
Comparative Performance Analysis of Scalar and Vector GNSS

Receiver Architectures

António Pedro Bretes Negrinho
antonio.negrinho@tecnico.ulisboa.pt
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Abstract

This work addresses the performance comparison between scalar and vector architectures for GNSS
receivers, regarding mainly code tracking. First, a review on the important literature is undertaken,
alongside a mathematical description of the code tracking process and multipath effect. The main differ-
ences between scalar and vector receiver architectures are also highlighted. Two navigation estimation
algorithms are described: the least-squares algorithm and the extended Kalman filter (EKF), as well as
their integration in scalar and vector receivers. All the receiver architectures, and algorithms are imple-
mented in MATLAB and simulated in a variety of signal reception scenarios and dynamics: pedestrian,
car and aircraft. Different signal modulations are utilized: BPSK, BOCs(1,1) and CBOC(6,1,1/11),
these last two being used by the Galileo system. Additionally, a new code discriminator based on a
bank of correlators was devised for processing of the CBOC(6,1,1/11), which was not possible with
the traditional one. Simulation results demonstrate that vector architectures outperform scalar ones
in almost all cases, especially in scenarios of severe attenuation, regardless of the estimation algorithm
used. Additionally, a vector algorithm, with simultaneous code tracking and frequency tracking, was
implemented with some performance results displayed.
Keywords: Vector tracking, Scalar tracking, VDFLL, VDLL, GNSS

1. Introduction

Originally devised for military applications, the
Global Positioning System (GPS) was the first
global navigation satellite system (GNSS) to be put
in operation by the United States of America in the
1970’s [1], [2]. Because of the widespread usage of
GNSS, its shortcomings must be tackled in order
to ensure that these type of systems are robust and
trustworthy so that other services and activities can
rely on them. The first shortcoming is the power of
the received signals, which can be as low as 10−16

watts [3]. This leads to easy interference of sig-
nal reception, either intentional or not, implying
receivers must be able to operate with very attenu-
ated signals. Another problem in signal reception is
the blockage of incoming signals by buildings, trees
or any other sort of object, natural or man-made. A
GNSS receiver needs to maintain line-of-sight with
the satellites whose signals it is tracking and the
loss of one or more incoming signals negatively af-
fects the performance of a receiver in a drastic way.
This prolonged loss of signal tracking will usually
lead receivers to re-do the time consuming task of
re-acquiring the lost signals [2], [4]. Signal recep-
tion can also be affected by other phenomena such

as ionospheric scintillation, multipath or high re-
ceiver dynamics, all of which degrade the receiver’s
performance.

A method to overcome these hindrances in signal
reception is the utilization of vector architectures
in GNSS receivers [1], [4]. There is some literature
that shows vector receivers have been able to carry
out the task of tracking severely attenuated signals,
high receiver dynamics and recover from the mo-
mentary blockage of incoming signals [5], [6], [7],
[8].

1.1. Objectives
The main objective of this document is the per-
formance comparison between traditional (scalar)
and vector receiver architectures for satellite nav-
igation, in several simulation scenarios and using
different navigation signals, where the code track-
ing operation was implemented and the frequency
tracking operation was considered perfect. For a
vector receiver, this type of architecture is called
the Vector Delay Lock Loop (VDLL), where we
only consider the code tracking operation as a vec-
tor structure. In the final part of the document, the
condition of perfect frequency tracking was relaxed,
by implementing an architecture - the Vector De-
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lay/Frequency Lock Loop (VDFLL) - where both
the code and carrier were tracked. The proposed
objectives of this document are now stated: Gener-
ate a satellite constellation; Generate both GPS and
Galileo navigation signals; Implement a scalar and
vector receiver architecture for code tracking, with
two different estimation algorithms; Devise several
simulation scenarios to test the receiver architec-
tures; Compare the obtained results between both
the scalar and vector architectures and draw con-
clusions on that comparison; and implement and
obtain some results for the VDFLL. All these tasks
were carried out using the MATLAB software for
implementation, testing and validation.

2. Theoretical Background

2.1. Code Tracking
Figure 1 describes the tracking part of a conven-
tional GNSS receiver. It is constituted by a carrier
frequency wipe-off block, three complex correlators
(E = early, P = prompt and L = late), being com-
plemented with a code and carrier discriminator.
The synchronization errors generated at the dis-
criminators feed low-pass filters (LPF) which pro-
vide feedback signals to the carrier and spreading
signal numerically-controlled oscillators (NCO).

Figure 1: Block diagram of one channel of the con-
ventional GNSS receiver.

