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Resumo

O Sistema de Determinação e Controlo de Atitude (ADCS) de um nanosatélite é um subsistema

chave no fornecimento preciso de atitude, algo necessário para apontar instrumentos e realizar manobras.

O seu design está bastante condicionado em termos de massa, volume, tamanho, custo e potência. O

objetivo principal desta dissertação é fornecer o projeto NANOSTAR com um estudo fundamentado em

termos dos algoritmos de determinação de atitude e sensores que podem ser utilizados nas missões de-

senhadas no âmbito do projeto. Para isso, foi desenvolvida uma plataforma de simulação que descreve

realisticamente o ambiente do nanosatélite, permitindo geração e propagação de órbitas, e ao mesmo

tempo fornecimento de dados ao ADCS. De seguida, três algoritmos de determinação de atitude

representativos, nomeadamente o Estimador de Quaternião (QUEST), o Filtro de Kalman Estendido

Multiplicativo (MEKF) e um recentemente desenvolvido Observador Não Linear de Atitude Globalmente

Exponencialmente Estável, foram estudados e implementados na plataforma desenvolvida, utilizando

medidas de um star tracker, sensor solar, magnetómetro e giroscópio. Finalmente, foi feita uma comparação

dos três algoritmos em termos da eficiência de recursos computacionais usados, desempenho em

estado estacionário e desempenho em caso de falhas, usando simulações realistas. Os resultados

obtidos providenciam ao projeto uma importante análise das vantagens, desvantagens, complexidade,

eficiência de recursos computacionais e desempenho dos três algoritmos, que permitirá futuras tomadas

de decisão fundamentadas no design do ADCS.

Palavras-chave: Determinação de Atitude, Nanosatélite, Métodos Determinı́sticos, Filtro de

Kalman, Observador Não Linear
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Abstract

The Attitude Determination and Control System (ADCS) of a nanosatellite is a key subsystem to

provide precise attitude knowledge and pointing for the on-board payload and necessary maneuvers.

Its design has serious constraints in terms of mass, volume, size, cost and power. The main goal of

this dissertation is to provide the NANOSTAR project with a grounded study in terms of attitude deter-

mination algorithms and sensors that can be employed in the missions designed under the scope of the

project. For that, a simulation platform that realistically describes the nanosatellite environment, allow-

ing orbit generation and propagation, as well as data creation to feed the ADCS was developed. Then,

three representative attitude determination algorithms, namely the Quaternion Estimator (QUEST), the

Multiplicative Extended Kalman Filter (MEKF), and a recently developed Globally Exponentially Stable

Cascade Attitude Nonlinear Observer, were studied and implemented on the platform developed, us-

ing vector measurements provided by a star tracker, Sun sensor, magnetometer and rate gyroscope.

Finally, the comparison of the three algorithms in terms of computational resources efficiency, steady-

state performance and performance in the case of faults is done, using realistic simulation scenarios.

The results obtained provide meaningful insight on the advantages, disadvantages, complexity, com-

putational resources efficiency and performance of the three algorithms, providing the project with a

grounded analysis that can be used for future decision making in terms of the ADCS design.

Keywords: Attitude Determination, Nanosatellite, Deterministic Methods, Kalman Filter, Non-

linear Observer
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Chapter 1

Introduction

The trend in satellites, present in the last decades, to do more for less cost, having smaller, cheaper,

faster and better space missions, has led to the decrease of spacecraft sizes. Small satellites, ranging

from 750 kg to less than 1 kg, have been responsible for greatly reducing the time needed to obtain

science and technology results, reducing the overall costs at the same time.

The segment of nanosatellites, concerning masses ranging from 1 to 10 kg [1], is of particular interest,

showing an increasing popularity and growth, with the number of projects increasing. From these,

CubeSats, following The CubeSat Design Specification (CSD) [2], should be highlighted. The CSD

was created in 1999 with the purpose of providing a standard for design of nanosatellites, reducing

cost, development time and increasing accessibility, and boosted the development of nanosatellites. A

CubeSat is a 10 cm cube with a mass of up to 1.33 kg.

According to a recent survey of worldwide nanosatellite missions [3], they are build for a relatively

short lifetime and mission objectives range from technology demonstration and operational use, to uni-

versity programs providing an important ”hands-on” experience. Although education and technology

demonstration are the primary objects in most programs, some demanding applications related with

Earth Observation or science domains, have also appeared [4], with examples such as NASA’s In-

Sight/MarCO mission or ESA’s AIM.

The decrease in satellite sizes was accompanied by strict mass, volume, power and cost constraints.

Only the miniaturization of satellite technologies and systems, possible by technology advances enabling

the decrease in electronics size, with increased capability and low power consumption, made possible to

fulfill those constraints. The reduced time and cost of the projects also enabled commercial-of-the-shelf

(COTS) hardware to become of frequent use.

From the several key subsystems composing a nanosatellite, surveyed and analyzed in [3], the Atti-

tude Determination and Control System (ADCS) is an important subsystem to provide precise pointing

for the on-board payloads and maneuvers.

Early nanosatellites had low pointing requirements, or none at all, hence or there was no ADCS,

or it was composed of passive attitude stabilization schemes, such as spinning stabilization, gravity

gradient stabilization or passive magnetic stabilization [5]. Eventually, active attitude control schemes
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started to be adopted, from active magnetic attitude control, which provided low precision, to momentum-

biased attitude control, which provided medium-precision, and finally reaction wheels-based attitude

control, which is a fine precision scheme and is dominant for nanosatellites with fine-precision pointing

requirements.

Nowadays, many nanosatellites requiring precise pointing and stabilization have its ADCS composed

of miniaturized and novel precise attitude sensors and proper attitude determination algorithms while the

desired pointing and stabilization is achieved by using proper miniaturized and novel attitude actuators

and active control schemes.

1.1 The NANOSTAR Project

NANOSTAR [6] is a collaborative project, funded by the Interreg Sudoe Programme through the

European Regional Development Fund (ERDF), among 7 universities, 2 aerospace clusters and 3 ESA

Business Incubation Centers, in Portugal, France and Spain. It is a network among universities, the

regional industry and the scientific ecosystem, in order to create a leading platform on nanosatellites in

Europe. The project aims at providing students with the experience of a real space engineering process

that includes all stages, from conception and specifications, to design, assembly, integration, testing and

documentation. In this way, students from the Southwest of Europe can prepare a high level of skills

in space engineering and project engineering, so that they are the future main players in the field of

nanosatellites.

The training on technology of nanosatellites is to be provided through several design, development

and testing student challenges. To date, two nanosatellite space mission preliminary design challenges

were launched. The first (from now on referred as Mission 1), launched in February 2019, consists in

creating the preliminary design of a CubeSat fly-by mission to the Moon, motivated by the possible pres-

ence of water ice in cold, permanently shadowed, craters at the Moon’s poles. The satellite must be

equipped with an optical camera as scientific payload, in order to perform observations and measure-

ments of the Moon’s surface, while executing a close-distance fly by. Among other requirements [7],

a pointing accuracy of the main scientific payload (optical camera) of 0.5◦ must be ensured during the

payload operation. More recently, in September 2019, a new space mission preliminary design chal-

lenge was also launched that consists in a mission (from now on referred as Mission 2) orbiting Earth,

with a payload that will monitor the metabolism of a marine photosymbiotic species of worms and their

efficiency for urea and air recycling. Essentially, 2 missions can then be distinguished, one that consists

in an orbit around the Moon, and the other around the Earth.

A challenge for the detailed design and testing of nanosatellite components, subsystems and facilities

for the missions stated above, was also recently launched.
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1.2 Literature Review

The attitude of a spacecraft is its orientation in space with respect to a specific reference frame

and its knowledge is essential for most missions success, playing for a long time an essential role in

unmanned air vehicles such as aircrafts and satellites. Attitude estimation is a problem with a rich

historical background that continues to attract intensive research.

Some of the earliest solutions to address this problem, referred in this work as deterministic methods

or point-to-point approaches, essentially provide algebraic solutions based on measurements taken at

the same time. One of the first of these methods is the TRIAD algorithm [8], able to determine the

attitude of a spacecraft using two and only two measurements. Fighting the limitations of TRIAD, a

year after, Grace Wahba formulated a general criterion for attitude determination using two or more

vector measurements [9], that would lead to several alternative solutions based on different attitude

parameterizations [10–12], such as the Davenport’s q-method, the QUEST algorithm and the ESOQ

algorithm, providing solutions on quaternions, and the SVD algorithm and the FOAM algorithm, providing

solutions in matrix form.

Other solutions try to find the best estimate of the true attitude using dynamical models and measure-

ments, both corrupted by noise and uncertainties. These type of approaches can be used to simultane-

ously estimate a quantity and filter out noise at the same time. From these approaches, the ones related

to Kalman filtering, originally developed as a tool in linear estimation theory [13, 14], may be highlighted.

The first application of Kalman filtering to determine the attitude of a spacecraft used an Euler angles pa-

rameterization [15]. Since the dynamic and measurement models involved are nonlinear, the Extended

Kalman Filter (EKF) is used to address nonlinear estimation problems [16]. The EKF earned then a rep-

utation, becoming the most used method to determine the attitude of a spacecraft. EKF solutions come

in several forms, such as the Additive EKF (AEKF) or the Multiplicative EKF (MEKF) [17]. However being

a very powerful estimation technique, the EKF estimators do not give guarantees of optimality, stability

or convergence.

Other nonlinear approaches rose in the attempt to overcome poor performance or even divergence

arising from the linearization implicit in the EKF. Some of those alternatives are well documented in [18].

Some examples are methods based on QUEST, such as filter QUEST [19], or recursive QUEST [20],

however showing sub-optimal performance characteristics in comparison to the EKF. Other alternatives

appear in the form of unscented filters [21, 22], showing some advantages over the standard EKF such

as a lower expected error and the possibility of application to non-differentiable functions.

Particle filters, the two-step optimal estimator [23, 24], predictive and adaptive approaches, and

nonlinear observers can also be used to estimate attitude. Nonlinear observers have emerged as an

attractive alternative given the possibility to establish convergence bounds and provide stability guar-

antees, with an associated lower computational cost, and a more straightforward tuning of the design

parameters.
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1.3 Motivation and Goals

The two missions under the scope of the NANOSTAR project need to guarantee the pointing of its

payload in order for the success of their scientific missions. The detailed design and testing challenge,

recently launched, motivates then the design of an ADCS as a key subsystem for guaranteeing the

pointing requirements of the two missions.

The development of the ADCS can essentially be divided into a part that consists in determining the

attitude, through precise determination algorithms, and to a part that consists in controlling that attitude,

through precise control schemes. It is on the first part of the problem that this dissertation focuses.

To develop the attitude determination part of the ADCS, a suite of sensors must therefore be chosen,

taking into account the size and mass constraints in designing a nanosatellite, and also mission con-

straints. Then, a simulator must be developed that realistically simulates the spacecraft’s environment,

allowing orbit generation and propagation, as well as data creation to feed the ADCS sensors. This

simulator will then be available for future developments and studies under the scope of the project. Then

the study, implementation and testing of attitude estimation algorithms must be done, documenting their

theoretical background, implementation characteristics and simulation results in realistic scenarios.

Therefore, under the scope of the NANOSTAR project, motivated by the design of the attitude deter-

mination part of the ADCS, this dissertation goals are summarized as follows:

I Select a sensor suite adequate for both missions.

II Create a reliable simulation platform that realistically simulates the spacecraft’s environment, allow-

ing orbit generation and propagation, as well as data creation to feed the ADCS.

III Study, adapt and implement three representative attitude estimation algorithms: the Quaternion

Estimator (QUEST), the Multiplicative Extended Kalman Filter (MEKF), and a recent Globally Expo-

nentially Stable Cascade Attitude Nonlinear Observer.

IV Analyze and compare the three algorithms in terms of computational resources efficiency and per-

formance in various realistic simulation scenarios.

Ultimately, this work must use the estimation algorithms to solve the problem of attitude estimation

in conditions representative of the two specified missions, giving meaningful insight on the advantages,

disadvantages, computational resources efficiency and performance of the three algorithms, providing

the project with a grounded analysis that can be used for decision making in terms of the ADCS system

design.

1.4 Dissertation Outline

This dissertation is organized as follows:

Chapter 2 provides an overview of the underlying theory about the topic of spacecraft attitude de-

termination, namely the most representative attitude representations, the frames of reference used
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throughout the work, and the spacecraft mechanics fundamentals needed to characterize the orbital

and rotational motion of the spacecraft.

Chapter 3 gives an overview of different characteristic sensors and actuators for spacecraft atti-

tude determination and control, briefly explaining their operation. A sensor suite is selected and their

modeling is explained.

Chapter 4 documents the theory underlying the attitude determination methods that are the focus of

this work.

Chapter 5 discusses the development of a simulation environment that realistically describes the

environment and motion conditions of the spacecraft, enabling the generation of realistically data to

feed the sensors and properly test the algorithms implemented. It also describes the integration and

implementation of the attitude determination algorithms of chapter 4. Finally, it analyzes the operational

efficiency of the three algorithms.

Chapter 6 describes the simulation case scenarios used for testing the attitude determination algo-

rithms, presents the results obtained and provides a discussion of those results.

Chapter 7 sums up the work performed with a conclusion, giving a few ideas for future work.
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Chapter 2

Theoretical Background

The attitude of a spacecraft is its orientation in space with respect to a specific reference frame. As

the motion of a rigid spacecraft is not only specified by its position and velocity, but also by its rotational

motion about its center of mass, attitude knowledge is essential for most space applications. The area

of attitude determination is basically the study of methods for estimating the attitude, typically involving

the use of several types of sensors and sophisticated data processing algorithms.

The knowledge of a spacecraft attitude can either be single-axis attitude knowledge or three-axis.

Single-axis attitude is the specification of the orientation of a single spacecraft axis in inertial space,

ordinarily the spin axis, and it requires two parameters. However, the complete spacecraft orientation

is not fixed by knowing the orientation of a single axis, as the rotation of the spacecraft about that axis

is still unknown. Knowing that extra parameter, three-axis attitude knowledge is obtained, fixing the

orientation of the three orthogonal spacecraft axes in inertial space.

This chapter provides an overview of the underlying theory about the topic of spacecraft attitude

determination, namely the most representative attitude representations in section 2.1, the frames of

reference used throughout the work in section 2.2, and the spacecraft mechanics fundamentals needed

to characterize the orbital and rotational motion of the spacecraft in section 2.3.

The reader is suggested to start his reading with Appendix A, before addressing this chapter, as a

review of some mathematical notions and conventions adopted in this work is carried out.

2.1 Attitude Representations

Considering B = {b1, b2, b3}, an orthogonal, right-handed basis whose axis and origin are fixed in

the spacecraft body frame and the reference system I = (i1, i2, i3), also orthogonal and right handed,

the spacecraft attitude is the orientation of the first basis B, with respect to the reference system I.

This orientation takes many forms, the so called attitude representations or parameterizations, ranging

from vectors of three and four components to matrices. This section presents the most representative

ones, discussing overall advantages and disadvantages. The overview done in this section is based on

references [11, 25, 26].
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2.1.1 Rotation Matrix

As shown in annex A.1, the 3 components of the body coordinate frame, B, can be represented along

the 3 axes of the reference frame I. To do this, nine parameters are required, forming a 3 × 3 matrix

that rotates the vectors from the reference frame to the body frame. This matrix is called the Direction

Cosine Matrix (DCM):

ABI =


b1 · i1 b1 · i2 b1 · i3
b2 · i1 b2 · i2 b2 · i3
b3 · i1 b3 · i2 b3 · i3

 (2.1)

Being a DCM, ABI is a proper real orthogonal matrix preserving the length of vectors and the angles

between them, and thus representing a rotation. The group of matrices that have these properties

constitute the Special Orthogonal group SO(3).

An arbitrary vector p in frame I, pI , is rotated to frame B by:

pB = ABIpI (2.2)

where pB is the representation of p in the B frame, and ABI represents the rotation matrix from I to B.

The attitude matrix or rotation matrix ABI is the fundamental representation of the spacecraft’s atti-

tude. This representation is a popular choice as it defines uniquely the attitude, it does not suffer from

singularities, has no need of evaluating trigonometric functions, and it is continuously differentiable. How-

ever, it implies working with 9 different parameters, six of which are redundant due to the orthogonality

and symmetry requirements.

2.1.2 Euler Axis/Angle

Euler’s theorem states that any rotation represented by a rotation matrix A is a rotation about a fixed

axis, specified by a unit vector e. To completely specify the matrix, the angle of rotation ϑ about this axis

needs to be considered. e and ϑ are known as the Euler axis and Euler angle of rotation, respectively.

The Euler axis/angle parameterization of an attitude matrix is given by:

A(e, ϑ) = (cosϑ)I3 − sinϑ
[
e×
]

+ (1− cosϑ)eeT (2.3)

where
[
e×
]

is the cross product matrix formed from vector e as follows from annex A.2.

Although the attitude matrix seems to depend on four parameters, as ||e|| = 1, there are only three

independent parameters. Equation 2.3 shows that the attitude matrix is a periodic function of the rotation

angle over an unlimited range with period 2π.

The Euler rotation angle can be expressed in terms of the elements of the rotation matrix as:

cosϑ =
1

2
(tr(A(e, ϑ))− 1) (2.4)
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If sinϑ 6= 0, the components of e are given by:

e =
1

2 sinϑ


A(e, ϑ)23 −A(e, ϑ)32

A(e, ϑ)31 −A(e, ϑ)13

A(e, ϑ)12 −A(e, ϑ)21

 (2.5)

Equation 2.4 has two solutions, differing on the sign. Those different solutions imply axis vectors e in

opposite directions, expressing the fact that a rotation about e by an angle ϑ, is equivalent to a rotation

about −e and −ϑ.

This representation has the clear advantage that it has a intuitive physical interpretation. However, it

requires working with one redundant parameter, leading with trigonometric functions, and the axis e is

undefined when sinϑ = 0.

It is also convenient to combine the Euler axis and angle into a three component rotation vector ϑ:

ϑ ≡ ϑe (2.6)

which is useful for representing small rotations.

2.1.3 Quaternion

Following the quaternion convention and associated operations reviewed in appendix A.3, the quater-

nion may be defined as:

q(e, ϑ) =

e sin(ϑ/2)

cos(ϑ/2)

 (2.7)

with the quaternion representation of the attitude matrix as:

A(q) =
(
q2
4 − ||q1:3||2

)
I3 − 2q4

[
q1:3×

]
+ 2q1:3qT1:3 (2.8)

The quaternion, being a four-element parameterization, has the lowest dimensionality possible for a

global non-singular representation of SO(3), also without the need of evaluating trigonometric or other

complicated functions. The quaternions are more efficient for specifying rotations than the attitude matrix

itself, and obey only to one constraint, the unity norm constraint. It has, however, one redundant degree

of freedom and no obvious physical interpretation.

