
Robotic navigation system for needle positioning in
neurosurgery

João Paulo Mendes Oliveira
joao.m.oliveira@tecnico.ulisboa.pt

Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal

November 2019

Abstract

Several surgical navigation platforms are available on the market to allow surgical teams to use the full
capabilities of their medical devices. Most navigation platforms suffer from lack of access to their software
development kits which in turn impede rapid prototyping and new additions to the surgical workflow. This
paper focuses on the integration of a robotic system, the LBR Med, with the known plus toolkit as a data
collector, and 3D Slicer as a visualization tool to create a functional neurosurgical navigation platform
that provides horizontal mobility to the system. To communicate with the robot’s controller, which uses
the Java virtual machine, the OpenIGTLink protocol was implemented in Java. With the reliance in open
source software, we hope to develop a set up which can operate not only in a neurosurgical context,
but also in a varied array of operating conditions, be it pedicle screw placement, neurosurgical biopsies
among others.

The critical problem of registration between the patient’s coordinates and the robot’s coordinates
is explored through the use of the ultrasound imaging modality to extract information from the robot’s
environment in its frame of reference. To extract meaningful information from the environment several
tests were performed to place lower and higher bounds on the characteristics of the velocity profile of the
robot and the communication structure between the navigation platform and the LBR Med controller.
Keywords: LBR Med, Plus toolkit, Java, 3D Slicer, OpenIGTLink

1. Introduction

With the advent of robotic systems into the op-
erating room in 1970 the neurosurgical field has
searched for a robotic system which integrates it-
self in the workflow of a neurosurgical procedure
without introducing more complexity to an already
complex intervention.

This work bases itself in the thesis that instead
of developing different robotics systems for differ-
ent operating conditions one can develop a robot
which can restrict the end effector movements
through the use of complex control schemes, thus
increasing the potential areas of applicability of the
robotic system. This shift from hardware to soft-
ware can liberate development teams by allowing
them to focus their attention on other key compo-
nents in their medical solutions, instead of wast-
ing their time on adapting their software to different
robotic systems that operate in niche conditions.

Several navigation platforms have been devel-
oped in the last decade, among them are: the
image guided platform Ibis, that focuses on neu-
rosurgical procedures and it is built with open
source software, that can be freely changed by

the research community; the CustusX is an im-
age guided navigation platform that shares a sim-
ilar philosophy in its development to the Ibis plat-
form; the 3D Slicer navigation platform enjoys a dif-
ferentiating characteristic that makes it stand out in
relation to its competitors, namely the flexibility of
the underlying software, allowing developers to in-
tegrate different software components into the set
up they desire to build.

One of the characteristic problems associated
with neurosurgery is the registration between dif-
ferent frames of reference. Since 1970, with the
advent of computer tomography (CT), neurosur-
geons have realized that minimal evasive proce-
dures represent the future of the field. The added
complexity of this technique lies in the inherent re-
liance on information present in the image space,
defined by a frame of reference that characterizes
every voxel present in that image space. The pro-
cess to determine the mapping between any given
image space and the physical coordinates associ-
ated with the patient in the operating room is called
registration.

In an operating room a robot is only useful if

1

a mapping between the frame of reference of the
robot and the reference frame associated with the
patient’s skull exists. Several solutions to obtain
this mapping exist, such as: a) use markers that
the robot can identify in its coordinate system; b)
use an external imaging system to identify the tools
in the OR and provide feedback to the robot in real
time; c) use the ultrasound imaging modality to re-
trieve identifiable structures (surface of the patients
skull) in the robot’s coordinate frame.

All the possible solutions to the registration prob-
lem, require a two way communication channel be-
tween the robot and the main workstation.

In the work developed by Tauscher et al. [5], us-
ing the LBR Med robot, the communication prob-
lem was tackled in the context of a telesurgical
system, as defined by Narendra Nathoo [3]. To
control the robot in real time Tauscher used 3D
Slicer as both the data collector and the visual-
ization platform. To establish a communication
channel between the robot and the main work-
station the OpenIGTLink protocol was used as
an interface between the two devices. Currently,
the OpenIGTLink protocol is only implemented in
C/C++ [6], which in turn makes its use by the LBR
Med more complex because the robot controller
uses the Java virtual machine to interact with the
robot. Tauscher identified two possible solutions to
this incompatibility, either use the C++ implemen-
tation of the protocol through the Java native in-
terface (JNI) to call compiled machine code or de-
velop a full implementation of the protocol in Java.