The early and late correlators, alongside the code
discriminator, are responsible for tracking the in-
coming signal’s code delay - code tracking - form-
ing a feedback structure called the Delay Lock Loop
(DLL). On the other hand, the prompt correlator
and the carrier discriminator form a feedback struc-
ture, through the carrier frequency wipe-off block,
responsible for tracking the Doppler frequency shift
of the incoming signal - carrier tracking . This
structure is called a Frequency Lock Loop (FLL)
if the carrier discriminator output depends on the
frequency error or a phase lock loop (PLL) if it de-
pends on the phase error. Herein we analyze the
code tracking process, assuming frequency tracking
is carried out perfectly. Let us consider the conven-

tional GNSS receiver is fed by an incoming signal,
generated from N satellites in view. The received
signal is of the following type:

r(t) =

N∑
i=1

AiXi(t) cos(ω0t+ ωdit+ θi) + w(t) (1)

with Ai and Xi(t) being, respectively, the ampli-
tude of satellite n and encoded data signal; ω0 and
ωdn being, respectively, the carrier wave frequency
and the Doppler frequency shift, in rad/s, and w(t)
being Additive White Gaussian Noise (AWGN),
with power spectral density of Gw(f) = N0/2.
Equation (1) can be split into its inphase and
quadrature components, after low-pass filtering:[
rI(t)
rQ(t)

]
=

[∑N
i=1AiXi(t) cos(ωdit+ θi)∑N
i=1AiXi(t) sin(ωdit+ θi)

]
+

[
nI(t)
nQ(t)

]
(2)

where nI(t) and nQ(t) are low-pass Gaussian white
noises, with power spectral densities GnI

= GnQ
=

N0Π(f/2B), with B representing the bandwidth of
the spreading signal Xi(t) and Π(f/2B) denoting a
rectangle of duration 2B centered at the origin.

Assuming we can erase the ωd component from
(1), as we consider perfect frequency tracking, we
can correlate, after low-pass filtering, signal n (with
n ∈ [1, . . . , N ]) from r(t) with two locally (in the
receiver) generated copies of the spreading signal,
one advanced, Xn(t + ∆/2− εn), and one delayed,
Xn(t−∆/2−εn), where ∆ represents the DLL early-
late spacing and εn represents the delay between
the locally-generated spreading signal replica and
the spreading signal of the incoming signal. Let us
analyze, for example, the early inphase correlator
output:

IEn =
1

T

∫ T

0

r̃In(t)Xn

(
t+

∆

2
− εn

)
dt

=AnRX

(
εn −

∆

2

)
cos(θn) +NIEn

(3)

where RX is the autocorrelation function of the
spreading code signal Xn(t) and T is the correla-
tion interval. The noise component of (3) can be
described as:

NIEn
=

1

T

∫ T

0

ñIn(t)Xn

(
t+

∆

2
− εn

)
dt (4)

with zero mean and variance σ2 = N0

T . The other
correlator outputs are:

ILn = AnRX

(
εn +

∆

2

)
cos (θn) +NILn

QEn = AnRX

(
εn −

∆

2

)
sin (θn) +NQEn

QLn = AnRX

(
εn +

∆

2

)
sin (θn) +NQLn

(5)
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The inphase components [NIEn
NILn

]T and quadra-
ture components [NQEn

NQLn
]T are independent

from one another. However, the elements of each of
those vectors are correlated with E{NIEn NILn} =
N0

T RX(∆) and E{NIEn NILn} = E{NQEn NQLn}.
Let us now define function Dc(εk) as the response

of a normalized non-coherent early-late power dis-
criminator (NELP), with the following expression:

Dc(εn) =
(IE2

n +QE2
n)− (IL2

n +QL2
n)

IE2
n +QE2

n + IL2
n +QL2

n

(6)

By using a normalized non-coherent discriminator,
the output will be independent of the carrier phase
θ and amplitude An.

The DLL’s purpose is to provide an estimate
τ̂code of the delay τcode of the spreading signal X(t).
As such, the DLL’s estimate of the code delay is
updated, at instant (k + 1)T , for each satellite,
through:

τ̂coden(k + 1) = τ̂coden(k)− γcDc(εn) (7)

where γc represents the DLL’s code discriminator
gain.

Code tracking is an essential task of a GNSS
receiver as the incoming signal’s code delay, from
satellite i, is related to the pseudorange between
them through the following relation:

ρi = c · τcodei (8)

where ρi represents the pseudorange between a
satellite i and the receiver and c represents the
speed of light in vacuum. We can define, in the
ECEF frame, the pseudorange ρi between satellite
i with coordinates (Xi, Yi, Zi) and a receiver with
coordinates (x, y, z) near the Earth’s surface as:

ρi =
√

(Xi − x)2 + (Yi − y)2 + (Zi − z)2 + u (9)

where u = c · tu, with c being the speed of light in
vacuum (3 × 108m/s) and tu represents a relative
clock error, where u < 0 corresponds to having a re-
tarded receiver clock, regarding the satellite clock,
and u > 0 corresponds to the opposite case, where
the receiver clock is advanced relative to the satel-
lite clock.

