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Abstract—As the world becomes increasingly more dependent
on industrial infrastructures, structures like electrical power
towers are very important for society to function properly, as
the failure of these kinds of structure could affect thousands
of people. This makes the inspection and maintenance of these
structures a necessity.

The most common way of analysing structures, like electrical
towers, is by a human inspector visually assessing the state of
the structure, which is time consuming, expensive and potentially
dangerous. However, with the increased usage of robotic systems,
such as drones, which are unmanned areal vehicles, and high res-
olution cameras, it is possible to acquire images from structures
in a faster and safer way. With this information it is possible
to further analyse the images obtained from these structures in
order to detect which images contain a significant amount of rust
and should be evaluated by an expert.

This thesis proposes the construction of two different method-
ologies for detecting the amount of rust in structures, the first
is an adaptation of a technique based on a sliding window and
utilizing a convolution neural network for detecting rust regions,
and the second is a methodology based on semantic segmentation
for detecting how many pixels in an image are detected as ”rust”
and how many are detected as ”structure”. These two approaches
will then be compared in order to determine their advantages
and limitations, when trying to achieve a good performance for
the desired task.

I. INTRODUCTION

Rust development in industrial infrastructures, such as elec-
trical towers for energy transportation, telecommunication
towers and wind turbines, is responsible for deterioration
and subsequent failure (such as power outages) of these
types of structures. The corrosion of structures also poses a
large economic cost, being estimated that the global cost for
corrosion in 2013 was US$2.5 trillion, which is 3.4% of the
global gross domestic product (GDP) [1].

Besides the large economic aspect of industrial structure
maintenance, since the most common practice is to deploy a
person or group of people to the field in order to assess the
condition of the structure, this also raises concerns about the
safety of those involved in the inspection task, as these people
may need to climb the structures to evaluate their conditions
and often make a second climb when it is determined that
some kind of intervention is needed to fix the corroded or
rusted area.

In recent years, with the development and usage of aerial
vehicles, such as drones, it is possible to reduce the amount of
personnel that is put in hazardous conditions for performing
the inspection of infrastructures. Nonetheless, the amount
of work that specialists must undertake in order to detect
dangerous levels of rust in industrial structures could still be
further reduced. Even though the usage of drones reduces the

amount of time necessary to access the state of a structure,
there are still a large amount of captured images that is.
Therefore, these workers must still go through large amount
of irrelevant images of the structure captured by the drone to
identify structure areas that need maintenance interventions.

This project analyses several methods of detection of rust
in images. The goal is to develop a system that is capable of
making an automatic detection of rust in the imaged structure,
as a way to reduce the amount of images that an expert
needs to go through when assessing the state of industrial
structures. The images are taken from different distances and
on structures with varied background, which increases the
difficulty of detecting regions which regions are structure and
which regions are rust.

II. RELATED WORK

The main effect of corrosion is that, over time, it can cause
structural flaws, making the structures more fragile which in
turn can lead to the malfunctioning or even the fall of electrical
towers. Structural flaws due to corrosion are characterized
differently depending if they affect the surface or the interior
of the structure, Table I depicts some common methods used
in nondestructive structure evaluation for the detection of rust.

Evaluation Methods
Surface Rust Interior Rust

Visual Magnetic field
Liquid Penetrant Radiography

Eddy current Energy dispersive X-rays
Magnetic particle Microwave

Ultrasonics Ultrasonics
Acoustic emission Acoustic emission

Table I: Table with examples of non-destructive rust detection
and characterization methods (adapted from [4]).

This work will focus on exploring several methods based
on visual inspection, which is one of the most unintrusive
methods and is commonly employed as the first step in
evaluating a rusted area. Even though visual inspection does
not give the most accurate depiction of the real condition of
the structure, a majority of the time a visual inspection is done
as a preliminary analysis of the structure condition.