A rotation of a three-component vector p is implemented by the quaternion product:

q⊗ p⊗ q∗ =
[
q�
]T [

q⊗
]p

0

 =

ΞT (q)Ψ(q)p

0

 (2.9)

Quaternions suffer from a major drawback as q and −q represent the same rotation and attitude

estimation based on quaternions may exhibit unwinding phenomenon, where the estimate may start

arbitrarily close to the true attitude and yet rotate through large angles before achieving the final desired
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attitude.

2.1.4 Euler Angles

Euler angles define a rotation in terms of three successive rotations, about fixed body axes. The

notation used in this work gives a rotation as:

Aijk(φ, θ, ψ) = A(ek, ψ)A(ej , θ)A(ei, φ) (2.10)

using rotation axes selected from the set:

e1 =


1

0

0

 , e2 =


0

1

0

 , e3 =


0

0

1

 (2.11)

In an asymmetric Euler angle sequence, the three angles are often referred to as roll, pitch and yaw,

usually perceiving a screwing motion, a motion that points the vehicle up or down and a motion that

points the vehicle left or right, respectively.

The asymmetric Euler angle 3-2-1, often used to describe the attitude of an Earth-pointing spacecraft,

was chosen to be the Euler angles sequence of reference, and is described by:

A321(φ, θ, ψ) = A(e1, ψ)A(e2, θ)A(e3, φ) (2.12)

with:

A(e1, ψ) =


1 0 0

0 cosψ sinψ

0 − sinψ cosψ

 (2.13a)

A(e2, θ) =


cos θ 0 − sin θ

0 1 0

sin θ 0 cos θ

 (2.13b)

A(e3, φ) =


cosφ sinφ 0

− sinφ cosφ 0

0 0 1

 (2.13c)

Euler angles have clear physical interpretation in many cases and no redundant parameters. How-

ever, these are not as convenient for numerical computations as the quaternions, imply working with

trigonometric functions and have singularities for some values of θ.

Some other less representative attitude parameterizations, not discussed in this work, such as the

Rodrigues parameters or Gibbs vector and the Modified Rodrigues Parameters (MRP) may also be

employed to represent attitude.
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2.1.5 Attitude Error Representations

Using the example of ABI , the attitude estimation error can be represented as a small rotation ABB̂
between B and an estimated body frame B̂:

ABI = ABB̂AB̂I (2.14)

being AB̂I the estimated attitude. The errors can also be represented as a small rotation between I and

an estimated reference frame Î in a similar way.

Following [11], the attitude errors can be represented in terms of the rotation vector of equation 2.6

and its small angle approximation as:

A(δϑ) = exp
(
−
[
δϑ×

])
≈ I3 −

[
δϑ×

]
+

1

2

[
δϑ×

]2
(2.15)

where exp( ) represents the matrix exponential. The attitude errors can also be represented in terms of

the quaternion and its small angle approximation as:

A(δq) ≈ I3 − 2
[
δq1:3×

]
+ 2

[
δq1:3×

]2
(2.16)

It is notable that these representations are equivalent through second order considering:

δϑ = 2δq1:3 (2.17)

Other representations may be used to represent attitude errors, such as the Gibbs vector or the

MRPs.

2.2 Reference Frames

A reference frame is specified by its origin and the orientation of its coordinate axes. Any of the

attitude parameterizations of section 2.1 represents the components of a coordinate frame along the

axes of some other specific reference frame. The reference frames with a special interest are presented

in this section.

2.2.1 Inertial Reference Frame

An inertial reference frame is one in which Newton’s laws of motion are valid. Any frame moving

without rotation and at constant velocity with respect to an inertial frame can also be considered inertial.

The standard inertial reference frame, as of this writing, is the third realization of the International

Celestial Reference Frame (ICRF 3), with its axes fixed with respect to precise equatorial coordinates

of extragalactic radio sources in Very Long Baseline Interferometry (VLBI) programmes [27]. This frame

has its origin at the center-of-mass of the solar system, its Z axis aligned with the Earth’s North pole,
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and the X axis with the vernal equinox, the intersection of Earth’s equatorial plane with the ecliptic plane,

in the direction of Sun’s position relative to the Earth on the first day of spring. Both the polar axis and

the ecliptic plane are not inertially fixed, so this system axes are defined as mean orientations at some

fixed epoch time.

For attitude analysis of spacecraft orbiting the Earth, the approximately inertial Earth-Centered Iner-

tial Frame (ECI), denoted by I = {i1, i2, i3} is used. It has its origin at the center of mass of the Earth

and the axes aligned with the mean North Pole and mean vernal equinox at some epoch. This frame

has a linear acceleration since Earth is orbiting around the Sun, but that may be neglected for attitude

analysis [11]. The ECI frame and the J2000 epoch are used in this work.

2.2.2 Earth-Centered/Earth-Fixed Frame

The Earth-Centered/Earth-Fixed (ECEF) Frame, designated by E = {e1, e2, e3} rotates with the Earth.

It has its e3 axis equal to i3, its e1 axis pointing in the direction of the Earth’s prime meridian and e2 axis

completing the right-handed system. The rotation angle between the ECI and the ECEF frames is known

as the Greenwich Mean Sidereal Time (GMST) angle, denoted by τGMST . τGMST is given, in units of

second, by:

τGMST = 24110.54841 + 8640184.812866T0 + 0.093104T 2
0 (2.18)

−6.2× 10−6T 3
0 + 1.002737909350795 (3600h+ 60m+ s)

with T0 the number of Julian centuries elapsed from the J2000 epoch and h, m and s, respectively the

hour, minute and seconds of the day. This quantity has to be reduced to a range from 0 to 86 400 s and

then converted to degrees.

The transformation of a vector in the ECI frame, to its ECEF representation is mapped by the rotation

matrix AEI :

AEI =


cos(τGMST ) sin(τGMST ) 0

− sin(τGMST ) cos(τGMST ) 0

0 0 1

 (2.19)

2.2.3 Spacecraft Body Frame

The spacecraft body frame considered in this work, denoted by B = {b1, b2, b3}, has its origin at the

center of mass of the satellite and its axes rotating with the spacecraft. The b3 axis is aligned in the

direction of the main scientific payload, b1 is aligned with the normal to the bottom plate of the satellite,

and b2 completes the right-handed system.

2.3 Spacecraft Mechanics

This section presents the fundamentals needed to characterize the orbital and rotational motion of

the spacecraft. The idea of Keplerian orbits is firstly introduced and then the attitude dynamics and
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kinematics are studied. Spacecraft perturbations that affect both the orbital and rotational motion are

described in the end of this section. The background provided by this section is based on references

[11, 28–31].

2.3.1 Keplerian Motion

Johannes Kepler, in the 17th century, proposed his three laws of planetary motion, defining the elliptic

shape of planetary orbits, the time required for a planet to complete an orbit and the velocity at which

these planets travel around the Sun. Later, Isaac Newton provided a mathematical solution for Kepler’s

laws, combining his Second Law of Motion, applied to a constant mass system, with his Law of Universal

Gravitation.

Newton’s law of gravitation states that any two bodies attract each other with a force proportional

to the product of their masses and inversely proportional to the square of the distance between them.

Mathematically, this statement applied to the motion of a satellite around Earth is given by:

fg = −GM⊕m
r

r3
= −µ⊕m

r

r3
(2.20)

where fg is the gravitational force applied on the satellite, G is the universal gravitation constant, M⊕ is

Earth’s mass, m is the satellite mass, r is the vector from the center of the Earth to the satellite, r = ||r||,

and µ⊕ is the Earth’s gravitational parameter.

Combining equation 2.20 with Newton’s second law, the equation for the acceleration vector of the

satellite can be obtained:

r̈ = −µ⊕
r3
r (2.21)

Equation 2.21, called the two body equation of motion, is the relative equation of motion of a satellite

position vector as the satellite orbits the Earth. In its derivation, is assumed that the gravity is the only

force acting on the satellite, the Earth is spherically symmetric, the Earth’s mass is much greater than

the satellite’s mass, and the Earth and the satellite are the only two bodies in the system. Additionally,

the two bodies are being represented as point masses, which is satisfactory for analyzing the translation

motion.

Perturbation forces, discussed in section 2.3.3, such as the gravity differential force due to Earth’s

oblateness, aerodynamic drag and solar radiation pressure, are often added to the right side of equation

2.21, in order to better describe the motion of the satellite. The modified equation including the sum of

these perturbations, in terms of their accelerations, ap, is:

r̈ = −µ⊕
r3
r + apI (2.22)

where apI is the representation of ap in frame I.
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Classical Orbital Elements

The most convenient characterization of an orbit is not the Cartesian position and velocity vectors

but the six classical Keplerian orbital elements which give a more satisfying physical characterization of

the orbit. These are the:

• Semimajor axis (size of the orbit).

• Eccentricity (shape of the orbit).

• Initial mean anomaly (related to the spacecraft’s initial position in the orbit).

• Inclination (angle between orbit plane and reference plane).

• Right ascension of the ascending node (RAAN) (angle between vernal equinox direction and the

line of nodes).

• Argument of periapsis or perigee (angle between the ascending node direction and periapsis or

perigee direction).

The orbit perturbations included in equation 2.22 cause a deviation from the ideal Keplerian orbit of

equation 2.21, which means that, instead of the theoretically constant classical orbital elements for a

Keplerian orbit, these are, in truth, time-varying.

2.3.2 Attitude Kinematics and Dynamics

Attitude kinematics covers the aspects of rotational motion that can be analyzed without considera-

tion of forces and torques. The study of how forces and torques influence that motion is in the realm of

attitude dynamics.

Instead of the point mass model assumed in section 2.3.1, for the study of rotational motion a rigid

body model is used to characterize the satellite. A rigid body is defined by the existence of a reference

body frame, B, specified in section 2.2.3, in which all the distance between any two given points remain

constant.

Attitude kinematics analyses mainly how one of the attitude parameterizations of section 2.1 changes

in time according to the angular velocity, ω, irrespective of the forces or torques that cause the motion.

In this case, the attitude relating the spacecraft body frame, B, and the inertial frame of reference, I, is

the object of study and the kinematic relations for the attitude matrix and quaternions representations

are analyzed.

Denoting ABI as the rotation matrix from the frame I to frame B, ωBIB as the angular velocity of frame

B with respect to frame I, mapped in frame B, then, the fundamental equation of attitude kinematics is

given by:

ȦBI = −
[
ωBIB ×

]
ABI (2.23)

where ȦBI is the time derivative of ABI , and
[
ωBIB ×

]
is computed according to appendix A.2.
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The kinematic relation of equation 2.23 may also be written in terms of the quaternion. The quater-

nion kinematic relationship is given by:

q̇BI =
1

2
ωBIB ⊗ qBI ≡

1

2
Ω(ωBIB )qBI ≡

1

2
Ξ(q)ωBIB (2.24)

where qBI is the quaternion representation of the rotation ABI , Ξ(q) is computed according to appendix

A.3, and:

Ω(ωBIB ) ≡

− [ωBIB ×] ωBIB

−(ωBIB )T 0

 (2.25)

Attitude dynamics analyses the forces and torques applied to the spacecraft in order to determine

the angular velocity ωBIB necessary to compute the attitude from the kinematic equation.

The angular momentum plays a fundamental role in the study of attitude dynamics. Considering a

spacecraft as a collection of n point masses, its angular momentum, with respect to the origin of an

inertial coordinate frame, is defined in terms of the masses mi, positions ri0 of each point mass, and

velocities vi0 = ṙi0 by:

H0 ≡
n∑
i=1

ri0 ×miv
i0 (2.26)

Using Newton’s second law in an inertial frame, we may derive:

Ḣ
0

I =

n∑
i=1

ri0 × f iext

I ≡ L0
I (2.27)

where the f iext

I component refers to the external forces, the law of action and reaction was used to

ignore the internal forces and L0
I is the net torque about the origin exerted on the collection of mass

points by all the external forces.

By proving that the motion of the center of mass and the motion of the mass points about their center

of mass are uncoupled, and using the last two equations, the fundamental equation of attitude dynamics

can be derived:

Ḣ
c

I = LcI (2.28)

which holds even if the center of mass undergoes acceleration but only in a non-rotating frame.

Let’s introduce the notion of the moment of inertia tensor (MOI), represented in a general frame as:

Jc ≡ −
n∑
i=1

mi[r
ic×]2 (2.29)

As the MOI is constant in the body frame, it is almost always represented in that frame.

The angular momentum in the body frame is given by:

Hc
B = JcBω

BI
B (2.30)
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To summarize, and assuming the attitude is parameterized by a quaternion, the following equations

are enough to model the rotational motion of the satellite rigid body:

Ḣ
c

I = LcI (2.31a)

Hc
B = A(qBI)Hc

I (2.31b)

ωBIB = (JcB)−1Hc
B (2.31c)

q̇BI =
1

2
ωBIB ⊗ qBI (2.31d)

As external torques are more easily computed in the body frame, and a reduction in the number of

equations simplifies the process, the equations 2.31a, 2.31b and 2.31c may be substituted by:

ω̇BIB = (JcB)−1
[
LcB − ωBIB × (JcBω

BI
B )
]

(2.32)

The external torques LcB are composed by intentional control torques and by the disturbance torques

described in section 2.3.3.

2.3.3 Spacecraft Perturbations

Spacecraft perturbations may be divided into perturbation forces, which induce accelerations, and

perturbation torques. They contribute respectively to the terms apI and LcB of equations 2.22 and 2.32.

These perturbations cause unwanted time-variation in the orbital motion and in the angular velocity of

the satellite. Description of the most representative perturbation forces and torques and models for their

computation are available in this section.

Perturbation Forces

A spacecraft has to deal with disturbing forces, leading to disturbing accelerations that perturb the

orbit. The four most important and representative sources for these forces are the gravity due to a non-

spherical Earth, ag, forces due to bodies other than the central body, at, aerodynamic drag, aa, and

solar radiation pressure, as, all represented in inertial coordinates. Equation 2.22 takes the form:

r̈ = −µ⊕
r3
r + apI = −µ⊕

r3
r + ag + at + aa + as (2.33)

Non-spherical Earth Perturbation

The gravity field, depending directly on the mass, reflects the non-uniformity of the mass distribution

caused by the Earth not being a perfect sphere.

The most used approach to model non-spherical gravity uses a spherical harmonic expansion. In

this work, a 6th order spherical harmonic geopotential model including only zonal harmonics, presented

in [11], is used. Each zonal harmonic is associated with a zonal coefficient Jn, being the perturbing
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acceleration given by:

ag =

6∑
i=2

aJi (2.34)

The term arising from J2 is over 400 times bigger than the one arising from J3, and even bigger than

the other higher order terms. For the purpose of this work, only J2 is considered and the final perturbing

acceleration is given by:

ag = aJ2 ≡ −
3

2
J2

(µ⊕
r2

)(R⊕
r

)2


(

1− 5
(
rz
r

)2) rx
r(

1− 5
(
rz
r

)2) ry
r(

3− 5
(
rz
r

)2) rz
r

 (2.35)

with J2 = 1.08262668355× 10−3 and R⊕ = 6378137m, the radius of the Earth.

Third-body Forces

The Keplerian motion is a two-body problem. Any other body entering into the system of forces is

considered a third body. Considering the motion of a body with mass m2 at position r2 about a body

with mass m1 at position r1, under the influence of n − 2 other bodies with masses mi at positions ri,

their accelerations take the form:

r̈1 = − Gm2

||r1 − r2||3
(r1 − r2)−

n∑
i=3

Gmi

||r1 − ri||3
(r1 − ri) (2.36a)

r̈2 = − Gm1

||r2 − r1||3
(r2 − r1)−

n∑
i=3

Gmi

||r2 − ri||3
(r2 − ri) (2.36b)

Subtracting equation 2.36a from 2.36b gives the perturbed motion, with r ≡ r2 − r1, r ≡ ||r||,

µ ≡ G(m1 +m2), and µi ≡ Gmi for i ≥ 3:

r̈ = − µ
r3
r −

n∑
i=3

µi

(
r1 − ri + r

||r1 − ri + r||3
− r1 − ri
||r1 − ri||3

)
(2.37)

The terms in the sum can be treated as small perturbations if all the other bodies are much farther

away from m1 than is m2.

Aerodynamic Drag

The atmospheric drag is the perturbation with the biggest impact for objects in low-Earth orbits. For

the effects of computing aerodynamic drag and torque, it is typical to model the geometry of the satellite

as a collection of N flat plates of area Si and outward normal unit vector niB expressed in body-frame

coordinates. The inclination of the ith plate to the relative velocity in inertial coordinates is given by:

cos γia = (ATBIniB)T
(
vrelI
||vrelI ||

)
(2.38)
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where vrelI is the spacecraft relative velocity with respect to the atmosphere in frame I.

The drag force with this model, expressed in inertial coordinates, is:

fa = −1

2
ρCD||vrelI ||vrelI

N∑
i=1

′Si cos γia (2.39)

where the prime on the sum indicates that only plates with cos γia > 0 are included in the summation, ρ is

the local atmospheric density and CD is a dimensionless drag coefficient, usually in the range between

1.5 and 2.5.

As the atmosphere is not stationary in the inertial frame, the relative velocity can be computed as-

suming the atmosphere co-rotates with Earth:

vrelI = vI +
[
ω⊕I×

]
rI (2.40)

where rI and vI are, respectively, the position and velocity of the spacecraft expressed in frame I and

ω⊕I is given by ω⊕I = ω⊕

[
0 0 1

]T
with ω⊕I = 0.000072921158553 rad/s.

Solar Radiation Pressure

Solar Radiation Pressure (SRP) affects the orbit of a spacecraft through momentum exchange be-

tween the spacecraft and photons incident on the spacecraft, hence only present when the spacecraft

is not in shadow. It outweighs drag in higher altitude orbits. Using the flat plate model, SRP can be

characterized by:

fs = −P�cs
N∑
i=1

′Si cos γis (2.41)

where the prime on the sum indicates that only plates with cos γis > 0 are included in the summation, P�

is the pressure of solar radiation and the constant cs defines how the incident radiation interacts with the

spacecraft and for most practical problems takes a value between 1 and 2.

The inclination of the ith plate to the spacecraft Sun vector is given by:

cos γis =
(

ATBIniB
)T

dsat� (2.42)

where dsat� is a unit vector directed from the spacecraft to the center of the Sun, expressed in Inertial

coordinates.

