
Ms. Pac-Man vs Ghost Team - A Monte Carlo Tree Search

Approach

Miguel de Carvalho Maximiano
miguelcmaxi@hotmail.com

Instituto Superior Técnico, Lisboa, Portugal

November 2019

Abstract

This thesis tackles the problem presented by the Ms. Pac-Man vs Ghost Team Competition. This
competition challenges developers around the world to create intelligent agents with the objective of
getting the best score possible in the game Ms. Pac-Man while dealing with partial observability of
the game environment. The approach taken was a Monte Carlo Tree Search algorithm. In the end, two
similar agents were developed, tested and compared. Both achieved satisfactory results, reaching level
2 of the game, and provided great insight into the difficulty of the challenge and possible solutions for
future approaches.
Keywords: Monte Carlo tree search; Artificial intelligence; Intelligent systems; Ms. Pac-Man vs ghost
team.

1. Introduction

In recent years, Artificial Intelligence (AI) has be-
come the most discussed field in computer science.
With the advances of technology and rising pop-
ularity of smart devices, tech companies have fo-
cused more and more resources in the development
of products that make use of intelligent agents in
different ways. Names like Amazon’s Echo and
Alexa, Google’s Cortana or Apple’s Siri are rec-
ognized by basically anyone. These products were
heavily marketed when they first came out as inno-
vative, smart assistants to everyday tasks and their
success was instant. Therefore, it is not surprising
that these giants of the tech world would continue
to invest in them for years to come. In the case
of Ms. Pac-Man, several competitions have been
held over the last decades, challenging participants
to develop agents that can optimize the playing of
the game. Even so, new entries obtain interesting
results every year.

2. Background

This section serves to integrate both the Ms. Pac-
Man vs Ghost Team Competition and the MCTS
algorithm in the context of this thesis.

2.1. Ms. Pac-Man vs Ghost Team Competition

The Ms. Pac-Man vs Ghost Team Competition [3]
is a competition organized by the University of Es-
sex since 2016. It challenges developers to pro-
duces intelligent agents that can control either Ms.

Pac-Man or the ghost team in the game Ms. Pac-
Man. Before 2016, the university organized similar
competitions, named Ms. Pac-Man Screen Cap-
ture Competition [5] and Ms. Pac-Man vs Ghosts
Competition [2], which had the same objective of
challenging developers but different formats. These
competitions are well-known for the good results
obtained by the participants in terms of novel in-
telligent agents and continue to be relevant for re-
search in the field of AI.

2.2. Monte Carlo Tree Search

The Monte Carlo Tree Search (MCTS) is a heuris-
tic search algorithm for decision processes in the
context of computational problems. It is based on
the original Monte Carlo method, applying it to a
game-tree search, as described by Rèmi Coulon in
2006 [4].

This algorithm is commonly used in decision
problems in games. Its first implementation was
in the game Go [1], but it has been used in other
board games like chess, games with incomplete in-
formation like poker and, more recently, in video
games.

The MCTS algorithm focuses on analysing the
most promising moves for a player at a certain mo-
ment in time. By utilizing random sampling to ex-
pand the search tree, the algorithm is able to play-
out the game many times and, considering the final
result of each playout, re-weight the tree nodes so
that, in future playouts, better nodes are chosen

1



more often. The algorithm itself consists of 4 steps:
Selection, Expansion, Simulation and Backpropa-
gation. These steps are illustrated in the following
figure:

Figure 1: Steps of MCTS Algorithm

3. Solution

This section will take a close look at the agent de-
veloped and all the code necessary to make it work.

3.1. Overview of the Agent

The agent is composed of 2 classes of objects:
a MyPacMan class a Node class that models
tree nodes necessary for the implementation of the
MCTS algorithm.

The MyPacMan object is composed of 7 at-
tributes and 3 methods, including a very simple
constructor.

Figure 2: MyPacMan

Attributes maxTreeDepth and maxPlayoutDepth
are initialized manually because they are values cho-
sen a priori. Maze, GhostPredictionsFast, PillModel
and Game are all classes from the game engine.
These are initialized, modified and used in the get-
Move method at each time step. The constructor
simply initializes the array ghostEdibleTime with
size equal to the number of ghosts in the game.

The obtainDeterminisedState method is the
method that makes it possible to run a basic MCTS
algorithm over a partially observable environment,
by creating a copy of the real game state. It pop-
ulates the points of the maze that the agent does
not have access to based on probability: places pills
where pills are supposed to be and, for ghosts unac-
counted for, it assumes that the ghosts maintain the
direction they were last seen taking. This method
is used in the getMove method, which contains all

the logic behind the agent’s behavior. The getMove
algorithm is as follows:

Figure 3: getMove Algorithm

The Node object is composed of 9 attributes and
15 methods, including 2 constructors.

