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Abstract—Over the past few years, simultaneous EEG-fMRI
recordings have been largely used to understand the link between
EEG and fMRI in multiple conditions. The use of multimodal
approaches that combine the two modalities has received recogni-
tion a promising new tool, owing to their highly complementary
characteristics. However, such multimodal acquisitions are typi-
cally costly, non-portable and overall uncomfortable for patients,
mostly due to the use of fMRI. This motivated the search for
solutions capable of using only the widely available EEG as a
surrogate of the simultaneous BOLD signal. Within this scope,
this work investigated an integration strategy whereby relevant
EEG-features were extracted and their coefficient estimates learnt
so as to predict the simultaneous average BOLD signal measured
at a specific distributed network. These network-specific EEG
patterns were here referred to as EEG-Fingerprints (EFPs), a
concept introduced by Meir-Hasson and their colleagues (Meir-
Hasson et al., 2014). The methodology employed relied on
a machine learning approach that included linear regression
algorithms and cross validation procedures. Independent analyses
were performed for data recorded under two experimental
conditions: during resting state; and during a motor imagery
task.

Index Terms—EEG Fingerprint, Simultaneous EEG-fMRI,
Resting State, Default Mode Network, Motor Imagery, Spectral
Features, Connectivity Features, Learning, Optimization.

I. INTRODUCTION

Electroencephalography (EEG) measures electrical activity
of the brain through a set of electrodes placed on the scalp,
which capture transient electrical dipoles generated in the
cortex that reflect underlying neuronal processes in real time.
By means of these fast dynamics, EEG holds a high temporal
resolution (order of the milliseconds), desirable for a wide
range of practical applications (Wadman and da Silva, 2017).
EEG also benefits from being relatively inexpensive, portable,
noninvasive and easy to apply. However, it is very sensitive to
noise and lacks specificity because of its low spatial resolution
(order of the centimeter) and the fact that source localization
from EEG suffers from an ill-posed inverse problem.

On the other hand, functional magnetic resonance imaging
(fMRI) reflects the increases in blood flow that accompany
neuronal activation. The success of fMRI stems largely from
its high spatial resolution (order of the millimeters) and non-
invasive nature. However, its temporal resolution (order of the
seconds) is limited by the time required to acquire one brain
volume and the duration of the hemodynamic response, which

acts as a low-pass filter that blurs neural activity (Buxton,
2009). Moreover, fMRI recordings are considerably expensive
and time consuming, posing further constraints on the use of
this modality for several applications. In this context, the use
of multimodal approaches that combine EEG and fMRI has
received recognition as a promising novel method for several
applications. Yet integrating EEG and fMRI data is not a
trivial challenge, in fact multiple multimodal data integration
methods have been described and compared in recent years
(Perronnet et al., 2018; Abreu et al., 2018).

Notably, multimodal EEG-fMRI acquisitions are of spe-
cial interest for neurofeedback (NF) based Brain-Computer
Interface (BCI) applications, which traditionally rely on ei-
ther EEG or fMRI recordings. These systems have been
exploited as noninvasive techniques to improve neurorehabili-
tation outcomes in a large spectrum of neurological conditions
(Vourvopoulos et al., 2019), for example in the context of
rehabilitation or several psychiatric disorders (Marzbani et al.,
2016). While combining EEG and fMRI for NF training has
been demonstrated to provide a more efficient feedback and
better regulation results (Perronnet et al., 2017), such mul-
timodal acquisitions enclose several pitfalls: they are costly,
non-portable and overall uncomfortable for patients, mostly
due to the use of fMRI. Further, integration of EEG and
fMRI signals so as to be fed to the feedback loop should
be applicable in real-time (Perronnet et al., 2018). Within this
framework, significant efforts have been employed to reach
solutions that combine the complementary advantages of EEG-
fMRI multimodal acquisition, whilst using only the widely
available EEG for real-time training. Such solutions rely on
the ability to use a set of EEG-derived features to simulate the
simultaneous BOLD signal.

This work aims to investigate an integration strategy
whereby relevant EEG-features are extracted and their coeffi-
cient estimates learnt so as to predict the simultaneous average
BOLD signal measured at a specific distributed network. These
network-specific EEG patterns can be referred to as EEG
Fingerprints (EFPs), a concept introduced by Meir-Hasson and
their colleagues (Meir-Hasson et al., 2014) in a related study.
The hope is that in the future, the estimated EFPs may be
applied during real-time neurofeedback training, in order to
attain the quality of the results obtained with a NF EEG-fMRI



session, without the need to use fMRI.
In this work, independent EFPs are estimated for data

recorded under two experimental conditions: during resting
state (RS) and during a motor imagery (MI) task. In the former,
the BOLD signal considered is extracted from a resting state
network, the Default Mode Network (DMN), whereas in the
latter the signal is extracted from regions within the motor
cortex.