2.2. Multipath
A multipath scenario occurs when, besides the sig-
nal in line-of-sight (LOS), replicas of that same sig-
nal reach a GNSS receiver, with a delay in time
τ . Thus, considering that only one of these repli-
cas reaches the receiver, the received signal can be
expressed as:

r(t) =AX(t) cos(ω0t+ θ)

+ αAX(t− τ) cos(ω0t+ θ + φ) + ω(t)
(10)

where X(t) represents the encoded data signal, τ
represents the additional delay of the reflected ray,
φ represents a phase offset due to the extra delay
and α represents the attenuation of the multipath
signal. If we consider, for simplicity’s sake a non-
normalized NELP discriminator (just the numer-
ator from eq. (6)), we can define the multipath
envelopes, which represent the worst case scenarios
for measured pseudorange errors, as:

RX

(
ε− ∆

2

)
−RX

(
ε+

∆

2

)
= ±α

[
RX

(
ε− τ − ∆

2

)
−RX

(
ε− τ +

∆

2

)]
(11)

Equation (11) represents the solution for obtaining
the multipath envelopes, which can be seen below,
in figure 2, for the GPS C/A signal and the Galileo
BOCs(1,1) and CBOC(6,1,1/11) pilot signals, using
a NELP discriminator, with ∆/Tc = 0.1 (Tc repre-
sents the spreading code’s chip time) and α = 0.5:

Figure 2: Multipath envelopes for several signals.

Notice that for small secondary ray delays (<
20m) the various solutions in figure 2 are equiva-
lent. However, for longer delays, the BOCs(1,1) and
CBOC(6,1,1/11) pilot signals exhibit better perfor-
mance. This is especially true for delays larger than
approximately 150 meters.

2.3. Vector tracking architectures
The traditional GNSS receiver architecture, a scalar
tracking architecture, tracks the received GNSS sig-
nals (with four being the needed minimum) inde-
pendently from one another, using a set of track-
ing loops, for code and Doppler phase or frequency.
These tracking loops then feed an estimation al-
gorithm, in order to obtain an estimate of the re-
ceiver’s position, velocity, and time (PVT). Vector
tracking architectures are an advanced and more
complex form of processing the several GNSS sig-
nals that reach a given receiver. They are capable
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of operating at lower carrier-to-noise ratios (C/N0)
and tolerating higher receiver dynamics. The vector
architecture, contrarily to a traditional scalar archi-
tecture, processes all signals jointly through one big
loop of code and frequency discriminators, coupled
through an estimation algorithm (Least-Squares,
extended Kalman filter, etc.) [1], [4], [9]. Figure
3 illustrates the differences between the scalar and
vector architectures.

(a) Basic scalar tracking
architecture

(b) Basic vector tracking
architecture

Figure 3: Comparison of the scalar and vector
tracking architectures [5].

Vector receivers can present three types of ar-
chitecture [1], [4]: the Vector Delay Lock Loop
(VDLL), where the code tracking portion of the re-
ceiver forms a vector structure coupled with the es-
timation algorithm, while the carrier tracking por-
tion is separated as in the scalar architecture; the
Vector Frequency Lock Loop (VFLL), with the car-
rier tracking portion being coupled with the esti-
mation algorithm and the code tracking part being
separated; and, finally, the Vector Delay/Frequency
Lock Loop (VDFLL) where both the code and car-
rier tracking portions of the receiver are coupled,
through an estimation algorithm, in a single feed-
back loop.

3. Scalar and Vector Receiver Algorithms
Analysis

3.1. Least-Squares algorithm

Let us start by recalling equation (9), that defines
the pseudorange between satellite i and a receiver.
Using the linear Taylor series expansion on (9) we
obtain the following increments equation:

∆ρi =
∂ρi
∂x

∆x+
∂ρi
∂y

∆y +
∂ρi
∂z

∆z +
∂ρi
∂u

∆u (12)

This equation can also be expressed in matrix form,
resulting in:∆ρ1

...
∆ρN


︸ ︷︷ ︸

∆ρ

=


∂ρ1
∂x

∂ρ1
∂y

∂ρ1
∂z 1

...
...

...
...