There are several aspects that visually indicate the presence
of corrosion, for example, in the case of rust, it can easily
be seen that rusting leaves a clear red coloration on steel
and creates coarser texture when compared to non-corroded
areas. Looking at these characteristics, it is possible to see



how methodologies based on color, texture and shape could
be used for detecting rust.
There have been several studies for detection and classification
of objects, people and animals in images [2, 3, 4, 5, 6, 7],
however the number of these studies that focused on image-
based corrosion detection is limited. Often image-based rust
detection systems rely on some sort of color analysis, a
combination of color and texture analysis, possibly resorting
to deep learning approaches [4, 8, 9, 10]. Other systems use
techniques based on shape detection, such as using a stereo-
adapter on a regular camera to measure the 3D shape of the
corroded area to detect subsurface corrosion [11], or a system
focusing on the pitting corrosion of aluminum, depending on
the optical contrast of the corroded regions when compared to
their surroundings and using edge detection to compute each
closed and corroded region [12], these methods have some
problems that make them inapplicable for this project. In the
first case, subsurface corrosion can be identified by changes
to the surface shape [8], this method needs, as mentioned
previously, a camera with a specific adaptor, which is not ideal,
given that the goal is to use footage captured by drones. As for
the second approach, pitting is not a dominant feature of most
types of regular corrosion, being a more common occurrence
in aluminium corrosion, in particular rust’s dominate features
tend to be discoloration and texture degradation [4, 9], as such
this technique is very specific and not useful for rust detection.

A. Color Analysis

What first jumps to mind when thinking about the physical
characteristics of rust and corrosion in is the discolouration.
Having said this it is no wonder that many of the first works
on corrosion detection were based on color analysis. These
techniques showed some promising results, but had some
underlying flaws.

Some research done using that are based on color analysis
include Petricca’s et al. [10] by detecting rust using a range
of intervals for rust in the hue, saturation, value (HSV) color
space was defined, and later the image was segmented, to
create a black and white mask, where the white pixels would
correspond to the positions in the image where rust was
detected, however this method proved to be ineffective due
to how easily it misclassified objects (such as apples) as rust.

Another work that also used the HSV color space was done
by Furuta [13], in his approach a neural network (NN) was
used in order to calculate the threshold of hue and value in
this color space that indicated that the image contained rust.

Lee [14], used a statistical analysis of the red, green, blue
(RGB) color space in order to classify images taken from
a bridge as defective or non-defective. This was done by
plotting the images in the RGB color space, on which was
later performed statistical analysis to obtain relevant statistical
data or variables. This data and variables were then used to
create multivariate discriminate models that were latter used
to classify images as defective or non-defective.

B. Color and Texture Analysis
The approaches that are based on color and texture analysis
comprise the majority of image based corrosion detection
techniques and these can be further divided into statistical and
filter-based approaches [9].

Statistical Approaches: A great number of the statisti-
cal based approaches can be seen utilizing gray level co-
occurrence matrices (GLCMs), which give information on
how often different combinations of pixel gray levels occur,
mainly to extract statistical texture features [15]. These works
typically use these GLCMs to obtain texture information and
statistical analysis on HSV or hue, saturation, intensity (HSI)
color spaces, similar to what is done in color analysis.

Taking as an example Medeiro’s et al. [16] paper, in it
GLCMs are used to obtain several texture features or attributes,
from which four were utilized: contrast, correlation, energy,
and homogeneity. Then the HSI color space was used to obtain
color features. From these it was defined that: the hue (H) for
a corroded surface lies between yellow and red wavelengths;
the saturation (S) of a corroded area tend to be higher than
other areas; metallic surfaces are usually gray or white, tending
towards a whiter wavelength, which in turn leads to high
intensity (I). By using a combination of the subsets of color
and texture features, it was verified a better performance when
compared to the results obtained from each individual subset.

Choi [17] created a system that was also based on obtaining
color features through the HSI color space and GLCMs for
obtaining texture features. In this approach, principal com-
ponent analysis and varimax techniques were applied to the
HSI color space in order to optimize the set of attributes,
while eliminating the insignificant ones and minimize even
further the attributes. For obtaining texture features, a method
of GLCMs based on the azimuth difference of points on the
surface was used.

