
Multi-Cloud Deployment and Execution of Earth
Observation Services

João Pedro Martins Serras
Instituto Superior Técnico, Universidade de Lisboa

Abstract—At this day and age, with the progress in engineer-
ing, spatial data is being harvested at a high speed and volume
with several formats from a continuously collection of satellites.
For scientists to study and utilize this data it first requires some
transformations from Earth Observation (EO) tools.

However, these tools can be resource-heavy, restricting the use
to a small and highly skilled community. With the arise of Cloud
Computing, scientists do not need to worry with the cost of
managing hardware. Furthermore, Cloud Computing releases the
scientist from the burden of understanding the infrastructure
of their equipment. As a result, Cloud Computing became the
natural solution.

The procedures of deploying the EO tools on Cloud Computing
environments emerges with some critical challenges. It requires
to package these tools, provision as well as configure a cloud
instance, deploy and expose them to the web context. Therefore,
we aim to automate each of these steps by exploring the already
existing technologies.

Our focus will begin with the creation of a high degree
continuous delivery pipeline. This will be the main base functional
aspect of this thesis. In addition, the monetary cost and how to
maintain it to a minimum will still be taken into consideration.
With this in mind, we aim to utilize an already existing work,
titled Workflow Engine for Earth Observation Services to help
with the validation of inputs/outputs when deploying the EO tools
to the cloud, avoiding unnecessary runtime errors.

Index Terms—Earth Observation, WPS, Workflow, Composi-
tion, Validation, Translation.

I. INTRODUCTION

At the present time, the European Union began an Earth Ob-
servation (EO) Program entitled Copernicus (former GMES).
The purpose of Copernicus is to gather and monitor data
gathered from a collection of satellites. This data is then used
to produce products using EO tools. This data retrieved by
the satellites are in the order of petabytes per year, hence the
transformation of this data is resource intensive. Building and
maintaining complex infrastructures are not feasible anymore.
It requires a large monetary investment and a deep knowledge
about the infrastructures, making cloud computing a much
more appealing solution. [1].

Cloud Computing is a shared pool of configurable computer
system resources and higher-level services that are delivered
on demand to external customers over the Internet. It brings
high availability and increased flexibility by adjusting to the
customers requirements, without regard to where the services
are hosted or how they are delivered [2].

Therefore, the European Commission has decided to invest
in the development of Cloud Computing platforms special-
ized for the storage and exploitation of the Copernicus data,

Copernicus Data and Information Access Services (DIAS).
It eases the procedure of accessing to Copernicus data and
information from the Copernicus services by providing data
and information access alongside computing resources.

Exporting EO tool to the cloud environment rises some
challenges.

• Each tool has a set of dependencies that are required to
ensure it is the correct execution. Executing these tools
on the cloud oblige these dependencies to be available in
the environment. Thereby, a new problem arises. How do
we package the EO tools?

• Succeeding this phase, the application needs to be de-
ployed, transferred to the DIAS, and then executed.
However, how do we deploy the tools over the different
DIAS?

It is important to have in mind, the target audience of these
tools are scientists that do not possess enough knowledge in
cloud computing. The learning process can take quite some
time and does not mean that the user will be proficient
when using cloud technology. This can also be translated into
unnecessary user errors. With all these points, we can state
that our main goal is concerned with the usability. Therefore,
we aimed to ease the accomplishment of the execution of a
desired tool by its users in the cloud environment through
automation.

It is important to denote, the data transforming tools need
to be exposed to the users in such way that the user does not
need to worry about the cloud management. Consequently, the
ideal approach is to expose this tool through the web.

As stated before, our main concern is usability. Provide a
system that enables the users to execute different EO tools
over any cloud provider, without worrying about the problems
that come with the deployment of these tools to the cloud. For
this reason, we want to automate every step of the solution for
the problem mentioned above in 1.1 Problem Definition.

In the light of this, it is possible to observe that it fits into
the DevOps context. The process of developing software and
release it to production can take several hours, if not days,
and in the end, it can reveal to be unstable, when each step
is done manually. DevOps practices aims to shorten the time
between committing a change to a system and the change
being placed into normal production [3]. This is done through
the implementation of an automated Continuous Delivery (CD)
pipeline, providing a high degree of automation [4]. It can be
characterized in three stages:

1



• The first stage is triggered by the commit of the newly
developed code. While in our case we don’t develop new
features to the same software, we can translate this phase
to the adaptation of the EO tools to the web context;

• The second stage is responsible for the building of the
application. The application binary package is created
with all its dependencies. This stage perfectly matches
the application problem challenge;

• The Production stage is responsible for the deployment
of the application to production. In our case, this is
translated to the provisioning of a new cloud instance
to deploy the EO tool.

Consequently, DevOps practices depend in various tools to
aid each step. Each of this stage corresponds to a sub problem
mention in the section above. This thesis will rely in DevOps
practices to produce the bigger picture of register an EO tool
and deploy it to the cloud.

The Open Geospatial Consortium (OGC) is an international
consortium comprised by several organizations with the ob-
jective of sharing, discover and reuse information as well
as services related to the diverse EO fields. Every year, the
OGC publish Engineering reports. These reports contain the
activities that greatly contribute to the EO community. As
already mentioned, our solution comprises in two separate
features, the application packaging and the workflow execution
using cloud computing. Although both display an impact in
the EO community, the execution of workflows using cloud
environments was the one with the biggest impact, fitting
every category presented by the OGC to participate in the
Engineering reports. As a result, our solution has been tested
and verified and demonstrated in OGC Innovation Program
(Testbed-15). The technical approach and the summary of the
solution is included in the OGC testbed-15 Engineering report
for the entire EO community to benefit from.