The communication structure developed by
Tauscher is well designed and possesses strong
embedded security checks which are positive char-
acteristics of any communication design. The
problem with his implementation is the reliance on
complex interactions between all the classes used
by his library, thus reducing the possible number of
application of the library by the medical community.

To replace the communication structure pro-
posed by Tauscher we can look at the set up
proposed by Seitz [4] where the LBR Med was
integrated with the medical imaging interaction
toolkit (MITK) to create a fully functional naviga-
tion platform where the Java implementation of the
OpenIGTLink protocol, maintained by the WIP lab,
serves as an interface between the robot and the
main workstation. Although the set up developed
by Seitz enjoys more flexibility than the set up pro-
posed by Tauscher, due to the full Java implemen-
tation of OpenIGTLink, it still lacks horizontal mo-
bility due to the use of MITK as the data collector
between all the intervening devices. The lack of
mobility comes from the dependence between the
visualization module and the data collector mod-
ule which forces developers to implement software

in C++ to communicate with new additions to the
set up when changing the operating conditions of
the robot, for example, changing the set up from a
neurosurgical intervention to a laparoscopic inter-
vention. To develop an architecture that increases
the potential operating conditions of the LBR Med
we can look at the public software library for ul-
trasound (Plus) toolkit developed by Lasso et al.
[2]. The Plus toolkit library is an open source li-
brary that allows any developer to create a navi-
gation system where the visualization module can
be separated from the data collection module. This
modularity by itself is not newsworthy, since Seitz
uses the same logic in his MITK module. The char-
acteristic of the plus library that increases the hor-
izontal mobility of any set up which uses it, is the
configuration file, written as a xml file, that allows
a developer to add any device configured in the li-
brary to the set up without the need to create new
communication structures.

This paper focuses on the development of a nav-
igation platform that uses the LBR Med to perform
the surgical procedure, in a shared control struc-
ture [3]. To provide horizontal mobility to the set up
the robot is integrated with the visualization module
through the plus library. To communicate with the
plus toolkit the robot uses a new implementation of
the OpenIGTLink protocol in Java, with significant
improvements compared to other Java implemen-
tations, to serve as an interface between the robot
and plus. The mapping between robot coordinates
and the patient coordinates is performed through
MRI-US registration. Specifically by using the robot
as a tracking device it is possible to reconstruct the
structures scanned by the US probe into a volume,
where surfaces can then be extracted and mapped
into the MRI volume, thus creating a link between
the robots coordinates the the MRI space.

2. Methodology
2.1. LBR Med
The KUKA LBR Med lightweight robot is the cul-
mination of all the control strategies developed for
the KUKA iiwa robot with the safety features nec-
essary to pass the scrutiny of the medical field.
The robot can detect impacts performed by its sur-
roundings, through the torque sensors integrated
in all its seven joints, thus giving the LBR Med hu-
man robot collaboration capabilities.

The LBR Med is programmed through the Work-
bench API which allows developers to interact with
the different hardware components through several
Java libraries developed by KUKA. To give the LBR
flexibility and increase the potential applications of
the robot several libraries exist that implement dif-
ferent control laws on the robot’s controller such
as: a) the trocar handguiding library, that restricts
the motion of the LBR Med end effector through a

2

single point in space; b) the direct and smart servo
motion libraries which allow the developers to cor-
rect the robot’s trajectory in real time, allowing the
robot to be used as a telesurgical system or use it
in the context of visual servoing applications; c) the
manual guidance library which allows the robot to
be hand guided by the surgeon in its environment.

To reduce the effort required from each devel-
opment team to meet regulatory standards, the
robot was developed in accordance with the ECEE
CB Scheme. In simple terms, the robot’s con-
troller is divided into two main components: the
safety controller and the motion controller. Both of
these components are classified as a class C type
software in accordance with the IEC 62304 norm.
Under the IEC 62304 norm a class A type soft-
ware entails minimum risks for the patient; class B
type software entails injury risks for the patient and
class C type software poses significant injury and
death risks to the patient. The important character-
istic designed by KUKA is that the developers code
is used by the motion controller and the safety con-
troller serves as an observer to correct and react
to any error detected in the motion controller. With
this observer architecture it is possible to reduce
the risk level of the code implemented by the de-
veloper to level B, thus reducing the effort required
by the developer to verify the software integrity un-
der the broad possible situations that the robot can
face in an operating room (OR).