Some downsides of using GLCMs, as pointed out by Xie
[18] include the challenge of reducing the number of gray
levels to keep the co-occurrence matrix from being too big of
a computational burden, finding a number of entries for the
matrix that maintains statistical reliability and optimizing the
displacement vector.

Filter Based Approaches: Filter based approaches, as the
name implies, are based on applying filter banks to the image
and computing the energy of the response to those filters [18].
In corrosion detection, the most relevant and widespread tech-
niques that utilize filter banks rely on the wavelet transform[9].
This is due to the wavelet transform having the capability
to provide understanding in both the spatial and frequency
domain of an image [9, 18]

Ghanta [19] develop a system for rust defect detection
on steel bridges based on using Haar wavelet and principal
component analysis, in order to design a classifier based on
the least mean

Jahanshahi [9] expanded the research done on corrosion
detection using wavelets by applying depth perception and
different color spaces in order to improve reliability and
performance. This work also explored the effects of different



color spaces and it was found that the color space that
performed the best for texture analysis was the chroma blue-
difference/chroma red-difference (CbCr) color space. The
classification of the regions as corroded or non-corroded is
done through a NN, where the inputs are the features computed
based on the wavelet filter bank. This method obtained better
results than any of the previous techniques, being, in essence,
an improvement on the previous wavelet-based approaches.

C. Deep Learning Approaches

Rust detection is a niche field when compared to other types
of object detection, meaning that the amount of works that
focus on deep learning based approaches for rust detection
is quite small. Nonetheless, there have been some studies
realized in this area the show the effectiveness of these kinds
of approaches.

Petricca et al. [10] performed comparisons between color
and deep learning based approaches. The deep learning method
used is based on using a pretrained model of the AlexNet
[20], this network showed how promising convolutional neural
networks could be for image classification when it won the
ImageNet [21] challenge in 2012. As it can be seen, in Table
II, the deep learning approach in almost ten percent more
effective than the color based one when comparing the total
accuracy.

Color Deep Learning
False Positive 27/63 14/63
Partial accuracy for ”non-rust” 57% 78%
False Negative 4/37 8/37
Partial Accuracy for ”rust” 89% 78%
Total Accuracy 69% 78%

Table II: Color and deep learning method comparison (adapted
from [10]).

A method that has shown to surpass the previous state of the
art developed by Jahanshahi, is the one developed by Atha [4].
This method is based on the use of a pretrained convolutional
neural network (CNN) that showed good performance in the
ImageNet challenge, the VGG [22] networks, and fine-tuning
it to better detect corrosion. This trained network was used
to classify sections of the image obtained from a sliding
window. Comparing the results obtained from this approach
with the wavelet and neural network approach developed by
Jahanshahi can be seen in Table III. In this Table the overall
superiority of using a CNN can be seen, as it is able to beat
the previous state of the art in recall (the amount of regions
correctly classified as corrosion divided by the sum of regions
correctly classified as corrosion and regions wrongly classified
as non-corrosion), precision (the amount of regions correctly
classified as corrosion divided by all regions classified as
corrosion) and F1 score (the harmonic mean of recall and
precision).

Taking into account the results of this research, it can
be concluded that methodologies based on deep learning
approaches have proved highly effective and were even able

to surpass previous state of the art approaches. Given this,
in this work the problem of rust and structure detection
will be tackled by using two different approaches. The first
approach is based on utilizing a standard CNN to detect rust
and structure in an image resorting to a sliding window and
classifying each window. The second is based on using a
SegNet architecture to segment the image into three possible
colors, which represent, ”rust” , ”structure” and ”background”.