II. RELATED WORK

A. EEG-fMRI in Resting State

Resting state activity comprises the spontaneous fluctuations
in human brain activity that occur when subjects are not
engaged in a particular task or higher cognitive processes.
An important related concept is that of resting state networks
(RSNs), which are networks that integrate functionally con-
nected brain regions, i.e. brain regions that share correlated
temporal patterns. Since these patterns have first been reported
in rsfMRI (resting state fMRI) studies by Biswal et al.
(Biswal et al., 1995), several RSNs have been identified. These
networks are highly reproducible in multiple resting state
conditions and are spatially consistent across different subjects
as well. The most widely studied and robustly detected RSN
is the Default Mode Network (DMN) (Raichle et al., 2001).
This network was first identified by Raichle and colleagues,
when stumbling upon a consistent pattern of regions that
showed higher activation during control state than during task
performance, in positron emission tpmography (PET) studies.
The DMN includes the anterior cingulate cortex (ACC), the
posterior cingulate cortex (PCC), the inferior lateral parietal
cortex and the medial prefrontal cortex (mPFC) (Greicius
et al., 2002). Although the exact cognitive functions of the
DMN are still unclear, there is a growing consensus concerning
its involvement in introspection, self-referential cognition and
environment monitoring processes (Smith et al., 2018).

The study of RSNs has been proven to be of significant
clinical value, providing sensitive markers of disease. Specif-
ically, the DMN has been demonstrated to be altered in a
number of conditions such as attention deficit hyperactivity
disorder (ADHD) (Rubia et al., 2019) and several chronic pain
disorders including migraine and neuropathic pain (Edes et al.,
2017; Sağ et al., 2018). Regrettably, only very few studies
have been employed to date that try to understand the role of
resting state neurofeedback in the treatment of such conditions.
Notably, Rubia and colleagues reported a significant increase
in the functional connectivity of the DMN, accompanied by
improvement of clinical symptoms, following NF therapy with
ADHD patients. Moreover, some studies report improvement
of pain symptoms in patients with migraines and other types
of chronic pain after NF therapy (Marzbani et al., 2016).
Altogether, these results indicate that RS patterns may be
promising new targets in the field of NF based therapy.

B. EEG-fMRI in Motor Imagery

The term motor imagery (Jeannerod, 1994) is commonly
used in the scientific community to address tasks in which

the subject imagines moving a specific body part, without
physically executing the movement. Research on motor im-
agery has identified several similarities between imagined and
executed actions, thus supporting the idea that motor imagery
is executed via many of the brain structures involved in the
programming of movements. Indeed, neuroimaging studies
report similar spatiotemporal patterns of neural activation in
the two conditions, both engaging a set of frontal motor
areas (the supplementary motor area, SMA; the premotor
cortex, PMC; the primary cortex, M1) along with posterial
parietal regions (the secondary somatosensory cortex, S2) and
subcortical structures such as the cerebellum and the basial
ganglia (BG) (Pfurtscheller and Neuper, 1997). Over the years,
MI has been adopted as a tool for motor rehabilitation (Ramos-
Murguialday et al., 2013), improvement of sport performance
(Guillot and Collet, 2008), and musical practice (Lotze and
Halsband, 2006). For this, the idea of directly training the cen-
tral nervous system was promoted by establishing an alterna-
tive pathway between the user’s brain and a computer system
(Wolpaw et al., 2002). This is possible by using EEG-based
Brain-Computer Interfaces (BCIs), since they can provide an
alternative non-muscular channel for communication with the
external world, while providing also a cost-effective solution
for training (Vourvopoulos and Badia, 2016). BCI systems aim
to translate features extracted from recorded brain activity into
signals able to communicate with external computer devices,
whether for assistance or rehabilitative purposes. In this regard,
although EEG is the most popular imaging technique for
feature extraction in BCI applications, EEG-based BCIs lack
from high accuracy due to poor signal-to-noise ration, low
spatial resolution and non-stationarity of the signals (Lotte,
2014). A way to overcome the current limitations in EEG-
based BCIs is to understand the modulation of EEG patterns by
capturing user-specific correlates of MI. This can be achieved
resorting to fMRI, because of its high spatial resolution.
Hence, combining EEG and fMRI in this context may allow
the identification of specific EEG correlates that best represent
the brain activity associated with the execution of the MI task.

C. EEG-fMRI Integration

Although a great amount of work has been dedicated
into formulating a model that expresses the transfer function
between the EEG and the BOLD signal, this is still an active
area of research. Several transfer functions between EEG
and BOLD have been proposed that are based on the time-
frequency decomposition of the EEG signal, thus accounting
for its temporal and spectral profiles. Hence, these can be
referred to as spectral features. Amongst the most well-studied
are the root mean square frequency (Kilner et al., 2005), the
total power (Wan et al., 2006), the average power across
a specific frequency band, and the linear combination of
band-specific average power Goense and Logothetis, 2008).
A number of studies exist that compare the performance of
these EEG-derived spectral features in the prediction of fMRI
data. In particular, studies addressing this question in a visual
task with healthy subjects (Rosa et al., 2010) and during



resting state with epileptic patients (Leite et al., 2013) reported
that frequency-weighted metrics yield a better performance
than power-weighted metrics. However, overall reports in the
literature do not provide yet a clear picture regarding the link
between EEG and the BOLD signal, and a consensual optimal
approach to model such relationship is still lacking.