2.1.1 OpenIGTLink in Java

To establish a communication channel between the
robot controller and the main workstation a Java
implementation of the OpenIGTLink protocol was
developed. Unlike the implementation maintained
by the WIP Lab, which was built on top of a com-
plex socket logic, the implementation we developed
relies on a simpler socket logic, with several tutori-
als, which allow developers to increase the steep-
ness of their learning curve while using the library.

The Java language was developed to tackle spe-
cific problems with web applications. This focus
translates into certain characteristics such as: the
fixed allocation of memory for primitive variables,
such as integers, doubles and longs, with fixed byte
array sizes of 16, 64 and 64 bytes, respectively;
private access to class methods, that increase the
security of the language.

These design choices that underline the Java
language require that any byte manipulation, re-
quired by the OpenIGTLink protocol, to use exter-
nal classes that add said functionality. The two util-
ity classes implemented in the protocol are:

1. ByteArray - the class provides methods to both
encode and decode java variables as byte ar-

rays with variable sizes, which can be defined
by the developer and it allows other classes
to access the byte arrays as necessary by the
library.

2. Header- the class allows the library to encode
and decode the byte array attached to the be-
ginning of each message in an efficient man-
ner. This class allows the library to reduce its
latency, thus increasing the possible applica-
tion of the protocol.

The current Java implementation of the protocol
has all the message types of OpenIGTLink, which
have been tested against the C++ implementation
of the protocol.

Another important characteristic of the protocol
is the ability to encode new message types, as the
need emerges by the developer. In order to do so
the developer needs to extend the abstract class
OpenIGTMessage which provides low level meth-
ods that must be common to all messages imple-
mented in the library.

The socket logic of the protocol relies on two
classes, shown in figures 1 and 2.

ClientSocket

- client: Socket
- outputClientStream: OutputStream
- inputClientStream: InputStream

+ receive(int length): byte[]
+ connectToServer(String hostName, int port): int
+ send(byte[] data): int
+ closeSocket(): int
+ setReceiveTimeOut(int timeOutMilisecond): int
accetpSocket(Socket client): int

Figure 1: Class diagram of the simple socket logic used by the
Java implementation of the OpenIGTLink protocol.

ServerIGTSocket

- server: ServerSocket

+ createServer(int port): int
+ waitForConnection(int waitMilisecond): ClientSocket
+ closeSocket(): int
+ setTimeOut(int timeOutMilisecond)
+ getPort(): int

Figure 2: Class diagram of the simple socket logic used by the
Java implementation of the OpenIGTLink protocol.

The developer can connect the workstation to
another node in the network by setting up a server
connection which returns a client connection so
that the workstation can send and read bytes from
the client socket by calling the receive() method.

2.1.2 Observer architecture

To provide horizontal mobility to the set up, the
robot’s software must be: a) modular - so that fu-

3

ture functionality can be added to the system with-
out the need to rewrite the code for the entire ap-
plication b) fast- so that transitions from one robot
state to another happen in a small time windows
c) safe- the transitions from one state to another
must dealt with unexpected situations imposed by
dynamics of the environment which were not pre-
dicted.

All the previous features can be embedded in
the architecture of the software by adopting the ob-
server pattern commonly used by Java developers.
The pattern uses observers to react to changes
in states of the system. The architecture of the
software running inside the LBR Med controller is
shown in figure 3.

Cyclic
Communicator

Master

State

<<Depends>>

LBRMedWorkstation

<<Depends>>

Figure 3: Component Diagram of the classes that control the
internal responses of the robot.

The set up divides the communication with the
external workstation from the motion characteris-
tics of the robot. The master state controls both
the communication class and it handles the state
changes of the system. In this context a state is
defined according to the stage of the surgical inter-
vention.

The workflow of the surgical procedure follows
the following stages:

1. Path planning - The surgical team defines the
target in the MRI imaging space and the path
to reach said point.

2. US scanning - The surgeon scans the patient
skull with an US probe and uses the robot as a
tracker device to reconstruct the 2D structure
seen in the US images as a 3D structure.

3. Registration - In order to know the rigid trans-
formation between the robot coordinates and
the MRI space we can map a surface ex-
tracted from the US reconstructed volume to
the MRI surface.

