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Abstract

The Attitude Determination and Control System (ADCS) of a nanosatellite is a key subsystem to
provide precise attitude knowledge and pointing for the on-board payload and necessary maneuvers.
Its design has serious constraints in terms of mass, volume, size, cost and power. The main goal of
this dissertation is to provide the NANOSTAR project with a grounded study in terms of attitude
determination algorithms and sensors that can be employed in the missions designed under the scope of
the project. For that, a simulation platform that realistically describes the nanosatellite environment,
allowing orbit generation and propagation, as well as data creation to feed the ADCS was developed.
Then, three representative attitude determination algorithms, namely the Quaternion Estimator
(QUEST), the Multiplicative Extended Kalman Filter (MEKF), and a recently developed Globally
Exponentially Stable Cascade Attitude Nonlinear Observer, were studied and implemented on the
platform developed, using vector measurements provided by a star tracker, Sun sensor, magnetometer
and rate gyroscope. Finally, the comparison of the three algorithms in terms of computational
resources efficiency, steady-state performance and performance in the case of faults is done, using
realistic simulation scenarios. The results obtained provide meaningful insight on the advantages,
disadvantages, complexity, computational resources efficiency and performance of the three algorithms,
providing the project with a grounded analysis that can be used for future decision making in terms of
the ADCS design.
Keywords: Attitude Determination, Nanosatellite, Deterministic Methods, Kalman Filter, Nonlinear
Observer

1. Introduction
1.1. Motivation and Goals

The trend in satellites, present in the last
decades, to do more for less cost, having smaller,
cheaper, faster and better space missions, has led
to the decrease of spacecraft sizes, accompanied by
strict mass, volume, power and cost constraints.
The segment of nanosatellites is of particular in-
terest, with the highlight going to the CubeSats.
Nanosatellite missions objectives [2] range from
technology demonstration and operational use, to
university programs providing ”hands-on” experi-
ence. The Attitude Determination and Control Sys-
tem (ADCS) is a key subsystem of a nanosatellite to
provide precise pointing for the on-board payloads
and maneuvers. Nowadays nanosatellites have its
ADCS composed of miniaturized and novel pre-
cise attitude sensors and actuators and proper at-
titude determination algorithms and active control
schemes.

The work done was under the scope of the
NANOSTAR Project [14]. NANOSTAR is a collab-
orative project, funded by the Interreg Sudoe Pro-
gramme through the European Regional Develop-

ment Fund (ERDF), among universities, aerospace
clusters and ESA Business Incubation Centers,
from Southern Europe. The project aims at pro-
viding students with the experience of a real space
engineering process that includes all stages, from
conception and specifications, to design, assembly,
integration, testing and documentation. The train-
ing on technology of nanosatellites is to be pro-
vided through several design, development and test-
ing student challenges. To date, two nanosatellite
space mission preliminary design challenges were
launched, one that consists in a mission around the
Moon, and the other around the Earth. The two
missions referred need to guarantee the pointing
of its payload, hence a detailed design and test-
ing challenge for the ADCS of the two missions
was recently launched. Therefore, this work pro-
poses to: 1) Select a sensor suite adequate for both
missions; 2) Create a reliable simulation platform
that realistically simulates the spacecraft’s envi-
ronment, allowing orbit generation and propaga-
tion, as well as data creation to feed the ADCS;
3) Study, adapt and implement three representa-
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tive attitude estimation algorithms: the Quaternion
Estimator (QUEST), the Multiplicative Extended
Kalman Filter (MEKF), and a recent Globally Ex-
ponentially Stable Cascade Attitude Nonlinear Ob-
server and 4) Analyze and compare the three al-
gorithms in terms of computational resources effi-
ciency and performance in various realistic simula-
tion scenarios. Ultimately, this work must use the
estimation algorithms to solve the problem of atti-
tude estimation in conditions representative of the
two missions, giving meaningful insight on the ad-
vantages, disadvantages, computational resources
efficiency and performance of the three algorithms,
providing the project with a grounded analysis that
can be used for decision making in terms of the
ADCS system design.

1.2. Literature Review

Some of the earliest solutions to the attitude es-
timation problem are deterministic methods that
provide algebraic solutions based on two or more
measurements taken at the same time. Among
these solutions, the TRIAD algorithm was the first,
but it was only able to use two measurements.
Fighting this limitation, Grace Wahba formulated
a general criterion for attitude determination using
two or more measurements [16], that led to sev-
eral alternative solutions [11, 10, 15] such as Dav-
enport’s q-method, QUEST algorithm and SVD al-
gorithm.