Algorithm Recall (%) Precision F1 Score (%)
VGG16 (RGB) 98.31 98.64 98.47

Wavelet NN (RGB) 93.01 93.65 93.32
Wavelet NN (YCbCr) 85.41 89.85 87.53
Wavelet NN (CbCr) 75.85 84.87 80.03

Table III: Deep learning performance compared to the perfor-
mance of wavelet and neural network for corrosion detection
(adapted from [4]).

III. DEEP LEARNING

A. Convolutional neural network

A convolutional neural network is usually composed by con-
volution layers, pooling layers (usually max pooling) and fully
connected layers (usually these layers contain the rectified
linear unit (ReLU) function as an activation function), where
the last fully connected layer, also known as the output layer,
commonly contains a different activation function, like the
sigmoid or softmax functions. The basic layout of a CNN can
be seen in Figure 1.

Figure 1: Structure of a standard CNN (adapted from [23]).

B. SegNet

SegNet is an architecture developed for semantic pixel la-
belling [7]. Meaning that it, given an image as an input, it
outputs said image divided into different segments, where each
of these segments represent a class. It is based on an encoder-
decoder network, as seen in Figure 2, where the encoder is
composed by convolutions and max pooling, while the decoder
is composed of upsampling and convolutions, terminating by
using a softmax classifier, that classifies each pixel. During the
max pooling process, the max pooling indices or locations are
stored and are then used during the upsampling process.



Figure 2: SegNet architecture (taken from [24])

IV. ARCHITECTURE DEVELOPMENT

The objective of this work is to construct a tool that is
capable of reducing the amount of images that experts have to
look at in order determine the corrosion state of a structure.
For this, it is necessary to detect the presence of rust in an
image. However, not all images that contain rust provide useful
information for experts, since some of them only show a small
area of rust. As such this work proposes a methodology that
takes into account the relation between the areas of rust and
structure found in an image.

A. Sliding Window and CNN Approach

This approach is inspired on Athas’ developed system [4],
changing the number of classes that the CNN will classify,
making the network classify windows as ”rust”, ”structure”
or ”background, instead of a binary classification of ”rust” or
”non-rust”.

System Architecture: Figure 3, shows a high level overview
of the proposed system architecture based on utilizing a sliding
window to classify segments of the image, which is comprised
of four main components: pre-processing, feature extraction,
classification and result analysis. The original input image goes
through a pre-processing step in order to make it usable by
the feature extractor, that is based on a CNN approach. This
feature extraction obtains information on the image features,
which in turn is used in order to classify the input of the
CNN as ”rust” or ”structure”. Afterwards the results obtained
from the classification step are analysed to make a final
classification.

Figure 3: Architecture of the developed system based on a
sliding window

Pre-processing: The original data set is labeled by masks
that label each pixel of the original mask as ”rust”, ”structure”
or ”background”. In order to transform this data set into
something that can be used by a CNN, images with single
labels were created by dividing the original and mask images
into several blocks or windows - an example of this is shown
in Figure 4, the label of each window will be one of the three
possible classes: ”rust”, ”structure” or ”background”.

The main issue to take into account when generating the
window based ground truth data set from the available data,

Figure 4: Example of a window from an image (original
images provided by Axians).

is how the rust and structure labeling is defined. Athas’ [4]
approach used images that where 100% rust in order to train
the CNN used. However the percentage of rust in an image will
affect what the CNN learns, as such testing different amounts
of ”rust” and ”structure” percentage is important in order to
choose the values that best represents these classes. In this
project the vectors utilized will be sp = [40, 60, 80, 90] and
rp = [25, 50, 75, 90].

After labeling the image windows into the three distinct
classes, it is noticeable that the number of ”background”
and ”structure” classes extremely out number the amount of
images belonging to the ”rust” class. This poses a problem,
as the goal is to be able to classify correctly rust. But, if
this class is so underrepresented, it will most likely cause
the system to be more biased towards learning the ”structure”
and ”background” classes, increasing the accuracy for those
classes, and decreasing the accuracy for the ”rust” class.
Undersampling is done to reduce the amount of samples until
all classes have the same amount of images, as seen in Figure
5.