The pressure of solar radiation, P�, at the position of the spacecraft is given by:

P� =
F�

c r2
sat�

(2.43)

where F� is the solar constant, the flux densitiy of solar radiation at a distance of 1 AU from the Sun, c

is the speed of light and rsat� is the position vector from the satellite to the Sun.
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Perturbation Torques

External undesirable torques change the overall momentum of the spacecraft. The most representa-

tive perturbation torques are the gravity-gradient torque, Lg, magnetic torque, Lm, aerodynamic torque,

La, and solar radiation pressure torque, Ls, all represented in body frame coordinates.

Gravity-gradient Torque

Any non-symmetrical rigid body in a gravity field is subject to a gravity-gradient torque. Approximating

the gravity field as spherically symmetric for computing this torque, it can be written that:

Lcg =
3µ⊕
r3

o× (Jco) (2.44)

where r is the radius vector from the center of the central body to the satellite and r ≡ ||r||, o is the

body frame representation of a nadir-pointing unit vector, and Jc is the moment of inertia tensor about

the center of mass.

Magnetic Torque

The torque generated by a magnetic dipole m in a magnetic field V is given by:

Lm = m× V (2.45)

Near Earth, the magnitude of the Earth’s magnetic field is still high enough for it to be used by mag-

netic control torquers, and to create magnetic disturbance torques from undesirable magnetic dipoles

onboard. In higher orbits, the Earth’s magnetic field and its effects become negligible.

Aerodynamic Torque

The aerodynamic forces also translate in undesired aerodynamic torques.

With the inclination of the ith plate to the relative velocity in B frame, being given by:

cos γia =
niB.vrelB
||vrelB ||

(2.46)

The aerodynamic force on the ith plate is:

f ia = −1

2
ρCD||vrelB ||vrelBSi max(cos γia, 0) (2.47)

The aerodynamic torque on the spacecraft is then given by:

Lia =

N∑
i=1

ri × f ia (2.48)

where ri is the vector from the spacecraft center of mass to the center of pressure of the ith plate.
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Solar Radiation Pressure Torque

Following the same logic as the SRP acceleration, SRP torque only affects the spacecraft when not

in shadow.

The angle between the Sun vector and the normal to the ith plate is given by:

cos γis = niB.dsat�B (2.49)

where dsat�B is the spacecraft to Sun unit vector represented in frame B.

The SRP force on the ith plate is given by:

f is = −P�csSi max(cos γis, 0) (2.50)

and, finally, the SRP torque on the spacecraft is:

Ls =

N∑
i=1

ri × f is (2.51)

where ri is the vector from the spacecraft center of mass to the center of pressure of the SRP on the ith

plate.
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Chapter 3

Attitude Hardware

One of the fundamental parts of the ADCS of a spacecraft is the suite of sensors and actuators on

board. Sensors are generally employed to carry out attitude related measurements i.e. quantities that

contain information relative to the orientation of the satellite, as its angular rate or the direction of the

magnetic field, the Sun or other stars. Actuators are used to stabilize or maneuver the attitude of the

satellite.

The rapid development of micro-electronics, integrated circuit (IC) technologies and micro electrome-

chanical systems (MEMS) enabled the important reduction in size and mass of historically and typically

used attitude hardware. These miniaturized sensors and actuators, although sometimes less reliable,

are smaller, lighter, cheaper and consume less power, making them appropriate to the employment in

nanosatellites. Experimentation and development continues, with this kind of sensors and actuators

showing great improvement.

This chapter provides an overview of different characteristic sensors and actuators for spacecraft

attitude determination and control, in sections 3.1 and 3.2 respectively, briefly explaining their operation.

A sensor suite is selected in section 3.3 and their modeling is explained in section 3.4.

3.1 Sensors

Attitude sensors can be divided into two main categories, reference sensors and inertial sensors.

Reference sensors measure in body coordinates the direction and, in some cases, magnitude of known

vectors. Among the examples are the Sun sensor, the star tracker and the magnetometer. Inertial

sensors such as the gyroscope measure angular rates. Often these 2 classes of sensors are used to

complement one another in a measurement system.

3.1.1 Sun Sensor

Sun sensors measure the azimuth and elevation of the Sun vector, providing a measurement of

the Sun direction, hence considered a line-of-sight (LOS) sensor. As the orientation about the Sun
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direction cannot be measured, only two axes of attitude knowledge are obtained. As expected, these

measurements are not available during periods of eclipse.

Sun sensors are one of the most widely used sensor type. Its usage and versatility is owed mainly

to Sun’s small angular radius in almost any orbit, which enables a point-source approximation and to its

brightness relative to other astronomical objects, which enables simple equipment to sense it. According

to [28] Sun sensors have fields of view (FOV) ranging from several square arc-minutes to approximately

π sr, and resolutions from several degrees to less than an arc-second.

Sun Sensors vary from the most simple and reliable, but least accurate Coarse Sun Sensor (CSS),

to the fine and digital Sun sensor, used whenever a better accuracy is needed. The CSS combines

the variations with the Sun angle of the outputted current generated from attached photodiodes or solar

panels and is used for safe-hold control of a spacecraft or in situations where there is no demand

in accurate pointing. The fine and digital Sun sensor lets the Sun light pass through a narrow slit

and manages to provide a digital representation of the angle between Sun radiation and the plane

passing through the slit. A pair of these sensors arranged orthogonally provides two axes of attitude

measurements.

The Sun sensor provides corrupted vector measurements of the Sun direction, in body coordinates,

according to the model introduced in section 3.4.

3.1.2 Magnetometer

Magnetometers are vector sensors, sensing the direction and magnitude of the magnetic field, only

providing two axes of attitude measurement. They are generally lightweight, reliable, require low power

and with no moving parts. To use a magnetometer for attitude determination, a geomagnetic field model

such as the World Magnetic Model (WMM) [32] is required for comparison.

There are various types of magnetometers, ranging from quantum magnetometers, using funda-

mental atomic properties, to induction magnetometers (search coil and fluxgate for example) based on

Faraday’s Law of Magnetic Inductance, and to MEMS magnetometers. The relation between size and

accuracy make the MEMS magnetometers attractive for nanosatellite missions.

Magnetometers are only used for low accuracy attitude determination. They measure the sum of

the external magnetic field that is of interest and any local field produced by the spacecraft, making

them liable for perturbations from local fields produced by parts of the spacecraft or the Sun, that many

times cannot be accurately known and compensated for. As Earth’s magnetic field strength decreases

with distance to Earth as 1
r3 , generally magnetometers usage is limited to spacecraft below 1000km of

altitude, hence to Low-Earth Orbit (LEO) [28].

The magnetometer provides corrupted vector measurements of all three components of the Earth’s

magnetic field, in body coordinates, according to the model introduced in section 3.4.
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3.1.3 Star Tracker

Stars are available anywhere in the sky, being independent of the mission and orbit chosen, hence

providing an highly accurate and available reference to any satellite. State-of-the-art star trackers are

cameras that detect, identify and track several stars in their FOV, and then identify them in an internal

catalog, being able to determine the attitude of the satellite using methods such as the ones described in

chapter 4. Throughout the years, star trackers have evolved from heavy, expensive and power consum-

ing, to miniaturized sensors which are light, less expensive and consume less power, but still maintaining

a high accuracy in determining attitude within a few arcseconds of the true value, making them able to

be employed in nanosatellite missions and superior to any other attitude sensors.

A state-of-the-art star tracker may output full attitude description, in a rotation matrix, three Euler

angles or quaternion format, or as an alternative, output the directions of the stars in its FOV and the

corresponding unit vectors in a inertial reference coordinate system. On this work, the latter is primarily

considered for the use in the attitude determination methods of chapter 4.

The star tracker is a LOS sensor that provides corrupted vector measurements of the direction to

several stars, in body coordinates, according to the model introduced in section 3.4.

3.1.4 Gyroscope

A gyroscope, or gyro for short, is a device that measures angular rates. Gyroscopes can generally

be divided into Rate Gyros (RGs), that measure and output spacecraft angular rates, which may be inte-

grated by an onboard computer to provide an estimate of attitude displacements from a initial reference,

and into Rate Integrating Gyros (RIGs), that measure and output angular displacements directly.

Different types of gyroscopes exist concerning the physical mechanisms used for the measurements:

spinning mass gyros, optical gyros and Coriolis vibratory gyros. Spinning mass gyros rely on the conser-

vation of angular momentum of a rapidly rotating mass in inertial space to perform the measurements.

Optical gyroscopes rely on the Sagnac effect which applies to light traveling in opposite directions around

a closed path that is rotating with respect to an inertial frame. Coriolis vibratory gyroscopes (CVGs)

sense the motion of a vibrational mode in a structure caused by Coriolis forces. CVGs manufactured

with MEMS technology have low cost, mass and power requirements, but also low performance and a

short lifetime compared to other gyros. The main gyro types used in small spacecraft are fiber optic

gyros (FOGs) and MEMS gyros, with FOGs offering better performance at a mass and cost penalty.

Errors in RGs outputs are generally caused by nonlinearity, drift, and hysteresis.

3.1.5 Other Attitude Sensors

Some other sensors may be integrated in the ADCS system of a nanosatellite. Other examples are

the Earth horizon sensors and the Global Positioning System (GPS) Receivers. Earth horizon sensors

detect points on the Earth’s horizon and with multiple points are able to compute the nadir vector. GPS

Receivers can estimate the attitude of the spacecraft by measuring the phase of a GPS carrier signal

received by different antennas.
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3.2 Actuators

Being the primary focus of this work to study the attitude determination of a spacecraft and not its

control and maneuvers, only a brief review of the most used actuators on board of small satellites is done

in this section. Magnetic torquers, reaction wheels and thrusters are highlighted due to its importance

and dominance.

Magnetic torquers or magnetorquers are used to control attitude in LEO, with high reliability and

small mass, having a significant importance in the detumbling and stabilization phases. Sending a

current through a coil will create a magnetic field perpendicular to the current loop that will interface

with the Earth Magnetic Field and produce useful torque acting on the satellite and making it rotate. As

control torques can only be provided in the plane perpendicular to the local magnetic field, full 3-axes

stabilization is not possible at any given time using only magnetorquers.

Reaction wheels are used as the primary attitude control on most spacecraft and are now also

dominant in nanosatellites, providing high accuracy. An electric motor attached to a flywheel making

the rotation speed change causes the spacecraft to rotate through conservation of angular momentum.

One or two reaction wheels can be used by momentum-bias spacecrafts, but 3 or more reaction wheels

are needed for full three-axes attitude control. A four wheel configuration is often used to provide fault

tolerance [33]. Due to external torques, reaction wheels need to be periodically de-saturated using other

actuators providing external torques.

Miniaturized propulsion systems are now available, usually cold-gas based with high specific energy

and efficiency, low power consumption and small volume and mass. They can be used for off-loading

and attitude control.

3.3 Sensor Selection

The sensor selection for a nanosatellite mission follows strict constraints in terms of size, volume,

mass, power consumption, cost and performance. The final selection is strongly determined by the

latter and by the pointing requirements and goals of the mission. The 2 missions under the scope of the

NANOSTAR Project require a precise sensor suite and full three axis knowledge.

Remembering from chapter 1, two different missions are in preliminary design. Depending on the

mission, we can either be dealing with a LEO, or with orbits that gradually get farther and farther away

from Earth until an orbit around the Moon.

To determine attitude, at least two external vector measurements are needed. A magnetometer may

be used in LEO, but it will soon be useless as the distance to Earth increases significantly. A Sun

sensor should, in principle, provide useful measurements, at a high frequency in any of the missions,

but long duration eclipses may perturb the high pointing accuracy needed. A star tracker, providing

the directions of stars available in its FOV would offer better conditions in terms of overall availability

of measurements and accuracy, but it is a high cost sensor, and, generally, with low frequency, giving

the estimators difficulties to determine the attitude with acceptable error if the angular velocity is high.
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Inertial platforms are useful to hold and propagate external measurements or states, and give precise

and important angular rate knowledge, at high rate.

Therefore, a sensor suite composed by an inertial unit containing a rate gyroscope and a magne-

tometer, with the addition of a Sun sensor and a star tracker is proposed. The rate gyroscope will

provide the important angular rate knowledge, and the star tracker the accurate, but low rate, external

measurements. Those accurate external measurements will be complemented by high rate measure-

ments coming from the Sun sensor, and also the magnetometer in LEO.

3.4 Sensors Measurement Models

This section does not intend to expand on sensor mathematical models, hence simple but realistic

measurement and noise models are used.

All attitude sensors are assumed to provide vector measurements that depend directly on the attitude

alone. Two types of reference sensors are considered: complete vector sensors, which measure all

three components of a quantity, and LOS sensors, that measure only a direction. In both cases, the

measurements are assumed to be corrupted by noise and to be inherently discrete-time, following the

model:

bk = ABIrk + ηk (3.1)

where the subscript k represents the quantity at time k, r is a known reference vector in inertial coordi-

nates, ηk is a vector of discrete noise, and bk is the corrupted vector measurement in body coordinates.

Line-of-Sight (LOS) sensors measure the elevations of the line of sight as projected onto mutually

perpendicular planes which contain the sensor boresight. Denoting these two angles as ᾱ and ζ̄, the

true measurement model for the sensed line of sight is given by:

b̂
true

=
1√

1 + tan2(ᾱ) + tan2(ζ̄)


tan(ᾱ)

tan(ζ̄)

1

 (3.2)

where the caret denotes a unit vector measurement.

Reference [12] indicates that nearly all probability of the errors of a LOS measurement is concen-

trated on a very small area about the direction of b̂
true

, so the sphere containing that point can be

approximated by a tangent plane characterized by:

b̂k = ABI r̂k + ηk (3.3)

where the sensor error ηk is approximately Gaussian, satisfying:

E{ηk} = 0 (3.4a)
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RQUEST ≡ E{ηkηTk } = σ2

(
I3 − b̂

true
b̂
trueT

)
(3.4b)

where E{} denotes expectation, I3 denotes a 3× 3 identity matrix and σ is the standard deviation of the

error assumed for the LOS sensor. Equation 3.4b is known as the QUEST Measurement model (QMM)

[12, 34] and is used instead of the true model.

On the other hand, complete vector measurements following equation 3.1 do not provide measure-

ment vectors with unit norm and the noise is usually assumed to be Gaussian, white, and with covariance

Rηk
, proportional to the identity matrix. As the magnitude of the observed vector does not contain rel-

evant information for attitude determination, and the use of only unit vectors can be an advantage in

some filters implementations [35], equation 3.1 can be normalized, giving the measurement model for

the complete vector sensors as:

b̂k = ABI r̂k + η̂k (3.5)

where η̂k is to good approximation Gaussian, white and related to ηk according to:

η̂k = − 1

||rk||

[
ABI r̂k×

]2
ηk (3.6)

The measurement covariance matrix of the unitized measurement is then given by:

Rη̂k
≡ 1

||rk||2
[
ABI r̂k×

]2
Rηk

[
ABI r̂k×

]2
(3.7)

and as Rηk
is assumed proportional to the identity matrix, the covariance matrix of the QMM is reached:

RQUESTη̂k
= σ2

η̂k
(I3 − (ABI r̂k)(ABI r̂k)T ) (3.8)

which was also the assumed covariance matrix for the LOS sensors.

Therefore, all the reference sensors provide unitized measurements following the QMM. The QMM

has been widely used in spacecraft attitude estimation. The noise is approximated to lie in the tangent

plane of the respective unit vector measurement, being axially symmetrically distributed about it. The

QMM covariance is shown to be a reasonable approximation of the true covariance if the FOV is not

too large but is necessarily singular. However, that singularity arising from the normalization of the

measurement, can be set aside, as the attitude is insensitive to the length of the vector, and the singular

measurement covariance matrix can be replaced with an equivalent one which is a multiple of the three

dimensional identity matrix [34], having an efficient and simple implementation in the Kalman filter.

The measurement model that describes the gyroscope is the following continuous model:

ωm(t) = ω(t) + β(t) + ηv(t) (3.9a)

β̇(t) = ηu(t) (3.9b)

where ω(t) is the true rate, ωm(t) is the measured rate, β(t) is the true bias or drift, and ηv(t) and ηu(t)

are independent zero-mean Gaussian white-noise processes.
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Chapter 4

Attitude Determination Methods

Chapter 3 described both the hardware and the principles behind gathering attitude related relevant

data. This chapter describes the procedures by which that data is processed to determine the spacecraft

attitude. The complete determination of the orientation of the three axes of the spacecraft body frame

with respect to the inertial frame is desired, therefore only solutions capable of providing the three-axis

attitude knowledge are considered.

Attitude determination methods come in various forms and an overview is given in section 1.2. The

first appeared methods to solve the problem of determining the attitude of a spacecraft are referred in

this work as deterministic methods or point-to-point approaches. These compute the attitude based on

two or more vector measurements taken at the same time, in a purely algebraic way, without the use of

motion models or information from past attitude.

Years after, the tendency soon started to be using estimation algorithms to solve the problem of

attitude instead of deterministic ones. Solutions based on the Kalman filter started to be designed.

These filtering approaches used dynamic models of the spacecraft’s motion, and took into account past

estimates as well as measurements coming from the sensors.

Limitations of the solutions based on Kalman Filtering led the research of new methods to determine

the attitude. Among these, nonlinear observers have emerged as an attractive alternative given the

possibility to establish convergence bounds and provide stability guarantees, with an associated lower

computational cost, and a more straightforward tuning of the design parameters.

This chapter documents the theory underlying the attitude determination methods that are the focus

of this work. Section 4.1 describes deterministic methods for combining measurements to produce a

determination of the attitude, with special emphasis on the QUEST algorithm. Section 4.2 describes

filtering methods to provide estimates of the attitude, with special emphasis on the development of the

MEKF for attitude estimation. Section 4.3 presents a nonlinear observer with a sensor based framework

at its core, reviewing its design.
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4.1 Deterministic Methods

Deterministic methods compute the attitude solely based on vector measurements coming from the

sensors, in a purely algebraic way, without the use of motion models or information from past attitude.

These methods are very advantageous due to their low computational efforts, independence of attitude

motion models and easily application but have serious limitations, such as the requirement of a minimum

of two measurements.

As described in chapter 3, attitude related measurements are naturally represented as unit vectors,

being typical examples the unit vectors giving the direction to the Sun, a star, or of the Earth’s magnetic

field.

The first static attitude determination method developed traces back to 1964 when Harold D. Black

published what is usually called the TRIAD algorithm [8], which enabled the determination of the attitude

of a spacecraft using two body and reference observations. To fight some of the flaws of TRIAD, one year

later, Grace Wahba formulated a general criterion for attitude determination using two or more vector

measurements [9]. The TRIAD algorithm and some solutions to the Wahba’s Problem are discussed in

this section, as well as some statistical factors such as the attitude error covariance that can be obtained

for these solutions. The algorithms formulation in this section follows from references [10–12]

4.1.1 The TRIAD Algorithm

As mentioned before, the TRIaxial Attitude Determination (TRIAD) algorithm, first published by

Harold D. Black, uses exactly two vector measurements to compute the attitude. It is a deterministic,

non-optimal solution incorporating just enough observations to uniquely determine the attitude.

