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ABSTRACT 

A method to optimize the circulation distribution for wind turbines is herewith presented. Through the lifting line method the 

optimization is done using the wake geometries obtained with the panel method analysis. After two iterations of the outer 

cycle, the convergence of the power coefficient is obtained and the final design of the blades is done. The wake geometries and 

the pitch distributions proving the consistency of the method are discussed and they prove that the wake geometry obtained 

fold in the downstream direction, unlike the works conducted in the previous years. A viscous situation is also assessed and 

the results in this case are in good agreement with the literature, confirming once again that the optimization procedure used 

is accurate and reliable. 
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1. INTRODUCTION 

Since the end of the 19th century, the improvements in the 

aerodynamics and fluid mechanics fields have been 

remarkable. The formulation of the lifting line theory 

surely gave fundamental insights for the development of 

many technologies. It was Frederick W. Lanchester that in 

1907 set the basics for the lifting line theory (Lanchester, 

1907). From this point on, many improvements were done 

to the theory according to the applications of it, in fact the 

lifting line has been used for the design and analysis of 

many lifting surfaces like wings, propellers and ultimately 

horizontal axis wind turbines.  

As a matter of fact, the lifting line theory is not accurate 

enough, and over the century new computational based 

theories such as the panel methods (1970s) were 

developed. With this model it is possible to take into 

account the geometry of the blades and it is possible to 

obtain a more accurate description of how the fluid 

behaves along the blade, at the trailing edge and at the 

wake region. (Erickson, 1990) 

At the MARETEC/IST lot of work has being done on the 

design optimization of propellers and wind turbines: 

Duarte & Fãlcao de Campos (1997) developed a lifting line 

code that was then improved by Falcão de Campos (2007) 

in his work on optimization of a marine current turbine. 

Machado (2010) then added the effect of the hub and 

Caldeira (2014) added the viscous effects. Melo (2016) 

using the numerical approach by Baltazar, Falcão de 

Campos, & Bosschers (2012), implemented the analysis 

code for wind turbines adding a wake alignment scheme 

by discretizing it and Sousa (2018) succeeded to perform 

the optimization procedure adjusting the analysis code by 

Melo implementing the Lagrange multiplier method 

instead of the classical one so far used. At the same time 

panel method codes were also developed for propellers 

and later Baltazar & Falcão de Campos (2011) adapted a 

code to the case of marine current turbines. For what 

regards the case of the wind turbines the panel method has 

not been widely used and that is why the focus of this 

thesis is the combination of the lifting line method with the 

panel method for a horizontal axis wind turbine in order to 

obtain a more accurate wake geometry and therefore an 

improved design of the blades.  

As the energy transition is happening, the importance of 

the wind industry worldwide is clear and that is the reason 

why the improvements of the optimization, design and 

analysis computational codes of the wind turbines are so 

important for the sustainability of our planet, both from 

the economical and environmental point of view. 

2. THEORY 

Lifting line theory 

The theory uses the circulation concept and the Kutta-

Joukowski theorem: 

𝐿⃗ = −𝜌𝑉∞⃗⃗ ⃗⃗  × Γ ,   (1) 

where 𝜌 and 𝑉∞ are respectively the air density and the 

velocity far upstream and Γ = ∮ 𝑉⃗  ∙ 𝑑𝑠⃗⃗⃗⃗  is the circulation 
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vector. With this formula the unknown becomes the 

circulation function instead of the lift force one, in fact the 

span-wise change in lift is equivalent to a span-wise 

change of circulation. (Anderson, 2001) 

Any span-wise change in lift can be modelled as the 

shedding of a vortex filament down the flow, behind the 

wing and it is usually proportional to the pressure 

difference between the upper and the lower surface of the 

blade. At the tip of the blade the difference becomes zero 

and the secondary flow appears: the fluid tends to move 

around the tip, going up to the low-pressure surface of the 

blade. The circulation distribution and consequently the 

lift will strongly depend on the pressure distribution, 

resulting zero at the tip.  

2.1 Velocity field  

Consider the rotor of a horizontal axis wind turbine with 

radius 𝑅 and hub radius 𝑟ℎ and 𝑍 blades symmetrically 

placed around the hub. Assume the rotor rotating with an 

angular velocity ω in a uniform flow velocity field 𝑈, 

aligned with the rotation axis. It is possible to define a 

cartesian coordinate system (𝑥, 𝑦, 𝑧) and a cylindrical 

coordinate system (𝑥, 𝑟, 𝜃) in a reference frame rotating 

with the turbine rotor. The relative velocity field is given 

by 𝑉∞⃗⃗ ⃗⃗  = 𝑈⃗⃗ − 𝜔 ⃗⃗⃗⃗ × 𝑟  ,as shown in Figure 1. 