Other solutions try to find the best estimate of
the true attitude using dynamical models and mea-
surements, both corrupted by noise and uncertain-
ties. From these approaches, the ones based on
Kalman filtering [6], may be highlighted. Since
the models involved are nonlinear, the Extended
Kalman Filter (EKF) is used to address nonlinear
estimation problems [7]. The EKF earned then a
reputation, becoming the most used method to de-
termine the attitude of a spacecraft. EKF solutions
come in several forms, such as the Additive EKF
(AEKF) or the Multiplicative EKF (MEKF) [8].

However being a very powerful estimation tech-
nique, the EKF estimators do not give guarantees of
optimality, stability or convergence and other non-
linear approaches rose in the attempt to overcome
poor performance or even divergence arising from
the linearization implicit in the EKF. Some of those
alternatives are well documented in [3]. Unscented
filters [5], particle filters, the two-step optimal esti-
mator [4], predictive and adaptive approaches, and
nonlinear observers should be highlighted.

2. Theoretical Background
2.1. Attitude Representations

The spacecraft attitude is the orientation of the
spacecraft body frame B, with respect to an inertial
reference frame I. This orientation may be repre-

sented or parameterized in various forms. Among
the most representatives are the rotation matrix be-
longing to the Special Orthogonal group SO(3), the
quaternion, adopting the convention of references
[9, 10] and the Euler Angles. The asymmetric Eu-
ler angle sequence 3-2-1, was chosen to be the Euler
angles sequence of reference, following the notation
present in [10].

2.2. Reference Frames

A frame is specified by its origin and the orien-
tation of its coordinate axes. In this work, the ap-
proximately inertial Earth-Centered Inertial Frame
(ECI), denoted by I = {i1, i2, i3} is used as the in-
ertial reference frame. It has its origin at the center
of mass of the Earth and the axes aligned with the
mean North Pole and mean vernal equinox at some
epoch. The spacecraft body frame considered, de-
noted by B = {b1, b2, b3}, has its origin at the cen-
ter of mass of the satellite and its axes rotating with
the spacecraft. The b3 axis is aligned in the direc-
tion of the main scientific payload, b1 is aligned with
the normal to the bottom plate of the satellite, and
b2 completes the right-handed system.

2.3. Attitude Kinematics and Dynamics

Assuming the attitude is parameterized by a
quaternion, the following equations are enough to
model the rotational motion of the satellite rigid
body:

Ḣc
I = LcI (1a)

Hc
B = A(qBI)Hc

I (1b)

ωBIB = (JcB)−1Hc
B (1c)

q̇BI =
1

2
ωBIB ⊗ qBI (1d)

where qBI is the quaternion that rotates from frame
I to B, A(qBI) is the rotation matrix formed from
qBI , H is the angular momentum, J is the moment
of inertia tensor, L is the external net torque, ωBIB
is the angular velocity of frame B with respect to
frame I, mapped in frame B, and ⊗ is the quater-
nion multiplication as defined in [10]. The external
torques are composed by intentional control torques
and by disturbance torques from different sources.

3. Attitude Determination Methods

This section documents the theory underlying the
attitude determination methods that are the focus
of this work.

3.1. Quaternion Estimator (QUEST)

The QUEST algorithm is a solution to a prob-
lem posed in 1965 by Grace Wahba [16]. Wahba’s
problem is to find the orthogonal matrix A with
determinant +1 that minimizes the following loss
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function:

L(A) =
1

2

N∑
i=1

ai||bi −Ari||2 (2)

where bi and ri are respectively unitized measure-
ments in the body and inertial frames and ai are
non-negative weights.

The loss function of equation 2 can be written in
the quaternion form as:

L(A(q)) = λ0 − qTK(B)q (3)

with:

λ0 ≡
N∑
i=1

ai, B ≡
N∑
i=1

aibir
T
i , (4a)

K(B) =

[
S− tr(B)I3 z

z
T tr(B)

]
(4b)

S = B+BT , z =

B23 −B32

B31 −B13

B12 −B21

 (4c)

The minimization of L(A(q)) is achieved by find-
ing the solution q̂ of the characteristic-value prob-
lem:

Kq̂ = λmaxq̂ (5)

where λmax is the largest eigenvalue ofK. Thus the
central part of the QUEST algorithm is the compu-
tation of λmax. This is achieved by application of
the Newton-Raphson method to the characteristic
polynomial of K, with initial estimate λ0:

Ψ(λ) = det(λI4 −K) (6)

being a single iteration generally sufficient. For
QUEST, this polynomial has the form:

0 = [λ2 − (tr(B))2 + κ][λ2 − (tr(B))2−
||z||2]− (λ− tr(B))(zTSz+ detS)− zTS2

z

with κ ≡ tr(adj(S)), and adj( ) the adjoint matrix.