∂ρN
∂x

∂ρN
∂y

∂ρN
∂z 1


︸ ︷︷ ︸

G

·


∆x
∆y
∆z
∆u


︸ ︷︷ ︸

∆X

(13)

with G being the geometry matrix. A general least-
squares solution for equation (13) can be written
using the pseudo-inverse of G:

∆X = (GTG)−1GT∆ρ (14)

Equation (14) allows to iteratively solve, for

[x y z u]
T

, the system composed of N ≥ 4 equations
of the type presented in (9). We assume that the
[Xi Yi Zi]

T positions of the N satellites are known
and that we have an initial estimate [x̂0 ŷ0 ẑ0 û0]T

for the receiver’s state. We also assume that:

∆ρ = ρmeasured − ρestimated (15)

where we can measure ρmeasured and ρestimated is
obtained through (9). We then update the estimate
of the receiver’s state through:

[x̂1 ŷ1 ẑ1 û1]T = [x̂0 ŷ0 ẑ0 û0]T + [∆x∆y∆x∆u]︸ ︷︷ ︸
∆X

(16)
In a scalar receiver, the least-squares algorithm de-
scribed earlier is an ”off the shelf” solution as it can
be used immediately, receiving the measured pseu-
doranges ρi from the several DLLs assigned to track
each satellite in use.

In a vector receiver, the least-squares algorithm
is fed with a pseudorange error vector ∆ρ that re-
sults from subtracting a vector of measured pseu-
doranges, obtained from a series of code discrimina-
tors, from a vector of predicted pseudoranges, that
are initialized on the first iteration of the algorithm.
This ∆ρ vector is related to the vector of position
errors ∆X through the following relation:

∆ρ = G∆X (17)

withG being the geometry matrix presented in (13).
The pseudorange errors can be expressed, in the

linearity region, through the code discriminator
outputs multiplied by a matrix of discriminator
gains:

∆ρ = Γ

D(ε1)
...

D(εN )

 (18)

with Γ being the diagonal matrix of N code discrim-
inator gains: We can now write the least-squares
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solution of (17) as:

∆X = (GTG)−1GT Γ

D(ε1)
...

D(εN )

 (19)

using ∆X, at instant k, to update the estimate for
the position vector of the receiver, in instant k+ 1:

X̂(k + 1|k) = X̂(k|k − 1)−∆X(k) (20)

Now, with X̂(k + 1|k) obtained, it is possible to
create a predicted pseudorange between satellite Si
and the receiver at instant k + 1, assuming the
position for satellite Si, at that instant, is known
(Xi(k+1), Yi(k+1), Zi(k+1)), using equation (9).

These predicted pseudoranges ρ̂i(k +
1|k)(i= 1, ... ,N) will be fed back to the code
discriminators, in order to be compared with the
pseudoranges measured by them. That comparison
will result in a new ∆ρ, beginning the explained
loop anew. In a vector receiver, we cannot sepa-
rate the code tracking loops from the estimation
algorithm, as they are coupled, forming a structure
called the VDLL.

3.2. Extended Kalman filter algorithm
The Extended Kalman filter is characterized by two
steps, at each iteration (instant k in time): a predic-
tion step and a filtering step [10]. It can be shown
that the filtering step equations are [10]:

x̂(k|k) =x̂(k|k − 1) +Kk (zk − h [x̂(k|k − 1)])

P (k|k) = [I −KkHk]P (k|k − 1) [I −KkHk]
T

+KkR̃kK
T
k

(21)

where x̂(k|k) represents the filtered estimate of x
at instant k, x̂(k|k − 1) represents the predicted
estimate of x at instant k, and P (k|k−1) and P (k|k)
represent respectively the prediction and filtering
error covariance matrices. The Kalman gain Kk

and can be computed as:

Kk = P (k|k − 1)HT
k

(
HkP (k|k − 1)HT

k + R̃k

)−1

(22)
According to [10], the prediction step equations can
be expressed as:

x̂(k + 1|k) = Φkx̂(k|k)

P (k + 1|k) = ΦkP (k|k)ΦTk +Qk

(23)

The dynamics model utilized was the PVT model
(position, velocity and time), where we have a state

vector xk with eight components: three for posi-
tion in the x, y, z axes plus three for the respective
velocities ẋ, ẏ, ż and two for the receiver’s clock
state [11]. We define the state vector, at instant

k, as [x1,k, · · · , x8,k]
T

, where x1,k = xu,k, x2,k =
ẋu,k, x3,k = yu,k, x4,k = ẏu,k, x5,k = zu,k, x6,k =
żu,k, x7,k = c xφ,k = uu,k and x8,k = c xf,k = u̇u,k.