4. Surgeon guidance - The surgeon guides the
robot under impedance control along the de-
sired trajectory.

5. Surgical procedure - The surgeon performs
the surgical procedure with the robot under
position control in a fixed point in space.

6. Stop robot motion - When the surgery is fin-
ished the robot is moved under manual guid-
ance to a safe position and the robot motion is
stopped.

To map the surgical workflow into meaningful
robot states the following mapping is proposed:

1. Start up and verification - The first robot state
verifies the integrity of the LBR Med brakes
and all seven encoders of the robot.

2. Ultrasound registration - The second state
uses hand guidance support provided by
KUKA to track the rigidly attached US probe
while the surgeon scans the patient.

3. Move to safe position - Once the surgeon de-
cides that the registration between the MRI-
US space shows no significant difference be-
tween one another the robot moves under
impedance control to a point positioned away
from the patient and aligned with the desired
trajectory.

4. Impedance control - The robot moves along
the desired trajectory under impedance con-
trol guided by the surgeon. Once the target
is reached to robot is commanded to hold its
position.

5. Termination - Once the surgical procedure is
over the surgeon safely moves away the robot
from the patient and terminates the robot’s ap-
plication.

2.1.3 Virtual impedance environment

All the robot states have an obvious implementa-
tion with the exception of the Impedance Control
state. Because the robot interacts with the sur-
geons it needs to follow the desired trajectory un-
der impedance control. The robot should not pull
the end effector towards the patient, since it should
be guided by the surgeon along the desired tra-
jectory. The solution proposed by the authors re-
lies on sending a commanded position to the robot,
also called equilibrium position, and force the robot
to mimic a second order system that does not
posses stiffness along the desired trajectory.

To translate the previous idea into an actual con-
trol strategy two hypothesis are proposed, they are:
a) An impedance cone that increases the the stiff-
ness imposed on the end effector as the surgeon

4

Figure 4: Objects used by the robot to create the impedance
control environment.

approaches the target in the perpendicular direc-
tions to the motion; b) an impedance line that has
a constant stiffness along the desired trajectory.

The impedance line strategy uses the target
frame, Commanded Frame, shown in figure 4 as
the commanded position to reach. The LBR Med
performs the required computation to mimic the
second order system autonomously through its
impedance controller.

To force the robot to stop once the Commanded
Frame has been reached one can call the method
changeControlModeSettings() that allows the de-
veloper to change the stiffness of the robot in
real time. As soon as the commanded position is
reached the robot increases the stiffness in the par-
allel direction to the desired motion until it reaches
the maximum allowable stiffness of 5000 N/m.

The impedance cone strategy relies on the same
logic of the impedance line strategy with the simple
difference that the stiffness in the perpendicular di-
rections to the desired trajectory are updated as a
function of the distance to the commanded frame
in real time.

2.2. Analogic ultrasound and frame grabber
The US unit used to provide the US images from
the patient’s skull is the prosound unit. The
prosound device can extract B-mode images from
its transducer. Because we need the US images
and the device is analogic a frame grabber is re-
quired to extract them. Because the Plus library
serves as the connecting node between all the de-
vices the frame grabber chosen to be part of the
final set up is the DFG/USB2propcd. It can extract
images up to 30 frames per second, depending on
the protocol used to stream the images, and with a
maximum image resolution of 720/576 pixels.

2.3. Visualization module
To visualize data in real time, 3D Slicer was chosen
as the visualization platform of the set up. Given
the added flexibility of the GUI in comparison to the
other commercially available options and the em-

bedded compatibility of the platform with the plus
library it became the obvious choice.

With the support already embedded in the plat-
form developers can: a) record data - so that the
US tracking by the robot can be evaluated at a lat-
ter date, or other tests related to the set up; b) Of-
fline reconstruction - with previously recorded files
we can reconstruct volumes from the US tracked
images; c) Scout scan - To identify the structure
which we want to scan with high definition we can
first perform a scout scan to define a region of in-
terest (ROI); d) Live reconstrcution - After the ROI
has been identified we can now reconstruct the vol-
umetric information with the highest possible reso-
lution.

2.4. Optical Tracker
To obtain the US image in the reference frame of
the robot, lets call it the world frame, the US image
must be positioned in space by the transformations
seen in equation 1.

T Image
World = TFlange

World .T
Image
F lange (1)

The robot is calibrated to obtain the TFlange
World

transformation directly from the controller, but to
obtain the T Image

F lange transformation, it is necessary to
use some calibration algorithm to obtain the neces-
sary rigid transformation.