3.2. Multiplicative Extended Kalman Filter
(MEKF)

One traditional MEKF implementation onboard
of satellites, and the one used in this work, is the 6-
state EKF presented in [10], that estimates the cur-
rent attitude and gyroscope biases simultaneously.
The MEKF is formulated in terms of the error es-
timation, following the normal approach of EKF.
MEKF uses the quaternion nonsingular represen-
tation for a reference attitude, and a three com-
ponent representation for the deviations from this
reference, representing the true quaternion as the
product of an error quaternion δq and the estimate
q̂:

q = δq(δϑ)⊗ q̂ (7)

where δϑ is an attitude parameterization called ro-
tation vector useful for representing small attitudes.

The 7-component global state vector x and the
6-component state error vector ∆x are:

x ≡
[
q
β

]
∆x ≡

[
δϑ
∆β

]
(8)

where β is the gyro bias and ∆β the bias error
defined as ∆β ≡ β − β̂.

The continuous-time linearized MEKF error dy-
namic model and linearized error discrete measure-
ment model are given by:

∆ẋ(t) = F(t)∆x(t) + G(t)w(t) (9a)

υk = Hk∆xk + vk (9b)

where k represents a quantity at time k, υk = yk −
ŷk is a measurement residual, w(t) ∼ N(0,Q(t)) is
a process noise vector, vk ∼ N(0,Rk) is a measure-
ment noise vector and:

F(t) =

[
−
[
ω̂(t)×

]
−I3

03×3 03×3

]
,G(t) =

[
−I3 03×3
03×3 I3

]
(10)

Q(t) =

[
σ2
vI3 03×3

03×3 σ2
uI3

]
,Hk(x̂−k ) =



[
b̂
−
1 ×
]

03×3[
b̂
−
2 ×
]

03×3

...
...[

b̂
−
N×
]

03×3


tk

(11)
where ω̂ is the estimated angular rate, and a con-
tinuous time model for the angular rate is provided
by the gyro:

ωm(t) = ω(t) + β(t) + ηv(t) (12a)

β̇(t) = ηu(t) (12b)

where ω(t) is the true rate, ωm(t) is the measured
rate, β(t) is the true bias or drift, and ηv(t) and
ηu(t) are independent zero-mean Gaussian white-
noise processes, with standard deviations σv and
σu, respectively.

The MEKF implementation proceeds by iteration
of three steps: 1) the measurement update, follow-
ing from Kalman filter and EKF formulation; 2) the
reset , that moves the updated information from the
error state ∆x+ to the global state x− and resets
the components of the error state to zero, according
to:

q̂+ = δq(δϑ̂+)⊗ q̂− (13a)

β̂+ = β̂− +∆β̂+ (13b)

and 3) the propagation step. In the propagation
step, there is only need to propagate the state x̂,
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but not the errors, which are null. This is done
resorting to equation:

˙̂q =
1

2
Ω(ω̂)q̂ (14)

with:

Ω(ω̂) ≡
[
−
[
ω̂×
]
ω̂

−ω̂T 0

]
(15)

The covariance propagation is performed using the
typical Kalman formulation.

An MEKF variation of this filter is used based on
an algorithm developed by Murrell [13], where each
vector observation is processed at a time, reducing
the computationally complexity of the algorithm.

3.3. GES Cascade Observers
On [1], the authors presented the design, analy-

sis, and performance evaluation of a novel cascade
observer for attitude and bias estimation. The ob-
server presented in that reference has globally ex-
ponentially stable (GES) error dynamics, is com-
putationally efficient, is based on the angular mo-
tion kinematics, which are exact, builds on well-
established Lyapunov results, explicitly estimates
rate gyro bias and copes well with slowly time-
varying bias, and has a complementary structure,
fusing low bandwidth vector observations with high
bandwidth rate gyro measurements. That solution
was implemented in this work.

In the design of this observer, a sensor-based ap-
proach is performed. The filter is designed directly
in the space of the sensors, and afterwards, using fil-
tered estimates of the observations, the attitude can
be determined. As the filtering occurs prior to the
determination of attitude, the rotation matrix may
be used as the attitude parameterization, which is
unique, without singularities, and where topological
restrictions on SO(3) for achieving global asymp-
totic stability no longer apply and unwinding phe-
nomena does not occur [12]. The sensor measure-
ments are included directly in the system dynamics,
and the kinematics are propagated using the angu-
lar velocity provided by a gyroscope.