The method is based on the fact that, if two unit vectors are available in the spacecraft body frame,

that are measurements of some quantity, and are also available the respective unit vectors of the same

quantity, but this time represented in some reference frame, a relation can be used to obtain its attitude.

As referred, 3 independent quantities are necessary to fully determine the attitude. By using only one

measurement, owing to the norm constraint, only the orientation of the satellite axis relative to the

vector line could be obtained, but not the degree of freedom involving the rotation about this line. To

determine all 3 degrees of freedom, it is sufficient to use any other linearly independent vector in the

same conditions as the first one. In fact, two vectors over-determine the attitude.

Denoting the representation of the two unit vectors in the body frame as b1 and b2, and the corre-

sponding vectors in the reference frame by r1 and r2, the attitude matrix A that rotates vectors from the

reference frame to the spacecraft body frame is such that:

Ar1 = b1 (4.1a)

Ar2 = b2 (4.1b)

Only for error free measurements the same solution could be found to the equations 4.1a and 4.1b,

so the classical TRIAD algorithm is based on the assumption that b1 unit vector is more accurate than
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b2, so the estimate satisfies exactly the equation 4.1a, and only approximately the equation 4.1b. In

practical, the TRIAD algorithm determines the attitude by first discarding part of the measurements so

that a solution exists.

The implementation of TRIAD passes by defining two orthonormal right-handed triad of vectors, one

in the reference frame (v1, v2, v3), and one in the body frame (w1,w2,w3). The unique orthogonal matrix

A that satisfies Avi = wi is given by:

A ≡
3∑
i=1

wiv
T
i (4.2)

with the triad (v1, v2, v3) formed from r1 and r2 and (w1,w2,w3) formed from b1 and b2 by means of:

v1 = r1, v2 = rx ≡
r1 × r2

||r1 × r2||
, v3 = r1 × rx (4.3a)

w1 = b1, w2 = bx ≡
b1 × b2

||b1 × b2||
, w3 = b1 × bx (4.3b)

4.1.2 Wahba’s Problem

TRIAD, although powerful and simple, presented major limitations such as only being able to pro-

cess two measurements, and its suboptimality in any statistical sense. Improvements were made by a

problem posed in 1965 by Grace Wahba [9]. Wahba’s problem is to find the orthogonal matrix A with

determinant +1 that minimizes the following loss function:

L(A) =
1

2

N∑
i=1

ai||bi − Ari||2 (4.4)

where bi and ri follow from last section and ai are non-negative weights.

The loss function of equation 4.4 can be written in the form:

L(A) = λ0 − tr(ABT ) (4.5)

with:

λ0 ≡
N∑
i=1

ai, B ≡
N∑
i=1

aibirTi (4.6)

The minimum loss function is achieved when tr(ABT ) is maximized.

Several algorithms for solving Wahba’s problem exist differing on computational load and the param-

eterization they solve to, either the attitude matrix directly or its quaternion representation.

4.1.3 Davenport’s q Method

Paul Davenport presented the first useful solution to Wahba’s problem for spacecraft attitude deter-

mination. His solution begins by applying some substitutions and using several quaternion relations, to
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the loss function of equation 4.5, finally expressing it as:

L(A(q)) = λ0 − qTK(B)q (4.7)

whereK(B) is the symmetric traceless matrix:

K(B) =

N∑
i=1

ai[bi ⊗ ]
T

[ri � ] (4.8)

The optimal attitude is represented by the unit quaternion that minimizes the right side of equation

4.7, and that is true when the quaternion is equal to the normalized eigenvector ofK(B) with the largest

eigenvalue.

The optimized loss function is then equal to:

L(A(q̂)) = λ0 − λmax (4.9)

Very robust algorithms exist to solve the symmetric eigenvalue problem, which makes the Daven-

port’s q method very robust, but considerably computationally heavy.

4.1.4 Quaternion Estimator (QUEST)

The QUEST algorithm appearance was justified by the difficulty of the computers at the time to

perform the calculation of exact eigenvalues in Davenport’s solution. QUEST maintained all the compu-

tational advantages of a fast deterministic algorithm like TRIAD while still yielding an optimal result like

Davenport, and became the most widely used algorithm to solve Wahba’s problem.

Davenport’s eigenvalue condition can be expressed as:

04 =H(λmax)q̂ (4.10)

where:

H(λ) ≡ λI4 −K(B) =

(λ+ tr(B))I3 −S −z

−zT λ− tr(B)

 (4.11)

with:

z ≡


B23 −B32

B31 −B13

B12 −B21

 =

N∑
i=1

ai(bi × ri) , S ≡B+BT (4.12)

Equation 4.10 is equivalent to the following two equations:

(ζI3 −S) q̂1:3 = q̂4z (4.13a)

(λmax − tr(B)) q̂4 − zT q̂1:3 = 0 (4.13b)
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where:

ζ ≡ λmax + tr(B) (4.14)

If λmax was known a priori, the optimal quaternion would be given as:

q̂ = ᾱ

adj(ζI3 −S)z

det(ζI3 −S)

 (4.15)

where ᾱ normalizes q̂. If equation 4.15 is substituted into 4.13b, an implicit equation for the maximum

eigenvalue is obtained, which is the characteristic equation ofK(B):

(λmax − tr(B))det(ζI3 −S)− zTadj(ζI3 −S)z = 0 (4.16)

Equation 4.16 can be written as a quartic equation for λ:

0 = [λ2 − (tr(B))2 + κ][λ2 − (tr(B))2 − ||z||2]− (λ− tr(B))(zTSz+ detS)− zTS2
z (4.17)

or under the following characteristic polynomial form:

f(λ) = λ4 − (a + b)λ2 − cλ+ (ab + c%− d) = 0 (4.18)

with:

a = %2 − κ (4.19a)

b = %2 + zTz (4.19b)

c = ∆+ zTSz (4.19c)

d = (zTS)(Sz) (4.19d)

% = 0.5tr(S) (4.19e)

κ ≡ tr(adj(S)) (4.19f)

∆ ≡ det(S) (4.19g)

Only the largest root, λmax, of equation 4.17 is of interest. λmax can be obtained by Newton-Raphson

iteration of the same equation, starting from λ0 as the initial estimate, since these two values will be

nearly the same if the optimized loss function is small, with a single iteration being generally sufficient.

4.1.5 Error Analysis of Wahba’s Problem

As important as an estimate, is knowing its accuracy. This subsection provides an estimate of the

accuracy of a solution to Wahba’s problem.
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Remembering that the body frame vectors bi and reference frame vectors ri are given by:

ri = rtruei + ηri (4.20a)

bi = btruei + ηbi (4.20b)

where ηri and ηbi are respectively the errors in the reference and body frame vector measurements.

These errors are unknown, but some assumptions about them have been made in chapter 3, as the

QUEST Measurement Model is the model of choice. The measurement covariance matrices of the

noise for each measurement are then given by:

Rri = σ2
ri [I3 − rtruei (rtruei )T ] = −σ2

ri [r
true
i ×]2 (4.21a)

Rbi = σ2
bi [I3 − btruei (btruei )T ] = −σ2

bi [b
true
i ×]2 (4.21b)

Additionally, it can be shown that choosing the weights ai of Wahba’s problem to be proportional to

the inverses of the measurement variances of each sensor results in the best estimate:

ai = c/σ2
i (4.22)

for some constant c.

Then, using the rotation vector δϑ introduced in section 2.1.5, representing a rotation between the

estimated body frame and the true body frame, represented in the spacecraft’s body frame, as the

parameterization for the attitude errors, the error covariance of the solution to Wahba’s problem with the

QMM, is given by:

P ϑϑ =

(
N∑
i=1

σ−2
i

[
I3 − btruei (btruei )T

])−1

(4.23)

In practice, it would be desired to compute an estimate of the covariance without knowing exactly the

true body frame vectors. For that, the predicted body frame vectors Âri could be used instead of the

true ones.

4.2 State Estimation Methods

State estimation refers to the process of obtaining the best state estimate, optimum by some mea-

sure, of the true system, using a dynamic model and measurements that are both corrupted with random

noise of known statistics. The variables to be estimated are usually collected into a state vector. These

type of approaches can be used to simultaneously estimate quantities and filter noisy measurement

observations. Many times, a filter is also used to infer the state of a system that cannot be measured

directly.

In state estimation processes, there are two basic ways to update the state vector. When a new esti-

mate of the state vector is obtained after each observation, the process is called a sequential estimator
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or recursive. If, otherwise, all the observations are processed and then combined to produce a single

update to the state vector, the process is referred to as a batch estimator [28].

This section introduces Kalman filter theory, discussing the concepts of state and observation mod-

els, and the formulation of the linear Kalman filter and the non-linear Extended Kalman filter (EKF).

Afterwards, the design of an EKF that is typically used for actual onboard applications is presented.

4.2.1 Kalman Filtering

State and Observation Models

Modeling is a fundamental aspect when analyzing the behavior of a system and designing estimation

algorithms for it. A system can either be described by a static model or a dynamic one.

Dynamic models are described by differential or difference equations. State vectors, composed by

state variables, describe the condition of the system. The number of state variables in the state vector

is known as the order of the system. Equation 4.24 describes the general structure of an nth-order

dynamic model.

ẋ(t) = f(x(t)),u(t), t), x(t0) = x0 (4.24)

where f is sufficiently differentiable, x is the state vector, and u denotes any input to the system that

does not depend on the state elements.

One subset of these dynamic systems are the linear ones, which follow the superposition principle

and can be represented as:

ẋ(t) = F(t)x(t) + B(t)u(t), x(t0) = x0 (4.25)

where the matrices F and B are known as the state matrix and input matrix, respectively. The solution

to equation 4.25 is given by [11]:

x(t) = Φ(t, t0)x0 +

∫ t

t0

Φ(t, τ)B(τ)u(τ)dτ (4.26)

where Φ(t, t0) is known as the state transition matrix, which has the following properties:

Φ(t0, t0) = I (4.27a)

Φ(t0, t) = Φ(t, t0)−1 (4.27b)

Φ(t2, t0) = Φ(t2, t1)Φ(t1, t0) (4.27c)

Φ̇(t, t0) = F(t)Φ(t, t0) (4.27d)

Observations are gathered as outputs from the sensors. The general form of an observation vector,
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used to show how a sensor relates to various state quantities and inputs is given by:

y(t) = h(x(t),u(t), t) (4.28)

where h is the observation vector. Linear observation models follow the same structure as linear state

models:

y(t) = H(t)x(t) + D(t)u(t) (4.29)

where H is the observation matrix, or sensitivity matrix, and D is called direct transmission matrix [11].

Equations 4.25 and 4.29 form the state space description of a linear model.

Discrete-time systems have become a standard in most dynamic applications with the use of digital

computers. Thus, a discrete time representation for the dynamic and observations models is derived.

For that, let’s consider a zero-order hold for sampling the system, which holds the sampled point to a

constant value throughout the interval. With F and B constants, or slowly varying, and the time set to

the first sample interval, then, equation 4.26, simplifies to:

x(∆t) = Φx(0) + Γu(0) (4.30)

where:

Φ ≡ eF∆t (4.31a)

Γ ≡

[∫ ∆t

0

eF(t)dt

]
B (4.31b)

Expanding equation 4.30 for k+1 samples and changing the notation in order that the entire discrete

state-space is represented, gives:

xk+1 = Φxk + Γuk (4.32)

being xk the state at time tk.

Equation 4.29 may also be represented in discrete time by:

yk = Hxk + Duk (4.33)

Kalman Filter

A Kalman Filter is an optimal recursive data processing algorithm [36]. With knowledge of the system

and measurement errors, uncertainties in the dynamic models, any available information about the initial

condition of the variables of interest, and all the available measurements (regardless of their precision),

the Kalman Filter produces an optimum estimate of the desired variables. This estimate is statistically

optimal with respect to any quadratic function of the estimation error [37]. The filter is recursive in the

sense that it does not require all previous data to be kept in storage and reprocessed every time a new

measurement is taken, just the previous one.

The operation of the Kalman Filter starts from an initial condition x(t0). However, since this value
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may not be known precisely a priori, it will me modeled as a random vector that is normally distributed.

Thus, the initialization stage is defined by the description of x(t0), completely specified by the mean x̂0

and associated covariance P0:

E{x(t0)} = x̂0 (4.34a)

E{[x(t0)− x̂0][(x(t0)− x̂0]
T

= P0 (4.34b)

where P0 is an n-by-n matrix that is symmetric and positive semi-definite.

Afterwards, the filter performs recursively switching between two stages. The first one, called the

prediction or propagation stage, propagates the estimate and its covariance from time tk to tk+1, yielding

x̂−k+1 and P−k+1, based on a process describing the system dynamics. Then, comes the correction

or update stage, where the a priori estimate x̂−k+1 and covariance P−k+1 suffer a correction based on

the measurement yk+1, producing the a posteriori state estimate x̂+
k+1 and P+

k+1 for time tk+1. The

superscript − is then used to refer to a value at a time prior to a update, whereas the superscript +

corresponds to a value already updated.

The dynamic process model is assumed to be in the form of a linear stochastic differential equation,

obtained appending a noise term to the equation 4.25:

ẋ(t) = F(t)x(t) + B(t)u(t) + G(t)w(t) (4.35)

where w is a zero-mean Gaussian white-noise process vector with spectral density given by:

E{w(t)wT (τ)} = Q(t)δ(t− τ) (4.36)

and G is called process noise distribution matrix. The process noise w(t) can also be described using

the notation w(t) ∼ N(0,Q(t)), where N stands for ”normal distribution”, the first argument is the mean

and the second the spectral density.

Discrete-time noise-corrupted linear measurements yk are assumed to be available, modeling the

observations by:

yk = Hkxk + vk (4.37)

where vk is a vector of discrete-time white Gaussian noise with statistics:

E{vk} = 0 (4.38a)

E{vkvTk } = Rk (4.38b)

where Rk is the noise covariance matrix.

It is also assumed that x(t0), w and v are independent of each other, and since all are assumed

Gaussian, this is equivalent to assuming that they are uncorrelated.

According to the Separation Theorem, the overall estimator system can be designed by separating
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the estimator from the controller, hence, the control input u(t) is made null for the following design of the

Kalman Filter.

The propagated estimated state, x̂, obtained by performing the expectation of equation 4.35, follows:

˙̂x(t) = F(t)x̂(t) (4.39)

Defining the residual error, ∆x, as the difference between the true state in equation 4.35 and the

estimated state in equation 4.39:

∆x ≡ x− x̂ (4.40)

The covariance of ∆x is given by:

P ≡ E{∆x∆xT } (4.41)

Performing the time derivative of equation 4.40, it can be derived that P obeys the equation:

Ṗ ≡ FP + PFT + GQGT (4.42)

which is solved for P(t) with initial condition P(t0) = P0. The equations 4.39 and 4.42 describe the

propagation stage of the Kalman Filter.

At measurement time tk, the measurement yk becomes available. A discrete ”update” equation is

required to process the measurements. The linear discrete-time update equation is given by:

x̂+
k = x̂−k + Kk[yk − Hkx̂−k ] (4.43)

where x̂−k comes from the propagated estimate using equation 4.39, and Kk is the Kalman gain matrix.

The updated covariance expression is given by:

P+
k = [I− KkHk]P−k [I− KkHk]

T
+ KkRkKTk (4.44)

where P−k comes from the propagated estimate using equation 4.42.

The optimal Kalman Filter gain Kk is determined by minimizing the trace of the updated covariance,

leading to:

Kk = P−k HTk [HkP−k HTk + Rk]
−1 (4.45)

Substituting equation 4.45 into 4.44 gives:

P+
k = [I− KkHk]P−k (4.46)

For an extensive amount of problems, the discrete-time version of the dynamic model of equation

4.35 is usually adequate:

xk+1 = Φkxk + Γkuk + Υkwk (4.47)

where wk is a zero-mean Gaussian white-noise process vector with covariance Qk.
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With this formulation, and employing again the Separation theorem, the discrete time estimate prop-

agation is given by:

x̂−k+1 = Φkx̂+
k (4.48)

and the discrete-time covariance propagation is given by [11]:

P−k+1 = ΦkP+
k ΦT

k + ΥkQkΥ
T
k (4.49)

Table 4.1 summarizes the discrete-time Kalman Filter formulation.

Discrete-time Kalman Filter

Model xk+1 = Φkxk + Γkuk + Υkwk, with wk ∼ N(0,Qk)

yk = Hkxk + vk, with vk ∼ N(0,Rk)

Initial condition x̂(t0)=x̂0

P(t0)=P0

Propagation x̂−k+1 = Φkx̂+
k

P−k+1 = ΦkP+
k ΦT

k + ΥkQkΥ
T
k

Gain Kk = P−k HTk [HkP−k HTk + Rk]
−1

Update x̂+
k = x̂−k + Kk[yk − Hkx̂−k ]

P+
k = [I− KkHk]P−k

Table 4.1: Discrete-time Kalman Filter formulation.

Extended Kalman Filter

Consider the general continuous nonlinear model:

ẋ(t) = f(x(t),u(t), t) + G(t)w(t) , w(t) ∼ N(0,Q(t)) (4.50a)

y(t) = h(x(t), t) + v(t), v(t) ∼ N(0,R(t)) (4.50b)

or its discrete time equivalent:

xk+1 = fk(xk,uk) + Υkwk, wk ∼ N(0,Qk) (4.51a)

yk = hk(xk) + vk, vk ∼ N(0,Rk) (4.51b)
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where f(x(t),u(t), t) and h(x(t), t) are continuously differentiable nonlinear functions, and fk(xk,uk) and

hk(xk) are discrete-time differentiable nonlinear functions.

One of the assumptions made for the development of the Kalman filter in section 4.2.1, was that the

system could be described by a linear model. However, a large class of estimation problems involve

nonlinear models such as the ones in equations 4.50 and 4.51. This bears the issue that the probability

density function of the noise is altered as it is transmitted through the nonlinear element. Meaning, a

Gaussian output is not guaranteed by a Gaussian input, as in the linear case.

However, many of this nonlinear systems can be approximated locally by a linear one. That is,

the functional dependence of the measurement or state dynamics on the system are nonlinear, but

approximately linear for small perturbations in the values of the state variables. This means that methods

of linear estimation theory, such as the Kalman Filter, may be applied to such nonlinear problems, by

linear approximation of the effects of small perturbations in the state of the nonlinear system from a

”nominal” value [37].

