
 1

Symmetric redundancy of network functions and services on

virtualized network infrastructures

Frederico Januário Santana

frederico.santana@tecnico.ulisboa.pt

Instituto Superior Técnico, Lisboa, Portugal

October 2019

Abstract

The traditional way of implementing network

functions and network services does not make use of

the flexibility, adaptability and interoperability offered

by virtualized network infrastructures. Using these

infrastructures, it is possible to scale network solutions

better, because the resources are being used in the

most efficient way possible by virtualizing the

required resources. The technologies, tools and

products associated with it can now, be a type of

service and therefore automated using e.g. a data

serialization language like YAML. Considering these

developments, the ETSI elaborated an architectural

framework, called ETSI MANO, which is used as a

reference model for the creation of software that does

the orchestration and management of virtualized

network functions and network services. This

architectural framework has three major components,

the NFVO, the VNFM and the VIM that are essential

for the management and operation of virtualized

network functions and services systems. In this

dissertation, an analysis and study of the technologies

associated with the three major components of the

ETSI MANO architectural framework are performed.

Based on the study and analysis done, a symmetric

redundant network functions and services system is

built on a virtualized network infrastructure. For

testing the system, it is deployed a VNF load balancer

and two sites, where each site has two web servers.

Keywords: VNFs, NSs, orchestration, management.

ETSI NFV framework.

1. Introduction

The network infrastructures were only present in a

“bare metal” from not long ago, while nowadays it is

shifting to virtualized network infrastructures. The

growing of these infrastructures is mainly due to their

flexibility, adaptability and interoperability properties.

The widespread age of “Cloud” models and

virtualization contributes to be a standard when using

the Internet. This project aims to study and test the

technologies that exist for the orchestration and

management of virtual network functions and services

in a virtual network infrastructure environment using

the solutions that are based on the ETSI MANO

architectural framework [1]. This dissertation aims to

analyse these solutions, and research simple scenarios

where they will be tested in a simple network

architecture solution. The design of traditional

network infrastructures in the past was benchmarked

for the minimal loss of latency, availability,

throughput and the capacity to carry data, resulting in

hardware and software that were developed and

optimized using the criteria’s described before. With

the increase of complexity and bandwidth usage on

technologies such as streaming platforms, Internet of

Things or by smartphones, there was a need to scale

and expand the existing network infrastructure without

increasing the costs too much. Unfortunately, the

traditional infrastructure solution posed various

bottlenecks in terms of hardware and software

bringing companies and developers to find ways of

removing those bottlenecks. This led to the concepts

of virtualized network infrastructures and virtualized

network functions. Having a VNF system fully

customizable and define how the VNF system

behaves, can be achieved using the ETSI MANO

architectural framework. The ETSI MANO

architectural framework is the reference framework

that companies, developers and users adopted to

develop solutions for their needs in this constant

changeable world of virtualized network

infrastructures. This dissertation describes and

analyses the desired skills that are needed to learn

more about the optimization of VNF deployment,

orchestration and management on virtualized network

infrastructures environments. The main goals of this

dissertation are to research the technologies, products

and tools used on virtualized network infrastructures,

and how the VNFs instantiation is done in the present

and what is the near future for VNF management and

orchestration on virtualized network infrastructures.

For this, a virtualized network infrastructure is

deployed to test the most documented and developed

VNF placement technology that is low on resource

utilization, reliable, secure and is part or fully

automatable considering the available hardware at the

time of implementation of the system solution. Several

virtualization and high virtualization models

(containers and virtual machine) are analysed, tested

and compared.

 2

2. State of the art

The limitations of network infrastructures such as

flexibility, scalability, manageability and

interoperability limitations makes companies and

developers design new software and hardware that

defines how the virtualized network infrastructures are

deployed and configured to support the use of virtual

network functions and services. This brings new

challenges such as multivendor implementations of

VNFs, managing, monitoring and configuring the life

cycles and interactions of VNFs, as well the hardware

resource allocations of VNFs and the interaction with

the billing and operational support systems. Those

challenges lead for the creation of an architectural

framework also known as the ETSI NFV architectural

framework, which defines a reference model for

virtual network functions and services that are

orchestrated and managed on a virtualized network

infrastructure.