To accomplish our solution of providing an automated
pipeline for both EO Tool Packaging and Cloud Deployment
through the use of the cloud, we will begin by exploring the
diverse existent tools for each step of the pipelines in chapter
2. Subsequently, we describe how we utilized them to support
us during the automation process in both pipelines in chapter
3. Following the presentation of our solution, we proceed to
validate it through usability tests in chapter 4. Ultimately in
chapter 5, we present the conclusion of the thesis as well as
the future work to be developed.

II. BACKGROUND

In this chapter we enumerate the different existing tech-
nologies and tools, that help us achieve our goal of providing
automation in both EO tool Packaging and Cloud Deployment
pipelines.

A. EO Tool Packaging

Each EO tool has its own requirements that need to be
satised for their correct execution. As mentioned in [5] [6],
these requirements can range from specify the location of
information, work areas of the disk that will be used to process

conguration files, install libraries and other applications. As a
result, it is necessary to package them together and transfer
them to the cloud environment. The packaging can be achieved
either through Package Management Systems or Containers.

Package Management Systems (PMS) came forth with the
urge to automate the process of setting up the environment
properly to run the applications by bundling all this related
information together into files. The most utilized PMS are Red
Hat Package Manager (RPM) and Advanced Packaging Tools
(APT). Containerization is a virtualization technique that was
developed for the purpose of isolating process resources in
the absence of any hardware requirements [7]. It provides an
isolated environment specic for the application it encapsulates.
This environment solely includes the essential for the appli-
cation to execute. [8]. Linux Containers (LXC1) and Docker
are the most utilized technologies that takes advantage of
Containerization.

We decided to use Docker as the main tool for the EO
Tool Packaging. Docker is available to all operating systems.
Contrary to Docker, LXC are only available to Linux distribu-
tions. To encapsulate an application Docker, uses Dockerfiles.
Dockerfiles consist in a single file with the description of
every instruction to be performed during the encapsulation [9].
Dockerfiles present a more friendly user syntactic, simpler for
automation. Equally to LXC, RPM and APT only function on
Linux distributions, where APT only works in Debian. Both
RPM and APT require the use of a file to specify all the
dependencies. However, they present higher complexity. RPM
require the use of eight sections and APT the use of four
different files. Additionally, RPM requires one file for each
hardware configuration and does not install the requirements,
needs to be done manually.

B. Cloud Deployment

With the EO tool packed it is required to provision a cloud
environment. In other words, a Virtual Machine (VM) Instance
must be launched with the desired hardware requirements
capable of supporting the application. This can be done with
Conguration and Management Tool and Server Provisioning
Tool.

Configuration and Management Tools (CMTs) are tools
utilized to automate the management of IT Infrastructures.
They provide modications to the infrastructure conguration as
well as provision [10]. New CMT are arriving the market,
being Chef2, Ansible3 and Kubernetes the most dominant.

Server Provisioning Tools (SPT) main purpose is provision.
The term modication in SPT, revolve around deployments of
entirely new servers [11]. They do not alter existent server
congurations to accommodate new software releases. They
only require the description of the end state of the server,
it does not require the description of each step to achieve this

1https://linuxcontainers.org/
2https://www.chef.io
3https://www.ansible.com

2



end state. At the present, Terraform4 and Opensource-Heat are
the most popular SPT.

We will build a solution upon Ansible. Ansible and
OpenStack-Heatuse YAML files to specify the desired config-
uration of the servers, easing the automation process. However,
Ansible possess a wide variety of cloud providers in contrast
with OpenStackHeat, who only utilize Openstack framework
and AWS. The same justication can be utilized for Kubernetes.
Kubernetes either uses Kubernetes or Kubespray for provi-
sioning. Kuberspray however uses Terraform. Kops only has
compatibility with AWS and Google Cloud Engines (GCP).
In relation to Terraform, to have full access to its API it is
required the paid version. Therefore, Ansible has the same
advantage in comparison with Kubernetes Kubespray. At last,
with respect to Chef, it utilizes a Client-Server architecture,
requiring extra steps. Moreover, regarding provisioning, Chef
utilizes drivers developed externally. As a result, Chef is
lacking compared to Ansible.

C. Web Processing Services

As stated before, in the Introduction, there is a necessity
to export EO tools to the web context. The Open Geospatial
Consortium (OGC) developed an Interface Standard, Web
Processing Services (WPS). WPS is a web service that enables
the execution of computing processes and retrieval of meta-
data describing their purpose and functionality [12]. These
processes are characterized by receiving inputs, executing
algorithms and delivering outputs. The input and output can
be Literals, encodes atomic data (scalars, linear units ...),
ComplexData, does not describe a particular structure. Passed
values must match with the given format. BoundingBoxData
are coordinates in the form of an array that represents an area.
To enable monitor, execution of processes and retrieval of data,
WPS offers the core functions through HTTP POST and GET
request. GetCapabilities to enable the retrieval of information
about which operations the server. DescribeProcess to obtain
a brief description of the algorithm it runS. Execute to request
the application to execute.

Web Processing Service Transactional (WPS-T) came to
light as the answer to package WPS processes and deploy them
in WPS servers at runtime [13]. To achieve this, WPS-T make
use of the core WPS interface and proposes and extension
to this. The extension consists in adding two new operations,
deploy and undeploy process, both requested via HTTP-POST
through new endpoints. As explained in the WPS section, the
GetCapabilities provides information about which operations
are supported by the server, it must suffered modications in
order to accommodate the new Operations.

Overall, in the interest of offering EO tool via WPS, we are
going to utilize of templates for the transformation of an EO
tool into a WPS. The source code, types of inputs/outputs and
metadata will be the major attributes specied in the templates.
In spite of dynamically register the EO tools into the WPS
server, we deploy the WPS specied with already the predened

4https://www.terraform.io

EO tools. WPS-T is still in development and only start to
arise recently. Under these circumstances, WPS-T may still
be prone to unexpected errors. With the deployment to the
cloud, unforeseen faults will result in a monetary loss.

In summary, we will add a new stage responsible for the
encapsulation of the EO tool into a WPS standard using
templates, in our CD pipeline after committing the code.