For the cases which operational performance depends on staying close to an optimal trajectory, the

nominal values of the state variables are well known beforehand. For these applications, the estimation

problem can be linearized about this nominal trajectory, being able to compute the Kalman gains before-

hand, but the deviation of the actual trajectory from the nominal one tends to increase with time. The

nominal trajectory may also be defined ”on the fly” as the current best estimate of the actual trajectory. In

this way, the perturbations include only the state estimation errors, generally smaller than the perturba-

tions from any predefined nominal trajectory, and therefore better conditioned for linear approximation.

However, for these cases, real-time computational cost increases. The latter is called the Extended

Kalman Filter, and though not precisely ”optimum” has been successfully applied to many non-linear

systems over the past many years [38].

The fundamental concept of the Extended Kalman Filter is assuming the true state is sufficiently

close to the estimate state. With that assumption, the error dynamics can be represented by a linearized

first-order Taylor series expansion [38].

The first order expansion of f(x(t),u(t), t) and h(x(t), t), about a nominal state x̄(t) is given by:

f(x(t),u(t), t) ∼= f(x̄(t),u(t), t) +
δf
δx

∣∣∣∣
x̄(t)

[x(t)− x̄(t)] (4.52a)

h(x(t), t) ∼= h(x̄(t), t) +
δh
δx

∣∣∣∣
x̄(t)

[x(t)− x̄(t)] (4.52b)

where x̄(t) = x̂(t) in the case of the Extended Kalman Filter.

The linearized error dynamics can then be derived to be:

∆ẋ(t) = F(t)∆x(t) + G(t)w(t) (4.53)
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where ∆x(t) = x(t)− x̂(t) and:

F(t) ≡ δf
δx

∣∣∣∣
x̂(t)

(4.54)

As the error equation 4.53 is linear, the Extended Kalman Filter is formulated in terms of the error

estimation.

A linear measurement model may also be defined by using the following measurement residual υk

at time tk:

υk = yk − ŷk = yk − hk(x̂−k ) (4.55)

where x̂−k is the a priori state estimate propagated from the previous step. A linear first order approxi-

mation for υk is:

υk ∼= Hk∆x−k + vk, Hk ≡
δhk
δx

∣∣∣∣
x̂−k

(4.56)

where ∆x−k = xk − x̂−k .

Using the linearized measurement model of equation 4.56, the measurement update stage of the

linear Kalman Filter may be applied to ∆x−k , with some small changes:

Kk = P−k HTk [HkP−k HTk + Rk]
−1 (4.57a)

∆x̂+
k = Kk[yk − hk(x̂−k )] (4.57b)

x̂+
k = x̂−k +∆x̂+

k (4.57c)

P+
k = [I− KkHk]P−k (4.57d)

where Kk and P+
k come from equations 4.45 and 4.46 of the linear Kalman Filter, respectively.

The measurement update of the EKF can be summarized as follows. At time tk, the uncertainty

between the true and estimated state is ∆x−k . With a measurement, ∆x−k is updated, reducing the

uncertainty to ∆x+
k using equation 4.57b. This estimate is used to yield the a posteriori state estimate

x̂+
k , using equation 4.57c. The term ∆x−k does not appear in equation 4.57b because the estimate of

uncertainty is not explicitly propagated, but propagated as a part of x̂+
k . Equation 4.57c may be seen as

a ”full reset”.

The covariance and state propagation equations are yet to be defined. First of all, the propagation

of the state estimate itself is made with resort to the nonlinear dynamics matrix. Taking the expectation

of equation 4.51a:

x̂−k+1 = fk(x̂+
k ) (4.58)

In order to obtain the covariance propagation equation, the first-order Taylor series expansion of
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equation 4.51a is used, to get the propagation of the uncertainty from time tk to tk+1, obtaining:

∆x−k+1 = Φk∆x+
k + Υkwk, Φk ≡

δfk
δx

∣∣∣∣
x̂+
k

(4.59)

which results in the following expression for the covariance propagation:

P−k+1 = ΦkP+
k ΦT

k + ΥkQkΥ
T
k (4.60)

Since the approach used in the EKF assumes that the true state is ”close” to the estimated state, this

filter performance may be seriously affected for highly nonlinear applications with large initial condition

errors [38].

Table 4.2 summarizes the discrete-time Extended Kalman Filter formulation.

Discrete-time Extended Kalman Filter

Model xk+1 = fk(xk,uk) + Υkwk, wk ∼ N(0,Qk)

yk = hk(xk) + vk, vk ∼ N(0,Rk)

Initial condition x̂(t0)=x̂0

P(t0)=P0

Propagation x̂−k+1 = fk(x̂+
k )

P−k+1 = ΦkP+
k ΦT

k + ΥkQkΥ
T
k , Φk ≡ δfk

δx

∣∣∣∣
x̂+
k

Gain Kk = P−k HTk [HkP−k HTk + Rk]
−1, Hk ≡ δhk

δx

∣∣∣∣
x̂−k

Update ∆x̂+
k = Kk[yk − hk(x̂−k )]

x̂+
k = x̂−k +∆x̂+

k

P+
k = [I− KkHk]P−k

Table 4.2: Discrete-time Extended Kalman Filter formulation.

4.2.2 Kalman Filtering for Spacecraft Attitude Estimation

A large class of orbit and attitude estimation problems are, in fact, nonlinear. Many times referred

in literature, real-time spacecraft generally employ an EKF for attitude estimation [17]. Though the

possibility of problems in filter performance due to divergence, many robust and reliable EKF have been

employed.

Many of the representations presented in section 2.1 can be used in the EKF formulation. Although

the rotation matrix is the fundamental representation of attitude, it’s composed by nine parameters, 6

of them redundant and orthogonality problems related with computation errors are frequent. As stated

in section 2.1, special orthogonal group SO(3) of rotation matrices has dimension three. Therefore,
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most EKFs use lower-dimensional parameterizations of SO(3) such as a minimal three-dimensional

parameterization. However, while all three-parameter representations are singular or discontinuous,

higher-dimensional parameterizations, such as the quaternion, can avoid these singularities or discon-

tinuities. A dilemma is then faced, choosing between an attitude representation that is either singular

or redundant [17]. The quaternion is the lowest non-singular parameterization of attitude, being easily

employed in an EKF, hence being the parametrization chosen to formulate the following filters.

There are two ways to deal with the quaternion in the filter formulation. The first is to consider the four

components of the quaternion as independent parameters, although it is not true, and is called Additive

EKF. The second one is to consider a nonsingular representation for a reference attitude, and a three

component representation for the deviations from this reference, called Multiplicative EKF.

Additive EKF

The Additive EKF is obtained by relaxing the quaternion normalization condition and treating the four

components of the quaternion as independent parameters. The quaternion estimate and error are given

by:

q̂ = E{q} (4.61a)

∆q ≡ q− q̂ (4.61b)

This leads to the relation:

E{||q||2} = E{||q̂ +∆q||2} = ||q̂||2 + E{||∆q||2} > ||q̂||2 (4.62)

Equation 4.62 shows that if the random variable q has unit norm, the norm of its expectation must be

less than unity. The unity norm constraint violation would be on the order of the variance of the attitude

errors, but this problem is regarded as a conceptual problem of AEKF [17]. Some methods have been

proposed to deal with the problem referred but none is considered completely satisfactory [11].

Multiplicative EKF

Evasion to the dilemma of a singular or redundant parameterization of attitude can be obtained using

a nonsingular representation for a reference attitude, and a three component representation for the

deviations from this reference. This method may be referred to as the Multiplicative EKF (MEKF) [17].

In MEKF, the true quaternion is written as the product of an error quaternion and the estimate:

q = δq(ā)⊗ q̂ (4.63)

It is notable that q, δq and q̂ are unit quaternions and the rotation δq(ā) is parameterized by ā,

a three-component representation of the attitude error, defined in the body reference frame. δϑ error

representation introduced in section 2.1.5 can be used as ā, so the error quaternion can be expressed

41



to first order by:

δq(δϑ) ≈

δϑ/2
1

 = Iq +
1

2

δϑ
0

 (4.64)

Using δϑ as the three component representation of the attitude error, the MEKF updates the error

state:

∆x ≡

δϑ
∆ξ

 (4.65)

where ξ = ξ̂ +∆ξ is a vector of other variables to be estimated.

Then the MEKF computes an unconstrained and unbiased estimate of ∆x. The estimate q̂ is not

actually part of the EKF, not being defined as an expectation, but a reset operation moves the updates

into this global variable to keep the error quaternion δq small and thus far away from any singularities.

As the MEKF requires less computational effort than the AEKF due to the lower dimensionality of

its covariance matrix, and is also the most satisfying conceptually, respecting the dimensionality of the

rotation group and the quaternion unit norm by definition [17], the proposed EKF for implementation in

this work uses the Multiplicative formulation.

MEKF formulation

A normal MEKF implementation proceeds by iteration of three steps: the measurement update, the

state vector reset and propagation to the next measurement time.

The measurement update step updates the error state vector with information obtained from mea-

surements.

The observation model is given by equation 4.50b, specified for attitude estimation by:

y = h(q, ξ) + v (4.66)

As the MEKF updates the error state of equation 4.65, the measurement sensitivity matrix is:

H(q, ξ) =
δh

δ(∆x)
=
[

δh
δ(δϑ)

δh
δ(∆ξ)

]
(4.67)

After the reset and propagation steps, the error state vector is zero. However, it may be desired

to process several measurements at one time without doing a reset between each other, leading to a

error state vector with finite values. Therefore, and in order to avoid recalculating the non-linear function

h(q̂, ξ̂) several times, its first-order Taylor series is used to compute the expectation:

E{h(q, ξ)} ≈ h(q̂, ξ̂) + H(q̂, ξ̂)

δϑ̂
∆ξ̂

 (4.68)
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Then, the state update for the kth measurement is then:δϑ̂+
k

∆ξ̂+
k

 =

δϑ̂−k
∆ξ̂−k

+ Kk

yk − hk(q̂−k , ξ̂
−
k )− Hk(q̂−k , ξ̂

−
k )

δϑ̂−k
∆ξ̂−k

 (4.69)

where the Kalman gain Kk is computed according to equation 4.57a. The updated covariance matrix P+
k

may be computed according to equation 4.57d.

The reset step moves the updated information from the error state ∆x+ to the global state x− and

resets the components of the error state to zero. In this way, is obtained a post-updated estimate of the

global state vector, i.e. q̂+ and ξ̂
+

, through:

q̂+
= δq(δϑ̂+)⊗ q̂− =

1√
1 + ||δϑ̂+/2||2

δϑ̂+/2

1

⊗ q̂− (4.70a)

ξ̂
+

= ξ̂
−

+∆ξ̂
+

(4.70b)

and after, δϑ̂−k and ∆ξ̂−k are reset to zero.

The covariance is not affected by the reset because the mean rotation caused by the reset is zero.

The reset operation is fundamental before the beginning of the propagation step, to avoid the need

of propagating the error state vector between measurements.

The propagation step propagates the global variables state and covariance to the time of the next

measurement.

Equation 2.24 from section 2.3.2 defines the quaternion kinematics model. This equation and its

expectation, repeated here, are used in the EKF for the propagation of the dynamics:

q̇ =
1

2
Ω(ω)q (4.71)

and its expectation:

˙̂q =
1

2
Ω(ω̂)q̂ (4.72)

Combining these two equations, equation 4.63, and its derivative, an exact kinematic relationship

may be derived [11]:

δq̇ =
1

2

ω̂
0

⊗ δq− δq⊗

ω̂
0

+
1

2

δω
0

⊗ δq (4.73)

that can be simplified (by ignoring some terms), to:

δq̇ = −

ω̂ × δq1:3

0

+
1

2

δω
0

 (4.74)
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The first three components of this, considering the error quaternion of equation 4.64 are:

δϑ̇ = −ω̂ × δϑ+ δω (4.75)

and its expectation is:

δ
˙̂
ϑ = −ω̂ × δϑ̂ (4.76)

MEKF implementation

One traditional implementation of an MEKF onboard of satellites is the 6-state EKF presented in [11],

that estimates the current attitude and gyroscope biases simultaneously, enabling an on-orbit calibration

approach. That is the approach used in this work.

Dynamic models based on equations of section 2.3 are many times used for the formulation of these

kind of filters, providing the precise angular rate information needed to filter noisy attitude sensor data

and propagate the system. Another approach is many other times used, as most of the spacecraft

are provided with accurate gyroscopes. These gyroscopes can be incorporated in an EKF as part

of the dynamic model, which may referred as using gyros in the dynamic model replacement mode.

The latter may be preferred in some situations: firstly, gyro information may be more accurate than

the available models of rotational dynamics and torques, and, sometimes, developing these models

is complex; secondly, it is far less computationally expensive to do it for onboard filtering. The filter

formulated in this section uses this approach.

For the development of this filter, it is assumed that the sensors are perfectly aligned. It is an approx-

imation that introduces error in the overall system because sensor misalignment is inevitable and would

contribute to unreliable attitude estimates, but for the sake of simplicity, such is assumed here.

The 7-component global state vector is made up of the true quaternion q and the true gyro drift

biases β:

x ≡

q

β

 (4.77)

and the 6-component state error vector is:

∆x ≡

 δϑ
∆β

 (4.78)

where δϑ is the local vector of small attitude errors and ∆β the error in the gyroscope biases defined

as ∆β ≡ β − β̂.

The gyroscope model is given by equations 3.9, where the spectral densities of ηv(t) and ηu(t) are

respectively σvI3 and σuI3. From the gyro model, it can be deduced:

˙̂
β = 0 (4.79)
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and:

δω = −(∆β + ηv) (4.80)

The error state vector obeys the linearized dynamic equation 4.53:

∆ẋ(t) = F(t)∆x(t) + G(t)w(t) (4.81)

where F(t) is the Jacobian of f(x, t) and:

w(t) ≡

ηv(t)

ηu(t)

 (4.82)

Resorting to equations 4.75 and 4.80, the matrices F(t), G(t) and Q(t) can be formed, according to

[11], as:

F(t) =

− [ω̂(t)×
]

−I3

03×3 03×3

 (4.83)

G(t) =

 −I3 03×3

03×3 I3

 (4.84)

Q(t) =

σv2I3 03×3

03×3 σu
2I3

 (4.85)

According to [11] and [38], closed-form expressions for the discrete-time matrices are possible, using

a power series approach. The discrete error-state transition matrix is given by:

Φ =

Φ11 Φ12

Φ21 Φ22

 (4.86)

with:

Φ11 = I3 −
[
ω̂×
] sin(||ω̂||∆t)

||ω̂||
+
[
ω̂×
]2 1− cos(||ω̂||∆t)

||ω̂||2
(4.87a)

Φ12 =
[
ω̂×
] 1− cos(||ω̂||∆t)

||ω̂||2
− I3∆t−

[
ω̂×
]2 ||ω̂||∆t− sin(||ω̂||∆t)

||ω̂||3
(4.87b)

Φ21 = 03×3 (4.87c)

Φ22 = I3 (4.87d)

The conversion from the spectral density Q(t) to discrete-time covariance Qk is done resorting to

some assumptions, namely that ω̂ is constant throughout the sampling interval and that the sampling

rate is below Nyquist’s limit, which is often true, approximating the discrete process noise covariance by:

Qk ≈

(σ2
v∆t+ 1

3σ
2
u∆t

3)I3 −( 1
2σ

2
u∆t

2)I3

−( 1
2σ

2
u∆t

2)I3 (σ2
u∆t)I3

 (4.88)
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Assuming that discrete observations such as in equation 4.51b are available, the following 3N mea-

surement vector can be formed:

yk =


A(q)r1

A(q)r2

...

A(q)rN

+


v1

v2

...

vN

 ≡ hk(xk) + vk (4.89a)

Rk = blkdiag (R1, R2, ... , RN ) (4.89b)

where Ri is the covariance of vi. The Quest Measurement Model of equation 4.21 produces a singular

matrix to be inverted in the EKF gain equation. Malcolm Shuster analyzed this singularity issue con-

cluding that the QMM covariance matrix could be effectively replaced by σ2
i I3, leading to the same filter

[34].

Using the relation between the true attitude matrix and the a priori attitude and the first order approx-

imation of the error-attitude matrix A(δq):

A(q) = A(δq)A(q̂−) (4.90a)

A(δq) ≈ I3 −
[
δϑ×

]
(4.90b)

it can be deduced that:

∆b ≡ b− b̂
−
≡ A(q)r− A(q̂−)r = −

[
δϑ×

]
A(q̂−)r =

[
b̂
−
×
]
δϑ (4.91)

and the sensitivity matrix for all measurement sets is therefore given by:

Hk(x̂−k ) =



[
b̂
−
1 ×
]

03×3[
b̂
−
2 ×
]

03×3

...
...[

b̂
−
N×
]

03×3


tk

(4.92)

It is important to note that the measurements depend explicitly on the attitude but not on the gyro

biases.

This gyro calibration MEKF implementation is summarized in Table 4.3. The filter has to be initialized

with a known initial global state and error covariance matrix. Then the Kalman gain is computed using

the measurement covariance matrix Rk and sensitivity matrix Hk. Then, the state and error covariance

updates follow the standard EKF update equations 4.57b and 4.57d, respectively. The global state is

updated according to equations 4.70, followed by reset. The estimated angular velocity provided by the

gyroscope is used to propagate the quaternion kinematic model and error covariance.

A discrete propagation of the quaternion model of equation 4.71 can be derived using a power series
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Gyro Calibration MEKF formulation

Initial conditions q̂(t0) = q̂0

β̂(t0) = β̂0

P(t0) = P0

Gain Kk = P−k HTk (x̂−k )[Hk(x̂−k )P−k HTk (x̂−k ) + Rk]
−1

Hk(x̂−k ) =



[
b̂
−
1 ×
]

03×3[
b̂
−
2 ×
]

03×3

...
...[

b̂
−
N×
]

03×3


tk

Update ∆x̂+
k = Kk[yk − hk(x̂−k )]

P+
k = [I− KkHk(x̂−k )]P−k

hk(x̂−k ) =


A(q̂−)r1

A(q̂−)r2

...

A(q̂−)rN


tk

q̂+
k = 1√

1+||δϑ̂+
k /2||2

[
δϑ̂+

k /2

1

]
⊗ q̂−k

β̂
+

k = β̂
−
k +∆β̂

+

k

Propagation ω̂(t) = ωm(t)− β̂(t)
˙̂q = 1

2Ω(ω̂)q̂
Ṗ(t) = F(t)P(t) + P(t)FT (t) + G(t)Q(t)GT (t)

Table 4.3: Gyro Calibration MEKF formulation.

approach [38]. The propagated quaternion can be found using:

q̂−k+1 = Ω̄(ω̂+
k )q̂+

k (4.93)

with:

Ω̄(ω̂+
k ) ≡

cos( 1
2 ||ω̂

+
k ||∆t)I3 −

[
ψ̂

+

k ×
]

ψ̂
+

k

−ψ̂
+

k

T

cos( 1
2 ||ω̂

+
k ||∆t)

 (4.94)

and:

ψ̂
+

k ≡
sin( 1

2 ||ω̂
+
k ||∆t)ω̂

+
k

||ω̂+
k ||

(4.95)

and ∆t is the sampling interval in the gyroscope.