 

Figure 1: Adopted coordinate system and inflow velocity 
field, 𝑍 = 3 (Melo, 2016). 

In the lifting line model, every blade is represented by a 

radial bound vortex, expanding from the root of the blade 

to the tip.  Due to the variation of circulation along the 

blade, trailing vortices are shed from each lifting line, 

generating a vortex sheet.  

In Figure 2 it is possible to see the vortex system for one of 

the three blades. 

 

Figure 2: Lifting line and corresponding vortex 
sheet(Melo, 2016). 

It is important to remark that in the force-free vortex wake, 

the vortex filaments must be aligned with the local velocity 

field giving the product 𝛾 × 𝑉⃗ = 0. 

If now one wants to consider the effect of the bound and 

the trailing vortices, the velocity induced by the lifting line 

𝑘 and its sheet of trailing vortices can be computed in any 

point in space by the Biot Savart law: 

𝑣 𝑘(𝑥, 𝑦, 𝑧) =
1

4𝜋
∫

Γ⃗⃗ ×𝑅⃗ 

𝑅3
𝑑𝑙

𝐿𝑘
+

1

4𝜋
∫

𝛾⃗⃗ ×𝑅⃗ 

𝑅3
𝑑𝑆

𝑆𝑘
, (2) 

where 𝑅⃗  is the vector going from the integration point to 

the point (𝑥, 𝑦, 𝑧) where the computation of the induced 

velocities is being done. 

The total induced velocities are obtained by the sum of the 

Z blades contributions: 

𝑣 (𝑥, 𝑦, 𝑧) = ∑ 𝑣 𝑘(𝑥, 𝑦, 𝑧)𝑍
𝑘=1  ,  (3) 

At this point, summing up the total induced velocities and 

the undisturbed velocity field component it is possible to 

get the velocity field in cylindrical coordinates: 

𝑉⃗ (𝑥, 𝑟, 𝜃) = (𝑈 − 𝑣𝑎, 𝑣𝑟 , 𝜔𝑟 + 𝑣𝑡).  (4) 

2.2 Angles, forces and power coefficient 

A velocity triangle can now be drawn as in Figure 3 and 

some of the angles can be explained: 

 

Figure 3: Schematic representation of the velocity and 
force triangles at a blade section (Melo, 2016). 

β is the undisturbed aerodynamic pitch angle, the formula 

is: tan 𝛽 =  
𝑈

𝜔𝑟
= 

1

𝜆𝑟∗, 

𝑉⃗ ∞ 
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where 𝑟∗ =
𝑟

𝑅
 and 𝜆 is the tip speed ratio, defined as: 𝜆 =

𝜔𝑅

𝑈
. 

𝛽𝑖  is the induced aerodynamic pitch angle, it includes the 

effect of the axial and tangential induced velocities: 

tan 𝛽𝑖 =
𝑈−𝑣𝑎

𝜔𝑟+𝑣𝑡
=

1−𝑣𝑎
∗

𝜆𝑟∗+𝑣𝑡
∗, 

where the induced velocities are made dimensionless: 

𝑣𝑎,𝑡
∗ =

𝑣𝑎,𝑡

𝑈
. 

𝛼 is the angle of attach, angle between the section chord 

line and the velocity projected on the blade cross section. 

𝜓 is the blade pitch angle, geometrical angle between the 

blade chord line and the tangential direction. 𝛽𝑖  and 𝛼 are 

related to it by: 

𝜓 = 𝛽𝑖 − 𝛼. 

The total velocity 𝑉 can be expressed in a dimensionless 

way with the formula: 

𝑉∗ =
𝑉

𝑈
= √(1 − 𝑣𝑎

∗)2 + (𝜆𝑟∗ + 𝑣𝑡
∗). 

Going back to Figure 3 it is now possible to mention the 

various components of the resulting force acting of the 

blade that appear: 

𝐿 - Lift (per unit span). It is the projection of the resulting 

force in the direction perpendicular to 𝑉⃗ ; 

𝐷 - Drag (per unit span). It is the projection of the resulting 

force in the same direction as 𝑉⃗ ; 

𝑇 - Thrust. Projection of the resulting force in the axial 

direction; 

𝑄 𝑟⁄  - Circumferential force. Force that contributes to the 

torque in the tangential direction. 

The most important dimensionless coefficients are: 

𝐶𝐿 =
𝐿

1

2
𝜌𝑉2𝑐

=
2Γ

𝑉𝑐
=

2Γ∗

𝑉∗𝑐∗, 𝐶𝐷 =
𝐷

1

2
𝜌𝑉2𝑐

,  

     

𝐶𝑇 =
𝑇

1

2
𝜌𝑈2𝜋𝑅2

,  𝐶𝑃 =
𝑃

1

2
𝜌𝑈3𝜋𝑅2

.  