Considering the rotation matrix A(t) ∈ SO(3),
from {B} to {I}, the attitude kinematics are given
by:

Ȧ(t) = A(t)S(ω(t)) (16)

where ω(t) ∈ R3 is the angular velocity of {B}, ex-
pressed in {B}, and S(x) is the skew-symmetric ma-
trix such that S(x)y = x×y. Assuming that a vec-
tor observation measurement b1 ∈ R3 is available,
in body frame coordinates, of a known constant vec-
tor quantity r1 ∈ R3 in inertial coordinates:

r1 = A(t)b1(t) (17)

then, its dynamics are:

ḃ1(t) = −S(ω(t))b1(t) (18)

Considering the gyro model with constant bias:

ωm(t) = ω(t) + β(t) (19)

then, the system dynamics, extended for N vector
observation measurements, may be written as:

ḃ1(t) = −S(ωm(t))b1(t)− S(b1(t))β(t)
...

ḃN (t) = −S(ωm(t))bN (t)− S(bN (t))β(t)

β̇(t) = 0

(20)

Bias Observer
The following design is based on the assumption

that there exist at least two non-collinear reference
vectors, i.e., there exist i and j such that ri×rj 6= 0
(from now on referred as Assumption 1). Assump-
tion 1 is necessary for attitude estimation. Using
the system dynamics of equation 20 the bias ob-
server is given by:

˙̂
b1(t) = −S(ωm(t))b̂1(t)− S(b1(t))β̂(t) + α1b̃1(t)
...
˙̂
bN (t) = −S(ωm(t))b̂N (t)− S(bN (t))β̂(t) + αN b̃N (t)
˙̂
β(t) =

∑N
i=1 γiS(bi(t))b̃i(t)

(21)

where i = 1, ..., N , b̃i(t) ≡ bi(t)− b̂i(t), are the er-
rors of the vector observation estimates, and αi, γi,
are positive scalar constants. Under Assumption 1,
the origin of this Bias Observer error dynamics is
a GES equilibrium point. Proof for this statement
may be found in Section 3.1 of [1].

Attitude Observer
The following design is made on the assumption

that the matrix
[
r1 . . . rN

]
∈ R3×3N has full rank

(from now on referred as Assumption 2), which,
given a set of reference vectors that satisfy Assump-
tion 1, it is always possible: If ri ∈ R3 and rj ∈ R3

denote two non-collinear reference vectors, then, the
set {ri, rj , ri × rj} satisfies Assumption 2.

Considering an alternative column representation
of the rotation matrix A(t) given by:

χ2(t) =

z1(t)
z2(t)
z3(t)

 ∈ R9 , A(t) =

zT1 (t)
zT2 (t)
zT3 (t)

 (22)

Under Assumption 2 and knowing the rate gyro
bias, the following dynamics take place:

χ̇2(t) = −S3(ωm(t)− β(t))χ2(t) (23)

where:

S3(x) ≡ diag(S(x),S(x),S(x)) ∈ R9×9 (24)
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Using 17, the vector observations can be written as
a function of χ2(t) by:

b(t) = C2χ2(t) (25)

with:

C2 =



r11 0 0 r12 0 0 r13 0 0
0 r11 0 0 r12 0 0 r13 0
0 0 r11 0 0 r12 0 0 r13

...
rN1 0 0 rN2 0 0 rN3 0 0
0 rN1 0 0 rN2 0 0 rN3 0
0 0 rN1 0 0 rN2 0 0 rN3


∈ R3N×9

(26)
The attitude observer can then be given by:

˙̂χ2(t) = −S3(ωm(t)− β(t))χ̂2(t) + CT
2 Q
−1[b(t)−C2χ̂2(t)]

(27)
where Q = QT ∈ R3N×3N is a positive definite ma-
trix. With knowledge of the rate gyro bias and un-
der Assumption 2, the origin of this attitude ob-
server error dynamics is a GES equilibrium point.
Proof for this statement may be found in section
3.2 of [1].