The discrete propagation of the covariance equation follows equation 4.60 with:

Υk =

 −I3 03×3

03×3 I3

 (4.96)
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So, the continuous propagation of equations 4.72 and 4.79 and covariance equation can be replaced

by discrete equivalents 4.93, 4.60 and:

β̂
−
k+1 = β̂

+

k (4.97)

making the EKF suitable for on-board implementation.

Murrell’s Version

The gain calculation of the filter shown before in Table 4.3 requires an inverse of a 3N × 3N matrix

in the gain calculation. A variation of this filter can be used based on an algorithm developed by Murrell

[39]. As a linear update is performed, linear tools such as the principle of superposition can be used,

and Murrell’s filter uses this principle to process each 3× 1 vector observation at a time. The schematic

illustrated in figure 4.1 illustrates the steps of the algorithm. For each time tk, the error covariance and

state quantities are updated using a single vector observation. The update is continued and repeated

until all vector observations are processed. Then, a reset moves the updated values into the global

state representation, and then then the global state and error covariance are propagated to the next

observation time.

4.3 GES Cascade Observers for Attitude Estimation

Section 4.1 focused on attitude estimation from vector measurements by means of different determin-

istic methods. Section 4.2 introduced the concept of state attitude estimation, describing the theory in

Kalman Filtering and presenting a specific MEKF implementation. The EKF, although being a relatively

simple and flexible tool with extensive heritage that can incorporate a great variety of measurements,

having performed admirably in a vast number of applications, can show bad performance and divergence

in the case of highly nonlinear dynamics or measurement models and bad initial estimates.

Common drawbacks [40] of attitude estimation solutions such as lack of convergence guarantees,

singularities, unwinding phenomena, topological limitations for achieving global asymptotic stability, and

slow convergence near unstable equilibrium points have been trying to be solved, and many nonlinear

observers aiming for stability and convergence properties have emerged in that trend.

On the work of Batista, Silvestre, and Oliveira [41], the design, analysis, and performance evaluation

of a sensor-based new class of globally asymptotically stable (GAS) filters for attitude estimation was

presented. That solution did not have any of the previous stated limitations but it was computationally

expensive. Following that work, the same authors created and presented in [40], the design, analysis,

and performance evaluation of a novel cascade observer for attitude and bias estimation. The observer

presented in that reference has globally exponentially stable (GES) error dynamics, is computationally

efficient, is based on the angular motion kinematics, which are exact, builds on well-established Lya-

punov results, explicitly estimates rate gyro bias and copes well with slowly time-varying bias, and has

a complementary structure, fusing low bandwidth vector observations with high bandwidth rate gyro

measurements.
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Propagate

q̂−k , P−k , β̂
−
k

Compute

A
(

q̂−k
)

Sensitivity Matrix

Hk = [[A(q̂−k )ri×] 03×3]tk

Gain

Kk = P−k HTk [HkP−k HTk + Ri]
−1

Update Covariance

P+
k = [I− KkHk]P−k

Residual

εk = (bi − A(q̂−))ri|tk

Update State

∆x̂+
k = ∆x̂−k + Kk[εk − Hk∆x̂−k ]

i < N ?

Initialize
∆x̂−k = 0, i = 1

∆x̂−k = ∆x̂+
k

P−k = P+
k

Yes

i = i+ 1

No Reset

q̂+
k , P+

k , β̂
+
k

Next Observation Time

Figure 4.1: Flow diagram of Murrell’s approach, adapted from [11].

The solution described in [40] is studied and its design is presented in this section. The analysis starts

by reviewing nonlinear observer theory in section 4.3.1, then introducing the sensor based framework

that is at the core of the proposed solution in section 4.3.2 and finally describing the observer design in

section 4.3.3.

4.3.1 Nonlinear Observer Theory

Nonlinear observers design generally follows proposing an arbitrary filter, with parameters that can

be tuned according to some criteria. The most important criteria is convergence, that can be analyzed

and proved through Lyapunov theory, not discussed in this work. The motivation for the use of these

nonlinear observers for attitude estimation is the usual proof of convergence and stability of the solutions.
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Considering the nonlinear time varying system:

ẋ = f(x,u, t) (4.98a)

y = h(x) (4.98b)

where x are the states, u are the inputs, and y are the measurements. A full state observer, under the

assumption that u and y are available, is defined as:

˙̂x = f(x̂,u, t) + L(y− h(x̂)) (4.99)

where x̂ are the estimated states and L are the observer gains. Stability of the observer is done by

defining the estimation error dynamics as:

ε̇(t) = ẋ(t)− ˙̂x(t) (4.100)

and analyzing it for stability.

4.3.2 Sensor-based Framework

Traditional attitude estimation methods consist, generally, in using sensor data to obtain instanta-

neous measurements of the attitude, that are then fed to an observer or filter. With that approach, the

transformations necessary to obtain an attitude representation distort the noise characteristics of the

sensors. Additionally, many of these representations also exhibit problems such as singularities or un-

winding phenomena, as referred in section 2.1 and [25]. In the design of the observer presented in this

chapter, there’s a different approach, using a sensor-based framework [40–42].

The core concept of the sensor-based framework is to design the filter directly in the space of the

sensors. Then, using filtered estimates of the observations, the attitude can be determined. As the

filtering occurs prior to the determination of attitude, the rotation matrix may be used as the attitude

parameterization, which is unique, without singularities, and where topological restrictions on SO(3) for

achieving global asymptotic stability no longer apply and unwinding phenomena does not occur [42].

In this framework, the sensor measurements are included directly in the system dynamics, and the

kinematics are propagated using the angular velocity provided by a three-axis rate gyro, whose biases

are also considered.

Considering an inertial reference frame {I}, a body-fixed reference frame {B} and the rotation matrix

A(t) ∈ SO(3), from {B} to {I}, the attitude kinematics are given by:

Ȧ(t) = A(t)S(ω(t)) (4.101)

where ω(t) ∈ R3 is the angular velocity of {B}, expressed in {B}, and S(x) is the skew-symmetric matrix

such that S(x)y = x× y, formulated as explained in appendix A.2.
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Assuming that a vector observation measurement b1 ∈ R3 is available, in body frame coordinates, of

a known constant vector quantity r1 ∈ R3 in inertial coordinates:

r1 = A(t)b1(t) (4.102)

then, its dynamics are:

ḃ1(t) = −S(ω(t))b1(t) (4.103)

Many vector measurements can be considered as long as the quantities that originate them can

be considered locally constant in inertial coordinates. As examples, the Sun direction and other star

directions are possibilities for these observations.

Considering rate gyro measurements ωm(t) ∈ R3 corrupted with a constant bias β ∈ R3:

ωm(t) = ω(t) + β(t) (4.104)

then, the system dynamics, extended for N vector observation measurements, may be written as:



ḃ1(t) = −S(ωm(t))b1(t) + S(β(t))b1(t) = −S(ωm(t))b1(t)− S(b1(t))β(t)

...

ḃN (t) = −S(ωm(t))bN (t) + S(β(t))bN (t) = −S(ωm(t))bN (t)− S(bN (t))β(t)

β̇(t) = 0

(4.105)

Based on the nominal nonlinear system 4.105, filter solutions may be designed. Once filtered esti-

mates of b =
[
b1 . . .bN

]T
∈ R3N are obtained, the attitude can be computed using various methods.

4.3.3 Observers Design

In this section, the design of a cascade attitude observer for the rotation matrix A(t) and the rate

gyro bias β(t), with GES error dynamics is presented. First a bias observer with GES error dynamics

is presented, resorting directly to the vector measurements. Afterwards, an attitude observer with GES

error dynamics is presented, assuming that the rate gyro bias is known. Lastly, the overall cascade

attitude observer with resulting GES error dynamics is presented.

Bias Observer

The following design is based on the assumption that there exist at least two non-collinear reference

vectors, i.e., there exist i and j such that ri×rj 6= 0 (from now on referred as Assumption 1). Assumption

1 is necessary for attitude estimation, as stated in previous chapters.

The bias observer is composed by a set of states that correspond to the set of vector observations,
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with the addition of the rate gyro bias. Using the system dynamics 4.105 the bias observer is given by:



˙̂b1(t) = −S(ωm(t))b̂1(t)− S(b1(t))β̂(t) + α1b̃1(t)

...

˙̂bN (t) = −S(ωm(t))b̂N (t)− S(bN (t))β̂(t) + αN b̃N (t)

˙̂
β(t) =

∑N
i=1 γiS(bi(t))b̃i(t)

(4.106)

where i = 1, ..., N , b̃i(t) ≡ bi(t) − b̂i(t), are the errors of the vector observation estimates, and αi, γi,

are positive scalar constants. Defining the bias estimation error as β̃(t) ≡ β(t)− β̂(t), the bias observer

error dynamics are given by:



˙̃b1(t) = −S(ωm(t))b̃1(t)− S(b1(t))β̃(t) + α1b̃1(t)

...

˙̃bN (t) = −S(ωm(t))b̃N (t)− S(bN (t))β̃(t) + αN b̃N (t)

˙̃
β(t) = −

∑N
i=1 γiS(bi(t))b̃i(t)

(4.107)

or, in compact form:

˙̃χ1(t) = A1(t)χ̃1(t) (4.108)

with:

χ̃1(t) =
[
b̃
T

1 (t) . . . b̃
T

N (t) β̃
T

(t)
]T
∈ R3(N+1) (4.109a)

A1(t) = −diag(α1I + S(ωm(t)), . . . , αN I + S(ωm(t)),0) (4.109b)

+


0 . . . 0 −S(b1(t))
...

...
...

0 . . . 0 −S(bN (t))

−γ1S(b1(t)) . . . −γNS(bN (t)) 0

 (4.109c)

Under Assumption 1, the origin of the observer error dynamics 4.107 is a GES equilibrium point.

Proof for this statement may be found in Section 3.1 of [40].

Attitude Observer

The following design is made on the assumption that the matrix
[
r1 . . . rN

]
∈ R3×3N has full rank

(from now on referred as Assumption 2), which, given a set of reference vectors that satisfy Assumption

1, it is always possible: If ri ∈ R3 and rj ∈ R3 denote two non-collinear reference vectors, then, the set

{ri, rj , ri × rj} satisfies Assumption 2.
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Let’s consider an alternative column representation of the rotation matrix A(t) given by:

χ2(t) =


z1(t)

z2(t)

z3(t)

 ∈ R9 (4.110)

where:

A(t) =


zT1 (t)

zT2 (t)

zT3 (t)

 , zi(t) ∈ R3, i = 1, .., 3. (4.111)

Under Assumption 2 and knowing the rate gyro bias, the following dynamics take place:

χ̇2(t) = −S3(ωm(t)− β(t))χ2(t) (4.112)

where:

S3(x) ≡ diag(S(x),S(x),S(x)) ∈ R9×9 (4.113)

Using 4.102, the vector observations can be written as a function of χ2(t) by:

b(t) = C2χ2(t) (4.114)

with:

C2 =



r11 0 0 r12 0 0 r13 0 0

0 r11 0 0 r12 0 0 r13 0

0 0 r11 0 0 r12 0 0 r13

...

rN1 0 0 rN2 0 0 rN3 0 0

0 rN1 0 0 rN2 0 0 rN3 0

0 0 rN1 0 0 rN2 0 0 rN3


∈ R3N×9 ri =


ri1

ri2

ri3

 ∈ R3(4.115)

The attitude observer can then be given by:

˙̂χ2(t) = −S3(ωm(t)− β(t))χ̂2(t) + CT2 Q
−1[b(t)− C2χ̂2(t)] (4.116)

where Q = QT ∈ R3N×3N is a positive definite matrix.

Defining the error variable χ̃2(t) = χ2(t)− χ̂2(t), the observer error dynamics are given by:

˙̃χ2(t) = A2(t)χ̃2(t) (4.117)

where:

A2(t) ≡ −[S3(ωm(t)− β(t)) + CT2 Q
−1C2] (4.118)
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With knowledge of the rate gyro bias and under Assumption 2, the origin of the observer error dy-

namics 4.117 is a globally exponentially stable equilibrium point. Proof for this statement may be found

in section 3.2 of [40].

Cascade Observer

Two observers were presented in the last sections. Firstly, an observer that provides an estimate

of the bias, based directly on the vector observations and with GES error dynamics. Then, an attitude

observer, also with GES error dynamics, but assuming the rate gyro bias is known. The idea of the cas-

cade observer presented in this section is to feed the attitude observer with the bias estimate provided

by the bias observer. The final nonlinear cascade observer becomes:

˙̂b1(t) = −S(ωm(t))b̂1(t)− S(b1(t))β̂(t) + α1b̃1(t)

...

˙̂bN (t) = −S(ωm(t))b̂N (t)− S(bN (t))β̂(t) + αN b̃N (t)

˙̂
β(t) =

∑N
i=1 γiS(bi(t))b̃i(t)

˙̂χ2(t) = −S3(ωm(t)− β̂(t))χ̂2(t) + CT2 Q−1[b(t)− C2χ̂2(t)]

(4.119)

The error dynamics of the cascade observer can be written as:


˙̃χ1(t) = A1(t)χ̃1(t)

˙̃χ2(t) = [A2(t)− S3(β̃(t))]χ̃2(t) + u2(t)

(4.120)

where:

u2(t) ≡ S3(β̃(t))χ2(t) (4.121)

The origin of the observer error dynamics 4.120 is a GES equilibrium point. Proof for this statement

may be found in [40].

The attitude observer considers only the bias estimate, disregarding the vector estimates. For per-

formance purposes, particularly in the presence of sensor noise, it may be better to employ the vector

estimate b̂(t) provided by the bias observer for the feedback. The full cascade observer becomes:

˙̂b1(t) = −S(ωm(t))b̂1(t)− S(b1(t))β̂(t) + α1b̃1(t)

...

˙̂bN (t) = −S(ωm(t))b̂N (t)− S(bN (t))β̂(t) + αN b̃N (t)

˙̂
β(t) =

∑N
i=1 γiS(bi(t))b̃i(t)

˙̂χ2(t) = −S3(ωm(t)− β̂(t))χ̂2(t) + CT2 Q−1[b̂(t)− C2χ̂2(t)]

(4.122)

The error dynamics of 4.122 are similar to 4.120, but with u2(t) ≡ S3(β̃(t))χ2(t) + CT2 Q−1b̃(t). It is

shown in [40] that this refinement does not affect the nominal asymptotic stability analysis of the cascade
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attitude observer 4.119.

Additionally, there is nothing in the observer structure imposing the restriction that the estimate of

the rotation matrix Â(t) belongs to SO(3). As both the vector observations and the rate gyro readings

are subject to noise, that induces errors in the rotation matrix estimate. However, as the error converges

to a tight neighborhood of zero, estimates arbitrarily close to SO(3) can be obtained by employing

computationally efficient orthogonalization cycles given by:

Âf (t) =
1

2
(Â(t) + [Â

T
(t)]−1) (4.123)

The overall system presented is computationally efficient and appropriate for application in platforms

where computational resources are scarce [40].
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Chapter 5

Implementation

This chapter discusses, in section 5.1, the development of a simulation environment that realistically

describes the environment and motion conditions of a spacecraft, enabling the generation of realistically

data to feed the sensors and properly test the estimation algorithms implemented. It also describes the

integration and implementation of the attitude estimation algorithms of chapter 4, in section 5.2. Finally,

it analysis the computational resources efficiency of the three algorithms, in section 5.3.

5.1 Simulation Environment

The simulation environment developed aims at realistically describe the conditions felt by the space-

craft. The simulation tools used were Matlab and Simulink. It is composed of an environment model, that

simulates the position of other celestial objects and disturbance effects on the acceleration and torque

of the spacecraft, a dynamic model that simulates the effects of forces and torques on the nanosatel-

lite, propagating its orbit and attitude, a suite of sensor models that calculate the sensors outputs, and,

finally, the implementation of the estimation algorithms proposed.

5.1.1 Environment Model

The environment model aims at recreating the space environment around the satellite. It simulates

the position of celestial objects such as the Sun, the Moon, and stars, recreating their effects in terms

of forces and torques upon the spacecraft. It also recreates Earth’s magnetic field and atmosphere, and

the effects caused by them.

Sun and Moon positions were obtained from accurate orbital ephemerides of the Sun and Moon

computed by the Jet Propulsion Laboratory (JPL) of the California Institute of Technology, namely the

DE405 ephemerid. These ephemerides are obtained by precise numerical integration of the equations

of motion of the celestial bodies, which are formulated taking into account a considerable amount of

perturbations and celestial influences and are generally created to support spacecraft mission planning.

Sun shadow is simulated assuming that the shadow created by the Earth is a cylindrical projection of

the Earth’s diameter along the direction of the Sun to the Earth [11].
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The Earth’s magnetic field model implemented in this work is The World Magnetic Model 2015

(WMM), which represents only the long wavelength portion generated by the main geomagnetic field,

but is accurate enough for the purposes of this simulation. The WMM consists of a degree and or-

der 12 spherical-harmonic main field model comprised of 168 spherical-harmonica Gauss coefficients

and degree and order 12 spherical-harmonica Secular-Variation field model. It is the standard model

used by the United States Department of Defense or the North Atlantic Treaty Organization (NATO), for

navigation, attitude and heading referencing systems using the geomagnetic field [32].

Earth’s atmosphere emulation follows a Exponentially Decaying Model Atmosphere, which is a fully

static model that assumes the atmospheric density decays exponentially with increasing height, and

assumes an axially symmetric atmosphere about the polar axis. It is a simple model but yields decent

results, being suitable for the implementation in this work. Atmospheric density values were retrieved

from [11].

Perturbation forces and perturbation torques were computed based on equations presented in sec-

tion 2.3.3.

5.1.2 Dynamic Model

The dynamic model propagates the orbit and attitude of the satellite, taking into account the forces

and torques acting on it. For that, the differential equations 2.22, 2.32, and 2.31d, representing, re-

spectively the orbital dynamics, attitude dynamics and attitude kinematics, are numerically integrated to

obtain the inertial position, velocity, angular rate and attitude of the satellite. The perturbations computed

by the environment model are taken into account.

A 6U CubeSat was considered, with magnetic dipole m per axis of 0.0280Am2 and a moment of

inertia J ii = [0.0541, 0.0914, 0.1054]kgm2.