In this project the accuracy of all classes is equally impor-
tant. It is not desirable to misclassify any classes, because
this will affect the calculation of the ratio between ”rust”
and ”structure” classes for the entire image. However, since
the amount of data is quite limited and somewhat repetitive,
oversampling might lead to an increase in overfitting. This
means that applying undersampling to the data is the adopted
option.



Figure 5: Example of undersampling.

Feature Extraction: For this approach, a convolution neural
network as a means of extracting the features of an image,
that, has discussed previously, as already shown good results
in detecting rust in images [4]. Since CNN learn the important
features of the classes they want to learn by themselves during
training, it is possible to extent these methodologies from a
binary classification of ”rust” and ”non rust” to a categorical
classification of ”rust”, ”structure” and ”background”.

It was decided to implement the CNN resorting to the
Keras [25] framework, which simplifies the implementation
of this type of approach when compared to other frameworks,
such as Tensorflow [26] and Pytorch [27]. For this project,
two CNN architectures were tested, the VGG16 [22], that
already showed promising results classifying rust [4] and the
MobileNet [28], that is a more lightweight CNN capable of
being implemented in mobile and other less powerful devices.

Result Analysis: The objective of this project is to filter the
amount of images that experts have to look through. As such
only images that have a relevant amount of ”rust” should be
shown and images that only show ”background” or ”structure”
but little or no ”rust” should not be shown. This, however,
poses the following challenges:

• How much rust should be detected in an image for it to
be considered relevant?

• How to obtain the amount of rust existing in a given
image?

Regarding the first challenge, if rust is detected in a very
small section of the image (only a 64x64 square is classified
as rust in a 6000x4000 image, for example) it does not make
sense to consider it relevant. This means that a threshold must
be set in order to define whether the amount of rust present
in a certain image is significant or not. of rust contained in
the structure was defined as the cut off point for determining
if an image was sufficiently corroded.

As for the second challenge, the ratio chosen for this
evaluation is given by

no of rust windows

(no of rust windows) + (no of structure windows)
(1)

The ratio defined in 1, will define how much of the structure
present in a given image was detected as being rust.

Utilizing the values stored in the rust count and struc-
ture count, a ratio of the amount of rust existing in the

structure can be obtained. This can be done by applying the
formula defined in 1. Having this ratio value it is possible
to compare it to a threshold previously set for this ratio. For
example, it could be defined that an image that shows a ratio
of less than 2% rust present in structure has no need to be
examined by an expert, that an image with a ratio above 2%
needs to be looked at by an expert.

Since the available data set contains no information regard-
ing how much rust in a structure can be considered too much,
a cutoff ratio of 5% was defined for this project, meaning that
it should be looked at by an expert if more than 5% of the
structure contains rust.

B. SegNet Approach

System Architecture: The high level overview of the system
based on utilizing SegNet can be seen on Figure 6, which
is very similar to the system architecture of the sliding
window architecture described previously. However there are
some differences to be taken into account. The pre-processing
done is different, while the feature extractor and classification
blocks were replaced by a single block that is the SegNet
block. The result analysis is also slightly different in each
case, since the output of the SegNet block is a prediction mask,
while the output of the classification block in Figure 3 is the
amount of windows classified as ”rust” and ”structure”.

Figure 6: Architecture of the developed system based on a
SegNet model

Pre-Processing: The input of a SegNet, like most CNNs, is
a static number. As discussed previously, the data set available
is composed by images of several different sizes, meaning that,
in the pre-processing resize of the training and validation data
is necessary.

The size to which the image is resized is an important step,
since then larger the image, the larger the amount of memory
necessary to train and run the network. However, the larger
the image the more detail the network as to work with, which
can lead to a better segmentation.