1) Workflow Engine for Earth Observation Services:
Workow Engine for Earth Observation Services (WEFEOS)
allows the creation, execution and storage of workows. A
workflow is a chain of WPS linked together. This allows the
redirection of the output of a WPS as an input to other WPS
and so forth. What make WEFEOS unique is his validation.
There is no other workflow management system that provides
validation. WEFEOS validation can be split into four unique
levels. Each level is solving a sub problem of the whole
validation on its own [14].

In the rst level, WEFEOS is responsible to check if the
described process of a WPS process specication complies with
the standard. In the second level all data types and restrictions
ought to be respected.Once third level is reached, the vali-
dation starts to resolve around the workow creation. Internal
inputs compatibility and minimum/maximum occurrences are
examined. To not miss any workow requirements, for example
the missing data, the workow specication is inspected and
veried against ia set of rules on how the workflow must
be specified. In the nal level, the only missing piece comes
down to runtime validation. Being able to validate the output
originated by the execution of a WPS before being sent to the
next WPS in the chain.

With special attention to minimizing the costs, fault preven-
tion becomes vital. The main source of errors came from the
linkage of WPSs, creating a workow chain. Henceforward, we
will use WEFEOS to prevent them.

III. IMPLEMENTATION

In the wake of defining the technologies required for the
EO Tool Packaging and Cloud deployment automation, we
will now explain our solution.

A. System

We will be using as the base for this thesis WEFEOS.
WEFEOS system is comprised by WPS-V-WEB and WPS-
V. WPS-V-WEB is responsible for the workflow management
in the web browser. It has available a dashboard with a menu.
In here, the users are able to compose, download and load
workflows. During the composition of the workflows, it alerts
the users of the compatibility issues between WPS processes.
Nevertheless, WPS-V-WEB also provides a console to display
the errors of the input data specified. To detect these errors,
it is required a syntactic validation available with the use of
WPS-V. Furthermore, WPS-V provides dynamic validation for
the output generated by each WPS process.

Multi-Cloud Deployment and Execution of Earth Obser-
vation Service (MCDEEOS) is the module responsible for
providing the EO Tool Packaging. It is through this module

3



that the EO tool is wrapped into a WPS, dockerized and stored
in a repository for later usage. In addition, MCDEEOS is
also responsible for forwarding and preparing, if necessary,
the workflow to a workflow engine for its execution, as well
as to provide deployment of the WPS’s to the cloud, validation
of the outputs by using WPS-V-WEB and their termination.
To offer these functionalities to the users we developed
the MCDEEOS-WEB. MCDEEOS-WEB is responsible for
providing a web interface for the users to specify all the
information necessary to perform both application package and
workflow execution on the cloud.

B. MCDEEOS

We will proceed to explain how we were able to accomplish
our goals of packaging an EO tool and deploy a WPS for the
workflow execution in our core back-end package MCDEEOS.

1) EO Tool Packaging: The first stage corresponds to the
wrapping of an EO tool into a WPS. In other words, we
need to develop the standard interface of a WPS for retrieving
metadata about the numerous processes it contains and their
execution through the methods described in chapter 2.3.

To wrap an EO tool into a WPS, we utilize a python
WPS implementation named PyWPS. Through this we avoid
developing every REST endpoint from scratch. The result from
the execution of every WPS methods is an XML file containing
every detail about the output of the method executed. It is
crucial that these XML files are well formed and according
to the standard given that WEFEOS use them to perform its
syntactic validation. Therefore, the most viable choice is to
utilize PyWPS. To use PyWPS as the base for turning the EO
tool into a WPS, we first analyzed which files it required to
change in order to accommodate for each tool. As a result, we
identified a bare minimum of two files, since each WPS has
at least one process. In other words, we need one file for each
process and another for the main file. This file can be seen
as five pieces. The first corresponds to the imports, where the
required libraries are specified. The second is the name of the
class which corresponds to the name of the process. The third
is the use of a list containing functions specifying each data
type for all inputs and outputs. Fourth is the specification of
the metadata about the process. Lastly, it is required a handler
function for specifying what is the result obtained from the
execution of the process. To replicate such file, tailored for
each process of the EO tool, we use a pre-defined template.
This template uses variables, that we can change when the
users request an EO tool wrapping. As a result, we are going to
need variables for the imports, class name, inputs and outputs.
Additionally, more variables are used inside the handler. To
execute the EO tool we are going to use a library that enables
us to call external commands. Therefore, we need a variable
for the command line and the parameters, i.e, the inputs. It
is required a variable to move the outputs file to the folder
that is available for the user to access via REST call, since
the outputs of the EO tool might be located outside the WPS
folder. Additionally, it is also required the specification of the
location of the outputs in the handler.

The second file that we need to change is the main file.
It is in the main file that all the endpoints are specified.
However, we only need to change a code line of the file. This
file contains a processed list where the processes objects are
instantiated. Therefore, to instantiate the processes we use a
template with a simple variable.

With the EO tool wrapping finished, we move to the next
phase of the pipeline, the encapsulation process. For this, we
opted to utilize Docker since it is the most flexible technology
when compared with the others. It is important to mention the
EO tool is required to be available at the Dockerhub for us
to have access to it. As a result, we use the Docker images
containing the EO tool as the base image for the encapsulation
of the WPS. Thus, the Dockerfile for the image building is
going to differ from each EO tool. To create this Dockerfile
we used once more a template. In here, we use the variable
image to provide the EO tool Docker image along commands
to create and transfer the WPS files to it and install all its
dependencies.

During the development of our system we discovered that
WEFEOS was designed with the objective of execution work-
flows locally. This rose a problem in which WPS’s must be
already running in order to validate their syntactics. To solve
this problem, when the users perform the EO Tool Packaging
in our system, we do an initial deploy to obtain XML file with
the full specification of the WPS. Every time WPS-V requires
to validate the syntactic of a WPS, it will query our system
to obtain the designated XML file. As a result, a new stage
arose in the pipeline after the EO tool wrapping.