Concurrently, a growing body of research has been focused
on describing the link between the EEG and the simul-
taneous BOLD in terms of the functional connectivity of
the electroencephalogram. Although they are typically more
complex and computationally costly, the interest of using such
measures lies on the possibility to incorporate in the models
the communication patterns across distributed brain regions.
Specifically, EEG synchronization measures have been deemed
as promising within this context (Abreu et al., 2018), since
they reflect aspects of brain activity that are complementary
to those captured by spectral power measures. However, the
current research on the usage of these measures to predict
BOLD activity is rather scarce. As Abreu et al. reviews,
both the global field synchronization (GFS) and the phase
synchronization index (PSI) have been successfully used to
predict simultaneous BOLD changes, and have additionally
been found to outperform some of the spectral power measures
described above.

Motivated by these promising results, this work explores
the potential of another EEG synchronization measure, the
imaginary part of coherency (IPC), for the prediction of
concurrent BOLD changes. The choice of this measure to
assess connectivity was twofold: first, coherency has re-
peatedly shown to produce more robust results than those
obtained by synchronization measures that do not weight
in the amplitude of the signals’ complex Fourier spectrum
(Nolte et al., 2004); second, to avoid the necessity for source
reconstruction, the priority was to use a connectivity measure
with low sensibility to field spread/volume conduction issues.
Indeed, by discarding the real part of the coherency spectrum,
IPC suppresses all instantaneous effects (phase difference
�(�) = 0), thus removing artifactual coherency estimates in
which the apparent connectivity between two channels arises
from activity generated by the same underlying source. Addi-
tionally, another connectivity metric was explored in this work,
which is based on graph theoretic approaches: the weighted
node degree (WND) of the IPC. Given that the functional
connectivity matrix may be regarded as representation of a
weighted graph, some authors suggest that EEG connectivity
can be indirectly assessed by estimating the weighted degree
of each channel (i.e., node). The underlying assumption is that
local changes in the functional connectivity matrix should be
accompanied by changes on weighted degree values (Sporns,
2016). In this work, this approach was explored not only with
the aim of minimizing computational cost needed to derive
the connectivity features and models, but also to assess the
potential of investigating EEG connectivity from a complex
network perspective.

D. State of the Art

The approach employed in this work was first inspired by
the work of Meir-Hasson and colleagues (Meir-Hasson et al.,
2014), who introduced a general framework for the predic-
tion of patterns of electrophysiological signatures that could
simulate the BOLD response. In their paper, they referred
to these patterns as EEG Fingerprints (EFPs), a term further
adopted in this work. To build such models, signal processing
and machine learning algorithms were used to learn, from
a broad set of EEG-derived features, the best parameters to
predict robust estimates of the simultaneous BOLD response.
This approach further extends the scope of the large body
of studies that attempt to derive the best EEG correlates of
BOLD response. The long-term goal of the study conducted
by Meir-Hasson was that in the future, these estimated EFPs
could be applied during real-time neurofeedback training, in
order to attain the quality of the results obtained with a
NF-fMRI session, without the need to use fMRI. Therefore,
they focused on the brain activity of sub-cortical structures,
under the argument that for these structures training is only
possible if guided by fMRI, since the EEG alone offers little
information on deep neural regions.

The framework introduced by Meir-Hasson enclosed a
specific set of solutions that together aimed to build robust
models with high generalization ability, so as to better predict
unseen fMRI data. It modeled within a linear regression
context the BOLD response of interest through a set of band-
specific EEG power timecourses from a set of channels,
where a range of delays was introduced at each timecourse.
Hence, an optimization problem was used to search the feature
space ([band] � [channel] � [delay]), instead of making any
prior assumptions regarding the best frequencies, channels or
HRF (hemodynamic response function) delays. More, because
such models were likely prone to overfit the data, they used
a machine learning approach that included robust statistics
methods such as regularization and cross-validation for model
selection and evaluation. Specifically, they performed ridge
(L2) regularization and used a nested CV procedure (outer
2-5-fold CV, inner holdout CV with n = 30 number of cycles)
to control for overfitting and assess model performance. The
NMSE was used as a criterion for model performance assess-
ment. Importantly, their main conclusions were that the band-
specific power across several frequency bands contributed al-
together for the prediction of BOLD activity and that different
brain regions were best modeled by different weight patterns
regarding frequency, channels and HRF delays. The latter
result points out to the variability of the optimal EFP across
brain regions, and potentially experimental conditions, which
is supported by the overall literature on EEG correlated of the
BOLD response.