SegNet: Just like implementing a regular CNN, there are
several ways of implementing a SegNet model. This can
be done in Keras by either creating an encoder and the
respective decoder or even by taking an already existing CNN
architecture, like VGG [22], take off the fully connected
layer, and create the corresponding decoder for this network.
However there are some open source libraries that projects the
implementation of a SegNet architecture and in this project,
a library called keras segmentation [29] was used, which
contains several implementations of SegNet architectures, in-
cluding an architecture based on VGG16.



Result Analysis: The way the result analysis is performed
for this approach is essentially the same as the way it works
for the sliding window approach. However, since the output
from the SegNet approach is a segmentation of the original
image, in order to obtain the ratio of rust in the structure, it
is first necessary to calculate how many pixels were defined
as ”rust” and ”structure”.

These values can then be used to calculate the ratio defined
in Equation 1. Which, as mentioned, previously is the ratio
that will determine if the image should or should be shown to
an expert.

V. EXPERIMENTAL RESULTS

A. Sliding window and CNN Results

The images used for testing can be seen in Figure 7. Com-
paring Figures 8 and 9, it is possible to see how, despite the
original data set being the same, a change to the definition of
what the network considered ”rust” and ”structure” can have
an impact during training.

(a) (b) (c)

(d)

Figure 7: Images used to verify the performance of the models
(provided by Axians)

However, the results from the training of the network are
mainly for understanding how the network is learning and if it
is capable of generalizing, if the validation loss and accuracy
show low accuracy values it can be assumed that the generated
data sets have some inherent problems that do not allow the
model to correctly distinguish between ”rust”, ”structure” and
”background”.

(a) Training and validation ac-
curacy (b) Training and validation loss

Figure 8: Model trained on 80% ”structure percentage and
75% ”rust” percentage

In Figure 8 it possible to see how the training accuracy tends
towards 100% while no improvement occurs on the validation

accuracy, which stagnates at about 0, 75. Meanwhile, the
training loss decreases at a rapid rate while the validation loss
tends to increase. These two signs indicate that the model is
not generalizing well and is overfitting.

Looking at the results from training on a different generated
data set, Figure 9, it can be seen that the validation accuracy
steadily increases until it reaches about 89% accuracy, while
the validation loss stagnates at about 0, 325. Although the
validation loss does not increase, as seen in Figure 8b, it also
does not keep decreasing like the training loss, this means that,
even though the training loss reaches a value close to 0, 15,
when faced with unknown images the performance of the
model will be closer to the validation values, which represent
unknown data.

(a) Training and validation ac-
curacy (b) Training and validation loss

Figure 9: Model trained on 90% ”structure percentage and
90% ”rust” percentage

Segmentation with VGG16: Utilizing the sliding window
approach, a total of four images from the original data set
were used in order to analyse how the model behaved on a
real world setting. In Figure 10, a comparison of the results
obtained from training on data sets with two different structure
and rust percentage can be seen.

(a) Model trained
with 90 ”rust” and
90 ”structure”

(b) Model trained
with 25% ”rust” and
40% ”structure”

Figure 10: Comparison of models with same window and
stride, but trained on different data sets (provided by Axians)

Table V shows, the average intersection over union values
for each percentage of ”rust” and ”structure”. From these
results, it was chosen to continue the testing with values for
the ”rust” percentage of 90% and ”structure” percentages of
90% and 60%. Also, in Table IV, can be seen the results of
the execution time for each image and for different strides.

Testing the MobileNet Architecture: The MobileNet ar-
chitecture, being a less computationally intensive network is
expected to have weaker performance when compared to the
VGG16. This network was trained on two data sets, both of
them with a ”rust percentage” of 90% and with ”structure



Average detection time (seconds)
Image Analysed Stride 64 Stride 32

Figure 7a 25.445 82.7
Figure 7b 99.05 355.64
Figure 7c 17.06 57.09
Figure 7d 69.31 246.87

Table IV: Average detection time of the system using the
VGG16 architecture on a 64x64 window

percentage” of 60% and 90%. Since both of these models had
similar performance in the both the VGG16 approach and in
the MobileNet, the results of the intersection over union and
of the execution time is the average of the values obtained
resorting to both data sets.