The process to the storage of the WPS image was rather
straightforward. We choose to use Dockerhub as the repository.
As result, Docker already provides all the commands to store
and manage images in the Dockerhub through the REST API.

2) Workflow Execution in Cloud: With the goal to deploy
WPS in the cloud in order to execute them in a chain, our
priority was to begin with a simple WPS deploy. To achieve
we used Ansible. Ansible utilizes YAML templates to execute
their modules. For each stage of the pipeline templates were
created. We are going to present the challenges that arose
during the development of each stage.

Considering Copernicus DIAS cloud providers had not fully
developed their API in time, we search for another viable
cloud provider that has access to Copernicus Sentinel data.
Through this search, we found AWS meet this criterion. We
will further describe, step by step, each task composing the
Ansible playbook to achieve provisioning and configuration in
AWS.

It is important to bear in mind, our system provision
instance in the users AWS account. Therefore, users are forced
to provide AWS secret and access keys. Along with the keys,
the region needs to be specified by the users where the
provision is going to occur.

To enable the provisioning in AWS some configurations
must be done prior to the provision task. To have access to
the cloud instance, it is required the use of an SSH key. To
accomplish this Ansible has an EC2 module that enables this

4



creation. Upon creating the key, it is required to save it for
later use.

Even though we run tasks multiple times, Ansible has the
ability to detect if the criterion of the tasks have been met,
skipping the task if they were. Every cloud instance must
have an IP associated in order to be connected to a computer
network. The IP of a cloud instance is compelled in three
pieces. The first identifies the Virtual Private Cloud (VPC) the
second the Subnet inside the VPC and the third the machine.
Therefore, it is required to create a VPC, along with a VPC
Subnet in the given region. The assignment of the last bits of
the IP used to identify the machine is done dynamically by
AWS. Although the VPC is already specified, the VPC is still
a private network not ready for use. For the execution of WPS
they require access to the Internet. Therefore, it is essential to
create an Internet Gateway and associate it to the VPC along
with setting up a route table to enable the connection of the
Subnet to the Internet. Moreover, for users to access the WPS
through web browser, it is required to create a Security Group
that allows HTTP traffic.

At long last, with the configurations done we only require
one more piece of information before specifying the provi-
sioning task, the image id. Since the image ids changes from
region to region, we used an official module that enables us to
perform a query to obtain information about images in AWS,
where ids are specified in. With every preparation done, we can
now compel it to specify every parameter in the provisioning
task. At the end of provisioning, we must store it along with
the key location and user in the Ansible Inventory to have
access to it afterwards.

With the cloud provision accomplished, it is now required
to devise a template to perform configurations. While the syn-
tactic validation is performed locally, the dynamic validation
is performed on the cloud instance instead. By performing the
validation of the outputs generated by the WPS execution on
the cloud instance we avoid the need to transfer these outputs
to the local machine. As a result, we encapsulated WPS-V
in a Docker image. Despise WPS-V being in the same cloud
along with the WPSs, Docker containers are isolated from each
other, the data still needs to be transferred from one container
to the other. To avoid this, we created a volume, mount it to
the outputs folder of the WPSs and attach it to the WPS-V
container. Thus, data is shared between containers, allowing
the direct access by the WPS-V.

With the use of the Docker images in the cloud instance,
they are not available to the outside world. They are running
in a local network created by Docker. To solve this, we used
Nginx that provides proxy redirection. This allows the requests
performed to the cloud instance to be redirected to the Docker
containers. To enable the proxy redirection, we need to provide
a configuration file. To differentiate the path of the validator
from the WPS we added a tag to the location path. As a
result, since the WPS name change from WPS to WPS, we
use a template to create this configuration file. To speed up the
process, we created our own image when provisioning. This
image contains the Docker, Nginx and the WPS-V container,

since they are required in every cloud instance. With this
approach, we avoid wasting time in the configuration along
with pulling the WPS-V Docker image and instead we are
only required to send the Nginx configuration file, execute
a task to order the WPS-V container to start and restart the
Nginx.

Until this point, we have been using the default disk space
specified by the different cloud providers. However, this disk
space may not be enough for the execution of the WPS.
Considering the disk space required changes from WPS to
WPS, the best approach is to ask the users how much space it
is required. However, we provide two different choices when
the users specify the disk size. The first choice consists in
using the maximum value possible from the instance type
used to provision the cloud instance. While the second choice
consists in using the value the user specified.

Our system is not bound to AWS as the only cloud provider.
We design our system with the desire to enable the addition of
cloud providers in the future. As a result, to verify the difficulty
of augmenting the system with diverse cloud providers, we
decided to add Microsoft Azure to our system.

To increase our system with Microsoft Azure, we had to
develop new playbooks for Ansible. The main differences from
AWS were in the introduction of a network interface, which
replaces the AWS gateway and the need for configuring rout-
ing table, and the creation of a public dynamic IP, which AWS
assigns automatically. Overall, the implantation of Microsoft
Azure was achieved in two days. However, more time was
spent due to the previous versions of Ansible 2.8.0 having
some bugs disabling the provision of instances and the learning
how to obtain the crucial keys to enable the provisioning
through Ansible.

Once the cloud deployment was accomplished, we aimed
to automate the execution of a chain of WPSs, a workflow.
To achieve this, we used Workflow Engines. The users begin
by specifying a workflow with the WPSs they want to chain
along the WPSs URL, and the inputs required. At the end, the
users submit the workflow.