     

The 𝐶𝐿  and 𝐶𝐷 data are usually given for a specific foil as 

function of the angle of attack and the Reynolds number 𝑅𝑒 

defined as: 𝑅𝑒 =  
𝑉𝑐

𝜈
 where 𝜈 is the kinematic viscosity of 

the fluid. They are usually obtained experimentally. The 

drag to lift coefficient 𝐷 𝐿⁄ =  
𝐶𝐷

𝐶𝐿
⁄  is a very important 

parameter and is here represented with the letter 𝜀.  

Integrating along the span the infinitesimal thrust, 

considering the three blades it is possible to get the thrust 

coefficient as: 

𝐶𝑇 =
2𝑍

𝜋
∫ (𝜆𝑟∗ + 𝑣𝑡

∗)
1

𝑟ℎ
∗ Γ∗(1 + 𝜀 tan 𝛽𝑖) 𝑑𝑟∗, 

Same can be done for the power coefficient: 

𝐶𝑃 =
2𝑍𝜆

𝜋
∫ (1 − 𝑣𝑎

∗)
1

𝑟ℎ
∗ Γ∗ (1 −

𝜀

tan 𝛽
𝑖

)  𝑟∗𝑑𝑟∗. 

Panel method 

2.3 Potential flow problem 

In the reference frame rotating with the turbine, the 

undisturbed inflow velocity is given by: 

𝑉∞⃗⃗ ⃗⃗  (𝑥, 𝑟, 𝜃, 𝑡) = 𝑈𝑒
⃗⃗ ⃗⃗  (𝑥, 𝑟, 𝜃 − Ω𝑡) − Ω⃗⃗ × 𝑥 , (5) 

where 𝑥 = (𝑥, 𝑦, 𝑧). In the reference frame rotating with 

the turbine, and under the assumption of irrotational flow 

the velocity field is described by a perturbation potential 

𝜙(𝑥, 𝑦, 𝑧, 𝑡): 

𝑉⃗ (𝑥, 𝑦, 𝑧, 𝑡) = 𝑉⃗ ∞(𝑥, 𝑦, 𝑧, 𝑡) + ∇𝜙(𝑥, 𝑦, 𝑧, 𝑡). (6) 

The perturbation potential satisfies the Laplace equation: 

∇2𝜙(𝑥, 𝑦, 𝑧, 𝑡)=0.   (7) 

The boundary of the domain consists of the turbine blade 

surfaces 𝑆𝐵 and the hub surface 𝑆𝐻. The perturbation 

potential must satisfy the following boundary conditions: 

∇𝜙 → 0, if |𝑥 | → ∞ and 𝑥 ≠ +∞,  (8) 

at infinity, and a Neumann boundary condition: 

∂𝜙

∂𝑛
≡  𝑛⃗ ∙  ∇𝜙 =  −𝑛⃗ ∙ 𝑉⃗ ∞ on 𝑆𝐵 and 𝑆𝐻,  (9) 

where ∂ ∂𝑛⁄  denotes differentiation along the normal and 

𝑛⃗  is the unit vector normal to the surface directed outward 

from the body. The boundary conditions on the wake 

surfaces 𝑆𝑊 are the tangency of the fluid velocity on each 

side of the sheet: 

𝑉⃗ 𝑤 ∙ 𝑛⃗ =  𝑉⃗ + ∙ 𝑛⃗ = 𝑉⃗ − ∙ 𝑛⃗   on 𝑆𝑊, (10) 

and the continuity of the pressure across the vortex wake: 

𝑝+ = 𝑝−  on 𝑆𝑊,   (11) 

where 𝑉⃗ 𝑤 is the velocity of the vortex sheet surface 𝑆𝑊, 𝑝 is 

the pressure and the indices + and − denote the two sides 

of the vortex sheet, arbitrarily chosen on the upper side 

and lower side of the blade at the trailing edge, 

respectively. (Baltazar & Falcão de Campos, 2009) 

2.4 Wake model 

(Baltazar, Machado, & Falcão de Campos, 2011) The two 

boundary conditions on the wake are: the normal 

component of the fluid velocity is continuous and equal to 

the normal velocity of the wake surface , Eq. 10 and the 

pressure must be continuous across the wake surface, Eq. 