Figure 4: Node

Most of the attributes are simple to understand
just by looking at their names. MyPacMan is the
object that represents the agent; parent, children,
expandedChildren, visits and treeDepth are common
attributes in tree-search algorithms, they contain
essential information for MCTS. score is also a very
important attribute for the decision making algo-
rithm because it is this value that will determine
the weight of each node considered by the selection
step of MCTS.

The unique attributes for this context are pre-
vMove and legalMoves. The first one is the last
move made by the agent and it is necessary to ad-
vance the game state during the playout step of the
MCTS algorithm. The latter saves all the moves the
agent can make in the next time step of the game.
It is necessary not only to advance the game state
during the expansion step of the MCTS algorithm
but also to make sure the Move returned to and by
the getMove method in MyPacMan is valid, since
the agent can’t walk into walls.

The constructors are quite simple, they are used
to initiallize attributes that we know the values of,
taking into consideration if we want to create a root
node or child node.

2



There are 2 methods called selectBestMove. The
first one was used in the initial stage of development
of the agent, but was later replaced by the second
because the latter achieved better results overall.
Both of these methods will be explained in the fol-
lowing subsections of this section and results will be
discussed in the next section of this document.

3.2. The MCTS Algorithm

Our MCTS algorithm is the made up of 3 meth-
ods: select expand, playout and backPropagate. In
general, this algorithm is very close to the standard
MCTS algorithm. The game state is modeled by the
class Game, which is part of the package obtained
from the competition organizers. This class is quite
complex, so we used it throughout the project as
a black box and get everything we need from it via
its public methods or actual objects of that class
returned by the obtainDeterminisedState method.

Firstly, the Selection and Expansion steps are
combined in a single method. In fact, there isn’t a
true Selection step. The algorithm is ran, at each
time step, on a copy of the game state generated
by the method obtainDeterminisedState, with the
current game state being the root node of the de-
cision tree. As such, during the Selection step of
the algorithm, the only node that exists is the root
node, meaning the algorithm always selects that
one. However, the expansion step generates all child
nodes of this root node and its child nodes, recur-
rently, until nodes with treeDepth value equal to
maxTreeDepth are reached, and then selects one of
those child nodes, the one with highest calculated
score value, so one can say that there is indeed a se-
lection process. After this process, the game state
is advanced, which means that this child node be-
comes the root node of the decision tree used from
now on. One small detail to be noticed is that this
MCTS algorithm does not implement UCB/UCT
in its Selection step because there is no win state
in Ms. Pac-Man, since as long as the agent lives,
the game goes on. As such, it didn’t make sense to
use such a formula in the agent’s algorithm.

Here is an example of a possible decision tree cre-
ated during this step of the algorithm through ex-
pansion:

Figure 5: Example of a decision tree

Next, the Playout step is executed. This step
is very standard: random moves are made until
the tree depth reaches the maximum playout depth,
which is defined in the MyPacMan object. Then,
the score for the game state reached is calculated
and returned. The score mentioned is calculated
by the calculateGameScore method, and takes into
consideration not only the in-game score but also
the game time and level reached.

Finally, the BackPropagate step: it simply up-
dates the score values of the parent nodes, recur-
sively, until reaching the root node of the search
tree. These values work as the weights of the nodes
for all purposes.

3.3. The Adaptation

As mentioned earlier, we have 2 methods called se-
lectBestMove. This method is ran in the getMove
method after the MCTS algorithm to, like the name
suggests, calculate the best move the agent should
make at that time step. The first iteration of the
method provides a very simple solution: If there is a
best child, keep moving in the same direction. The
logic behind this is that, if this child is the best one,
it should continue doing what it was doing before.
Overall, this works. The agent tends to run around
the maze looking for pills and super pills. The prob-
lem with this approach is that, when faced with a
ghost in its path, the agent would almost never be
able to avoid death because moving backwards was
not considered a legal move. Simply making it a
legal move would result in the agent running back
and fourth in the same place, so it was not a good
way to fix it. This was the main road block dur-
ing the development of this agent. To move past it,
we had to move slightly away from the MCTS based
solution, so we adapted the selectBestMove method
to deal with this problem and be more successful in
this specific game environment.