To perform said calibration algorithm the Polaris
tracker is required, seen in figure 5, to obtain from
an external device the mapping from the US image
frame to the flange frame of the robot.

Figure 5: Polaris device used in the set up to perform the
needed spacial calibrations.

2.5. Set up integration
With all the previous devices, the architecture that
connects all of them into a single set up can be
seen in figure 6. Plus serves as the connection
node where all devices must go through it.

 LBR Med
 controller

Windows workstation

Slicer 3D

 Tracker
Ultrasound probe

Plus Server

OpenIGTLink

OpenIGTLink

Frame Grabber

OpenIGTLink

Figure 6: Interaction of the devices used in this paper.

Plus assumes that between the intervening data
streams only exists a constant delay. This assump-

5

tion ignores that the ultrasound captures a vertical
line of pixels from each image at a constant fre-
quency, and one can compute the velocity of the
line in the physical space.If the velocity of the probe
is comparable to the velocity of the probe, then the
final reconstructed volume will show deformations
associated with this relative movement. The sec-
ond assumption is that by using an affine transfor-
mation one can perform all the required geomet-
ric calibrations between all the intervening devices.
The physical assumption does not entail as many
problems as the time delay assumption

3. Results & discussion
3.1. Performance of OpenIGTLink implementation
Given that the Java implementation is new, we can-
not guarantee that it will enjoy the same perfor-
mance characteristics as its C++ counterpart im-
plementation. Although the implementation should
be tested for all potential uses, that work will be left
for future developers for two reasons: a) windows
is not a real time capable system, which means
that time measurements are not precise to less
than ms measurements; b) we require a java im-
plementation of the network time protocol which is
still not completed. Instead of validating the pro-
tocol we choose to validate its performance in the
context of our set up. This in turn means that any
deviation from this set up requires that the perfor-
mance of the protocol be verified again.

3.1.1 Latency measurement

The latency of a protocol, as defined by Tokuda
et al. [6], is the delay between the packing of the
message in the sender, call it instant t0, and the un-
packing of the encoded message by the receiver,
call it instant t1.

Given that there are only two workstations in our
set up, the latency was measured only between
two workstations. The results of the measurements
are shown in table .

Table 1: Latency of the OpenIGTLink Java implementation

frame rate (fps) latency (ms)
199044 0.00452

To obtain time measurements from inside
the Java virtual machine the System.nanotime()
method was used.

3.1.2 Jitter measurement

Jitter is defined according to RFC 4689 as the ab-
solute difference between the measured delay of
two adjacent packets of data, defined as the differ-
ence between the time instant |Di − Di+1| where
Di is the instant when the packet i is received and
Di+1 is the instant when the packet i+1 is received.

The average jitter is defined as the average of the
instantaneous jitters measured during a interval of
time, ∆t.

Since we do not know if the jitter of the connec-
tion is related to the frame rate of the communica-
tion between the robot and the main workstation
figure 7 shows the measurements of the jitter ver-
sus the frame rate.

Figure 7: Jitter of the connection for different cycle times

3.1.3 Discussion

As it can be seen in table 1 the latency of the im-
plementation in Java is small, when compared in
absolute terms with the C++ implementation of the
protocol. Although the conditions in which they
were tested are different this tells us that the pro-
tocol is efficient. The jitter measurements, seen
in figure 7, suggest that the jitter is independent
from the frame rate, which indicates that, except
with some constraints, the developer can choose
the frame rate that best suits their needs.

3.2. Control strategies
The control strategies proposed in section 2.1.3
can become unviable under two situations: a) if the
update rate at which the developer can send the
stiffness to the controller is too low the surgeon will
feel sudden variations in the force exerted by the
flange of the robot; b) because the robots position
and the robots commanded position is different, the
robot can map the force required to mimic a second
order system in the Cartesian space with distor-
tions when mapped to the joint space of the robot,
thus effectively the system that the robot mimics is
not of second order system.