More recenlty, Cury et al. (Cury et al., 2019) implemented
a similar approach in a motor imagery study with data from
simultaneous EEG-fMRI recordings, acquired during bimodal
NF-EEG-fMRI sessions. Their goal was too to learn activation
patterns of EEG-derived features so as to improve the quality



of neurofeedback scores when EEG is used alone. Their
approach was also based on a machine learning mechanism
within a linear regression framework. However, in contrast
to the approach of Meir-Hasson et al., neurofeedback scores
were fed to the learning algorithm, instead of the EEG and
fMRI signals alone. Regularization was applied by adding
a mixed L12 penalty along with a L1 penalty to the LSR
objective function. The rationale was that because only a few
brain regions are expected to be activated by a given cognitive
task, it is reasonable to impose spatial sparsity through the
use of a L1 penalty. On the contrary, because engagement of
brain rhythms is not expected to be sparse across frequencies,
and might even be smooth, it would be appropriate to use
an additional mixed L12 penalty. Here, a mixed norm was
used instead of a simple L2 norm to further allow non-
relevant frequency bands to hold null coefficients. While the
weight of the L1 norm was empirically chosen and fixed, the
weight of the L12 norm was estimated through an optimization
procedure. Both model selection (optimization of the weight
parameter) and evaluation were performed using a nested
cross-validation procedure (outer 3-fold CV, inner holdout CV
with n = 50 number of cycles). Here, the criterion used to
assess model performance was the NMSE. Importantly, to
select among the many possible models, the method sought to
minimize the combined NMSE on the validation and learning
set. This was justified on the grounds of whilst using the
NMSE from the learning set alone would introduce bias, using
the NMSE from the test set alone would introduce variance.
Remarkably, Cury et al. showed that only specific channels
and frequency bands held high activation, over the several
different subjects for whom models were derived. This led
them to believe that there may exist a common, more general,
model for the population, even if the best possible models are
subject-specific.

III. IMPLEMENTATION

A. Characterization of the Resting State Data

The EEG-fMRI data was acquired during rest and eyes
open, for a run of 10 minutes. This dataset was acquired and
pre-processed in the scope of a previous project (Abreu et al.,
2017). The subject was a patient selected from a group of drug-
refractory focal epilepsy, undergoing presurgical evaluation
from the Program of Surgery for Epilepsy of the Hospital
Center of West Lisbon. Epileptic activity was recorded on the
EEG for a brief period towards the end of the acquisition. The
samples corresponding to the epileptic event were removed
from the data analyzed in this work, so as to minimize any
confounds of healthy resting state activity. EEG and fMRI data
acquisition and pre-processing was as described in Abreu et
al (Abreu et al., 2017).

B. Extraction of the Resting State BOLD Signal

The BOLD resting state network of interest, the default
mode network (DMN), was mapped through seed-based GLM
analysis. The seed selected for the analysis was a well-defined
area within the DMN, the PCC. A mask of the seed was

created in the FSL’s program FSLeyes, using the Harvard-
Oxford Cortical Structural Atlas.. The mask was then binarized
and converted from standard to functional space. The average
pre-processed BOLD time-series within the PCC was thereby
extracted from the functional data and used as an explanatory
variable (EV) for GLM analysis. GLM was performed using
the FSL’s tool FEAT (Woolrich et al., 2001), and the z-statistic
images returned were thresholded. Notice that high z-scores in
the z-statistic images belong to brain regions that share strong
temporal correlation with the PCC, and therefore are assumed
to belong to the DMN. The DMN map was visually confirmed,
and its average time-series extracted as the BOLD signal of
interest to be further used in the analysis.

The remaining processing steps were implemented in MAT-
LAB. The BOLD signal was first up-sampled to 4 Hz using
cubic spline interpolation. The signal was then normalized to
have zero mean and one standard deviation. The resulting
BOLD time-series was used as the output response Y (t) of
the learning algorithms.

C. Characterization of the Motor Imagery Data

The EEG-fMRI data was acquired from a healthy volunteer
during a single motor imagery session of 120 seconds. The
session consisted of 6 blocks, alternating between rest, eyes
open, and motor imagery of the right arm.

Imaging was performed on a Siemens Vida at 3T with a 64-
channel head coil. The fMRI data was collected using a 2DEPI
sequence, with the following parameters: TR/TE = 1260/30ms,
2.2 mm isotropic, 60 axial slices, with simultaneous multi-
slice acceleration factor 3, and GRAPPA in-plane acceleration
factor 2. The EEG data was acquired on a MR-compatible 32-
channel BrainAmp MR amplifier (Brain Products, Germany),
with a standard montage according to the 10-20 system. Two
additional electrodes were used: a reference electrode and an
electrode placed on the back for ECG recording. The EEG
acquisition was synchronized with the fMRI scanner, and
sampled at 5 kHz.

D. Extraction of the Motor Image BOLD Signal

The BOLD signal of interest was obtained through GLM
analysis with the FSL’s tool FEAT, using the square waveform
of the task paradigm as a EV in the design matrix. The
square wave was first convolved with the canonical HRF,
as given by a double gamma function with overshoot at 6
seconds relative to onset. Its first temporal derivative was
also included as a second regressor in the design matrix.
All previous steps were implemented in the FEAT GUI. The
z-statistic images returned for the EV1 were thresholded to
obtain the regions that shared high temporal correlation with
the input task paradigm. The resulting map was binarized
and then multiplied by a binary mask of the motor cortex
to remove voxels from non-motor areas. The motor mask was
created in the FSL’s program FSLeyes, using the Harvard-
Oxford Cortical Structural Atlas (Desikan et al., 2006) and the
Jüelich Histological Atlas (Eickhoff et al., 2007). The mask
was then binarized and converted from standard to functional



space. The average BOLD time-series of the resulting map was
extracted to be further used in the analysis. The remaining
processing steps, implemented in MATLAB, were the steps
already described for the resting state BOLD signal.