For the orbit propagation, Cowell’s method of special perturbations is used, being the orbit first

described as a Keplerian orbit, and then perturbations are added. A class of orbits can be simulated by

altering the position and velocity initial conditions.

5.1.3 Sensors Model

As detailed in section 3.3, the sensor suite assumed available onboard for purposes of attitude

determination is composed by a rate gyroscope, a Sun sensor, a magnetometer and a star tracker.

Reference quantities such as the true angular rate, the position of the Sun and other stars, or the

magnetic field, were provided by the environment and dynamic models. Sensor outputs were created

using the models of section 3.4.

The star tracker is assumed to provide the directions of three stars in its FOV and the respective unit

vectors in an inertial frame, at all times.

The rate gyroscope measurements were created following equations 3.9, assuming perfect align-

ment, where ω comes from the dynamic model. A slowly time-varying bias was considered, which is a

very common and undesirable characteristic of rate gyros.
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Reference [33] provides an overview of the current state of the art of small spacecraft technology,

with particular emphasis on the state of the art of CubeSat-related technology. From that reference,

state-of-the-art hardware was selected, in order to retrieve their characteristics and provide realistic

sensor information. The sensor characteristics selected are those of the ST-16 star tracker from Sin-

clair Interplanetary, the RM3100 magnetometer from PNI Corp, the Fine Digital Sun Sensor from New

Space systems and the LN-200S gyroscope from the Northrop Grumman. Sensors characteristics are

presented in Table 5.1.

Sensor Sample Frequency Accuracy Noise Std. Dev.

Gyroscope 100 Hz σv = 1.18× 10−2 ◦ /s

σu = 2.78× 10−4 ◦ /s

Magnetometer 100 Hz 30 nT σmag = 30nT

Sun sensor 100 Hz 0.1◦ σss ≈ 1.70× 10−3rad

Star tracker 10 Hz 74 arcsec σstar = 3.59× 10−4rad

Table 5.1: Sensors characteristics.

5.2 Attitude Determination Methods Implementation

Three types of attitude determination methods were studied in chapter 4, namely deterministic meth-

ods, state estimation methods and nonlinear observers. For simulation purposes, the QUEST algorithm

of section 4.1.4, the MEKF of section 4.2.2 adapted to Murrell’s version and the nonlinear cascaded

observers of section 4.3, were implemented. That implementation is described in this section.

5.2.1 Deterministic Methods Implementation

The implementation of QUEST followed directly from section 4.1.4, with non-negative weights ai

defined as the inverse of the respective sensors variance. The error covariance P ϑϑ was also computed,

providing important knowledge about the estimate accuracy.

The QUEST algorithm ran at the rate of 10Hz.

5.2.2 MEKF Implementation

The gyro calibration MEKF was implemented as formulated in Table 4.3 with the respective adapta-

tions to Murrell’s version for more computational efficiency, as illustrated in flowchart 4.1.

The angular rate information provided by the gyroscope was used in the filter construction and Q and

R matrices were computed, according to section 4.2.2, using the noise characteristics of the sensors

provided in Table 5.1.

The MEKF ran at the rate of 100Hz.
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5.2.3 Nonlinear Observer Implementation

The nonlinear observer presented in section 4.3, based directly on the continuous-time system dy-

namics, was not immediately implemented, as the sensors considered output discrete-time data, at

different rates. For that, the observer must be discretized. As stated before, for the NL observer oper-

ation, only vector measurements originated from quantities that can be considered locally constant in

inertial coordinates, can be used. The latter implicated that the magnetometer could not be used, as its

representation in inertial coordinates has serious variations.

The dynamical system 4.122 was discretized using the first-order Euler method, with the right side

of the system subject to sample-and-hold. The Euler discretization of the system dynamics gives:

b̂1k+1
= b̂1k

+ Tg(−S(ωmk
)b̂1k

− S(b1k
)β̂k + α1b̃1k

)

...

b̂Nk+1
= b̂Nk

+ Tg(−S(ωmk
)b̂Nk

− S(bNk
)β̂k + αN b̃Nk

)

β̂k+1 = β̂k + Tg(
∑N
i=1 γiS(bik)b̃ik)

χ̂2k+1
= χ̂2k

+ Tg(−S3(ωmk
− β̂k)χ̂2k

+ CT2 Q−1[b̂k − C2χ̂2k
])

(5.1)

where Tg denotes the sampling rate at which the observer runs, corresponding to the sampling rate of

the gyro. Therefore, the NL observer has a rate of 100Hz.

The rate gyro, Sun sensor, and star tracker provide measurements at different rates. The full vector

of measurements b is then not available at every time step k, hence the system 5.1, as it is presented,

cannot be propagated. To overcome this problem, an estimate of the measurements bek ≈ bk is used

instead. At every time k, Sun sensor readings are available, but star tracker measurements do not.

Between the instants at which the star tracker provides measurements, open-loop integration of the last

star tracker measurements using the angular information coming from the rate gyro are used. In this

way, sensors with low and high sampling rates are fused to perform the estimation.

Parameter Tuning

The implemented cascade observers can essentially be divided into a bias observer and an attitude

observer. The bias observer has as tuning parameters the positive scalar constants αi , γi, i = 1, ..., N ,

while the attitude observer only has the positive definite matrix Q.

In tuning nonlinear observers, the characteristics of the sensor noise are taken into account by proper

tuning the available parameters. An intuitive approach can be taken: the larger the parameters are (with

the exception of Q that is inverted in the system), the faster the error converges to zero. However, as

the parameters increase, the sensitivity of the estimates to sensor noise increases, possibly even unde-

sirably amplifying the measurement noise, affecting performance. It will always be a trade-off between

convergence speed and performance.

The knowledge about the measurement noise characteristics of the sensors can be exploited in the

design of the observer gains. This can be done through running the observer in simulation, replicating
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the sensors characteristics, and searching for the minimum estimate error over a discrete array of values

for the parameters, analyzing convergence times at the same time. After doing that analysis, a balance

between estimation error and convergence time was achieved for the parameters, αi = 1 , i = 1, ..., N ,

γi = 0.016 , i = 1, ..., N and Q = 0.03. These were the parameters used in the simulations.

5.3 Computational Resources Efficiency Analysis

A real-world implementation of any of the methods from chapter 4 on a spacecraft will always be

under serious constraints in terms of computational resources. Therefore, the amount of computational

complexity or volume of work of an algorithm should be known in advance before selecting it.

One way to quantify the computational complexity of an algorithm is to count FLOPs (Floating Point

Operations per second). A FLOP (Floating Point Operation) is either an addition, subtraction, multipli-

cation or division of floating point numbers [43]. The convention used in this work assumes square-root

and trigonometric operations to also require 1 FLOP. The real implementation complexity and FLOP

count for an algorithm operation will always depend on the hardware chosen for the implementation.

In this section, the number of FLOPs needed to run each of the three algorithms is analyzed and

compared. Filter operation with the rates specified in section 5.2 and with four available vector measure-

ments, namely the Sun sensor measurement and the three star tracker measurements, was considered.

5.3.1 QUEST FLOPs Analysis

QUEST can be summarized as follows from section 4.1.4:

1. Compute the initial estimate λ0.

2. Construct the quartic equation 4.18 for λ.

3. Iterate through Newton-Raphson method obtaining λmax.

4. Compute the quaternion estimate from λmax with equation 4.15.

Item 1 requires the computation of four ai weights, and their sum, reaching the total of 11 FLOP.

Item 2 requires the construction of matrix B, requiring 99 FLOP, the construction of z requiring 3

FLOP and the construction of matrix S, requiring 9 FLOP. Calculating % needs 3 FLOP, κ requires 11

FLOP and ∆ requires 14 FLOP. Calculation of a needs 2 FLOP, b needs 7 FLOP, c requires 21 FLOP,

and d needs 20 FLOP. Therefore, constructing the quartic polynomial needs the total of 189 FLOP.

Item 3 requires the calculation of λk+1 = λk − f(λ0)
f ′(λ0) . It implicates the evaluation of f(λ0) requiring

only 13 FLOP and then the evaluation of f ′(λ0) = 4λ3
0 − 2(a + b)λ0 − c, requiring 5 FLOP. Each iteration

requires then the total of 18 FLOP. Assuming a single iteration Item 3 requires the total of 18 FLOP.

Item 4 requires the computation of the optimal quaternion and its normalization, in a total of 83 FLOP.

Finally, a complete iteration of the algorithm requires 11+189+18+83 = 301 FLOP. QUEST algorithm

runs at 10Hz, making the total number of 301× 10 = 3010 FLOPs.
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5.3.2 MEKF FLOPs Analysis

The MEKF implementation, follows Murrell’s version, and it can be summarized as follows from

flowchart figure 4.1.

1. Compute the estimated rotation matrix from the estimated quaternion.

2. Compute the sensitivity matrix.

3. Compute the Kalman gain.

4. Update the covariance.

5. Compute the residual and update state.

6. Repeat steps 2 to 5 until all measurements are processed.

7. Reset.

8. Propagate until the next observation time.

These items can be divided into update step, contemplating items 1 to 6, reset step, and propagation

step.

Item 1 takes 56 FLOP. Item 2 requires 15 FLOP. To compute the Kalman gain, 648 FLOP are needed.

Item 4 takes 612 FLOP. Item 5 requires 75 FLOP. Item 1 just runs one time for each update step, but

items 2 to 5, are repeated for each measurement available. The sensors available have different rates.

The Sun sensor runs at 100 Hz and the star tracker at 10 Hz. Then, for an update with 4 measurements,

56 + (15 + 648 + 612 + 75) × 4 = 5456 FLOP are needed, as for an update with 1 measurement, only

1406 FLOP. Noting again that the EKF runs at the rate of 100 Hz, it means that for the total of 1 second,

there are 90 measurement updates with only 1 measurement, and 10 using 4 measurements. Hence for

the total of 1 second, the measurement update step needs 90× 1406 + 10× 5456 = 181100 FLOP.

The reset step requires 43 FLOP and happens, once for each iteration of the total filter, hence for a

total of 1 second, 43× 100 = 4300 FLOP are required.

The propagation from one measurement time to the next, requires 1111 FLOP and it happens once

for each iteration of the total filter, hence for a total of 1 second, 1111× 100 = 111100 FLOP are required.

Then, the MEKF implemented requires 181100 + 4300 + 111100 = 296500 FLOPs.

5.3.3 Nonlinear Observer FLOPs Analysis

The nonlinear observer implementation can be summarized as follows:

1. Combine high frequency measurements, with low ones, propagating the low ones, to create an

estimate, bek, of the measurements.

2. Compute the necessary parameters.

3. Obtain estimates with bias observer.
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4. Obtain estimate with attitude observer.

5. Perform orthogonalization cycles.

Item 1 requires 64 FLOP. Item 2 needs 39 FLOP. Item 3 can be divided into 4 measurement estimates,

each one requiring 45 FLOP, and a bias estimate requiring 87 FLOP, hence the total of 45×4 + 87 = 267.

The attitude observer requires the total of 723 FLOP. Finally each orthogonalization cycle require 68

FLOP, and 2 are performed. The total number of FLOP for a single iteration of the nonlinear observer is

64 + 39 + 267 + 723 + (68× 2) = 1229 FLOP. Running at 100Hz, the nonlinear observer requires 122900

FLOPs.

An alternative metric can be defined, where it is assumed that the four available sensors provide

vector measurements at all discrete times. Based on that assumption, and following the steps stated

above, the evolution of the FLOPs required for each algorithm, depending on the operation rate, can be

analyzed and compared. The stated evolution is illustrated in figure 5.1.

Figure 5.1: Required FLOPs for the three algorithms, depending on the operation rate.
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Chapter 6

Results

The final goal of this work was to use the implemented algorithms in the realistic simulation environ-

ment created, in order to compare their performances. For that purpose, different simulation cases were

created. This chapter describes those case scenarios. Then, the results obtained are presented and

section 6.1 provides a discussion of those results.

First of all, the satellite dynamics and kinematics are simulated in continuous-time, while the attitude

determination methods are run in discrete-time. The solver used was chosen based on the analysis

done in [44], and is the fixed-step eighth order Dormand-Prince method. This method computes the

state at the next time step as an explicit function of the current value of the state and the state derivatives

approximated at intermediate points. The solver runs with a fixed time-step of 0.01 s.

In the simulations performed, it is assumed that the satellite has been detumbled before the attitude

estimation begins and that all sensors work independently of each other and without problems at the

angular rates experienced by the satellite. Additionally, no control torque is applied during the simula-

tions, i.e. no particular attitude is actively maintained, and only the error between the true value and the

estimated value is used to perform the accuracy studies proposed. The true attitude is assumed to be

the one generated by the simulator, which is considered reality in the simulation.

Two different orbits were used to perform the simulations. Orbit 1 was selected as a Geostationary

Transfer Orbit (GTO), the predefined initial orbit for Mission 1. Orbit 2 is a typical Low-Earth Orbit that

can realistically describe the orbit conditions for Mission 2. The characteristics of the two orbits are

presented in Table 6.1. Implications of these two orbits essentially differ on the acceleration and torque

perturbations present, and on the availability of the magnetometer sensor, which is not available in Orbit

1. All other sensors are available in both orbits.

Different simulation cases were created to emulate different realistic scenarios and draw different

conclusions.

Case 1

Case 1 aimed at comparing the three attitude determination algorithms implemented, with all the

sensors available. As stated before, the magnetometer is not available in Orbit 1 and cannot be used by
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Parameter Unit Orbit 1 Orbit 2

Epoch - 16 Dec 2023 01 Jan 2019

10h:45min:40s 00h:00min:00s

Orbit semi-major axis km 24364.64 6781.20

Orbit eccentricity - 0.73 8.46× 10−4

Orbit inclination deg 27.50 51.73

Orbit RAAN deg 360 112.70

Orbit argument of perigee deg 267 80

Orbit initial true anomaly deg 122.50 162.20

Orbital period h 10.50 1.54

Table 6.1: Orbits characteristics.

the NL observer.

The true initial attitude was defined as the identity quaternion q0 =
[
0 0 0 1

]T
and the initial bias

was β0 = π
180

[
−0.02 0.03 −0.01

]T
rad s−1.

The angular rate followed ω = π
180

[
0.1 cos( 2π

200 t) 0.15 cos( 2π
180 t) 0.05 cos( 2π

200 t)
]T
rad/s.

The MEKF and NL observer were initialized with a considerable attitude and bias estimation error,

defining these errors as the difference between the true attitude and bias, and the estimated ones coming

from the algorithms, respectively.

The initial attitude estimate was q̂0 =
[
6.0692× 10−02 6.9371× 10−01 6.0692× 10−02 7.1512× 10−01

]T
,

corresponding to an initial attitude estimation error in terms of Euler angles of δφ = 80◦ , δθ = 80◦ and

δψ = 80◦ . The initial bias estimate was β̂0 =
[
0 0 0

]T
rad s−1, corresponding to a initial bias estima-

tion error of ||∆β̂0|| = 134.70 ◦ h−1, in magnitude.

The initial covariance matrix for the MEKF was defined as P0 = diag(100, 100, 100, 10, 10, 10), re-

flecting the uncertainty of the initial estimates. The NL observer estimates for the measurements were

initialized as zero, and the observer parameters were defined as described in section 5.2.3.

The three algorithms ran in parallel, in a simulation of 3600s. The detailed evolution of the angular

estimation error, represented as Euler angles, after the initial transient faded out, for the two orbits, is

presented in figure 6.1, and the respective root-mean-square errors are available in Table 6.2.

Orbit 1 Orbit 2

QUEST MEKF NL observer QUEST MEKF NL observer

φRMS (◦) 1.7214× 10−2 7.0025× 10−3 6.2568× 10−3 1.6992× 10−2 1.0059× 10−2 5.9629× 10−3

θRMS (◦) 2.5538× 10−2 1.0120× 10−2 1.1909× 10−2 2.3371× 10−2 1.9754× 10−2 1.1167× 10−2

ψRMS (◦) 5.4279× 10−3 6.8745× 10−3 6.2647× 10−3 9.6787× 10−3 9.0957× 10−3 5.9824× 10−3

Table 6.2: Root Mean Square of the angular estimation error for the QUEST, the MEKF and the NL
observer for simulation case 1 in the interval (400s ; 3600s).

The initial convergence of the angular estimation error, for the simulation in Orbit 1 is represented in

figure 6.2, and the initial convergence and detailed evolution of the bias estimation error can be seen in

figure 6.3.
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(a) Orbit 1 (b) Orbit 2

Figure 6.1: Detailed evolution of the angular estimation error for simulation case 1.

Case 2

Case 2 aimed at studying the estimation performance when the star tracker has a fault, stopping to

provide its 3 star measurements successively.

The same initial simulation conditions of Case 1 were used. The star tracker was assumed to enter

into fault at time 500s, when the first star sensor measurement is lost. The second is lost at time 800s,

and the third at 1100s, entering into complete failure.

After the complete failure of the sensor, in the case of simulations in orbit 1, just the Sun sensor was

left available, while in the case of simulations in orbit 2, both the Sun sensor and the Magnetometer

were available. When just one measurement is available, the QUEST and NL Observer cannot run,

hence, an open loop propagation takes place starting from the last estimate of each algorithm. While

the propagation for QUEST was done directly using the angular rate provided by the gyro, for the NL

observer, the same angular rate was corrected using the last bias estimate of the filter.

The three algorithms ran in parallel. The detailed evolution of the angular estimation error, repre-

sented as Euler angles, with the star tracker fault happening after the initial transient faded out, for the

two orbits, is presented in figure 6.4, and the respective root-mean-square errors are available in Table

6.3.

Case 3

Case 3 aimed at studying the estimation performance when only the star tracker was available.

The same initial conditions of Case 1 were used. A simulation in Orbit 2 was performed where at
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Figure 6.2: Initial convergence of the angular estimation error for simulation case 1.

Orbit 1 Orbit 2

QUEST MEKF NL observer QUEST MEKF NL observer

φRMS (◦) 3.4094× 101 2.3245× 10−1 6.9455× 10−1 1.2279× 10−1 1.0339× 10−2 6.0389× 10−1

θRMS (◦) 3.1325× 101 5.3866× 10−1 5.0615× 10−1 1.8045× 10−1 1.6615× 10−2 4.6671× 10−1

ψRMS (◦) 4.2578× 101 5.1819× 10−2 9.2886× 10−1 8.7629× 10−2 8.4730× 10−3 9.4055× 10−1

Table 6.3: Root Mean Square of the angular estimation error for the QUEST, the MEKF and the NL
observer for simulation case 2 in the interval (1100s ; 3600s).

750s the Sun sensor and the magnetometer suffered a fault. From 750s to 3600s, the three estimation

filters ran only with the measurements provided by the star tracker.