When a workflow execution is triggered, we load the
workflow engine with the workflow and search for the first
WPS in the chain. Once we have this information, we begin
by initiating the cloud deployment pipeline. Subsequently, we
notify the workflow engine to start the workflow execution.
Thus, the workflow engine performs an execution request to
the WPS deployed. At the end of the execution, the control is
passed to our system to send a request to the WPS-V, running
in the same cloud instance, to validate the outputs acquired.
Since this is the first WPS in the chain, it is not possible to
terminate it. The outputs obtain from its execution are going to
be utilized as inputs for the next WPS. Subsequently, we repeat
the same process for the next WPS. Following the execution,
we do not require the previous WPS to be running, since we
are not going to utilize its outputs. Thus, we terminate its
cloud instance. The last WPS is left running for the user to
have access to the results.

Considering this, we began by concentrating on developing

5



our own Workflow Engine in order to test the waters. Allowing
us to improve the understanding of how to develop the
orchestration as well as to pinpoint with more precision the
location of errors along the process without worrying about the
problems that may be caused by the Workflow Engine itself.

Afterwards, we augmented our set of workflow engines
with Camunda. Camunda is the workflow engine currently
being use in the EO community. Workflow engines might
have unique characteristics that differentiates them from each
other. Camunda has available a graphical user interface that
enables the users to observe the execution in real time. Hereby,
we provide a certain degree of flexibility by having multiple
workflow engines available to the user when he desires to
execute a workflow. To fully integrate Camunda in our system,
it was required a week. However, the major difficulty was not
in adapting it to our system but rather in learning how to utilize
its API. Contrary to our workflow engine, Camunda utilizes
BPMN. Since BPMN is a business process notation and JSON
is an exchange data format, there is no direct relation between
the two. Therefore, our first challenge was to translate the
workflow specification in JSON to BPMN through its java
API.

At the end of developing the workflow orchestration, we
searched for more methods to decrease the deployment process
time. From this, we emerged with Execution modes. Execution
modes are nothing more than different methods to perform the
deployment. In other words, it is stated how to group WPS
into a single instance, if they were meant to be executed in
the same cloud region. By grouping WPS together, we avoid
losing time preparing another cloud instance when we can
reutilize the previous.

Our system provides three different execution modes. The
first consists in deploying a WPS per cloud instance. The
second is the deploy and execute each WPS in the same cloud
instance if they have the same hardware configuration. In other
words, if there is a WPS with higher requirements, it will be
deployed in a different cloud instance. The third option is to
and execute each WPS in the same cloud instance, however
the cloud instance will be provision with the higher hardware
configuration required by the WPS. To augment our system
with these execution modes, it was not required any major
modifications. The only mandatory change was to the Nginx
configuration template to accommodate more WPSs.

C. MCDEEOS-WEB

To enable the users to interact with the system, we design
a clean and simple interface available through our front-end
module, MCDEEOS-WEB. Through this, users can package
EO tools, execute workflows into the cloud and observe all
the available WPS in the system. The OGC, along with a few
companies, offers information regarding WPSs already run-
ning in a server using catalogs. We enhanced our system with
WPSs discovery from these catalogs along the registration,
search and removal in a specific catalog of a WPS.

1) EO tool Packaging: To accomplish the EO tool Pack-
aging, users are required to provide information regarding the

EO tool. This information is compelled by two categories.
The first category is related to the EO tool itself. In here, it is
specified the RAM and CPU required, the Docker repository
of the EO tool and the desired name for the WPS. The second
category is the information regarding the EO tool processes,
the different inputs and outputs types of these processes.
WEFEOS-WEB provide a web-form for the user to describe
all this information.

Even though the outputs have three possible data types, only
ComplexData can be worked with. With the possibility of a
WPS generating multiple LiteralOutputData, it is not feasible
to detect and parse each LiteralOutputData. Moreover, through
observing the WPSs available in the industry they all work
through files, therefore only ComplexOutputData is generated.
Along with the data types users must also specify the location
where the outputs will be stored inside the docker containers.
This allows our system to make them available in the future
for the chaing process. Nevertheless, we also provide fields
for metadata as the author, title, description, abstract and the
most important the command line needed to execute the EO
tool.

2) WPSs List: With several EO tools being packed into
a WPS using our system, MCDEEOS-WEB can present all
available WPS. Through the use of a table, it is displayed
every WPS the users owns. One key component of our system
is the ability to share WPS between users. For this reason, it
crucial to also display the WPSs that belong to other users.
This is done through the use of another identical table.In case
a user required more information regarding a WPS, the name
of the WPS in the table must be clicked, triggering an event
to create a new table with the list of processes available in the
WPS along with their identifiers, titles and description.

3) Workflow Execution: To develop MCDEEOS-WEB we
decided to use the same programming language as WPS-V-
WEB, allowing us to import WPS-V-WEB module. However,
to import WPS-V-WEB, minor modifications were required.
Workflow Execution section can be seen in two different parts,
the first creation and validation of the workflow and the second
the specification of cloud information. With the success in use
WPS-V-WEB, its graphical user interface (GUI) remained the
same. It has available a drag and drop dashboard with a menu
for creating WPS, importing workflows and save workflows.
When selecting a new WPS a new web-form is available with
dropdown boxes to select which WPS and the process the users
wants. With enough WPS, users are now able to chain then to
create an actual workflow. At the end of chaining, users must
specify every information required for the inputs of each WPS
and its chaining.

Finally, with every important detail is specified, users can
validate. WPS-V-WEB has available a console, in which error
messages are displayed resulted from the validation. Once
the workflow is successfully validated, the button to execute
the workflow is enabled. However, users still need to provide
critical information through dropdown menus. To execute a
workflow, users must choose the Workflow Engine, provide
the execution mode, select the cloud provider, the region for

6



Fig. 1: Interface for the WPS catalog registration

Fig. 2: Interface for the WPS catalog removal

each WPS specified in the workflow, the size mode for each
instance and the necessary size.

D. WPS Catalog Registration

For the users to accomplish the registration, a catalog must
be selected for the service registration in the dropdown menu.
Subsequently, the users only require uploading a Geojson
with every crucial detail of the service for the registration,
fig:Interface for the WPS catalog registration.