So, instead of instantly returning the child’s pre-
vious move like in the first iteration of this method,
we instead call the getNextMove method. This
method forces the agent to run away from an ined-
ible ghost when moving towards one.

As the next section will demonstrate, this adapta-
tion worked very well and the agent’s performance
improved overall.

4. Results

Here we will look at how the agent was tested and
the results obtained.

4.1. Evaluation Methodology

To evaluate the agent, we used the runExperiment
method in the Main file. This method belongs to
the executor class and is very useful to test the
agent’s performance because it runs the game mul-
tiple times in one execution, which facilitates batch

3



testing. It also doesn’t run a graphic interface, so
it is less computationally intense, but on the other
hand provides the developer with important stats
for evaluating the agent’s performance, specifically
average score over the games played in the batch,
minimum and maximum score, standard de-
viation and standard error.

Using these values, we calculated the 95% Con-
fidence Interval, which could be useful to com-
pare versions of the agent, but these intervals over-
lap in almost all circumstances.

The batches can be divided in 2 groups. The
first group aimed at finding the ideal values for the
maxTreeDepth and maxPlayoutDepth attributes of
the MyPacMan object. The second group aimed at
optimizing the calculateGameScore method. This
method uses in-game score, game time and level to
calculate the value used as weight for the nodes of
the search tree, making it essential for the decision
making process.

4.2. Results
Firstly we will take a broad look at the results of
group 1 tests, which aimed to find the ideal max-
TreeDepth and maxPlayoutDepth attributes for the
agent.

Figure 6: Group 1 test results

As we can see in figure 6, for both iterations of
the agent, the best combination for (maxTreeDepth,
maxPlayoutDepth), in terms of average score, was
(30,250). Confidence intervals aren’t included in
this figure because they were not useful; they over-
lapped too much to provide insight on which combi-
nation of the 2 attributes was ideal. Taking this into
consideration, the group 2 tests were run using these
values for (maxTreeDepth, maxPlayoutDepth).

The group 2 batches tested various weights for
the factors in the calculateGameScore method’s for-
mula, which are by default 1 for in-game score and
game time, and 1000 for level. As we can see in
figure 7, the adapted agent performs better in al-
most every test batch and achieves a higher aver-
age score in batch 10 than the initial agent in any
of its batches. This is due to the adaptation made

Figure 7: Group 2 test results: Initial (Upper) Vs
Adapted Agent (Lower)

to the agent’s behavior: unlike the initial agent,
the adapted agent actively runs away from inedible
ghosts, resulting in longer game times and, thus,
overall better scores.

Batches 1 to 6 and 10 experiment with various
weights for the in-game score, game time and level
factors of the calculateGameScore method. Overall,
there seems to be low variance in terms of results
from these batches, as the 95% confidence intervals
overlap in a big portion of data. The initial agent
obtains the best result by reducing the weight of
game time by half and increasing the weight of level
to double, while the adapted agent performs best
when multiplying the weight of in-game score by
50 and the weight of level by 100. In these batches,
both agents were able to reach level 2 in the game at
least once per batch, but the adapted agent reached
this level more often. The remaining batches are
more interesting.

Batches 7, 8 and 9 experiment with making each
of the factors of the calculateGameScore method’s
formula obsolete, one at a time. To do this, batch
7 sets the weight of in-game score to 0, batch 8
sets the weight of game time to 0 and batch 9 sets
the weight of level to 0. For the initial agent, we
can see that disregarding one of the factors results
in worse performance. In particular, disregarding
game time significantly hinders the agent’s perfor-
mance. In a way, the game time factor represents
how much the agent prioritizes survival over im-
mediate score. By removing this factor, the agent
tends to risk too much, thus dying faster and ob-

4



taining lower scores overall. On the other hand,
the adapted agent doesn’t seem to be affected by
using only 2 out of the 3 factors, obtaining results
in line with the ones obtained before. This is be-
cause these weights don’t affect the adapted por-
tion of the decision making process. This portion
helps the agent avoid ghosts no matter what, so
even when the weight of game time is set to 0 and
the agent risks as much as it can, it still runs away
from ghosts when facing them. The initial agent
was able to reach level 2 in batches 7 and 9, but
not batch 8, while the adapted agent managed to
reach this level at least once in each batch.