Cascade Observer
The cascade observer feeds the attitude observer

with the bias estimate provided by the bias ob-
server. The full cascade observer becomes:

˙̂
b1(t) = −S(ωm(t))b̂1(t)− S(b1(t))β̂(t) + α1b̃1(t)
...
˙̂
bN (t) = −S(ωm(t))b̂N (t)− S(bN (t))β̂(t) + αN b̃N (t)
˙̂
β(t) =

∑N
i=1 γiS(bi(t))b̃i(t)

˙̂χ2(t) = −S3(ωm(t)− β̂(t))χ̂2(t) + CT
2 Q
−1[b̂(t)−C2χ̂2(t)]

(28)
where, for performance purposes, particularly in the
presence of sensor noise, the vector estimate b̂(t)
provided by the bias observer is used in feedback.
The origin of this cascade observer error dynamics is
a GES equilibrium point. Proof for this statement
may be found in sections 3.3 and 3.4 of [1].

4. Implementation
The simulation environment developed aims at

realistically describe the conditions felt by the
spacecraft. It is composed of an environment
model, that simulates the position of other celestial
objects and disturbance effects on the acceleration
and torque of the spacecraft, a dynamic model that
simulates the effects of forces and torques on the
nanosatellite, propagating its orbit and attitude, a
suite of sensor models that calculate the sensors
outputs, and, finally, the implementation of the es-
timation algorithms proposed.

The sensor suite assumed available onboard for
purposes of attitude determination is composed by
a rate gyroscope, a Sun sensor, a magnetometer
and a star tracker. The sensor characteristics se-
lected are those of the ST-16 star tracker from

Sinclair Interplanetary, the RM3100 magnetome-
ter from PNI Corp, the Fine Digital Sun Sensor
from New Space systems and the LN-200S gyro-
scope from the Northrop Grumman. Sensors char-
acteristics are presented in Table 1.

Sensor Freq. Noise Std. Dev.

Gyroscope 100 Hz σv = 1.18× 10−2 ◦/s

σu = 2.78× 10−4 ◦/s

Magnetometer 100 Hz σmag = 30nT

Sun sensor 100 Hz σss ≈ 1.70× 10−3rad

Star tracker 10 Hz σstar = 3.59× 10−4rad

Table 1: Sensor characteristics.

For simulation purposes, the QUEST algorithm,
the MEKF and the GES Nonlinear Observers
were implemented, operating at 10Hz, 100Hz and
100Hz, respectively. For discrete implementation,
the dynamical system 28 was discretized using the
first-order Euler method, with the right side of the
system subject to sample-and-hold. Observer pa-
rameters were tuned to achieve a balance between
estimation error and convergence. The parameters
αi = 1 , i = 1, ..., N , γi = 0.016 , i = 1, ..., N and
Q = 0.03 were used.

4.1. Computational Resources Efficiency Analysis
One way to quantify the computational complex-

ity of an algorithm is to count FLOPs. The num-
ber of FLOP needed to run each of the three algo-
rithms was analyzed and compared. Filter opera-
tion with the rates selected and with four available
vector measurements, namely the Sun sensor mea-
surement and the three star tracker measurements,
was considered, reaching the values presented in Ta-
ble 2.

QUEST MEKF NL Observer

FLOPs 3010 296500 122900

Table 2: Required FLOPs for the three filters oper-
ation.

5. Results
The implemented algorithms were tested in the

realistic environment created with different simula-
tion case scenarios. Some characteristics are com-
mon: The satellite dynamics and kinematics are
simulated in continuous-time, while the attitude de-
termination methods are run in discrete-time; The
solver used is the fixed-step eighth order Dormand-
Prince method with a fixed time-step of 0.01 s; It is
assumed that the satellite has been detumbled be-
fore the attitude estimation begins and no control
torque is applied during the simulations; The true
attitude is assumed to be the one generated by the
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simulator, which is considered reality in the simula-
tion. Two different orbits were used to perform the
simulations. Orbit 1 was selected as a Geostation-
ary Transfer Orbit (GTO) and orbit 2 is a typical
Low-Earth Orbit. Implications of these two orbits
essentially differ on the acceleration and torque per-
turbations present, and on the availability of the
magnetometer sensor, which is not available in or-
bit 1. All other sensors are available in both orbits.