3.2.1 Update rate

The cycle required to update the stiffness of the
robot in real time is shown in figure 8. There are
three relevant variables that interfere with the stiff-
ness update and they are: the time taken by the

6

changeControlModeSetting() method, called ticm;
the time taken by the updateWithRealTimeSys-
tem() method which updates the values of position,
and force felt by the robot, identified by tiurts; the
computation time required to compute the desired
stiffness value. These three variables impact the
total cycle time taken to update the stiffness of the
robot, called text.

runState()

changeControlModeSettings()

updateWithRealTimeSystem()

Robotics
Application

Impedance
State

Servo Motion
Library

����

������

����
ComputeImpedance()

Figure 8: Sequence diagram that shown all the relevant
elapsed times in the stiffness update cycle.

To evaluate if the time taken by the changeCon-
trolModeSetting() method is influenced by the num-
ber of calls made to it table 2 shows the average
duration and standard deviation of the ticm vari-
able.

Table 2: Duration of the changeControlModeSetting() method

No cycles ticm ms std(ticm) ms
15000 0.9837 0.2385
50000 0.9822 0.2356
150000 0.9800 0.2269
450000 0.9900 0.2200

In table 3 the same data is showed about the
tiurls, the time taken by the call to the updateWith-
RealTimeSystem() method, under different con-
secutive calls to the method.

Table 3: Duration of the updateWithRealTimeSystem() method

No cycles ticm ms std(ticm) ms
15000 1.0463 0.2802
50000 1.0489 0.3047
150000 1.0500 0.3180
450000 1.0500 0.3500

The total duration of the runState() method call
is shown in table 4. To evaluate the duration of the
method in a reliable way the class StatisticTimer
provided by KUKA, was used.

3.2.2 Discussion

Given that no visible correlation exists between the
number of calls and the time taken by the methods

Table 4: Total cycle time needed to update the desired stiffness.

No cycles min max mean SD
874538 1.74 127.03 2.06 0.42

to update the stiffness of the robot, as seen in ta-
bles 2 and 3, then the control strategies developed
to control the LBR Med are valid and they can op-
erate for undetermined amounts of time. Given the
total time taken by the cycle to compute and update
the stiffness, as seen in table 4, we can conclude
that the control strategies can be classified as a
soft real time application.

3.2.3 Stiffness validation

According to the data reported in the previous sec-
tion the robot is able to update the desired stiff-
ness, on average, in 2.06 ms but the actual stiffness
simulated by the torque joints can be distorted due
to two hypothesis:

a) Geometric error - if the error between the com-
manded position and real position of the robot
is significant, the difference in the manipulator
configuration can deform the Jacobian used to
map the stiffness matrix in Cartesian space to
joint space.

b) Joint Stiffness - depending on the commanded
stiffness the simulated force might not over-
come the effects of joint friction

-300 -250 -200 -150 -100 -50 0

Distance to target (mm)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

S
tif

ne
ss

 v
al

ue
s

(N
/m

)

Comparison between expected and real impedance

Mean measured stifness
Expected Stifness

Figure 9: Comparison between the commanded stiffness and
estimated stiffness along the trajectory.

To test these effects produced by the controller,
one can perform a static test, thus eliminating the
effects of the acceleration and velocity, leaving only
the effect of the stiffness mimicked by the con-
troller. In figure 9 the static test is shown along
the desired trajectory.

7

3.2.4 Discussion

As seen in figure 9, there is a difference between
the desired stiffness and the actual mimicked stiff-
ness performed by the robot. To test the hypothe-
sis proposed in a) and b) two test were performed
on the robot. The first test requires that the robot
be commanded with high stiffness values, that can
surpass the friction of the joints, and the distance
to the equilibrium point is increased, thus chang-
ing the Jacobian. Because the mapping error in-
creases, this means that the difference between
the commanded stiffness and the mimicked stiff-
ness is justified by geometrical distortions.

To correct this geometrical error, in theory, the
equilibrium position could be changed to the pro-
jection of the robot’s position onto the desired tra-
jectory as the surgeon moves the end effector. This
solution in practice can only be implemented in the
impedance line strategy because the robot con-
troller requires 20ms to change the commanded
position of the robot. If we wished to apply the
same logic to the cone shaped impedance strat-
egy, the time required to update the stiffness would
go from 2.06 ms to 22.06 ms which results in sud-
den changes in the force done by the flange of the
robot on the surgeon’s hand.

3.3. Spacial calibration
To obtain the transformation mentioned in equation
1, TFlange

Image , we can position the stylus in a water
tank, which perturbs the US image. The position
of the stylus can now be measured by two paths.
To understand which paths, the reader can look at
figure 10.