Let us define the discrete-time state model corre-
sponding to the receiver coordinate xu:[

ẋ1,k+1

ẋ2,k+1

]
=

[
1 ∆t
0 1

]
︸ ︷︷ ︸

a

[
x1,k

x2,k

]
+

[
u1,k

u2,k

]
(24)

where ∆t = T (correlation interval). We determine
the dynamics noise covariance matrix as:

Q′k = E{[u1,k u2,k]
T

[u1,k u2,k]} = qv∆t

[
(∆t)2

3
∆t
2

∆t
2 1

]
(25)

For the y and z coordinates, the discrete-time
state model is the same. The receiver’s discrete-
time clock state model is described as:[

ẋφ(t)
ẋf (t)

]
=

[
0 1
0 0

] [
xφ(t)
xf (t)

]
+

[
uφ(t)
uf (t)

]
(26)

and the corresponding discrete-time version[
xφ, k+1

xf, k+1

]
=

[
1 ∆t
0 1

]
︸ ︷︷ ︸

A

[
xφ, k
xf, k

]
+

[
uφ, k
uf, k

]
(27)

The clock model noise covariance matrix, in dis-
crete time, can be expressed as:

Q̃k =

[
qφ∆t+

qf (∆t)3

3
qf (∆t)2

2
qf (∆t)2

2 qf∆t

]
(28)

The variances qφ and qf can be described as [11]:

qφ ≈
h0

2

qf ≈ 2π2h−2

(29)

with h0 and h−2 being the Allan variance parame-
ters. In [11], several values for the Allan variance
parameters can be found. When treating clock de-
viations as errors in meters, the Allan variance pa-
rameters must be multiplied by the speed of light
squared (c2 = 9× 1016).

The state transition matrix is Φ = diag{a a aA}
and the dynamics noise covariance matrix is Qk =
diag{Q′kQ′kQ′k Q̃k}. We can express the observa-
tions matrix Hk as:

Hk =
[
∂hi[x̂(k|k−1)]

∂xj

]
N×l

(30)
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we consider l = 8 because we are using the PVT
model and hxk

= [ρ1, . . . , ρN ]. The observa-

tion’s noise covariance matrix is expressed as R̃k =
diag{σ2

1,UERE , . . . , σ
2
N,UERE}.

In a scalar receiver the EKF can be used in an
”off the shelf” approach. It just needs to be fed with
a set of pseudoranges, at each tk iteration from a
set of DLL’s.

For the vector receiver, we will follow an adapta-
tion of the model first proposed in [12] for a VDFLL
to describe the adaptation of the EKF to a vec-
tor structure, as a VDLL (assuming perfect carrier
tracking). We now describe the innovations process
through the outputs of the several code discrimina-
tors:

zk − h [x̂(k|k − 1)] = Γ

Dc1
...

DcN

 (31)

where [Dc1 , · · · , DcN ]
T

is the vector containing the
outputs of the code discriminators and Γ represents
a diagonal matrix of N code discriminator gains.
The right-hand members of equation (31) constitute
the innovations process zk − h [x̂(k|k − 1)] in the
update of the state vector in (21).

Another difference, regarding the EKF’s imple-
mentation in a scalar receiver, is the way the Rk
matrix is defined. In a vector receiver, with EKF,
the matrix R̃k is diagonal with [12]:

rii = − c2∆

2p
(
C
N0

)
i
T
, i = 1, · · · , N (32)

where p = − 1
Tc

for BPSK signals, p = − 3
Tc

for BOCs(1,1) signals and p = − (53+2
√

10)
11Tc

for
CBOC(6,1,1/11). Tc is the chip time of the respec-
tive signal.

The feedback process in the vector receiver con-
sists of computing x̂(k + 1|k), utilizing the fil-
tered estimate x̂(k|k), and rebuild a set of esti-
mated pseudoranges, at the instant k + 1, using
equation (9), to be compared with the measured
ones, through the code discriminator. We call
the difference between the measured and predicted
pseudoranges, the residuals and they are expressed
through the code discriminator outputs Dci , with
i ∈ [1, . . . , N ].

4. Scalar and vector receiver simulation re-
sults

The simulations herein presented consider a GPS
constellation and BPSK signals. A code discrimi-
nator integration time of T = 10ms and ∆/Tc =
0.2 were also considered, disregarding ionospheric
and troposhperic errors and assuming infinite band-
width. The receiver was initially located at the
IST Alameda campus on 20/02/2019 and presented

vx = vy = vz = 20 m/s in the ECEF coordinate
system (≈ 125 Km/h). A simulation run i cor-
responding to an interval of 100 s was considered
for each value of DLL gain γc, with the position
root mean square (rms) error being calculated for
each run. In figure 4 we can observe the results
for both the scalar and vector receiver with least-
squares and the EKF algorithms, obtained with a
constellation of 5 satellites with carrier-to-noise ra-
tio C/N0 = 50 dB-Hz and shared γc. We call this
simulation scenario the standard scenario.