Case 1

Case 1 aimed at comparing the three atti-
tude determination algorithms implemented,
with all the sensors available. The true initial
attitude was defined as the identity quater-
nion q0 = [0, 0, 0, 1]T and the initial bias
was β0 = π

180 [−0.02, 0.03, −0.01]T rad s−1.
The angular rate followed ω =
π

180 [0.1 cos( 2π
200 t), 0.15 cos( 2π

180 t), 0.05 cos( 2π
200 t)]

T

rad/s. The MEKF and NL observer were ini-
tialized with a considerable attitude and bias
estimation error. The initial attitude estimate was
q̂0 = [6.0692 × 10−02, 6.9371 × 10−01, 6.0692 ×
10−02, 7.1512 × 10−01]T , corresponding to an
initial attitude estimation error in terms of Euler
angles of δφ = 80◦, δθ = 80◦ and δψ = 80◦. The
initial bias estimate was β̂0 = [0, 0, 0]T rad s−1,
corresponding to a initial bias estimation error of
||∆β̂0|| = 134.70 ◦ h−1, in magnitude. The initial
covariance matrix for the MEKF was defined
as P0 = diag(100, 100, 100, 10, 10, 10), reflecting
the uncertainty of the initial estimates. The NL
observer estimates for the measurements were
initialized as zero, and the observer parameters
were tuned as stated before.

The three algorithms ran in parallel, in a simula-
tion of 3600s. The detailed evolution of the angular
estimation error, represented as Euler angles, after
the initial transient faded out, for orbit 1, is pre-
sented in figure 1, and the root-mean-square errors,
for the simulation of the two orbits, are available in
Table 3.

The initial convergence of the angular estimation
error, for the simulation in orbit 1 is represented
in figure 2, and the detailed evolution of the bias
estimation error can be seen in figure 3.

Case 2

Case 2 aimed at studying the estimation perfor-
mance when the star tracker has a fault. The same
initial simulation conditions of Case 1 were used.
The star tracker was assumed to enter into fault at
time 1100s. After the complete failure of the sen-
sor, in the case of simulations in orbit 1, just the
Sun sensor was left available, while in the case of
simulations in orbit 2, both the Sun sensor and the
magnetometer were available. When just one mea-
surement is available, the QUEST and NL Observer

Figure 1: Detailed evolution of the angular estima-
tion error for simulation case 1, orbit 1.

Orbit 1

QUEST MEKF NL observer

φRMS (◦) 1.7214× 10−2 7.0025× 10−3 6.2568× 10−3

θRMS (◦) 2.5538× 10−2 1.0120× 10−2 1.1909× 10−2

ψRMS (◦) 5.4279× 10−3 6.8745× 10−3 6.2647× 10−3

Orbit 2

QUEST MEKF NL observer

φRMS (◦) 1.6992× 10−2 1.0059× 10−2 5.9629× 10−3

θRMS (◦) 2.3371× 10−2 1.9754× 10−2 1.1167× 10−2

ψRMS (◦) 9.6787× 10−3 9.0957× 10−3 5.9824× 10−3

Table 3: Root Mean Square of the angular estima-
tion error for the QUEST, the MEKF and the NL
observer for simulation case 1 in the interval (400s
; 3600s).

cannot run, hence, an open loop propagation takes
place starting from the last estimate of each algo-
rithm. While the propagation for QUEST was done
directly using the angular rate provided by the gyro,
for the NL observer, the same angular rate was cor-
rected using the last bias estimate of the filter. The
three algorithms ran in parallel. The detailed evo-
lution of the angular estimation error, represented
as Euler angles, with the star tracker fault happen-
ing after the initial transient faded out, for the two
orbits, is presented in figure 4, and the respective
root-mean-square errors are available in Table 4.
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Figure 2: Initial convergence of the angular estima-
tion error for simulation case 1, orbit 1.

Figure 3: Detailed evolution of the bias estimation
error for simulation case 1, orbit 1

Case 3
Case 3 aimed at studying the estimation perfor-

mance when only the star tracker was available.

(a) Orbit 1

(b) Orbit 2

Figure 4: Detailed evolution of the angular estima-
tion error for simulation case 2.

The same initial conditions of Case 1 were used. A
simulation in orbit 2 was performed where at 750s
the Sun sensor and the magnetometer suffered a
fault. From 750s to 3600s, the three estimation
filters ran only with the measurements provided by
the star tracker. The detailed evolution of the angu-
lar estimation error after the initial transient faded
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Orbit 1

QUEST MEKF NL observer

φRMS (◦) 3.4094× 101 2.3245× 10−1 6.9455× 10−1

θRMS (◦) 3.1325× 101 5.3866× 10−1 5.0615× 10−1

ψRMS (◦) 4.2578× 101 5.1819× 10−2 9.2886× 10−1

Orbit 2

QUEST MEKF NL observer

φRMS (◦) 1.2279× 10−1 1.0339× 10−2 6.0389× 10−1

θRMS (◦) 1.8045× 10−1 1.6615× 10−2 4.6671× 10−1

ψRMS (◦) 8.7629× 10−2 8.4730× 10−3 9.4055× 10−1

Table 4: Root Mean Square of the angular estima-
tion error for the QUEST, the MEKF and the NL
observer for simulation case 2 in the interval (1100s
; 3600s).

out was analyzed, and the respective root-mean-
square errors are available in Table 5.