Figure 10: Frames of reference required to perform the spacial
calibration between the US frame and the Flange frame

The position of the stylus tip can be measured
by the Polaris tracking system and by the robot
tracked US images, as it is written in equation 2.

pWorld
Tool = TWorld

F lange.T
Flange
Ultrasound.p

Ultrasound
Tool =

TWorld
Polaris.p

Polaris
Tool

(2)

By isolating the transform TFlange
Ultrasound equation

2 should be algebraically manipulated to obtain
equation 3.

TFlange
Ultrasound.p

Ultrasound
Tool = TFlange

World .T
World
Polaris.p

Polaris
Tool

(3)
By recording a point cloud we can uncover the

transform TFlange
Ultrasound using the algorithm proposed

by Arun et al. [1] which uses the SVD decomposi-
tion to obtain the rotation and translation from one
point cloud to another. To evaluate the error of the
calibration we can check the position of the stylus,
and the perturbation caused by the stylus tip on the
US image and measure the error between the two
points measured in the World frame. This valida-
tion is shown in figure 11.

Figure 11: Validation of spacial calibration.

The average of the error measured with this
method is shown in table 5.

Table 5: Calibration error between the Ultrasound Image and
Flange frame

Rotation µ sd max
0◦ 0.7307 0.4763 2.1364
5◦ 1.0266 0.7341 2.4931

10◦ 1.2788 0.3885 2.0841
15◦ 1.2906 0.5984 2.8113

3.3.1 Discussion

The average error of the spacial calibration algo-
rithm of 1.2 mm, as seen in table 5, means that, on
average, the real position of a pixel in the US im-
age lies on a sphere with a radius of 1.2 mm of the
reported position by the tracker. Depending on the
performance of the registration method used to ob-
tain the mapping between the US image space and
the MRI space this error can be acceptable. If on
the other hand, the error is unacceptable, several
additional methods have been proposed that might
bring the positioning error to lower values [2].

8

3.4. Temporal calibration

Given that the tracking stream sent by the robot
is independent from the imaging stream sent by
the frame grabber, the computation time used by
the two components to send messages is different,
given that images are larger in size than transform
messages. This computation time can be approxi-
mated by a constant offset[]. To estimate this con-
stant offset the US probe can be used to scan the
bottom of a water tank. By estimating the position
of the bottom from the US image while imposing on
the US probe a sinusoidal force we can measure
the difference between the two signals. In figure
12 the two uncalibrated signals are shown.

Figure 12: Uncalibrated signals obtain from the US image
stream (fixed signal) and the tracking signal(moving signal).

By measuring the correlation between the two
signals it is possible to estimate the delay which
superimposes them. For this specific set up, with a
delay of 80 ms we obtain the overlap between the
two signals shown in figure 13.

Figure 13: Calibrated signals after the correction applied
through the temporal calibration.

To test the temporal calibration we designed
a simple experiment where the stylus previously
mentioned was placed in the water tank, and the
same sinusoidal signal was imposed on the US
probe. If the calibration corrects the error be-
tween the image stream and the tracking stream
the stylus perturbation on the US image should
remain static throughout the duration of the sinu-
soidal movement. The results are shown in table
6.

Table 6: Temporal Calibration error

µ sd max
Calibrated 1.53 mm 0.73 mm 2.73 mm

Uncalibrated 3.81 mm 2.36 mm 8.01 mm

3.4.1 Discussion

With the temporal calibration algorithm used to cal-
ibrate the set up we obtained a reduction of 60%,
as seen in table 6, when looking at the relative mo-
tion of the static stylus on the US image. While
without calibration, the fixed stylus shows an ap-
parent motion with a maximum deviation from the
average measurement of 8.01 mm, contrary to the
maximum deviation of 2.73 mm when the set up is
temporaly calibrated. This represents a significant
reduction, thus proving the hypothesis assumed by
the Plus library. If the US probe is only subjected to
low velocity values, then this apparent movement
can be reduced to even lower values.

3.5. Volume reconstruction limitations
To demonstrate capabilities of the volume recon-
struction algorithm embedded in the Plus library
and test the limitations of the tracking system, so
that higher bounds can be placed on the robot’s
path characteristics when doing the volume recon-
struction, figure 14 shows the reconstruction of
a coin placed under a silicon plate with different
probe velocities.

(a) 5mm/s (b) 20mm/s

(c) 40mm/s (d) 80mm/s

Figure 14: Top view of the reconstructed coin under different
probe velocities.