The results during training are, as seen on Figure 11,
inferior when compared to the ones obtained by the VGG16.
Both the validation accuracy and loss of the model, although
they do increase and decrease respectively, they do so in a
very inconsistent manner, which shows that the model is not
generalizing very well.

(a) Training and validation ac-
curacy (b) Training and validation loss

Figure 11: Accuracy and loss of the MobileNet, trained on
”rust” and ”structure” percentage of 90% with 64x64 window

The MobileNet architecture obtained the following results
shown in Table VI. From these results, it can be seen that this
architecture performed considerably worse than the VGG16.

Result analysis: The results of the ratio of rust existing in
the structure obtained from both of the architectures can be
seen in Table VII. From these results it is possible to see that
there are some cases were the ratio, in both cases, differs from
the ground truth by a large margin.

B. SegNet Results

The accuracy and loss curves for the SegNet model trained
with an input of 1024x1024 can be seen in Figure 12. It
is possible to see that the validation accuracy and loss are
somewhat irregular, which to be expected since the VGG16 is
a deep neural network that was trained end-to-end on a small
data set. Even so the model starts to stagnate at around 80%
accuracy with a loss of 0.5, it should be noted that, in the final
five epochs, the loss tends to start increasing, which is a sign
that the model could be starting to overfit the training data.

Something to take into consideration is that the input of the
SegNet must be resized, which may lead to a loss of infor-
mation and consequently to a larger error on the calculated
rust-structure ratio.

(a) Training and validation ac-
curacy (b) Training and validation loss

Figure 12: Accuracy and loss for SegNet model trained with
images of size 1024x1024

Segmentation results: Figure 13 shows the segmentation’s
obtained utilizing this model, while Table VIII show the
results of the intersection over union with the original mask,
as well as the execution time of this methodology. Looking
at these results, it is possible to see that the values of the
intersection over union are quite good, given that all of them
are above 75%, however, in particular in Figure 13b the
shortcomings of the training data set can be seen. Since the
training and validation data set have few examples of people
in the background, the models decides that the closest thing
to the clothes is the class ”structure”, while determining that
the face and hands are more similar to ”rust”.

(a) (b) (c)

(d)

Figure 13: Segmentation obtained from using a SegNet
methodology with an input size of 1024x1024

Ratio Calculation: In Table IX, the values of the ratio of
rusted structure can be seen for the original mask, the resized
original masks and the predictions. It is to be noted that, a
resize in the image will lead to an error in the percentage of
structure that is corroded.

Some values obtained by the SegNet architecture are closer
to the ground truth ratios than the resized ground truth image
ratios. However this is due to the models not being 100%
accurate, which is not ideal. It is also important to note that
the resized ground truth in both cases showed a reduction in
the value of the rust-structure ratio, which is a disadvantage
of using this approach.



Rust (%) Structure (%)
Average intersection over union 25 50 75 90 40 60 80 90

Stride 64 60.53% 60.99% 61.71% 64.08% 62.08% 63.83% 56.96% 64.46%
Stride 32 60.26% 60.74% 61.42% 63.66% 61.87% 63.19% 56.93% 64.09%

Table V: Average of the intersection over union for each value of ”rust” and ”structure” percentage for sliding window with
stride 64 and stride 32

Image Analysed Average intersection over union
Figure 7a 31.70%
Figure 7b 76.25%
Figure 7c 63.37%
Figure 7d 25.22%

Table VI: Average intersection over union of the MobileNet
model, using a 64x64 window with stride 64

Image Analysed Ground Truth MobileNet VGG16
Figure 7a 9.55% 0% 13.48%
Figure 7b 2.29% 0% 13.83%
Figure 7c 15.15% 3.53% 34.62%
Figure 7d 6.06% 1.12% 1.52%

Table VII: Percentage of structure that contains rust calculated
for the MobileNet and VGG16 architectures

VI. CONCLUSIONS

The goal for this work was to build a system with the goal of
being able to detect the amount of rust existing in an image and
use that to determine if it needs human inspection. For this two
deep learning systems were used, an approach based utilizing
a traditional CNN with a sliding window to detect areas
with ”rust” and ”structure” and another approached based on
utilizing a SegNet to generate a semantic segmentation of the
image and using that image to see how many pixels were
classified as ”rust” and how many pixels were classified as
”structure”.