11. The first condition, Eq. 10, implies that the vortex sheet 
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moves with the fluid. If 𝑆𝑊(𝑥, 𝑡) = 0 represents the 

equation of the vortex sheet surface 𝑆𝑊, then: 

∂𝑆𝑊

∂𝑡
+ V⃗⃗ + ∙ ∇𝑆𝑊 =  

∂𝑆𝑊

∂𝑡
+ V⃗⃗ − ∙ ∇𝑆𝑊  = 0, (12) 

Outside of the vortex sheet the Bernoulli equation applies: 

𝜕𝜙

𝜕𝑡
+

𝑝

𝜌
+

1

2
|𝑉⃗ |

2
=

𝑝∞

𝜌
+

1

2
|𝑉⃗ ∞|

2
,  (13) 

where 𝑝∞ is the pressure of the undisturbed flow. Applying 

the Bernoulli equation at a given point on each side of the 

vortex sheet and subtracting the following expression is 

obtained: 

Δ𝑝

𝜌
= −

𝜕(∆𝜙)

𝜕𝑡
−

1

2
(|𝑉⃗ +|

2
− |𝑉⃗ −|

2
),  (14) 

where Δ𝑝 = 𝑝+ − 𝑝− and Δ𝜙 = 𝜙+ − 𝜙− are the pressure 

and potential jump across the sheet, respectively. 

From the boundary condition, Eq. 11, the pressure-jump is 

zero, we obtain from Eq. 14: 

∂ (∆𝜙)

∂ 𝑡
+ V⃗⃗ 𝑚 ∙ ∇𝑆(∆𝜙)  = 0,  (15) 

where 𝑉⃗ 𝑚 =
1

2
(𝑉⃗ + + 𝑉⃗ −) is the mean velocity and 

∇𝑆(∆𝜙) = 𝑉⃗ + + 𝑉⃗ − is the surface gradient of the potential 

discontinuity, which is equal to the velocity discontinuity 

on the wake surface. Eq. 15 shows that the potential-jump 

remains constant following a fluid particle moving on the 

wake with the velocity 𝑉⃗ 𝑚. The Kutta condition states that 

the velocity must remain bounded at a sharp edge: 

|∇𝜙| < ∞.   (16) 

2.5 Integral equation 

Applying Green’s second identity and using the Morino’s 

formulation (Morino & Kuo, 1974), we obtain the integral 

representation of the perturbation potential at a point 𝑝 of 

the body surface, 

2𝜋𝜙(𝑝, 𝑡) − ∬ [𝐺(𝑝, 𝑞)
∂𝜙

∂𝑛𝑞
−  𝜙(𝑞, 𝑡)

∂𝐺

∂𝑛𝑞
] 𝑑𝑆 =

𝑆𝐵∪𝑆𝐻

∬ ∆𝜙(𝑞, 𝑡)
∂𝐺

∂𝑛𝑞
𝑑𝑆 

𝑆𝑊
,  (17) 

where 𝐺(𝑝, 𝑞) = −1 𝑅(𝑝, 𝑞)⁄ , 𝑅(𝑝, 𝑞) is the distance 

between the field point 𝑝 and the point 𝑞 on the boundary 

𝑆 =  𝑆𝐵 ∪ 𝑆𝐻 ∪ 𝑆𝑊. The solution of Eq. 17 determines 

𝜙(𝑞, 𝑡) on 𝑆𝐵 ∪ 𝑆𝐻, with ∂𝜙 ∂𝑛𝑞⁄  known from Eq. 9. The 

Kutta condition, Eq. 16, yields the additional relationship 

between the dipole strength ∆𝜙(𝑞, 𝑡) in the wake and the 

surface dipole strength at the blade trailing edge and is 

applied in the form of pressure continuity at the trailing 

edge. (Baltazar & Falcão de Campos, 2009) 

2.6 Velocity, pressure and forces 

From the potential flow solution on the surface the velocity 

components can be calculated by surface differentiation. 

The pressure coefficient comes from Bernoulli equation 

and can be written as: 

𝐶𝑃 =
𝑝−𝑝∞

1 2⁄ 𝜌𝑈∞
2 = 1 − (

|𝑉|

𝑈∞
)
2

, 

where 𝑝∞ is the pressure of the undisturbed flow. 

The inviscid axial force 𝑇𝑖  and the torque 𝑄𝑖 on the rotor 

are calculated from the pressure distribution on the blade 

surfaces: 

𝑇𝑖 = ∬ 𝑝𝑛𝑥𝑑𝑆
𝑆𝐵

, 

𝑄𝑖 = ∬ 𝑝(𝑛𝑦𝑧 − 𝑛𝑧𝑦)𝑑𝑆
𝑆𝐵

. 

