a binary operator specific
to the genetic algorithm that combines two states into
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one. For this specific problem, the gene representation
considers tuples (𝑓𝑖, 𝑡𝑖) for each partition, representing
the module and the offset, respectively. Essentially, we
combine a subset of partitions from one state with the
remaining from the other state: In order to use the
strengths of genetic algorithms, the genes should repres-
ent good solution characteristics with some modularity,
such that they can be transmitted to new solutions,
and be gradually improved. In this regard, the chosen
representation is flawed, as the optimization criteria fun-
damentally evaluates groups of partitions. To gain some
value from the crossover operator, we favour that par-
tition pairs involved in a chain originate from the same
state.

4.3.2. Operator selection and strategy
The main idea is to apply one of the operators 𝑀𝑜𝑣,
𝑆𝑤, 𝑆ℎ, 𝑆𝑙, 𝐶𝑟 at each iteration, followed by 𝐿𝑜𝑝 only
on the modules which were affected. The overlying
meta-heuristic algorithm is responsible for choosing which
operators are used, to which variables, and also whether
or not to accept the resulting solution. The operator
selection is done mostly randomly as is characteristic of
the class of algorithms used, but the heuristics described
for each operator affect the selection. Essentially, the
operator is chosen according to a fixed probability vector,
determined empirically.

Upon description of these operators, one should intuit-
ively notice that these operators are sufficient for reaching
any possible distribution of partitions among modules.
In particular, just applying 𝑀𝑜𝑣 at random visits every
possible state with respect to the partition assignment
to modules, given enough time. Furthermore, with 𝐿𝑜𝑝
we can reach every equilibrium point corresponding to
local maxima.

The implemented algorithms are identical in most as-
pects. A copy of the best state so far is kept at all times,
and is returned if the stopping condition is verified or the
algorithm is stopped early. Additionally, a current state
(or a population of states) is kept, and the algorithm
traverses the search space by applying the operators to
generate new states. The new states can be better (in
the sense of the optimization criterion) or worse than
the current state, and the policy that decides whether to
accept or reject a new state is the main distinguishing
factor between the meta-heuristic algorithms.

5. Results
In this section, we evaluate the computational perform-
ance of the methodology detailed in the previous section,
evaluating both the scheduling tool as a whole, and some
individual algorithms. The tests are run in a machine
equipped with an Intel® i7 CPU rated @ 3.6 GHz with
8 MB cache and 16 GB RAM memory, running Linux.
The tool and all algorithms are implemented in Python
3.6 and the MILP-based solver used is the open source
solver CBC [8]. All time measurements are taken as the
sum of processor time in user model and kernel mode
on behalf of the program, and every execution exceeding
24 h is aborted.

5.1. Local optimization algorithms
As a first analysis we evaluate the performance of some
key algorithms that solve subproblems rather than the

complete scheduling problem, namely the best response
algorithm and its important component, the best value
algorithm.

We evaluate two different algorithms for determining
the best value. Here, best_value_a is the exhaustive ver-
sion which checks the partition utility at each valid offset,
having time complexity 𝒪(𝑇𝑖𝑁𝑝), and best_value_b is
the algorithm that computes the utility only in a set of
interest points, which has time complexity 𝒪(𝑇𝑖𝑁𝑝

3).
Measurements are taken for several instances with 2 to
12 partitions, presented in figure 5.

Figure 5 presents these results. The results corroborate
the asymptotic time complexity for these algorithms, and
we verify that version ‘b’, despite having worse behaviour
for large numbers of partitions, performs substantially
better for the number of partitions per module typically
found in these problems We further advance that the
same is verified when we adjust the number of chains
affecting the partitions, and the respective periods.

Finally, we analyse only cases with up to 12 partitions
because in real-life instances the number of partitions
per CPM is consistently around this value. Even if future
improvements to IMA motivate this number to increase,
we present an algorithm that has linear time complexity,
so this methodology is not invalidated in this case.
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Figure 5: Performance of two methods for computing
the best value for partition offsets.

Evaluation of the performance of the best response
algorithm is done similarly for the single module case,
the results being shown in figure 6a, and for the parallel
approach, we consider similar numbers of partitions per
module in a case with 3 modules, showing the results in
figure 6b. We verify the predicted exponential complexity
with respect to the number of partitions, but we note
that for the parallel approach adding a partition does
not always increase the time to convergence, as it can
further restrict the problem.

Although this algorithm only reaches the optimal solu-
tion from a fraction of starting points that decreases as
the dimension of the problem increases, the time to con-
vergence remains overwhelmingly smaller when compared
to the alternative MILP approach, which for these cases
ranges from seconds to 2.2 h in the case with 𝑁𝑝 = 12.

5.2. Scheduling tool
We define three test cases for the problem without mul-
tiple windows, which are identified by the number of
modules and partitions, and one test case of moderate
complexity for a problem where multiple windows are al-
lowed. The test cases are generated randomly, choosing
periods from the set {100, 200, 500, 1000} which allows
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(a) Single module case.
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(b) Algorithm applied in parallel to 3 modules.
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Figure 6: Performance of the best response algorithm
as function of the number of partitions.

non-harmonic periods, and durations up to 15 % of the
respective period. With respect to the distribution con-
straints, the memory requirements of the partitions are
set to about 40 % of the modules’ capacity, thus impos-
ing some restriction. About 20 % and 5 % of partitions
are subject to an exclusion and inclusion constraints,
respectively, and the domains are not restricted. Regard-
ing communications, chains are defined with maximum
delays in the order of magnitude of the partition periods,
but always in a way that some restriction is imposed. The
summary of these test cases is presented in table 1. We

Table 1: Test cases definition.