The detailed evolution of the angular estimation error, represented as Euler angles, after the initial

transient faded out, is presented in figure 6.5, and the respective root-mean-square errors are available

in Table 6.4.

QUEST MEKF NL observer

φRMS (◦) 1.7251× 10−2 9.5974× 10−3 4.9036× 10−3

θRMS (◦) 2.3712× 10−2 9.1414× 10−3 8.4132× 10−3

ψRMS (◦) 9.6778× 10−3 5.7051× 10−3 7.4242× 10−3

Table 6.4: Root Mean Square of the angular estimation error for the QUEST, the MEKF and the NL
observer for simulation case 3 in the interval (750s ; 3600s).
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(a) Bias estimation error initial convergence. (b) Bias estimation error detailed evolution.

Figure 6.3: Initial convergence and detailed evolution of the bias estimation error for simulation case 1.

(a) Orbit 1 (b) Orbit 2

Figure 6.4: Detailed evolution of the angular estimation error for simulation case 2.

Case 4

Case 4 aimed at studying how the 3 filters responded in a situation of re-acquisition of sensors after

a drift due to faults.
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Figure 6.5: Detailed evolution of the angular estimation error for simulation case 3.

The end of the simulation case 2, orbit 1, is a good example of a situation where a drift leads to

considerable angular estimation errors, and was used as a starting point for simulation in case 4. After

3600s, all the attitude sensors became available again. The three algorithms ran in parallel and the

evolution of the angular estimation error, represented as Euler angles is presented in figure 6.6.

6.1 Discussion

Case 1

Case 1 enabled the comparison of the QUEST, MEKF and NL Observer in a situation of initial attitude

and bias acquisition and in nominal situation, its ideal working mode, with all sensors fully available

depending on the orbit.

The analysis of results for Case 1 may start with the analysis of the initial transients for attitude and

bias estimation. Figure 6.2 shows the initial transient of the estimation error for each algorithm and it can

be seen that the 3 algorithms behave very differently. The QUEST algorithm, owing to its characteristics,

does not have a transient period, achieving steady state performance from time 0s. The MEKF achieves

steady state for the three Euler angles before time 50s. The NL observer has shown to be the algorithm

with the biggest transient, needing 300s to achieve its steady state performance.
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Figure 6.6: Evolution of the angular estimation error for simulation case 4 with sensors reacquisition at
3600s.

The bias estimation error initial convergence is represented in figure 6.3(a). Contrary to what hap-

pens in terms of attitude convergence, the NL observer bias estimation shows to converge to zero, in

less than 100s, which is faster than the MEKF bias estimation, which requires at least 200s to reach the

same values.

It is important to note that Case 1 simulates extreme conditions in terms of initial angular and bias

estimation errors, which do not affect the QUEST estimates but have impact in the transient period

for the MEKF and NL observer. The uncertainty of the initial estimates led to the definition of a initial

covariance matrix for the MEKF with relatively high values, and to observer parameters reflecting a trade-

off between convergence time and steady-state performance. The high values in the initial covariance

matrix have impact in the highly rapid variations of the attitude and bias estimation for the MEKF in the

initial seconds. A different tuning for the initial covariance, and for the observer parameters may translate

in faster transients for the two algorithms. However, even with extreme conditions, the convergence

times presented should not implicate any disadvantages in terms of a real application, and less initial

error should translate into smaller transient periods.

The nominal mode or steady-state performance for the 3 algorithms can be analyzed by inspecting

the detailed evolution of angular and bias estimation errors in figures 6.1 and 6.3(b), respectively. The

behavior of the detailed evolution of the angular estimation error is similar for the simulation in Orbit 1

or Orbit 2, for the three algorithms, which indicates that the presence of the magnetometer, when all
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the other sensors are available, does not reflect in a better attitude estimation accuracy for the QUEST

and MEKF. Overall, the QUEST algorithm has the biggest estimation error, followed by the MEKF and

NL Observer that have approximately the same performance. Root-mean-square errors did not exceed

2.5538× 10−2◦ for the QUEST, 1.9754× 10−2◦ for the MEKF and 1.1909× 10−2◦ for the observer.

In terms of the analysis of the bias estimation error evolution, the performance of the MEKF and the

NL Observer is similar, with maximum root mean square error for the bias estimation of 5.045× 10−6◦ /s

for the two cases.

This case analyzes probably the most important aspects when it comes to the three algorithms

comparison, which are their convergence characteristics and steady state performance in terms of bias

and angular error estimation. It’s important to note that while the results achieved for the NL Observer

and MEKF are a reflection of the tuning parameters and therefore can yet be adjusted, in the QUEST

case, not much can be done.

To finalize, the rates at which these three algorithms run also have an impact on their performance.

The filter operation rates chosen were not the same for the three filters. While QUEST ran at 10 Hz,

the MEKF and NL Observer ran at 100 Hz. This choice was justified by the availability of star tracker

measurements. QUEST strong dependence on the accuracy of the measurements justified its only use

when star tracker measurements became available, hence the rate of 10 Hz. On the other hand, the

MEKF and NL observer strongly benefit from the use of gyroscopic information, hence the rate chosen

was the same as the one of the gyro. Choosing lower rates diminishes the computational resources

complexity, but also means that with higher angular rates, a considerable movement can occur from one

sample to the next, leading to greater following errors.

Case 2

Case 2 enabled the comparison of the performance of the 3 estimation algorithms when an essential

sensor like the star tracker suffers a fault. The analysis of figure 6.4 and Table 6.3 leads to very different

analysis for the two orbits, given the sensors left available in the two cases, which were the Sun sensor

in the case of orbit 1 and the magnetometer and Sun sensor in the case of Orbit 2.

In the case of Orbit 1, analyzing figure 6.4(a) after the star tracker failure, the QUEST estimate is

propagated with non-corrected angular rate measurements from the gyro, leading to a very fast drift

that translates into a maximum root-mean-square error of 4.2578 × 101◦ . The NL observer estimate is

propagated with angular rate measurements corrected by the last bias estimate, which minimizes the

drift effect for a longer period, but eventually reaches fairly high values of error when in comparison of

those obtained in nominal mode. The MEKF shows to be robust in this situation, showing to be the one

that looses estimation accuracy more slowly, and being able to keep the lower estimation error with only

one measurement. The maximum root-mean-square errors achieved in this period are for the MEKF of

5.1819× 10−2◦ and 9.2886× 10−1◦ for the NL Observer.

In the case of Orbit 2, figure 6.4(b), both the QUEST and MEKF are able to continue running with

the Sun sensor and magnetometer measurements, but the NL Observer is in the same situation as in
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Orbit 1. After the star tracker failure, the angular error estimate for the QUEST shows to increase, with a

root-mean-square error one order of magnitude higher. In the case of the MEKF, the angular estimation

error increases in comparison with Case 1, but a good following is still achieved.

This case made evident some of the flaws or weaknesses of the three algorithms compared. It

showed that QUEST is highly dependent on the availability of two vector measurements. In the case of

their unavailability a propagation aiming at minimizing the errors from lack of new estimates can still be

done, as most spacecrafts incorporate a gyroscope, but this has shown to not be robust in practice, due

to the lack of bias estimates. Additionally, without the star tracker, the increased angular estimation error

evidenced reflects the QUEST highly dependence on the accuracy of the measurements used.

On the other hand, the NL observer will always have the possibility of correcting the rate gyro mea-

surements with its last bias estimate, and mitigate the propagation errors in the case of lack of measure-

ments. However, if this propagation is done for a long period, it will eventually drift to higher errors.

Finally,the MEKF has shown to be the more robust of the 3 algorithms. Even with just one measure-

ment, the filter showed to be the one minimizing the errors, and with the sun sensor and magnetometer

available, showed to be able to raise the importance of the rate gyro measurements when compared

with the noisy sun sensor and magnetometer. In this last situation, those two sensors are mainly used

for correction.

Case 3

Case 3 enabled the study of the 3 estimation algorithms when only the star tracker was left available.

From figure 6.5 and Table 6.4, it is clear that the QUEST performance remained the same, with approxi-

mately the same root-mean-square errors as the ones obtained in Case 1. It is an expected result as the

star tracker measurements are much more weighted in the QUEST algorithm than those coming from

the Sun sensor and magnetometer.

When it comes to the MEKF and NL Observer, a slightly better performance can be noticed, with less

angular error variations, as can be deduced by comparing the root-mean-square errors in Table 6.4, with

those of table 6.2. The results obtained indicate that combining a magnetometer and Sun sensor with a

star tracker does not necessarily give improved estimate accuracy, with the greater part of the accuracy

coming from the star tracker. In fact, the bigger value of noise in the Sun sensor and magnetometer

measurements can introduce variations in the estimates of the MEKF and NL Observer that disappear

when only the more precise but less frequent star tracker measurements are used. That is something

that can be taken into account in future tuning of parameters, lowering the importance given to these

two sensors in those processes.

Case 4

Case 4 has the importance of showing how these algorithms respond to a re-acquisition of sensors

that were not working properly due to eclipses or faults. That is illustrated by figure 6.6.

The simulation conditions of Case 2, orbit 1 are replicated for the first 3600s. At time 3600s, figure
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6.6 points a considerable angular error estimation of more than 1◦ for some Euler angles. At that time,

all the sensors measurements become available again. After the sensors re-acquisition, the QUEST

convergence is immediate, as already was illustrated in the transient analysis in Case 1. The MEKF

also shows an almost immediate convergence to values close to 0. On the other hand, the slower

transients seen for the NL Observer in Case 1, are also visible in this analysis, where 200s are needed

for the NL Observer angular estimate to converge again to values close to 0.

This simulation appeals once more to the convergence characteristics of the three methods, where

it is illustrated that even after a long drift due to unavailability of measurements, the nominal working

mode can be retaken if the sensors start working again.
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Chapter 7

Conclusions

The main aim of this dissertation was to use the three estimation algorithms proposed to solve the

problem of attitude estimation, in conditions representative of the two specified missions under the scope

of the NANOSTAR project, giving meaningful insight on the advantages, disadvantages, computational

resources efficiency and performance of the three algorithms. This would provide the project with a

grounded analysis that could be used for decision making in terms of the ADCS system design.

In order to accomplish that aim, the first step was to select a sensor suite that could provide the nec-

essary measurements, taking into account the constraints imposed for this kind of satellite. The sensor

suite selected to feature the ADCS system determined the quantity and quality of the measurements

available for the estimation, impacting its accuracy. A suite composed by a state-of-the-art Sun sensor,

magnetometer, rate gyro and star tracker was selected. The decision for this set of sensors was made

based on the type of mission at hands, the availability of measurements, and the accuracy required. The

conclusion that combining the star tracker with a magnetometer and a Sun sensor did not give improved

estimate accuracy could later be drawn. However, the added redundancy made the system more robust

as could be seen in the results for simulation cases 2 and 3.

Afterwards, a simulation environment was created that replicated the translational and rotational

motion of a satellite orbiting the Earth, feeding realistic space environment information to realistic sensor

models, hence realistically simulating conditions similar to the ones expected for a satellite in orbit.

Finally, using the platform developed, three different algorithms for attitude determination were stud-

ied, implemented and compared in terms of computational resources efficiency, steady state perfor-

mance, and performance in the case of failures, through realistic simulation cases, and conclusions

were drawn.

The deterministic method studied, QUEST, was the least computationally complex algorithm em-

ployed, requiring approximately 40 times less FLOPs than required by the NL Observer, the second

least complex. The chosen rate at which the QUEST algorithm ran, ten times lower than the one of

the NL Observer, contributed to the less computational resources usage, but evidence was shown that

with the same rate, QUEST would still be the least computationally complex algorithm. A steady state

performance in terms of angular estimation similar to the other two algorithms was achieved by QUEST,
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when all sensors were available. However, the accuracy obtained has shown to be highly dependent

on the quality of the sensors measurements, and their availability, showing serious limitations in terms

of robustness when the sensors suffer failures. Additionally, the lack of estimation of other quantities

such as gyro biases is a negative point for this kind of methods, that ultimately translates into a serious

practical disadvantage.

The MEKF, on the other hand, showed to be a very robust solution, dealing favorably with sensor

faults. Its steady state performance in terms of angular estimation has revealed the best, in pair with

the results for the NL Observer. However, its computational complexity has shown to be the greatest of

the three algorithms requiring more than the double of FLOPs than the NL Observer. The MEKF is also

the algorithm with the most complex formulation, without proofs of convergence, and with the need to

define initial estimates that can negatively impact its performance. Its ability to also estimate gyro biases

proved extremely important as the gyro measurements could be calibrated.

The Nonlinear observer offered a steady state performance approximately the same as the one

provided by the MEKF. It also required less than half of the FLOPs when compared to the MEKF, was

more easily formulated and implemented, and had a set of parameters that could be more intuitively

tuned depending on the constraints. It has shown, however, to be less robust than the MEKF, due to its

inability to use the magnetometer, but still with a moderate response to faults, and the ability to calibrate

the gyroscope measurements. Overall, it has shown to be an attractive solution in comparison with the

MEKF due to its proof of globally exponentially stability.

To finalize, the selection of one of these three algorithms for the implementation into the ADCS of

a NANOSTAR mission will always be a trade-off between computer and implementation complexity, the

importance of robustness, and the steady state accuracy needed.

7.1 Future Work

Future work under the scope of the project includes the possibility of studying and implementing,

under the simulation platform created, other interesting attitude determination solutions and sensors,

as an extension to this work. Additionally, the development of a similar study as this one but regarding

attitude control methods and actuators should be addressed. The next step would be to perform the

final selection of one determination and one control methods, and a package of sensors and actuators,

combining everything into the development of a full ADCS model.

The simulations and results provided in this work were products of a single set of scenarios, with well

defined characteristics. However, it would be of interest to perform some sensitivity analysis through

random variations in some key parameters of the final ADCS model. This could be done with Monte

Carlo simulations, and would be an important step towards the validation of the solutions proposed.

After the validation step suggested, hardware implementation and testing should be addressed.
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Appendix A

Review of Notation

This appendix is intended to familiarize the reader with the mathematical notation and conventions

adopted in this work. A review of some mathematical concepts are presented, as adequate.

A.1 Orthonormal Bases, Change of Basis

Let us consider two orthonormal sets of basis vectors, defined by {e1, e2, ..., en} and {e′1, e′2, ..., e′n}.

The abstract generic n-dimensional vector p can be expressed in either basis:

p =

n∑
j=1

pjej =

n∑
k=1

p′ke′j (A.1)

Taking the dot product of this equation with ej or e′k gives:

pj = ej · p =

n∑
k=1

(ej · e′k)p′k (A.2)

p′k = e′k · p =

n∑
j=1

(e′k · ej)pj (A.3)

Equations A.2 and A.3 can be used to express the relations between pe and pe′ , respectively p

representation in each of the coordinate frames e and e′, as matrix products:

pe = Dee′p′e (A.4)

pe′ = De′epe (A.5)
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where:

Dee′ =


e1 · e′1 e1 · e′2 . . . e1 · e′n
e2 · e′1 e2 · e′2 . . . e2 · e′n

...
...

...
...

en · e′1 en · e′2 . . . en · e′n

 (A.6)

De′e =


e′1 · e1 e′1 · e2 . . . e′1 · en
e′2 · e1 e′2 · e2 . . . e′2 · en

...
...

...
...

e′n · e1 e′n · e2 . . . e′n · en

 (A.7)

The matrices Dee′ and De′e are known as direction cosine matrices (DCMs) because their elements

are the cosines of the angles between the basis vectors in the two reference frames. It is also of note

that:

Dee′ = DTe′e (A.8)

The elements of the direction cosine matrix are not all independent. The relationships among ele-

ments can be summarized by the statement that the product of a DCM A and its transpose is the identity

matrix, meaning that A is a real orthogonal matrix, and that its determinant equals +1:

AAT = 1 (A.9a)

det(A) = 1 (A.9b)

Thus A is a proper real orthogonal matrix. A proper real orthogonal matrix transformation preserves

the length of vectors and the angles between them, and thus represents a rotation. The group of matrices

that have these properties constitute the Special Orthogonal group SO(n).

A.2 Matrix Representation of Vectors

The cross product is written as:

u× v =
[
u×
]

v (A.10)

with:

[
u×
]

=


0 −u3 u2

u3 0 −u1

−u2 u1 0

 (A.11)

[
u×
]

can also be represented in this work by the notation S(u).
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A.3 Quaternion Definition and Quaternion Operations

There are different conceptual versions for the quaternion. Here we adopt the convention from

references [11, 45], which is conceptually different from that firstly introduced by Hamilton in 1844.

Let’s consider a quaternion as a four-dimensional vector with some additional operations defined on

it. A quaternion q has a three-vector part q1:3 and a scalar part q4:

q =

q1:3

q4

 (A.12)

Two important different products of a pair of quaternions q̄ and q are defined as:

q̄⊗ q =

q4q̄1:3 + q̄4q1:3 − q̄1:3 × q1:3

q̄4q4 − q̄1:3 · q1:3

 (A.13a)

q̄� q =

q4q̄1:3 + q̄4q1:3 + q̄1:3 × q1:3

q̄4q4 − q̄1:3 · q1:3

 (A.13b)

which can be represented by matrix multiplication by:

q⊗ q̄ =
[
q⊗
]

q̄ (A.14a)

q� q̄ =
[
q�
]

q̄ (A.14b)

where: [
q⊗
]
≡

q4I3 −
[
q1:3×

]
q1:3

−qT1:3 q4

 =
[
Ψ(q) q

]
(A.15a)

[
q�
]
≡

q4I3 +
[
q1:3×

]
q1:3

−qT1:3 q4

 =
[
Ξ(q) q

]
(A.15b)

Quaternion multiplication is associative, distributive, but not commutative in general.

The identity quaternion is defined as:

Iq ≡

03

1

 (A.16)

obeying all the properties commonly know of the identity.

The conjugate q∗ of a quaternion is:

q∗ =

q1:3

q4

∗ ≡
−q1:3

q4

 (A.17)

and the inverse of a quaternion having non-zero norm is:

q−1 ≡ q∗/||q||2 (A.18)
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obeying all the properties required by the definition of an inverse.

A rotation of a three-component vector p is implemented by the quaternion product:

q⊗ p⊗ q∗ =
[
q�
]T [

q⊗
]p

0

 =

ΞT (q)Ψ(q)p

0

 (A.19)

The rule for performing successive transformations using quaternions may be derived from equation

A.19. Applying a transformation by a second quaternion q̄ may be written as:

(q̄⊗ q)⊗ p⊗ (q̄⊗ q)∗ =

A(q̄⊗ q)p

0

 (A.20)

with:

A(q̄⊗ q) = A(q̄)A(q) (A.21)
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