As in the lifting line theory, the quantities used to express 

the performance characteristics are the dimensionless 

power coefficient, axial force coefficient and the tip speed 

ratio. (Baltazar & Falcão de Campos, 2011) 

3. IMPLEMENTATION 

3.1  Numerical model 

Lifting line discretization 

As it is described in (Sousa, 2018), the lifting line is a finite 

vortex where the intensity is changing from hub to the tip. 

When translating this behaviour in terms of numerical 

model, the lifting line is discretized in 30 different smaller 

consecutive segments with constant value of circulation Γ𝑖, 

so the intensity of it will change by steps and not 

continuously. The point at the center of the segments are 

called control point 𝑟𝑖 and the ones that bound them are 

called end point 𝑟𝑗 . The control points are set closer to the 

tip because this is the region where the greatest gradients 

of circulations are expected. The distribution of the points 

follows a half-cosine distribution. 

Induced velocities 

The induced velocities due to the bound and the trailing 

vortices come from the Biot-Savart law and they can be 

written as linear combinations of the circulation as 

follows: 

𝑣𝑎,𝑡𝑖 = ∑ 𝐶𝑎,𝑡𝑖𝑗Γ𝑗
𝑀
𝑗=1 .  (18) 

The 𝐶𝑎,𝑡𝑖𝑗 are the axial and tangential influence coefficients 

matrices ad they can be computed with 2 different 

methods. 

When the wake is helicoidal because the alignment scheme 

is not applied, it is enough to compute the induced 

velocities at the lifting line, and this can be done through 

the analytical expressions of Lerbs (1952). When the wake 

is aligned with the fluid local velocity a numerical 

integration routine implemented in Melo (2016) can be 

used.  

Optimization 

The optimization procedure is the one that allows to find 

the optimum circulation distribution from which the 
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design can be done, choosing a lift coefficient and having 

the induced velocities distributions. The optimum 

distribution is the one that leads to the maximum power 

coefficient 𝐶𝑃 for a given loading. 

Classical optimization 

As already explained in (Sousa, 2018), the optimum 

circulation distribution with this optimization is obtained 

when: 

(tan 𝛽𝑖)𝑖

(tan 𝛽)𝑖
= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 (𝑙) for 𝑖 = 1,… ,𝑀 . (19) 

This condition comes from the assumption that, with 

inviscid and uniform inflow, the loss of kinetic energy is 

minimized in the far wake where the induced velocities 

must follow the conditions 𝑣𝑎 ≪ 𝑈 and 𝑣𝑡 ≪ 𝜔𝑟 (lightly 

loaded turbines). 

The classical optimization system, after manipulating 

some of the equations is the following: 

∑ (𝐶𝑎𝑖𝑗
+

𝑙

𝑟𝑖̅
𝐶𝑡𝑖𝑗

) Γ𝑗 + 𝑙𝜆 = 1𝑀
𝑗=1  for 𝑖 = 1,… ,𝑀,  (20) 

𝐶𝑇0
=

2𝑍

𝜋
∑ {(𝜆𝑟𝑖̅ + 𝑣𝑡𝑖)(1 + 𝜀𝑖(tan𝛽𝑖)𝑖)Δ𝑟𝑖Γ𝑖},

𝑀
𝑖=1  (21) 

where the 𝑀 equations allow to find the circulation 

distribution and the imposed loading  𝐶𝑇0
 expression 

allows to close to system in order to be able to get the 

constant 𝑙 too. The value of 𝐶𝑇0
 is changed multiple times 

until the maximum power coefficient 𝐶𝑃 is obtained. 

Discretization in the Panel code 

As explained in (Baltazar & Falcão de Campos, 2011) for 

the numerical solution of the integral eq. 17 we discretise 

all the surfaces. The grid of the blade and hub and the initial 

grid on a rigid wake is generated by a ProPanel code.  

The turbine blade surface is discretised in the spanwise 

radial direction by a set number of strips, extending 

chordwise from the blade leading edge to the trailing edge. 

Cosine spacing in the radial and chordwise directions is 

used. 

The blade wake surface is discretised in the spanwise 

direction extending downstream from the trailing edge the 

corresponding strips on the turbine blade previously 

defined. The pitch both at the trailing edge and at the 

ultimate wake section is set as the aerodynamic pitch 

coming out from the design conducted through the lifting 

line code and the wake obtained is perfectly helicoidal.  

Solution of the integral equation 

The integral equation, Eq. 17, is solved by the collocation 

method with the element center point as collocation point. 

We assume a constant strength of the dipole and source 

distributions on each element. The influence coefficients 

are determined analytically using the formulations of 

(Morino & Kuo, 1974). To reduce the computation time, far 

field formulas are also used in the calculation of the 

influence coefficients. The linear system of equations is 

solved with a direct method (low triangular matrix and 

upper triangular matrix factorization). 