(a) Scalar receiver

(b) Vector receiver

Figure 4: Performance comparison between a scalar
and a vector receiver.

The minimum rms errors registered, for the scalar
receiver, were of ≈ 3 m with the least-squares and
≈ 1 m for the EKF. For the vector receiver, the
minimum rms errors were of 2 m and ≈ 0.5 m for
the least-squares and EKF, respectively. The first
conclusion is that for the same receiver architec-
ture the EKF outperforms the least-squares. The
vector receiver with the EKF presents the best re-
sults, whereas the worst are presented by the scalar
receiver with the least-squares. Also, considering
the same estimation algorithm, the vector receiver
presents better results than the scalar one. We can
conclude, therefore, that in terms of receiver ar-
chitecture, the vector architecture presents better

6



results than the scalar one.
Another simulation performed was considering

the previous scenario but now with a constellation
of 4 satellites where, for a simulation interval of
10 minutes, we severely degrade the C/N0 of the
received signal of one of the satellites for 5 min-
utes. We call this scenario the shadowing scenario,
since the receiver is shadowed regarding one of the
satellites. In this scenario, we kept a constant op-
timal value of γc and measured the instantaneous
position vector error. The aim of this simulation
is to measure how much attenuation on one of its
received signals can the receiver tolerate before it
loses tracking capability. Tracking capability was
considered to be lost when the instantaneous po-
sition vector error would not return to the values
prior to the shadowing period, after it ended. The
results obtained are now presented in table format,
in table 1, as to avoid presenting a large amount of
plots.

Max. Attenuation (dB)

Scalar Vector

Least-squares 20 30

EKF 20 30

Table 1: Scalar vs Vector receiver performance in a
shadowing scenario (EKF).

From table 1 we can observe that, firstly, the cho-
sen estimation algorithm does not influence the ob-
tained results: only the receiver architecture is im-
portant. The vector receiver is clearly better than
the scalar one, withstanding 10 dB more of attenua-
tion before losing tracking. This translates, in linear
units, in the vector receiver being able to function
with a C/N0 ten times lower than the one regis-
tered for the scalar one. Therefore, we can infer
that the vector architecture is more robust to low
signal power than the scalar one.

Finally, we considered the receiver to be utilizing
a constellation of 8 satellites, where one of them was
subject to the effects of multipath. We considered
an attenuation of the reflected ray α = 0.5 and a
phase offset of φ = π, for the scalar receiver and
φ = π/4 for the vector receiver. These phase offset
values proved to present the worse case scenarios
for this simulation. The results for this multipath
scenario are displayed in figure 5.

For the scalar receiver there is a small variation in
maximum rms, with it being 10 m for the EKF and
12 m for the least-squares. For the vector receiver,
we can see that there are practically no changes in
the obtained results due to the chosen estimation
algorithm, with the maximum rms error registered
being 8 m. As such, it can be observed that the vec-
tor receiver once more outperforms the scalar one

(a) Scalar receiver

(b) Vector receiver

Figure 5: Performance comparison between a scalar
and a vector receiver in multipath.

(regardless of the estimation algorithm chosen), be-
ing more robust to multipath, despite the overall
poor performance results obtained from this simu-
lation. Also, it should be noted that for both re-
ceivers, for τ ≥ 1.1Tc the effects of multipath no
longer influence the obtained results.

A performance analysis regarding the utilized
modulation was also considered. We simulated
the BPSK signal, the BOCs(1,1) signal and the
CBOC(6,1,1/11) pilot signal, utilized in the Galileo
system. For this last signal, a new code discrimina-
tor based on a bank of correlators was devised as the
NELP discriminator was prone to false code lock.
The response of the bank of correlators is described
as:

Dc(ε) =

∑M
i=−M µi

[(
I

(i)
n

)2

+
(
Q

(i)
n

)2
]

∑M
i=−M

(
I

(i)
n

)2

+
(
Q

(i)
n

)2 (33)

with

I(i)
n = AnRX

(
εn −

iTc
M

)
cos(θn) +N

(i)
In

Q(i)
n = AnRX

(
εn −

iTc
M

)
sin(θn) +N

(i)
Qn

(34)
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where we consider 2M+1 correlators and µi are the
weight coefficients of each correlator. These weight
coefficients can be computed considering equation
(33) in the absence of noise:

Dc(ε) =
1

S(ε)

M∑
i=−M

µiR
2
X

(
ε− iTc

M

)
(35)

with

S(ε) =

M∑
i=−M

R2
X

(
ε− iTc

M

)
(36)

We consider a set of εj = ε1, . . . , εJ delays and
solve equation (35) for the several µi, also consid-

ering Dc(ε) = D̃c(ε) where D̃c(ε) is a desired ideal
response for the bank of correlators.