E. Extraction of the EEG Features

The following paragraphs describe the post-processing
pipeline employed to build the feature space from the EEG
data. The input data fed to the pipeline corresponds to the post-
processed EEG 2D data matrix, within which each row rep-
resents the time-series of one EEG channel. Time-frequency
decomposition was accomplished by Morlet wavelet convolu-
tion in the time-domain. Accordingly, each of the EEG time-
series Xj(t) was convolved with a Morlet wavelet w(t; f) with
wavelet factor R = 7, to obtain the time-series of the spectral
power at frequency f , given by Pj(t; f) = jXj(t) �w(t; f)j2.
This process was repeated for a 100 discrete frequency values,
logarithmically distributed from 1 Hz to 30 Hz. The result was
a 3D matrix of spectral power values X 2 R C×F×T (C the
number of channels, F the number of frequency bins, T the
number of time-points).

From the spectrum of the EEG data, both spectral and
functional connectivity features were derived. These represent
a range of possible ways of modeling the linear relation-
ship between EEG activity and the BOLD response. The
spectral features explored in this work were the root mean
squared frequency (RMSF), the total power (TP) and the
linear combination of band-specific power (LC) (Abreu et al.,
2018). The EEG-derived feature matrix, X, built for each of
these models, is referred to in this work as XRMSF , XTP ,
XLC (respectively). These features were derived through the
expressions in equations 3 to 4. Because the latter two rely on
the average power across specific ranges of frequencies, the
frequency bands of interest had to be defined. Four frequency
bands were considered in this work, defined as follows: delta
(1-4 Hz), theta (4-8 Hz), alpha (8-13 Hz) and beta (13-30 Hz).

EEGRMSF (t) =

vuutfmaxX
fmin

f2 ~P (f; t) (1)

with

~P (f; t) =
P (f; t)Pfmax

fmin
P (f; t)

(2)

EEGTP (t) =

fmaxX
fmin

P (f; t) (3)

EEGLC(t) =

NX
k=1

ak

0@ 1

jbkj

fbkmaxX
fbkmin

P (f; t)

1A (4)

where EEGRMSF (t) is the normalized RMSF feature,
EEGTP (t) the TP feature and EEGLC(t) the LC feature;
fmin and fmax are the minimum and maximum frequency
under analysis, and P (f; t) the value of the EEG power

spectrum at the frequency bin f , at time t. ~P (f; t) is then the
normalized power spectrum (normalized by the total power).
In equation 4, N is the total number of frequency bands
considered, ak the linear combination coefficient associated
with the frequency band k, [fbkmin

; fbkmax
] its frequency

range, and jbkj the total number of frequency bins within this
range.

Regarding functional connectivity measures, the IPC and the
WND of the IPC were used. Similarly to the LC feature matrix,
the IPC feature matrix was derived by the linear combination
of band-specific IPC, as given by:

EEGIPCij (t) =

NX
i=1

ak

0@ 1

jbkj

fbkmaxX
fbkmin

IPCij(f; t)

1A (5)

where

IPCij(f; t) = Im

�
hPi(f; t)Pj(f; t)ei��i

(hPi(f; t)2ihPj(f; t)2i)1=2

�
(6)

where IPCij(f; t) is the IPC between channel i and chan-
nel j at frequency f and instant t, �� their phase difference
at frequency f and instant t.

However, an important remark must be made regarding the
computation of such features for the data under analysis in
this work. Coherency (and thus, imaginary part of coherency
as well) requires to determine the expected value of the
cross-spectrum, hSiji. In theory, this can only be done by
averaging the cross-spectrum acquired over a sufficiently large
number of trials. However, in this work, a single session was
performed for both resting state and motor imagery conditions.
Therefore, a different solution was employed, that relied on the
Welch overlapped-segment averaging method, commonly used
for spectral density estimation (Carter, 1987). Accordingly,
to compute the cross-spectrum of two signals Xi and Xj

throughout time, the following steps were performed: for both
Xj and Xi, time intervals of 2 seconds, centered in time
instant t, were divided into T overlapping segments of 250
ms, and each of the segments was windowed with a Hanning
window; at each segment, the complex Fourier spectrum was
obtained for both signals, and from the two Fourier spectra
the cross-spectrum at that segment was computed; finally, the
cross-spectrum obtained for all T segments was averaged to
obtain the expected value of the cross-spectrum, hSiji, at
time instant t. However, it is important to emphasize that
the procedure described assumes stationarity within each time
interval for which coherence is calculated. While this may
be a fair assumption for the most part of the motor imagery
time-series, it may not be the case for the resting state data,
in which the time interval considered may be sufficient for a
spurious process to change the connectivity patterns recorded.