The integral equation is solved through the in-house IST 

panel code called PROPAN. The output of the code is the 

wake geometry aligned with the local velocity, the 

circulation distribution, the thrust and power coefficients. 

Moreover, using a post processing code the pressure 

distribution in any blade section and the aerodynamic 

pitch at any radial or axial sections are found. 

Kutta condition 

The value of the dipole strength at the blade trailing edge 

∆𝜙 is determined by the application of a Kutta condition. 

An iterative pressure Kutta condition is applied stating 

that the pressure is equal on the collocations points of the 

panels of the two sides adjacent to the trailing edge. At this 

point, the non-linear system of equations can be solved 

applying the method of Newton and Raphson (Skaflestad 

& Taylor, 2006), and the dipole strength at the blade 

trailing edge is found. 

3.2 Convergence analysis 

Numerical methods like the ones used in the lifting line 

theory and the panel method inevitably bring some errors 

with them: round off error, iterative error and 

discretization error. 

The discussion on the errors is based on the panel method 

code, PROPAN. The circulation distribution, the optimum 

loading and the power coefficient are the variables 

computed for the analysis. Moreover, the geometry of the 

wake is continuously monitored through the software 

TecPlot  in order to obtain the smoother geometry possible 

to be used in the lifting line code as input. 

Wake alignment sections 

The alignment in the panel method code was tested with 

different combinations of sections. It came out that the 

power and thrust coefficients variations get below 2% 

once the number of sections exceeds five (see Figure 4). 

The combination of sections chosen expressed in axial 

dimensionless coordinates is {0, 0.05, 0.2, 1, 2}. 

0.45
0.47
0.49
0.51
0.53
0.55
0.57
0.59
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C
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ci
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t

Number of wake aligment sections

Figure 4: Convergence of the power coefficient changing 
the number of wake alignment sections. 
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Wake alignment iterations 

The panel method code is let to run with different numbers 

of wake alignment iterations, going from 1 up to 10.  

It was noticed that once the number of iterations exceeds 

5 the differences in term of thrust and power coefficients 

get below 0.5% and for this reason it was considered good 

enough for our purposes (see Figure 5). 

Number of panels per revolution 

One last analysis was conducted using different number of 

panels per revolution of the wake. 40 as number of panels 

per revolution bring to a variation in the coefficients below 

0.5% and for this reason it was considered a reasonable 

number of panels to consider (see Figure 6). 

 

Figure 6: Convergence of the power coefficient changing 
the number of panels per revolution. 

4. RESULTS 

4.1 Issues in the computational procedure 

During the computational procedure two main issues were 

encountered. The first problem encountered happens 

when the alignment of the wake is done using the PROPAN 

code. In fact, at around 60% of the blade length there are 

distortions in the wake obtained and to deal with this it 

was proposed to remove some of the strips for the 

computation of the induced velocities, adding a 

interpolation error that does not have any influence on the 

thrust and power coefficients calculations. 

The second issue happens once the second and third 

designs iterations have to be done using the lifting line 

code. The original idea was to use the Lagrange multiplier 

method instead of the classical optimization but this was 

bringing to a weird circulation distribution, clearly wrong. 

The reason why the circulation obtained is distorted must 

be related with the transpose influence coefficients 

matrices. For the reason explained it was decided to use 

the classical optimization even in the second and third 

design iteration. 

4.2 Inviscid results 

In Figure 7 the circulation distributions for the three 

design iterations are shown and it is possible to notice that 

the differences between the second and the third design 

are very small, suggesting convergence behaviour. 

 

Figure 7: Circulation distribution for the three design 
iterations – inviscid case. 

It is now possible to choose an angle of attack and a lift 

coefficient and the pitch and chord distributions can be 

found (Figure 8 and Figure 9). They both have the expected 

trend and the differences from the second to the third 

design are very small, in the order of about 2%, suggesting 

once again that the convergence in the design is being 

reached. 

 

Figure 8: Pitch distribution for the three design 
iterations– inviscid case. 
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Figure 9: Chord distribution for the three design 
iterations – inviscid case. 

In Table 1 it is shown the convergence of the power 

coefficient, keeping the thrust coefficient constant. It is 

possible to notice the increase of the power coefficient 

especially when going from the first design iteration to the 

second one, this leads to the conclusion that once the wake 

is aligned the power coefficient gets considerably  higher, 

although the thrust coefficient keeps the same value. 

Lifting line code ProPan code 

CT = 0.804; CP = 0.520 CT = 0.808; CP = 0.564 

CT = 0.804; CP = 0.560 CT = 0.771; CP = 0.555 

CT = 0.804; CP = 0.562  

Table 1: Convergence of thrust and power coefficients – 
inviscid case. 