E. WPS Catalog Removal

To remove a service from a catalog, it is presented two
dropdown menus, fig:Interface for the WPS catalog removal.
The first is used to specify the catalog. The second is to specify
the service identifier. It is important to mention users can only
remove services they registered.

F. WPS Catalog Discovery

In case a user wants to search for a service, we provide a
service discovery. In other words, the user provides a part of an
identifier name with the catalog id and our system will present,
through the use of the, every process the service containing
the identifier has.

G. WPSs Catalog List

In the same vein as the subsection:WPSs List, our system
also displays the WPS present in every catalog through the
use of tables with the addition of a collum containing the
Endpoints. Despite presenting every WPS available in every
catalogue, to facilitate the navigation, our system provides a
dropdown menu for the users to select the catalogue they want
to see.

Validation

In this chapter we aim to validate our solution. Revise
the set goals, define the provide the description of the steps
required for the accomplishment of the EO Tool Packaging and
Workflow Execution in the cloud environment, list of possible
errors to keep track, how the execution of the validation
will take place, the results obtained along with an analysis.
It is important to mention our system is unique, the only
comparison is to do the process manually. However, it requires
days to not only learn but also execute both EO Tool Packaging
and Workflow Execution. The complexity of them, is far
greater than using our system. Therefore, it will not be taking
into consideration.

IV. GOALS

To perform a thorough validating for our system, it is first
required to define means of comparison between the two
approaches. In other words, we set goals based on the desired
functionalities by the EO community. As mention above, we
want to provide cloud computing as a solution while providing
the finest user experience, without placing extra burden on
the user. As a result, we can translate this into the following
usability requirements:

• The end users learn with ease how to use the system;
• The end users use with ease the system;
• The system is able to prevent and recover from errors.

V. EO TOOL PACKAGING

The validation of our system is done in two parts. The first
part corresponds to the EO Tool Packaging.

The procedure of wrapping an EO tool generally has an im-
pact in the performance of the application when not performed
case by case. Traditionally the addition of a new layer may
involve transformations for the inputs as well as modifications
to adapt the code. However, in our situation the new layer aims
to provide descriptive information regarding the EO tool itself
through HTTP. The inputs do not require any transformations.
The new layer simple calls the EO tool with the inputs sent.
Even though it does not interfere with the performance itself,
by performing the EO Tool Packaging through our system,
errors resulting from the EO tool are not recorded.

With our system, all these phases are automated. However,
the users ought to provide information regarding the EO
tool. One possible limitation of using our system to provide
automation is the specification of the outputs in terms of
system expressiveness. However, in the EO field the EO
tools only produces ComplexData types. Thus, we do not
loose expressivity. The validation of our system is measured
through the filling of the information required for the EO Tool
Packaging.

A. System Steps

To use our system to perform an EO Tool Packaging, it is
required to provide the information requested in our web-form.
This is translated in the following steps:

• Specify the name and hardware requirements for the
application;

7



• Specify the Docker repository for the base image con-
taining the EO tool;

• Specify the input and output formats;
• Specify the command line to execute the EO tool;
• Specify the location of the outputs.
• Select the submit button.

B. Errors

The automation of the EO Tool Packaging requires user
input to be accomplished successful. However, errors may
still occur in the event of the users providing either wrong
information or malformed images. Considering that our system
is not able to pinpoint which error of the previous errors took
place, it is still possible for the users to verify the information
provided since it is not erased from the web-form. This allows
to further restrict the possibilities of where the error happen
and to free the user from filling all the information again.
Upon correcting the errors, the users must submit again to start
the process from scratch. The potential errors when using our
system can be reduced to the following list:

• Misinformation during the specification of the inputs and
outputs data;

• Missing information during the specification of the inputs
and outputs data;

• Wrong Docker repository;
• Malformed base application Docker image provided.

C. Execution

With the clarification on the steps required along with the
list of possible errors, we are now going to unfold how the
execution of the validation of the EO Tool Packaging is going
to be accomplished.

In the first place, it is important to have in mind scientists are
inexperienced EO developers with the minimum knowledge in
cloud computing. Their focus is on the analysis of the results
obtained using EO tools. Given that, our target audience, when
developing our system, is the scientific community. Therefore,
our validation is performed with scientists as the users. Each
user is going to utilize their own EO tool. Prior to start, it is
required to learn how to perform each step. Each user is going
to search for information regarding the use of our system. This
information is available through a guide. We measure the time
spent in the whole process of learning. However, it is normal
to still search information during the execution of the task. We
are going to have into account this time and add it in the end.
At the end of measuring the learning time.

At the same time, we also want to examine if our system
is faster to use. We will measure the time spent by each
user using our system to perform the EO Tool Packaging. It
is vital to perceive we are concerned with usability and not
performance. Thus, during the automation phase, the time the
system requires to perform the pipeline is not going to be
considered.

During the execution of the task, it is common for the user
to make mistakes. Through the list of possible errors defined

above, we will track how many the user made during the
execution of each step.

D. Results

The validationwas accomplished with three users, during the
third week of October 2019. The users age ranged from 32
to 43. All the three users have a Computer Science degree,
two of them are working now as Technical Manager, while
the other user is working as a Project Manager. Although, the
users have a background in Computer Science, none of the
users had interacted with our system prior to the validation,
they were inexperienced users.

Upon finishing the usability tests, both tasks of learning and
executing were accomplished with success. We condensed the
results obtained into two tables. The tab:EO Tool Packaging
times recorded from the system validation contains the time
measured for each user in seconds. While the tab:EO Tool
Packaging errors recorded from the validation presents all the
recorded.