The entirety of this procedure was implemented with the
MATLAB function cpsd. From the cross-spectra obtained,
coherency was computed, and its imaginary part determined to
derive the IPC. Pairwise IPC estimates were averaged across



the four frequency bands of interest (delta, theta, alpha and
beta) to obtain the feature matrix XIPC. Lastly, from this
IPC matrix, the weighted node degree of each channel was
estimated (equation 7), to obtain the WND features.

EEGWNDi(t) =

NX
k=1

ak

0@ CX
j=1

0@ 1

jbkj

fbkmaxX
fbkmin

IPCij(f; t)

1A1A
(7)

where C is the total number of EEG channels considered
and EEGWNDi

the WND feature at channel i.
To better match the time-series of the simultaneous BOLD

signal, each EEG feature Xj(t) was non-linearly transformed
through convolution in the temporal-domain with the HRF.
This processing step was performed using the MATLAB
toolbox SPM12 (Ashburner et al., 2019), designed for the
analysis of brain imaging data. The time-series of the HRF was
obtained using the function spm_hrf, which approximates
the to a combination of two gamma functions. Notice that
this is in principle the same function as the one used for
the the GLM analysis of the MI fMRI data in FSL. The
double gamma implemented by spm_hrf is characterized by
a set of parameters that dictate its shape and scale, p1 to p5,
where: p1 is the delay of the response and p2 the delay of
the undershoot (both relative to onset), p3 is the dispersion of
the response, p4 is the dispersion of the undershoot and p5

is the ratio of the response to undershoot. More, spm_hrf
requires the specification of two additional parameters, p6 and
p7, which are the onset and length of the kernel (in seconds).
The function spm_hrf considers the canonical (default) HRF
to be defined by parameters: p1 = 6, p2 = 16, p3 = 1, p4 = 1,
p5 = 6, p6 = 0, p7 = 32. However, since the is known to vary
considerably across subjects, brain regions, and even cognitive
tasks, a set of different shapes was considered in this work,
characterized by the following range of overshoot delays: 10,
8, 6, 5, 4 and 2 seconds. To maintain a linear relation between
the values of the shape parameters (p1 to p5), the canonical
values of each of these parameters was multiplied by the scale
factor s = (p1=6).

Convolution between the input feature Xj(t) and the HRF
was performed with the function spm_Volterra from the
same toolbox. This convolution temporally smooths and gives
a BOLD-like shape to the input features of the model, so as
to increase their linear relationship with the output response.

The resulting EEG features were down-sampled at 4 Hz,
and normalized to have zero mean and one standard deviation,
so as to facilitate model computation and the interpretability
of coefficient estimates. Because a total of 31 channels, 4
frequency bands and 6 HRF delays was considered, the final
feature matrices built contained a total of features p of:
31�4�6 = 744 (for the XLC and XWND matrices); 31�6 =
186 (for the XRMSF and XTP matrix); 465� 4� 6 = 11160
(for the XIPC matrix). Notice that becayse the functional con-
nectivity matrix is a diagonal matrix, redundant combinations
of channels were removed from the feature matrix, thus only

a total of (31 � 31� 31)=2 = 465 channel pairs remained.
After the computation of the models above, a further anal-

ysis was conducted only for the LC features, that aimed to
evaluate the cost-effectiveness trade-off of computing models
with a reduced feature space. Specifically, new feature matrices
were derived for each of the frequency bands, X� , X�, X�,
X� , and for each of the EEG channels, XFp1, ..., XPOz .
For each dataset, the one-band model and one-channel model
that yielded higher performances were used to derive a matrix
that only contained features from that frequency band and that
channel combined (e.g., X�;O2). Finally, another matrix was
derived for the best band, the best model, and the combination
of best band and model, that only contained features convolved
with the canonical HRF (overshoot delay at 6 seconds),
further reducing the feature space (e.g., X�;can, XO2;can,
XAlpha;O2;can).

IV. PREDICTION MODEL

In this work, an independent EFP was learnt for each of the
models assessed, here referred to: XRMSF, XTP, XLC, XWND,
XIPC. All models were fitted by linear regression, using the
ENR (elastic net regularization) method for regularization.
Hence, ENR was used to fit these models to the training data,
so as to predict the BOLD response of interest Y (t), from
the set of EEG features X(t). The usage of a regularization
strategy such as this one was motivated by the need to reduce
model complexity so as to improve model interpretability
and control for overfitting effects (and hence improve overall
prediction accuracy). The choice of this particular method was
supported by the theoretical and empirical knowledge regard-
ing its general characteristics, extensively described elsewhere
(Zou and Hastie, 2005). As Zou et al. emphasizes, the ENR
combines the better properties of ridge and lasso regression
methods, yielding better performance than either of them when
used alone. Specifically, it enables to produce sparse models,
by setting some of the coefficients to zero, whilst producing
a grouping effect, in which highly correlated features are
assigned similar weights. ENR incurs a penalty, imposed by
a mixed L12 norm, on the least squares objective function.
Hence, it requires the specification of two hyperparameters
prior to model estimation: the � parameter, which defines
ratio between the weights of the L1 and the L2 norm, and
the � parameter, which is the complexity parameter of the
model. Instead of optimizing both parameters, the former
was set to 0.5 for all the models. This was done in order
keep computational cost to a minimum, as well as to create
a common ground whereby comparison between different
models is easier. The choice of � = 00:5 was twofold: first,
to impose sufficient sparsity on the models, small values of
� were discarded (notice that sparsity increases as � rises
from 0 to 1); additionally, a simplistic parameter search was
employed, in which model performance, as measured by the
BIC, was assessed for a range of � values. The tuning of the
� parameter was performed through a nested CV procedure,
described in the following section.