Batches 11, 12 and 13 go a step further, and set
2 out of 3 factors to 0: batch 11 sets the weight of
game time and level to 0, batch 12 sets the weight
of in-game score and level to 0 and batch 13 sets
the weight of in-game score and game time to 0. In
other words, the agent from batch 11 only cares
about the in-game score so it tries to maximize the
number of ghosts eaten per power pill eaten; the
agent from batch 12 only cares about the game
time so it tries to survive above all; and the agent
from batch 13 only cares about the level so it fo-
cuses on collecting all the pills and proceeding to the
next level. As we can see in figure 7, there is a dip
in performance for the initial agent when focusing
solely on in-game score or level, while focusing sim-
ply on game time doesn’t hinder its performance,
once again because it tends to risk too much in the
first two cases. However, focusing solely on sur-
viving for as long as possible seems to be a valid
strategy, which makes sense considering that Ms.
Pac-Man is an infinite game: if the agent never
dies, the game never ends, thus the score keeps in-
creasing indefinitely. For the adapted agent, focus-
ing on a one-dimensional strategy results in average
scores slightly lower. The initial agent managed to
reach level 2 only in batch 12, while the adapted
agent managed to do the same in every batch.

To further evaluate the agent, it is possible to
compare its performance to the performance of
some of the basic agents from the competition’s
organizers and submissions from other researchers.
The organizers use these basic agents as a basis for
comparison during the competition itself, but only
reveal the average score achieved by the agents. The
results from 2018 are presented in the figure 8.

The StarterNNPacMan and StarterPacManOne-
Junction are part of the basic agents provided
by the competition’s organizers, the Initial and
Adapted Agent are the ones developed in this the-
sis and the remaining are submissions made to the
competition. It is clear that the agents from this
thesis are far from the submissions to the competi-
tion in terms of performance. However, they per-
form much better than the basic agents from the

Figure 8: Comparison to basic agents from 2018

competition. Since that was the main objective of
this thesis, it can be considered a success.

5. Conclusions

All in all, we were able to obtain satisfactory results.
The agent was able to reach level 2 several times and
almost reached level 3 a couple of times. Nonethe-
less, we were able to improve on the basic agents
provided by the competition and retrieve interest-
ing information about different strategies. The val-
ues of maxTreeDepth and maxPlayoutDepth seem to
not have such a big influence on the performance of
the agent as initially thought, since there was found
no direct correlation between the varying values
tested for these attributes and the results. Addi-
tionally, the tests run with different weights for the
factors of the calculateGameScore method formula
showed the value of different strategies. Strategies
that focused solely on maximizing score are slightly
less valuable than strategies that tried to balance
maximizing score with surviving. This means that
adaptable strategies are better for agents in par-
tially observable environments, as stricter strategies
inhibit the agent’s ability to adapt during gameplay
time.

In the future, there is definitely room for improve-
ment. The MCTS algorithm developed for this the-
sis is particularly bad at dealing with the partial
observability factor of the competition’s game en-
vironment and the randomness associated with the
movement of the ghosts. These two aspects com-
bined make it so many of the decisions taken by the
agent are based on little information and hinder its
performance massively. Therefore, better predic-
tion algorithms could be useful in order to improve
this agent.

Acknowledgements

I would like to thank my parents for making this
possible by providing me with the best education
possible throughout my life and always encouraging
me to work hard. I would also like to thank every
other member of my family for making me who i

5



am today
I would also like to acknowledge my disserta-

tion supervisor Prof. Alberto Sardinha for his help
throughout this Thesis.

Last but not least, a big thank you to all my
friends and colleagues that helped me throughout
this journey and always supported me. A special
thank you to my girlfriend for making sure I stayed
focused for the last 8 months.

Thank you to everyone.

References
[1] David Silver, Aja Huang, Chris Maddison,

Arthur Guez, Laurent Sifre, George van
den Driessche, Julian Schrittwieser, Ioan-
nis Antonoglou, Veda Panneershelvam, Marc
Lanctot, Sander Dieleman, Dominik Grewe,
John Nham, Nal Kalchbrenner, Ilya Sutskever,
Timothy Lillicrap, Madeleine Leach, Koray
Kavukcuoglu, Thore Graepel. Mastering the
game of Go with deep neural networks and tree
search. 2016.

[2] Philipp Rohlfshagen, Simon M. Lucas. Ms Pac-
Man versus Ghost Team CEC 2011 Competi-
tion.

[3] Piers R. Williams, Diego Perez-Liebana and Si-
mon M. Lucas. Ms. Pac-Man Versus Ghost
Team CIG 2016 Competition.

[4] Rémi Coulom. Efficient Selectivity and Backup
Operators in Monte-Carlo Tree Search, 2006.

[5] Simon M. Lucas. Screen-capture Ms Pac-Man.
2009.

6