The idea of using a sliding window approach came from the
results obtained in the work done by Atha [4]. This approach
was put into practice with the goal of detecting regions
on images that contained rust and implemented a VGG16
architecture, which obtained results with high accuracy for rust
detection. Given these high accuracy results, it was chosen to
experiment with this approach and create a system that could
detect both ”rust” and ”structure”.

The results obtained from applying the sliding window
approach were worse than expected, which could have been
due to the construction of the data set used in order to train
the networks. There are also cases where the approach presents
higher than desired execution times, which could be a problem
if there is a large quantity of images to evaluate. It was
concluded that, with these results, the sliding window system
was not capable of detecting rust on structure in a reliable
manner.

After obtaining results that were less optimal than the ones

Image Analysed Intersection over Union Time (s)
Figure 7a 76.54% 2.73
Figure 7b 82.00% 0.37
Figure 7c 76.89% 0.43
Figure 7d 83.69% 0.36

Table VIII: Intersection over Union and execution time of
SegNet segmentation for an input of 1024x1024

Image Analysed Ground Truth Resized SegNet
Figure 7a 9.55% 8.10% 3%
Figure 7b 2.29% 1.17% 0.84%
Figure 7c 15.15% 10.21% 15.28%
Figure 7d 6.06% 1.6% 0.52%

Table IX: Percentage of structure that contains rust calculated
for the SegNet approach.

expected, it was proposed the implementation of a SegNet ap-
proach that could directly output an image segmentation from
the original image, which could in turn be used to determine
how much of the pixels of an image were classified as ”rust”
and how many where classified as ”structure”. When testing
this approach it was found that the obtained segmentation was
much smoother than a segmentation obtained using a sliding
window approach. More importantly, this approach proved to
show higher accuracy and faster execution time on the same
limited data set. However it does suffer from the need to resize
an image before segmenting it, which may affect the ratio
between the amount of ”rust” and ”structure”, making it less
accurate.

This work shows that it is possible to build a system bases
on semantic segmentation that is capable of successfully detect
the amount of rust existing in a structure. Although there are
some problems involving the change in image size affecting
the amount of rust present in a structure, the system was still
capable of producing an acceptable segmentation of the the
image, given the limited data available, and showed promising
results determining the amount of rust present in a structure.
Utilizing a SegNet in order to detect the presence of rust in
structure seems to be a promising way of approaching rust
detection in industrial structures in the future.

VII. FUTURE WORK

This work demonstrates that utilizing semantic segmentation
approaches is an effective way of detecting the presence of rust
and structure in an image. The SegNet model based on the
VGG16 showed showed better performance than the sliding



window approach with a limited data set even though it was
not pre-trained on any kind of larger data set. Training this
model on a large segmentation data set like CityScapes [30]
could help improve its performance by later fine-tuning the
model with the Axians data set.

An interesting proposition for future projects is to experi-
ment with different kinds of segmentation models, approaches
like U-Net [31] and fully convolutional networks [32] are
other semantic segmentation methods that have been used
and have also performed well in other applications, namely
the U-Net architecture as shown impressive results in medical
applications [33].

Techniques based on instance segmentation could also be
interesting experiments, since it could allow the development
of a system that detects distinct rust areas. This makes it
possible to develop an approach that analysis each section
of the image, or one that presents all rusted areas detected
in a structure for evaluation. Architectures like Mask-RCNN
[34] are very effective at instance segmentation and are even
possible to be used on very high definition videos to detect
objects in real time.
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