V. MODEL ASSESSMENT AND EVALUATION

For model selection and evaluation, a nested k-fold CV
procedure was implemented, with k = 15 outer cycles and
n = 20 inner cycles. For the outer procedure, a few variants
of the traditional k-fold CV procedure were explored, whereas
for the inner procedure a holdout CV procedure was employed,
with learning/validation ratio of 70=30. The first version of k-
fold CV explored, which is also the most simple, is described
in this paragraph. The original dataset was split into k roughly
equal sized, random partitions. In other words, each sample
of the original set f1; :::; Ng was randomly allocated into a
specific partition f1; :::; kg. Then, a total of k outer iterations
was performed, and at each iteration one partition was retained
as the test set, while the remaining k� 1 partitions were used
to fit the model. After all iterations, each partition was used
as the test set exactly once. For each of the k training sets, an
inner holdout CV procedure with n iterations was performed
to estimate the optimal hyperparameter � for that particular
set. In each iteration of the inner procedure, training data
was randomly assigned to the learning and validation sets,
according to a ratio of 70=30. Data within the learning set was
used to compute a family of 20 models, one for each of the 20
� values belonging to a range of interest, � = f�1; :::; �20g.

The criterion used for model selection was the BIC value.
It was chosen over the AIC criterion because it was deemed
as more appropriate for the framework of this work, given
that it penalizes more heavily model complexity, and that the
size of the penalty grows with the total number of samples.
Accordingly, the optimal �̂ selected was the one to minimize
the combined BIC on the validation and learning set, summed
across all N iterations of the inner CV procedure, according
to the expression in equation 8). This solution was inspired by
the procedure described in Cury et al. (Cury et al., 2019), and
sought to avoid the bias that would be introduced if using the
BIC from the learning set alone, as well as the variance that
would be introduced if using the BIC from the validation set
alone.

�̂ = arg min

(
NX
n=1

(BIC�)njlearn+

NX
n=1

(BIC�)njval

)
(8)

However, because the data being modeled in this work is
time-series data, considerations regarding temporal dependen-
cies should be accounted for. Importantly, samples within the
test set are not independent from those of the training set, and
thus estimates of model performance may be overoptimistic.
Since this is a critical aspect for model assessment and
comparison, two modified CV methods to deal with dependent
data were also explored in replacement of the outer k-fold
CV procedure. These two methods, here referred to as non-
dependent k-fold CV and blocked k-fold CV, are described in
the following paragraphs.

A nested non-dependent k-fold CV procedure was imple-
mented, with k = 15 outer cycles and n = 20 inner cycles. The
inner CV remained absolutely unchanged. In each iteration of

the outer procedure, each of the samples of the original dataset
was randomly allocated into one of k equal sized partitions.
However, right after allocation, samples within the training
set that that shared dependencies with any sample within the
test set were removed. Importantly, the temporal correlation
between two samples was assumed to only dependent on
their lag, which is to assume that there is a constant h
such that samples xi and xj are approximately independent,
if ji � jj > h. For a given time-series, the value of this
constant may be determined by analysis of its partial auto-
correlation sequence. To obtain an approximate measure of
h, the partial auto-correlation sequence, out to lag 15, was
determined for the output of the model Y and for several
representative input features within X. The analysis of the
partial ACF sequences suggested that the assumption that the
auto-correlation of two samples only depends on their lag may
be a fair approximation, since the auto-correlation decreased
with increasing lag. More, it showed that each sample was
significantly correlated with the 3 previous samples and the 3
following samples. However, to minimize data waste, h = 2
was chosen, since it should allow to remove almost all of the
significant dependencies. Hence, the 2 neighboring samples, in
both axis directions, of each test sample were removed from
the training set. It was also confirmed that, after removal of
dependent data, the size of the training set remained within
the acceptable limits in terms of model performance.

Finally, another modified k-fold CV procedure, referred
to as blocked CV, was also explored. Similarly to the non-
dependent CV, this procedure too works by removing the
h = 2 neighboring samples of the test samples. The difference
relies on the way data is allocated to each partition: instead of
randomly allocating samples to one of the k partitions, parti-
tions are created by chronological order, i.e., they consist of
uninterrupted blocks of samples. This tremendously minimizes
data waste, since only a total of 4 samples need to be removed
from the training set in each iteration: the 2 samples before
the first sample of the test set, and the 2 samples that follow
the last sample of the test set. However, this procedure may
be suboptimal for highly non-stationary processes, since the
variability of the series throughout time may not be captured at
each partition. Hence, if a specific process occurs at a specific
moment in time, it is probable that the unique structure that
it incurs on the data will not be considered for training and
for testing simultaneously. For the particular case of the motor
imagery data, a 15-fold blocked CV procedure will certainly
not capture resting and task periods on the same subset. As
so, k was changed to 5. Indeed, by dividing the data in only
5 blocks, each block is guaranteed to capture one trial of rest
and imagery. The same procedure was applied to the resting
state dataset, to keep the pipeline the most similar as possible.