QUEST MEKF NL observer

φRMS (◦) 1.7251× 10−2 9.5974× 10−3 4.9036× 10−3

θRMS (◦) 2.3712× 10−2 9.1414× 10−3 8.4132× 10−3

ψRMS (◦) 9.6778× 10−3 5.7051× 10−3 7.4242× 10−3

Table 5: Root Mean Square of the angular estima-
tion error for the QUEST, the MEKF and the NL
observer for simulation case 3 in the interval (750s
; 3600s).

Case 4
Case 4 aimed at studying how the 3 filters re-

sponded in a situation of re-acquisition of sensors
after a drift due to faults. The end of the simu-
lation case 2, orbit 1, is a good example of a sit-
uation where a drift leads to considerable angular
estimation errors, and was used as a starting point
for simulation in case 4. After 3600s, all the at-
titude sensors became available again. The three
algorithms ran in parallel and the evolution of the
angular estimation error, represented as Euler an-
gles is presented in figure 5.

5.1. Discussion
Case 1

The analysis of results for Case 1 may start with
the analysis of the initial transients for attitude and
bias estimation. The QUEST algorithm, owing to
its characteristics, does not have a transient period,
achieving steady state performance from time 0s.
The MEKF achieves steady state for the three Eu-
ler angles before time 50s. The NL observer has
shown to be the algorithm with the biggest tran-
sient, needing 300s to achieve its steady state per-

Figure 5: Detailed evolution of the angular estima-
tion error for simulation case 4 with sensors reac-
quisition at 3600s.

formance. Contrary to what happens in terms of at-
titude convergence, the NL observer bias estimation
shows to converge to zero, in less than 100s, which
is faster than the MEKF bias estimation, which re-
quires at least 200s to reach the same values. It
is important to note that Case 1 simulates extreme
conditions in terms of initial angular and bias es-
timation errors, which do not affect the QUEST
estimates but have impact in the transient period
for the MEKF and NL observer. A different tuning
for the initial covariance, and for the observer pa-
rameters may translate in faster transients for the
two algorithms. However, even with extreme con-
ditions, the convergence times presented should not
implicate any disadvantages in terms of a real ap-
plication, and less initial error should translate into
smaller transient periods.

The nominal mode or steady-state performance
for the 3 algorithms can be analyzed by inspecting
the detailed evolution of angular and bias estima-
tion errors in figures 1 and 3, respectively. The
behavior of the detailed evolution of the angular
estimation error is similar for the simulation in or-
bit 1 or orbit 2, for the three algorithms, which
indicates that the presence of the magnetometer,
when all the other sensors are available, does not
reflect in a better attitude estimation accuracy for
the QUEST and MEKF. Overall, the QUEST al-
gorithm has the biggest estimation error, followed
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by the MEKF and NL Observer that have approxi-
mately the same performance. In terms of the anal-
ysis of the bias estimation error evolution, the per-
formance of the MEKF and the NL Observer is sim-
ilar.

Case 2

The analysis of figure 4 and Table 4 leads to very
different analysis for the two orbits, given the sen-
sors left available in the two cases, which were the
Sun sensor in the case of orbit 1 and the magne-
tometer and Sun sensor in the case of orbit 2. In
the case of orbit 1, after the star tracker failure, the
QUEST drifts very fast translating into a maximum
root-mean-square error of 4.2578 × 101◦. The NL
observer, on the other hand, minimizes the drift ef-
fect for a longer period, but eventually reaches fairly
high values of error when in comparison of those ob-
tained in nominal mode. The MEKF shows to be
robust in this situation, showing to be the one that
looses estimation accuracy more slowly, and being
able to keep the lower estimation error with only
one measurement. In the case of orbit 2, both the
QUEST and MEKF are able to continue running
with the Sun sensor and magnetometer measure-
ments, but the NL Observer is in the same situa-
tion as in orbit 1. After the star tracker failure, the
angular error estimate for the QUEST shows to in-
crease, with a root-mean-square error one order of
magnitude higher. In the case of the MEKF, the an-
gular estimation error increases in comparison with
Case 1, but a good following is still achieved.