To verify if the probe velocity deforms the shape
of the probed coin we can measure the diameter
of the coin in the perpendicular direction to the mo-

9

tion of the probe and compare it to the diameter of
the coin parallel to the direction of the probe. The
results are shown in table 7.

Table 7: Results of the total cycle time needed to update the
stiffness value at the joint level.

Speed mm/s d1 mm d2 mm
5 31.0097 32.1972

20 30.1727 32.8800
40 29.4824 30.6348
80 28.6201 36.892

3.5.1 Discussion

The first apparent distortion in the reconstructed
volume, seen in figure 14, are the increase in the
gaps of empty voxels as the probe velocity in-
creases. These gaps can be explained by looking
at the frame rate of the frame grabber used to cap-
ture US images. If one scans a coin with a diam-
eter of 27.55 mm with a probe velocity of80 mm/s
the necessary time to scan the coin is 0.325 sec-
onds. During this time the frame grabber, which
obtains images at 25 frames per second, can only
obtain 8 images. The regions between the 8 ob-
tained images will be filled with empty voxels. It is
clear from this experiment, that to avoid said gaps,
which will influence the registration algorithm used
to map the US space to the MRI space, an upper
bound on the probe velocity must be placed. In re-
gards to the distortion caused by the increase in
velocity, table 7 provides the necessary data to un-
derstand how the velocity influences the distorted
volume. For low probe speeds, under 40 mm/s,an
almost constant shift exists between the parallel
and perpendicular diameter of the reconstructed
coin. This shift can be accounted by asymmetry
introduced by the echo artifact present on the US
images. For higher probe velocities the shift grows
larger, and this affect can no longer be explained
solely by the echo artifact. The only explanation
for this distortion we found is that the assumption
of the constant delay between the tracker and the
frame grabber breaks down at high probe veloci-
ties.

4. Conclusions
In this paper we were able to create a set up which
is modular, and relies on public libraries, which in
theory should create a robotic system with large
horizontal mobility. By developing the implementa-
tion of the OpenIGTLink protocol in Java we were
able to increase the potential areas of applicability
of the LBR Med.

References
[1] K.S. Arun, T.S. Huang, and Steven Blostein.

Least-squares fitting of two 3-d point sets.

ieee t pattern anal. Pattern Analysis
and Machine Intelligence, IEEE Transactions
on, PAMI-9:698 – 700, 10 1987. doi:
10.1109/TPAMI.1987.4767965.

[2] A. Lasso, T. Heffter, A. Rankin, C. Pinter,
T. Ungi, and G. Fichtinger. Plus: Open-source
toolkit for ultrasound-guided intervention sys-
tems. IEEE Transactions on Biomedical En-
gineering, 61(10):2527–2537, Oct 2014. doi:
10.1109/TBME.2014.2322864.

[3] Michael A. Vogelbaum David M. Peereboom
Narendra Nathoo, Murat Cenk Cavusoglu. In
touch with robotics: neurosurgery for the fu-
ture. Neurosurgery, 56 3:421–33; discussion
421–33, 2005.

[4] Peter Karl Seitz. Konzeption und Entwick-
lung einer robotergestützten und ultraschall-
basierten Lokalisationskontrolle. Master thesis,
2018.

[5] Sebastian Tauscher, Junichi Tokuda, Günter
Schreiber, Thomas Neff, Nobuhiko Hata, and
Tobias Ortmaier. Openigtlink interface for state
control and visualisation of a robot for image-
guided therapy systems. International Journal
of Computer Assisted Radiology and Surgery,
10(3):285–292, Mar 2015. ISSN 1861-
6429. doi: 10.1007/s11548-014-1081-1. URL
https://doi.org/10.1007/s11548-014-1081-1.

[6] Junichi Tokuda, Gregory S. Fischer, Xenophon
Papademetris, Ziv Yaniv, Luis Ibanez, Patrick
Cheng, Haiying Liu, Jack Blevins, Jumpei
Arata, Alexandra J. Golby, Tina Kapur, Steve
Pieper, Everette C. Burdette, Gabor Fichtinger,
Clare M. Tempany, and Nobuhiko Hata.
Openigtlink: an open network protocol for
image-guided therapy environment. The Inter-
national Journal of Medical Robotics and Com-
puter Assisted Surgery, 5(4):423–434, 2009.
doi: 10.1002/rcs.274.

10