Designation 𝑁𝑐 𝑁𝑝 Number of chains 𝛼𝑏𝑒𝑠𝑡

2𝑀6𝑃 2 6 0 5.5
3𝑀15𝑃-𝑆 3 15 3 1.26
20𝑀100𝑃 20 100 40 2.325

are not able to anticipate the optimal 𝛼-parameter for
these test cases given that the MILP model was only able
to provide an optimal solution for the easiest case, 2𝑀6𝑃.
Hence we present the best value found in the course of
gathering results, 𝛼𝑏𝑒𝑠𝑡. The test case 3𝑀15𝑃-𝑆 allows
multiple windows on some partitions, and was manually
adjusted so that it is infeasible without these multiple
windows.

We evaluate the performance of the scheduler to find-
ing a valid solution, without attempting to optimize the
𝛼-parameter, as listed in table 2. Results are shown
in table 2. Both exact and heuristic methods perform
well for the easier cases, but the MILP formulation does
not converge in acceptable time for the largest case con-
sidered. Also, since our MILP model does not consider
multiple windows, it is unable to handle 3𝑀15𝑃-𝑆, but
ignoring the possibility of multiple windows, it proves
infeasibility in 1.19 s.

Table 2: Scheduler performance finding the first valid
solution.

Instance 𝑡𝑀𝐼𝐿𝑃 𝑡ℎ𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐 (median)
2𝑀6𝑃 1.00 s 0.593 s

3𝑀15𝑃-𝑆 NA 74.53 s
20𝑀100𝑃 > 24h 23.32 s

The performance of the scheduler is appropriate for
the industry setting, where we can expect it to be able
to verify feasibility in seconds even for complex problem
instances. This is certainly useful because system integ-
ration depends on many interactions with the different
suppliers to define all the parameters and requirements,
which are then translated into constraints accepted by
this model. In this stage, the problem changes quickly
and having a tool to check feasibility and build a simple
solution is of great benefit to the system integrator.

For the optimization problem, we are interested in
finding the optimal solution, however, since these optimal
value is unknown, we aim to evaluate the performance in
finding a good solution. This solution is characterized by
an evaluation function of 𝛼𝑏𝑒𝑠𝑡, but for convenience we
settle for a value 𝛼 ≥ 𝛼𝑏𝑒𝑠𝑡 for 20𝑀100𝑃. The meta-
heuristic algorithms used are stochastic, thus the time
taken can vary greatly between separate runs. For this
reason, we measure the solution time 20 times for each
meta-heuristic, and present the results as boxplots in
figure 7. We verify from these results that SA is superior

(a) 2𝑀6𝑃

0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
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Genetic

Time to 𝛼𝑏𝑒𝑠𝑡 [s]
(b) 3𝑀15𝑃-𝑆

0 10 20 30 40 50

SA

Tabu

Genetic

Time to 𝛼𝑏𝑒𝑠𝑡 [min]
(c) 20𝑀100𝑃
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Tabu

Time to 0.9𝛼𝑏𝑒𝑠𝑡 [min]

Figure 7: Performance of the scheduler with different
meta-heuristics.

in smaller cases, and Tabu-search more consistent for
larger cases, while the genetic algorithm scales poorly
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and ultimately does not produce the targeted result in
under 24 h.

As for the consequences to the industrial setting, based
on the results for 20𝑀100𝑃, we can expect to have
a fairly optimized solution for the partition scheduling
problem consistently in under an hour of processor time
(over 75 % of attempts), which is an excellent result.
We further observe that allowing multiple windows on
3𝑀15𝑃-𝑆 induces an expensive increase in the solution
time, especially considering the relatively small number
of modules and partitions for this case.

5.2.1. Comparison to related work
We compare results to Al Sheikh et al. [9] by generating
multiple instances of a case with 4 modules and 40
partitions in the same way as described in this reference,
which only considers memory, exclusion, and temporal
segregation constraints, thus consisting in a subset of
the problem described here. Our scheduler reached its
stopping condition in 5.17 min to 45.85 min with the
average being 15.25 min, compared to this reference’s
5 min to 50 min and average of 27.4 min. However, we
were unable to replicate the used stopping condition,
so we elect to stop our scheduler on 0.95𝛼𝑏𝑒𝑠𝑡. In
spite of this, we can conclude that this approach is an
improvement on similar work.

6. Conclusions
The research work presented focused on formally de-
scribing an avionics partition scheduling problem, and
providing methods for efficiently solving it. The final
product is integrated in GMV’s tool suite for system
configuration.

Firstly, the described model remains compatible with
most similar approaches to the problem, while support-
ing more kinds of constraints, which allow the user (the
system integrator) to adequately specify platform require-
ments, with respect to resource usage as well as the
redundancy architecture.

The different methods implemented also allow the
scheduling tool to be used for multiple purposes. The
heuristic methods are generally able to quickly provide a
solution that verifies all constraints, and this is useful for
determining feasibility of certain instances in the early
stages of integration. Additionally, in later phases of
system integration, the heuristic methods are able to
create optimized solutions in a moderate amounts of
time. If on the other hand optimality is the goal and
time is not an issue, then any external solver can take
our MILP model and solve the problem to optimality.

In addition, this work poses a contribution to academic
research due to the novel changes imposed in our model,
namely the synchronous communications model and the
possibility for splitting a partition’s execution in multiple
windows.

6.1. Future work
Given the recent additions to the Arinc specification 653
and the lacklustre performance observed in our scheduler
with the addition of multiple partition execution windows,
we consider that the most relevant future work on par-
tition scheduling should be dedicated to multicore IMA
systems.

Other smaller modifications to the described model
would also be interesting to consider, namely on the op-
timization criterion or the communications model, driven
by the IMA platform’s specific requirements.
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