Learning Phase Execution Phase

471 445

432 451

352 542

TABLE I: EO Tool Packaging times recorded from the system
validation

Mistakes Number of occurrences

Misinformation during the specification of the
inputs and outputs data

0

Missing information during the specification of
the inputs and outputs data

1

Wrong Docker repository 0

Missing information during the specification of
the inputs and outputs data

1

Malformed base application Docker image
provided

0

TABLE II: EO Tool Packaging errors recorded from the
validation

Our system learning curve is very low regarding the EO
Tool Packaging. It averages 418 seconds. The reason behind
this, is due to our system only requiring simple information
about the EO tool. Therefore, our system, for the EO Tool
Packaging simply describes the details required in each field,
containing a more detailed description on the more complex
fields. In addition, it also uses figures from the system itself
to help in the visualization.

The use of straightforward information with the support
of the easy reading documentation translated in faster times
during the execution phase. It averages 479 seconds. It is im-
portant to mention during the execution phase a user forgot to

8



fill a crucial field regarding the ComplexDataOutput. However,
our system was able to detect and notify the user straight away.
It is important to have in mind, the complexity of the EO tool
has an impact in both time and errors. The more complex the
more prone and time consuming the procedure is.

Overall, based on the results obtained, it is possible to state
our goals were fully achieved. We were able to build an easy
to learn and use system regarding the EO Tool Packaging.

VI. WORKFLOW EXECUTION

Succeeding the validation of the EO tool Packaging befalls
the Workflow Execution validation. With the EO tool packed
we must now provision and configure the cloud instance
to deploy and execute the WPS in the workflow chain. On
a similar note to the EO Tool Packaging, our system also
requires user inputs to fully automates these stages.

A. System Steps

Our system integrated WEFEOS to provide management
and validation of workflows. Therefore, the users will utilize
WEFEOS to create and validate their own workflows. Further-
more, it is required additional information regarding the cloud
and instance. This can be translated in the subsequent steps:

• Specify the WPSs in the dashboard;
• Link all the WPS’s in the dashboard;
• Specify the inputs for each WPS;
• Validate the workflow;
• Specify the workflow engine and execution mode;
• Specify the cloud provider and region for each WPS;
• Specify the hardware storage for each WPS;
• Select the submit button.

B. Errors

Using WEFEOS syntactic validation, we can prevent some
of the manual errors such mismatching data types between
inputs and outputs. However, it is still possible for the WPSs
to produce an incorrect output. Regarding this occurrence,
we can detect with the dynamic validation of WEFEOS,
stop the whole workflow execution and notify the users. In
addition, our system is not able to validate all user inputs.
Information regarding hardware configuration specified during
the EO Tool Packaging. The correction of these types of errors
require to repackage the EO tool and start the process from
scratch. All things considered, our system is only susceptible
to misinformation regarding hardware configuration given by
the users or the unexpected incorrect output obtained.

C. Execution

In the same vein as the EO Tool Packaging, the validation
of the Workflow Execution process is performed by the same
users. Additionally, we will also have a learning phase prior
to the validation process. The learning phase will occur in
the same manner as in the learning phase of the EO Tool
Packaging. In the Workflow Execution validation, we are going
to provide the WPS ourselves in order to chain them, releasing
some extra burden on the users from creating a new EO tool

and encapsulating them. The workflow for this validation is
composed by two WPS’s. The first WPS is responsible for
the aggregation, sum, of the total rain in each time range.
The second WPS is responsible for calculating the long-time
averages of the aggregations, the arithmetic average. With
usability as our focus, it is important to bear in mind we are
not validating the execution of the WPS’s in the workflow.
What we are validating is if the users can build the workflow
using our dashboard while expressing every single piece of
data relevant for its execution, validation and deployment with
ease. The comparison of the workflow execution in both cases
is a problem more related with performance. In this field,
our system is compelled have better results in the event of
the WPS’s not being executed in parallel. Additionally, the
time to detect when the execution of a WPS ended is much
higher when done manually. Our system gets notified as soon
as the execution finished starting right away the deployment
of the next WPS. Another major key point that directly has
an impact in the performance is the fact that automation by
itself is always faster than a person typing and doing task one
by one. With the increase in WPS’s, tasks and complexity
the time spent in each step is significantly increase with the
manual approach. Instead, we are only concerned with the
users constructing the workflow in the dashboard, specify the
inputs, validate them and state the workflow engine, execution
mode, cloud provider, cloud region, size mode and the size
required for the instance. Thus, we are going to measure the
time spent in this process.

In the same vein as the EO Tool Packaging validation, we
will also track the errors performed by the users in the cloud
deployment using the list of possible errors described above.

D. Results
The validation of the execution of workflows in the cloud

environment was accomplished in the same day as the vali-
dation of the EO Tool Packaging. As a result, usability tests
were done for the same users, in the same week, utilizing the
same environment and conditions.

Once the usability test for the Workflow Execution were
finished, we grouped the results and displayed them into
one table. In the same vein as the EO Tool Packaging,
the tab:Workflow Execution times recorded from the system
validation contains all the times measured in the validation
test. During the execution phase of the Workflow Execution
there was no occurrence of any mistakes using our system.

Learning Phase Execution Phase

145 652

220 904

205 763

TABLE III: Workflow Execution times recorded from the
system validation

In the same manner as the EO Tool Packaging documen-
tation, the Workflow Execution guide is also simple to read.

9



By using real images of the system with described details on
what to do and what each field requires, it was possible for the
users to read it with ease and fully understand how the system
works. The learning phase per person average 190 seconds.

In addition to the meticulous and simple documentation, the
system provides the best tools to enable the users to provide
every crucial information in a swift and secure manner. The
use of a dashboard, to construct the workflow, supported by
a validator along with dropdown menus, to specify the ad-
ditional information concerning the cloud deployment, assists
the users by minimizing possible mistakes. It also important
to emphasize that no errors were seen during the usability
tests. Moreover, by utilizing a few clicks the users can provide
every information without mistakes. Not only does it reduce
the complexity of executing a workflow through a cloud
environment but also enables the users to spend less time
using the system. As result, based on the values obtained in
the tab:Workflow Execution times recorded from the system
validation, the average time to complete this procedure is 773
seconds. It is important to mention, the longer the workflow,
the more time is required.