The wakes could be drawn and it is possible to notice that 

with the first design the wake is perfectly helicoidal 

(Figure 10) and then in the second (Figure 11) and in the 

third design (Figure 12) the wake is aligned with the local 

velocity of the flow because the wake obtained though the 

panel method code is used as input in the next lifting line 

design iteration. 

 

Figure 10: Helycoidal wake – inviscid case. 

 

Figure 11: First aligned wake – inviscid case. 

 

Figure 12: Second aligned wake – inviscid case. 

To prove the folding behaviour from a more analytical 

point of view, a post processing code that uses the wake as 

input and give the pitch distribution as output is used. The 

distribution of the pitch at the lifting line is obtained 

through the lifting line optimization and it is constant since 

the optimization procedure used is the classical one. When 

looking at the distributions at different axial sections 

(Figure 13) it is possible to see that the pitch tends to 

increase approaching the tip, unlike Sousa’s results where 

in the sections close to the rotor plane the pitch was 

decreasing close to the tip. The yellow line in the graph, 

unlike the orange and grey ones, shows that the behaviour 

of the pitch tends to be constant from 15% to 80% of the 

blade length at the alignment section 𝑥 𝑅⁄ = 1.  

 

Figure 13: Radial distribution of the pitch – inviscid case. 

It is interesting to show not only the radial pitch 

distribution at different axial sections but also how the 

pitch at a given radial coordinate evolves going 

downstream, this is represented in Figure 14. Although 

some initial fluctuations from the trailing edge to 𝑥 𝑅⁄ =

0
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0.8 it is possible to conclude that the wake tries to keep a 

constant value of the pitch for each radial position, this 

makes total sense because we are moving in the far wake 

region. 

 

Figure 14: Axial distribution of the pitch. 

The discussion of the results for the inviscid case finally 

ends showing the pressure distribution at 3 different 

radial sections (Figure 15). The pressure varies in the 

chordwise direction as shown, the regions of lower and 

upper pression are easily recognizable and the shape of the 

graphs obtained is fully coherent with the ones coming 

from the work of (Hogan, 2010).  

 

Figure 15: Pressure distribution at three different radial 
sections. 

4.3 Viscous results ( 𝜀 = 0.01) 

The circulation distributions of the second and third 

design are very similar, as it happens in the inviscid 

situation. It falls drastically down to zero after 80% of the 

blade length and the classical optimization is used. 

The second and third design graphs of blade pitch and 

chord  show high similarity again, as it happens in the 

inviscid case and the explanation of the trends is exactly 

the same. 

In the same way as done for the inviscid case procedure, 

the power coefficient is optimized in the first design and 

the corresponding thrust coefficient is used from that 

moment on when the lifting Line design occurs. The 

PROPAN code analysing the turbine gives as output the 

thrust and power coefficients that are not interesting for 

us since the PROPAN calculation work in such a way that is 

not able to take into account the viscous effects. In order to 

correct those coefficients the drag effects must be taken 

into account and a post processing code in which the 

distribution of drag and lift is provided as input is used: the 

thrust coefficient does not really change but the power 

coefficient does and it gets lower, approaching the one 

found with lifting line optimization. In fact, in the second 

cycle the power coefficient is 0.513 and the one found 

through viscous corrections is 0.529. Again, the 

convergence in terms of power coefficient is achieved: 

when the third lifting line optimization is made the power 

coefficient is 0.519, value very close to the second design 

power coefficient (0.513). All the values of thrust and 

power coefficients are reported in Table 2. 

Lifting line 

code 

PROPAN code PROPAN code 

(viscous 

effects) 

CT = 0.795 

CP = 0.483 

CT = 0.847 

CP = 0.575 

CT = 0.852 

CP = 0.532 

CT = 0.795 

CP = 0.513 

CT = 0.815 

CP = 0.570 

CT = 0.819 

CP = 0.529 

CT = 0.795 

CP = 0.519 

  

Table 2: Thrust and power coefficients – viscous case. 

The first wake is perfectly helicoidal, as it is not aligned and 

the pitch is uniform everywhere and equal to the lifting line 

one. The second and the third wakes (Figure 16) folds in 

the downstream direction at any axial alignment section as 

expected. In this case it is not possible to compare the wake 

geometries with Sousa’s results because he did not make 

any studies on the wake geometry with the viscous flow 

assumption. 

 

Figure 16: Second aligned wake – viscous case. 