Additionally, temporal dependencies may also exist between
the learning and validation sets of the inner CV proce-
dure, which may be suboptimal for hyperparameter selection.
Specifically, simplicity may not be favored enough due to good
apparent performance, in terms of the estimated prediction
error, of models that are significantly overfitted to the learning



set. However, the data available in this work was insufficient
to apply modified CV procedures in the inner CV cycles as
well. Removing temporal dependencies from the outer cycles
was prioritized, since the first concern was to obtain reliable
estimates of the final model’s prediction error. More, notice
that despite the inner CV procedure may not promote model
simplicity, the BIC is used as a criterion for model selection,
and this acts as a safeguard to avoid too complex models that
may be prone to overfit.

VI. EXPERIMENTAL RESULTS

A. Resting State Results

The overall results of the elastic net fitting for the resting
state data are reported hereafter. Tables I, II and III show
the results for 15-fold CV, non-dependent 15-fold CV and
blocked 5-fold CV, respectively. The measures reported are
the � parameter and the NMSE and BIC values, estimated
by averaging across all folds. The estimated effective DOF
of each model is also presented. This was determined from
the final EFP of the model, derived by averaging the non-zero
values of the coefficient estimates across all folds.

TABLE I: Cross validated (15-fold CV) � parameter, NMSE,
BIC values and DOF of the elastic net fit of the main models
explored. Results respective to the RS data.

Average �
(�10�2) DOF Average NMSE

(�10�1)
Average BIC

(�102)

RMSF 6.68 26.0 4.56 1.07
TP 5.02 46.0 6.24 1.71
LC 8.77 47.0 2.93 2.56
IPC 7.72 124.0 0.797 8.92
WND 5.56 80.0 2.26 4.16

TABLE II: Cross validated (non-dependent 15-fold CV) �
parameter, NMSE, BIC values and DOF of the elastic net
fit of the main models explored. Results respective to the RS
data.

Average �
(�10�2) DOF Average NMSE

(�10�1)
Average BIC

(�102)

RMSF 5.07 74.0 4.77 1.49
TP 8.16 99.0 6.82 2.23
LC 7.10 125.0 3.49 3.02
IPC 9.62 234.0 1.80 7.74
WND 6.60 148.0 3.72 4.01

TABLE III: Cross validated (blocked 5-fold CV) � parameter,
NMSE, BIC values and DOF of the elastic net fit of the main
models explored. Results respective to the RS data.

Average �
(�10�1) DOF Average NMSE

(�10�1)
Average BIC

(�102)

RMSF 0.550 26.0 5.50 1.22
TP 0.497 42.0 7.91 1.79
LC 5.55 41.0 6.35 1.57
IPC 0.710 104.0 0.743 9.18
WND 1.61 71.0 3.72 3.58

Figure 1 displays an example of the prediction of the BOLD
response from the region of interest. The particular example
shown concerns the prediction performed by fitting the XLC
model, using regular 15-fold CV.

15-fold CV

Fig. 1: Example of prediction of the BOLD response. BOLD
signal (Y , in blue) and respective BOLD estimate (Ŷ , in
green), obtained with the EFP estimated for the XLC model.
Results respective to the RS data.

In the scope of reducing the feature space of the XLC
model, both one-band and one-channel models were com-
puted for every frequency band considered and for every
EEG channel, respectively. This analysis revealed that the
X� model yielded higher predictive performances than the
remaining one-band models, both in terms of NMSE and
BIC. This result was consistent across all CV procedures
employed. Regarding one-channel models, model XO2 yielded
better predictive performance, in terms of NMSE, in all of
the CV procedures. However, in terms of model BIC, neither
one of the models was consistently better across all CV
procedures. The channel selected to perform further analyses
was then the channel O2. Hence, features with respect to
the alpha frequency band and channel O2 combined were
used to build the model X�,O2. More, the feature space of
models X�, XO2 and X�,O2 was further reduced by solely
integrating features that were convolved with the canonical
HRF (overshoot delay at 6 seconds). Results showed that
none of these models yielded unacceptably high NMSE. This
suggests that modelling resting state BOLD fluctuations within
the DMN may be done successfully with a small number of
features, and that bothactivity and the activity from channel
O2 may comprise promising features within this scope

Further insights can be drawn by analyzing the topographic
representations of the EFPs obtained. These are shown in
figure 2 for the five main models assessed.

B. Motor Imagery Results

The overall results of the elastic net fitting for the motor
imagery data are reported hereafter. Tables IV, V and VI show
the results for 15-fold CV, non-dependent 15-fold CV and
blocked 5-fold CV, respectively.