We are able to observe every goal was achieved in our
system. An accessible system, easy to learn and use regarding
the workflow execution in the cloud. While at the same time
being able to minimize the possible mistakes that users are
susceptible when doing the procedure manually.

VII. CONCLUSION

To summarize, the procedure of wrapping EO tools into
WPSs and deploying them to the cloud platform is time con-
suming, repetitive and requires a certain amount of knowledge
when done manually. In the end, it places unnecessary burden
in the user that can translate into avoidable mistakes, becom-
ing cost heavy. Therefore, we aimed to develop continuous
delivery pipelines that ease these burdens from the user.

We transformed the EO tools on a widely used standard,
WPS, using templates. Subsequently, we used Docker to
perform the encapsulation. We opted to use Dockerhub to
store our images. We utilized WEFEOS for the data validation,
preventing resource waste from errors. Using Ansible, we were
able to create playbook to automate the provision and config-
uration of cloud instances. Additionally, we implemented a
WPS management system from several catalogs to enable the
future use of WPS already running in servers.

With the solution described and supported by the validation
results, we can state that all proposed objectives of providing
a high degree of automation were accomplished with success.
Moreover, with the contribution to the OG engineering report
our system definitely has a positive impact in the EO commu-
nity.

VIII. FUTURE WORK

Our system is bound to the dashboard provided by the
WPS-V-WEB. As a result, our system only supports sequential
workflow executions. Further developing the dashboard and
the system to provide parallel execution brings numerous

advantages. The execution of workflows where the execution
time is a constrain greatly benefit from using parallelism.
Moreover, by introducing parallelism to the system, it enables
the possibility to divide the execution of a WPS processing a
dataset between several cloud instances while executing them
at the same time.

Throughout the development of our system, we found the
monetary costs are affected by numerous variables when
deploying in the cloud. One of these variables is the hardware
configuration, RAM and CPU. Choosing the right hardware
configuration might reveal to be a slightly tricky. Either the
resources are not enough, or too many resources were selected
and not fully utilized. Additionally, the monetary cost for the
hardware configuration varies from cloud provider to cloud
provider and region to region. Another key factor that has an
impact in the monetary cost is the outbound and inbound data
transfer, additional charges depending on the data size and
transmission time. With all these variables available, users
might feel overwhelmed, resulting in not taking the best
approaches. Therefore, it is important to enhance the system
with a machine learning module. By taking into consideration
these variables.

REFERENCES

[1] M. Mihailescu and Y. M. Teo, “Dynamic resource pricing on federated
clouds,” CCGrid 2010 - 10th IEEE/ACM International Conference on
Cluster, Cloud, and Grid Computing, pp. 513–517, 2010. [Online].
Available: https://ieeexplore.ieee.org/document/5493446

[2] R. Buyya, C. Shin Yeo, S. Venugopal, J. Broberg, and I. Brandic,
“Cloud computing and emerging IT platforms: Vision, hype, and
reality for delivering computing as the 5th utility,” Future Generation
Computer Systems, vol. 25, pp. 599–616, 2009. [Online]. Available:
www.elsevier.com/locate/fgcs

[3] L. Zhu, L. Bass, and G. Champlin-Scharff, “DevOps and Its Practices,”
IEEE Software, vol. 33, no. 3, pp. 32–34, 2016. [Online]. Available:
https://ieeexplore.ieee.org/document/7458765

[4] J. Wettinger, “Gathering Solutions and Providing APIs for their
Orchestration to Implement Continuous Software Delivery,” Master’s
thesis, Universität Stuttgart, 2017. [Online]. Available: https://elib.
uni-stuttgart.de/handle/11682/9110

[5] D. Norman Lee Faus, “Packaging an Application,” Red Hat
Inc, Tech. Rep. US 9323519B2, 2016. [Online]. Available: https:
//patents.google.com/patent/US9323519B2/en

[6] E. C. Bailey, Maximum RPM Taking the RPM Package Manager to the
Lim-it. Red Hat, Inc., 2000.

[7] M. J. Scheepers, “Virtualization and Containerization of Application
Infrastructure: A Comparison,” Tech. Rep., 2014. [Online]. Available:
http://mmc.geofisica.unam.mx/acl/Herramientas/MaquinasVirtuales/
VirtualizacionEnLinuxCon-Containers/539ae779eb69a.pdf

[8] J. Turnbull and C. Pahl, “Containerization and the PaaS Cloud,”
Published by the IEEE Computer Society, vol. 7, no. 11, pp. 24–31,
2015. [Online]. Available: https://www.computer.org/csdl/magazine/cd/
2015/03/mcd2015030024/13rRUyoPSR7

[9] J. Turnbull, The Docker Book. Turnbull Press, 2014.
[10] C. Lueninghoener, “Getting Started with Configuration Management,”

p. 17, 2011. [Online]. Available: http://citeseerx.ist.psu.edu/viewdoc/
download?doi=10.1.1.193.9608&rep=rep1&type=pdf

[11] Y. Brikman, Terraform Up and Running Writing Infrastructure as Code.
O’Reilly Media, 2017.

[12] Matthias Mueller and Benjamin Pross, “OGC WPS 2.0.2 Interface
Standard,” Open Geospatial Consortium, Tech. Rep. 14-065r2, 2015.

[13] B. Schaeffer, “Towards a Transactional Web Processing Service (WPS-
T),” 2013.

[14] D. Rafael Ferreira Lopes, “Workflow Engine for Earth
Observation Services,” Master’s thesis, Instituto Superior Técnico,
2018. [Online]. Available: https://fenix.tecnico.ulisboa.pt/downloadFile/
563345090416386/79018-Diogo-Ferreira-Thesis.pdf

10