Below in tables 2 through 5 we observe the ob-
tained results, where we considered both receiver
architectures and both estimation algorithms.

Scalar Min. rms error (m)

Least-squares NELP Bank

BPSK ≈ 3.5 4

BOCs(1,1) 2 ≈ 2.5

CBOC(6,1,1/11) ≈ 6 ≈ 2.5

Table 2: Scalar receiver performance for different
modulations (least-squares).

Scalar Min. rms error (m)

EKF NELP Bank

BPSK ≈ 1 ≈ 1.5

BOCs(1,1) ≈ 0.7 ≈ 0.9

CBOC(6,1,1/11) ≈ 2.5 0.9

Table 3: Scalar receiver performance for different
modulations (EKF).

Vector Min. rms error (m)

Least-squares NELP Bank

BPSK 0.7 0.8

BOCs(1,1) 0.5 0.6

CBOC(6,1,1/11) ≈ 2.5 0.6

Table 4: Vector receiver performance for different
modulations (least-squares).

The first conclusion to be drawn is that the bank
of correlators is only useful for the CBOC(6,1,1/11)
signal, presenting worse results for the BPSK signal.
On the other hand, the NELP is not recommended
for reception of the CBOC(6,1,1/11) signal.

Vector Min. rms error (m)

EKF NELP Bank

BPSK 0.5 0.6

BOCs(1,1) 0.3 0.4

CBOC(6,1,1/11) 3 0.4

Table 5: Vector receiver performance for different
modulations (EKF).

For both receiver architectures we observe con-
siderable improvements in performance from uti-
lizing the EKF instead of the least-squares, with
the exception of the vector receiver plus the NELP
discriminator, for the CBOC(6,1,1/11). We can,
however, disregard this exception as the NELP dis-
criminator is not intended for the reception of the
CBOC(6,1,1/11) signal.

It is interesting to observe that for a vector re-
ceiver and a bank of correlators (regarless of es-
timation algorithm) we obtain better performance
from a GPS C/A signal than with the same signal
for a scalar receiver and the optimal code discrim-
inator for this signal: the NELP. This observation
further attests to the benefits of using a vector ar-
chitecture. It can be assumed that the same situ-
ation (vector receiver with sub-optimal discrimina-
tor outperforming a scalar receiver with the optimal
one) does not happen for the CBOC(6,1,1/11) as it
is a much more complex signal, demanding a more
specific discriminator block.

Regarding the results obtained for the BOCs(1,1)
signal, we observe that the performance registered
with this signal increases if a vector architecture
is utilized, instead of a scalar one. Contrarily to
what was observed for the CBOC(6,1,1/11), the
BOCs(1,1) signal presents better results when a
NELP discriminator is being used. These results
can be somewhat misleading, as using this modula-
tion with the NELP discriminator can lead to false-
code lock. As such, the bank of correlators presents
itself as an alternative where that phenomenon does
not occur and with very little difference in the min-
imum rms error values achieved, in comparison to
the NELP. On a last note, it should be acknowl-
edged that even if BOCs(1,1) and CBOC(6,1,1/11)
present the same performance results with the ban
of correlators (regardless of architecture and estima-
tion algorithm), the latter presents more robustness
to multipath as demonstrated through the multi-
path envelopes in figure 2.

5. Vector delay/frequency lock loop charac-
terization and results

5.1. VDFLL characterization
Let us now consider a vector receiver in which we
also implement the carrier tracking part, instead
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of considering perfect, as in 2. As such, besides
the early and late correlators and the NELP dis-
criminator decribed in section 2, we now consider
inphase and quadrature prompt correlators IP and
QP , which correlate the incoming signal with a lo-
cally generated centered replica Xn(t − εn). Also,
since we no longer consider perfect Doppler wipe-
off, new terms appear in equation (3), becoming:

IEn =AnRX

(
εn −

∆

2

)
cos

(
ω̃nT

2
+ θn

)
· sinc

(
f̃nT

)
+NIEn

(37)

where ω̃n = (ωdn − ωe) − (ω̂dn − ω̂e) with ωdn and
ω̂dn being the true and estimated Doppler frequen-
cies and ωe and ω̂e being the true and estimated
oscillator frequency errors. Also, f̃n = ω̃n/2π. The
IPn, ILn, QEn, QPn and QLn correlator outputs
are described analogously to (37). We define the
normalized code discriminator Df (ω̃n) as:

Df (ω̃n) =
IPn(k − 1)QPn(k)− IPn(k)QPn(k − 1)

IPn(k)2 +QPn(k)2

(38)
Notice that the frequency discriminator function
depends on signals generated at two different in-
stants [2]: k and k − 1.