Looking at the pitch distributions at many different axial 

sections (Figure 17) it is possible to confirm the folding 

behaviour of the wake, in fact the pitch keeps its value 

constant until 80% of the blade length and then it 

increases, this does not happen at the lifting line where the 

pitch is constant because of the fact that the classical 

optimization is used. 
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Figure 17: Pitch for given radial coordinates – viscous 
case. 

The pitch along the downstream direction shows again 

that after an initial phase in which the values fluctuate, 

after the coordinate to 𝑥 𝑅⁄ = 0.7  the pitch at each radial 

coordinate is almost constant, this happens because the 

transition wake is probably over and the pitch tries to 

behave as constant. 

The pressure distribution has a similar shape to the one 

shown in the inviscid situation therefore it was decided not 

to represent it here.  

4.4 Comparison of the cases 

It is possible to conclude that the thrust and power 

coefficients are lower in the case of viscous flow, where the 

lift to drag coefficient is equal to 0.01 (see Table 3). This 

was predictable from the power coefficient formula and it 

makes sense that the wind power extracted by the rotor is 

lower for the viscous case since the losses related to the 

viscosity of the flow are not neglected anymore. 

Inviscid Viscous (𝜺 = 𝟎. 𝟎𝟏) 

CT = 0.804 

CP = 0.562 

CT = 0.795 

CP = 0.519 

Table 3: Thrust and power coefficients for the inviscid 
and viscous cases 

In terms of circulation distribution, the highest difference 

for a given radial coordinate is around 1%, a similar result 

was found by (Chattot, 2003), in fact there it is stated that 

viscous correction only causes a minor effect on the 

optimum geometry of the blade. The same happens with 

the blade pitch angle distribution.  

The situation is slightly different in the case of the chord 

distribution (Figure 18), in fact the graphs are quite 

different, the variation of the two graphs is around 11% at 

every radial coordinate and the reason why this happens 

is related to the choice of the lift coefficient. The lift 

coefficient in the inviscid case is 0.94 while in the viscous 

one is 0.84 and this brings to a higher chord in the viscous 

case. 

 

Figure 18: Comparison of the design chord between the 
inviscid and viscous flow. 

5. CONCLUSIONS 

In this work the lifting line optimization procedure by 

(Sousa, 2018) is combined with a code able to analyse the 

rotor through the panel method code. The inviscid design 

of the blades is done starting from the optimum circulation 

distribution, choosing a lift coefficient and performing the 

blade design. The analysis of the rotor with specific air 

inflow conditions is carried out and a wake geometry 

aligned with the local fluid velocity is obtained that can be 

used as input in a second iteration cycle in which the lifting 

line optimization is done based on the wake geometry 

obtained with the panel method. The entire cycle may be 

repeated several times. It was noticed in fact, that after 

three lifting line optimizations the power coefficient shows 

convergence behaviour so it is possible to stop the 

iteration lifting line code – panel code. A convergence 

analysis on the panel code was conducted too, to show the 

effect of the alignment sections, the number of iterations 

and the number of panels per revolution of the wake. 

It was shown that using the combination of lifting line and 

panel method a physically acceptable result was obtained. 

With the wake alignment procedure used in this study, the 

pitch distribution has the correct trend very close to the 

rotor plane (𝑥 𝑅⁄ = 0.05). Naturally, in all the other 

alignment sections downstream the behaviour of the pitch 

distribution is the right one too with the wake folding in 

the downstream direction. 

The viscous  effect was investigated doing all the 

procedure above explained setting a drag to lift ratio equal 

to 0.01. Again, the wake geometry obtained is physically 

acceptable but when it comes to compare the design with 

the inviscid one the only remarkable difference lies on the 

chord distribution, and this comes from the choice of the 

lift coefficient that in this case must be inevitably lower, 

due to the viscous effects that are playing a fundamental 

role. 

In terms of future work there are many suggestions and 

improvements that could be done starting from the model 
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shown. First of all, we were not able to use the Lagrange 

multiplier optimization in the lifting line and this would 

have set less constraints to the optimization problem. 

More efforts have to be put on the understanding of the 

weird wake geometries obtained through the panel 

method code using specific combinations of alignment 

sections and without removing some of the radial strips. 

Also, some parametric studies would show the effects of 

different tip speed ratios and drag to lift coefficients in 

terms of thrust and power coefficient and wake geometry 

too. It would be interesting to see if going ahead with the 

iterations lifting line code – panel code the power 

coefficient would continuously converge and based on that 

the design would be done starting from the corresponding 

circulation distribution. Moreover, the design of the blade 

could be done in such a more realistic way in which the 

chord at the tip does not go to zero and the computation of 

the radial induced velocities could bring to the expansion 

of the wake. Finally, different choices of the lift coefficient 

and angle of attacks could show how the design of the 

blades would change. 
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