This case made evident some of the flaws or weak-
nesses of the three algorithms compared. It showed
that QUEST is highly dependent on the availability
of two vector measurements and not robust in prac-
tice, due to the lack of bias estimates. Additionally,
without the star tracker, the increased angular esti-
mation error evidenced reflects the QUEST highly
dependence on the accuracy of the measurements
used. It showed that the NL observer is able to mit-
igate the propagation errors in the case of lack of
measurements but if this propagation is done for a
long period, it will eventually drift to higher errors.
Finally,the MEKF has shown to be the more robust
of the 3 algorithms. Even with just one measure-
ment, the filter showed to be the one minimizing the
errors, and with the Sun sensor and magnetometer
available, showed to be able to raise the importance
of the rate gyro measurements when compared with
the noisy Sun sensor and magnetometer.

Case 3

Case 3 analysis showed that the QUEST per-
formance remained the same even only with the
star tracker available, which was an expected result
as the star tracker measurements are much more
weighted in the QUEST algorithm than those com-

ing from the Sun sensor and magnetometer. When
it comes to the MEKF and NL Observer, a slightly
better performance can be noticed, with less angu-
lar error variations, as can be deduced by comparing
the root-mean-square errors in Table 5, with those
of Table 3. The results obtained indicate that com-
bining a magnetometer and Sun sensor with a star
tracker does not necessarily give improved estimate
accuracy, with the greater part of the accuracy com-
ing from the star tracker. In fact, the bigger value
of noise in the Sun sensor and magnetometer mea-
surements can introduce variations in the estimates
of the MEKF and NL Observer. That could be
taken into account in future tuning of parameters,
lowering the importance given to these two sensors
in those processes.

Case 4

Case 4 has the importance of showing how these
algorithms respond to a re-acquisition of sensors
that were not working properly due to eclipses or
faults. At time 3600s, figure 5 points a consider-
able angular error estimation of more than 1◦ for
some Euler angles. After the sensors re-acquisition,
the QUEST convergence is immediate, as already
was illustrated in the transient analysis in Case 1.
The MEKF also shows an almost immediate con-
vergence to values close to 0. On the other hand,
the slower transients seen for the NL Observer in
Case 1, are also visible in this analysis, where 200s
are needed for the NL Observer angular estimate to
converge again to values close to 0. This simulation
appeals once more to the convergence characteris-
tics of the three methods, where it is illustrated
that even after a long drift due to unavailability of
measurements, the nominal working mode can be
retaken if the sensors start working again.

6. Conclusions

The deterministic method studied, QUEST, was
the least computationally complex algorithm em-
ployed, requiring approximately 40 times less
FLOPs than required by the NL Observer, the sec-
ond least complex. The chosen rate at which the
QUEST algorithm ran, ten times lower than the one
of the NL Observer, contributed to the less compu-
tational resources usage, but evidence was shown
that with the same rate, QUEST would still be the
least computationally complex algorithm. A steady
state performance in terms of angular estimation
similar to the other two algorithms was achieved by
QUEST, when all sensors were available. However,
the accuracy obtained has shown to be highly de-
pendent on the quality of the sensors measurements,
and their availability, showing serious limitations in
terms of robustness when the sensors suffer failures.
Additionally, the lack of estimation of other quan-
tities such as gyro biases is a negative point for this
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kind of methods, that ultimately translates into a
serious practical disadvantage.

The MEKF, on the other hand, showed to be
a very robust solution, dealing favorably with sen-
sor faults. Its steady state performance in terms of
angular estimation has revealed to be the best, in
pair with the results for the NL Observer. How-
ever, its computational complexity has shown to
be the greatest of the three algorithms requiring
more than the double of FLOPs than the NL Ob-
server. The MEKF is also the algorithm with the
most complex formulation, without proofs of con-
vergence, and with the need to define initial esti-
mates that can negatively impact its performance.
Its ability to also estimate gyro biases proved ex-
tremely important as the gyro measurements could
be calibrated.

The Nonlinear observer offered a steady state per-
formance approximately the same as the one pro-
vided by the MEKF. It also required less than half
of the FLOPs when compared to the MEKF, was
more easily formulated and implemented, and had
a set of parameters that could be more intuitively
tuned depending on the constraints. It has shown,
however, to be less robust than the MEKF, due to
its inability to use the magnetometer, but still with
a moderate response to faults, and the ability to
calibrate the gyroscope measurements. Overall, it
has shown to be an attractive solution in compar-
ison with the MEKF due to its proof of globally
exponentially stability.

To finalize, the selection of one of these three al-
gorithms for the implementation into the ADCS of
a NANOSTAR mission will always be a trade-off
between computer and implementation complexity,
the importance of robustness, and the steady state
accuracy needed.
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