Considering a EKF is in use, the innovations pro-
cess is now described as:

zk − h [x̂(k|k − 1)] = Γ̃



Dc1
...

DcN

Df1
...

DfN


(39)

The Γ̃ diagonal matrix now contains 2N discrim-
inator gains, half for the code correlators and
the other half for the frequency ones: γ =
diag [γc1 , . . . , γcN , γf1 , . . . , γfN ]

T
, where γc are the

code discriminator gains and γf the frequency ones.
The observations matrix is expressed by expand-

ing the matrix in equation (30) doubling its number
of rows (2N × l), as we now have to accommodate
the observations derived from the frequency track-
ing portion of the VDFLL. These observations are
the estimates for the Doppler frequency for each of
the N satellites’ signals. As such, we have hxk

=[
ρ1, . . . , ρN , −2π fcc ·

d
dtρ1, . . . , −2π fcc ·

d
dtρN

]
.

Matrix R̃k is now described as [12]:

rii =


− c2∆

2p
(

C
N0

)
i
T
, i = 1, . . . , N

1(
C
N0

)
i
T 3
, i = N + 1, . . . , 2N

(40)

The entries of matrix R̃k, represented in equation
(40), had to be manually adjusted in order to im-
prove the obtained results. Also, the receiver’s clock
was now modeled as double integrated brownian
motion.

5.2. VDFLL simulation results

The VDFLL was simulated with a constellation of 8
satellites, all with C/N0 = 50dB-Hz. The code cor-
relators were assumed to share a common value for
their gain γc and the same was assumed for the fre-
quency correlators with γf . These gain values were
swept from 0 to 100, for γc and γf . We consider
a simulation interval of 100 seconds, car dynamics
and no ionospheric or tropospheric errors. The ob-
tained results are sketched in figure 6

Figure 6: Multipath envelopes for several signals.

We can observe that the results are best in the
γc > 50 and γf < 130 region, with performance
worsening outside of those boundaries. Within that
optimum region, the best results appear to be ob-
tained with 80 ≤ γc ≤ 100 and γf = 100, where the
rms error reaches values as low as 0.2 m. We obtain
better performance with the VDFLL, than with the
VDLL, despite we now simulate a component that
was assumed to be perfectly modelled, because we
utilized 8 satellites for this simulation, whereas in
figure 4 we only utilized 5.

It should be stated that the performance of the
VDFLL also greatly depends on other parameters,
such as the Qk and R̃k matrices, with this last one
requiring some delicate tuning in order to stabilize
the algorithm, as stated previously. The adopted
clock model also affects the obtained results, where
a poor modelling would render the VDFLL inoper-
able.

6. Conclusions

In this work we implemented both a scalar and
vector GNSS receiver with two different estimation
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algorithms - the least-squares and the EKF - as-
suming perfect carrier tracking. The differences be-
tween a scalar and vector receiver were laid out and
we analyzed the code thoroughly the code tracking
process as well as the effects of multipath on signal
reception. The least-squares and EKF algorithms
were described, as well as their integration in the
two considered receiver architectures.

The standard scenario results show that for
the same estimation algorithm, the vector receiver
clearly outperforms the scalar one, presenting lower
values of rms error. The best performance results
were obtained with the vector architecture plus the
EKF and the worse with the scalar receiver with
plus least-squares. Also, for a given architecture,
the EKF always outperformed the least-squares.

In the shadowing scenario, performance could be
analyzed regardless of the adopted estimation al-
gorithm. It was shown that the vector receiver was
able to sustain much more attenuation to one of the
4 satellites in use, in this simulation, before losing
tracking abilities, than the scalar receiver.

For the multipath scenario the results demon-
strated that the vector receiver was marginally bet-
ter than the scalar one, albeit still producing poor
positioning results. Utilizing an extended Kalman
filter over a least-squares algorithm also slightly im-
proved the results obtained with the scalar receiver,
whereas the vector receiver appeared unaffected re-
garding the choice of estimation algorithm.

Regarding the signal comparison analysis, the
vector receiver almost always produced better re-
sults than the scalar one, with the NELP discrim-
inator being the best choice for the BPSK signal
and the bank of correlators only being useful for
the CBOC(6,1,1/11) signal, for which the NELP
performs very poorly.

Finally, a thorough description of the VDFLL
was presented, analyzing the newly implemented
frequency tracking operation and the alterations to
be made to the EKF. Some performance results
were also presented, regarding the VDFLL’s depen-
dence on the feedback gains of the code and fre-
quency tracking loops, with optimal values for those
gains being pointed out.
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