2.1. ETSI NFV architectural framework

The European telecommunications standards institute

network functions virtualization architectural

framework is based on a complete separation of

hardware and software criteria, where network

functions deployment must be automated and scalable

and the control of the network functions operational

parameters is done by monitoring and controlling the

state of the network [2]. This framework is structured

by three high level blocks such as the VNFs, the NFVI

and the NFV MANO blocks. The NFVI block is the

foundation for this architectural framework where it

offers the hardware and software responsible for the

virtualization process of the virtual instances. The

VNFs block uses the resources of the NFVI block to

develop software that implements virtualized network

functions and services. The NFV MANO block is on

its own a separate architectural framework that is

responsible for the orchestration and management of

the VNFs and NSs resources. The NFV MANO block

is also called the ETSI MANO architectural

framework where it is a reference model to developers

to create software to manage and orchestrate VNFs

and NSs. The next sections and subsections describe

in a more detailed manner the ETSI MANO

architectural framework and all the relevant

technologies that are used nowadays to accomplish

what the ETSI MANO architectural framework

proposes.

2.2. ETSI MANO block

The ETSI MANO block decouples computation,

storage and networking from the software that

implements NFs by creating new entities such as, the

VNFs, NFVI, PNFs, NSs, VNFFGs and VLs. The

ETSI MANO architectural framework is responsible

for managing the NFVI and orchestrate the resources

for the NFs and VNFs. The resources that are

considered are mainly CPU, memory, network

components (subnets, ports, etc.) and storage. With

this, it is important to define VNFs management

functions based on operations such as the,

instantiation, scaling, updating or upgrading and

terminating of VNFs or NSs. These operations are

accomplished by the creation of template files that use

a template language such as TOSCA which is

described in more detail in the following subsection.

The ETSI MANO architectural framework

architecture is presented in the figure below:

Figure 1: ETSI MANO framework

Resourced from [1]

The main blocks of the ETSI MANO architecture are

the NFVO responsible for the resources allocated to

the VIM and the lifecycle management of the NSs, the

VNFM responsible for the lifecycle management of

the VNF instances, where it can manage only a VNF

instance or multiple VNF instances, the VIM

responsible for the management and control of the

NFVI in terms of the network, storage and compute

resources and the Data Repositories responsible for

the storage of the templates for the VNFs and NSs.

Also holds information about the resources and

instances that are being used. The ETSI MANO

illustrates also that the NSs as the relation between

VNFs and PNFs and defines the elements that a NS

relates to. NSs can contain information about the

VNFs, PNFs, VLs and VNFFGs and with this

information create network forwarding paths to be

used on E2E virtualized network services. The ETSI

MANO architectural framework instantiation input

parameters are used as descriptors which are grouped

in a catalogue and therefore translated to records in a

runtime context when the virtual instances are

deployed. The descriptors are written in the TOSCA

language and have information about the network

itself, such as the topology, network path, resource

requirements for the elements of the network and the

physical elements. The records have not only the

information given by the descriptors, but also

additional runtime information such as CPU, network

or disk usage.

2.2.1. TOSCA and YAML

TOSCA [2] or Topology and Orchestration

Specification for Cloud Applications is a template

 3

language based on the data serialization and markup

language YAML (Ain't Markup Language) that

describes the virtualized network functions or services

nodes and the relations between them. In fact, TOSCA

is a service template language that describes

virtualized network infrastructures workloads as a

topology template, meaning that is basically a graph

of node templates modelling the components and the

relations between them. An example of a VNFD

written in TOSCA is depicted on Tacker VNF

descriptor site [3]. The VNFD example is from a

NFVO and VNFM software called Tacker, which

describes a VNF topology with three node types, a

VDU, a VL and a CP, each with different capabilities

and requirements. The capabilities describe the

resources that each node will be deployed with and the

requirements describe the virtual networks that are

associated with each VNF. The YAML language is a

data serialization and markup language where

integrates and builds concepts from a lot of other

languages, e.g. Python, JSON, Ruby, C and XML.

YAML language indentation-based scoping is similar

to Python language where the indentation facilitates

the inspection of the data structures. YAML language

literal style leverages this by enabling formatted text

to be cleanly mixed within an indented structure

without troublesome escaping. YAML also allows the

use of traditional indicator-based scoping similar to

the JSON language. YAML language core type system

is based on the requirements of agile languages such

as Perl, Python, and Ruby. YAML directly supports

both collections (mappings, sequences) and scalars.

Support for these common types enables programmers

to use their language’s native data structures for

YAML manipulation, instead of requiring a special

document object model. YAML language foremost

design goals are human readability and support for

serializing arbitrary native data structures [4].

2.3. VIMs block

The virtualized infrastructure managers block has the

responsibility to supervise the virtual infrastructure of

a network function virtualization solution. In summary

the VIM is a key component of any ETSI MANO

architecture, and the following subsections describe

some of the most developed solutions that exist

nowadays for virtualized infrastructure managers.

2.3.1. The OpenStack platform

The OpenStack platform is an open source project that

aims to be a cloud operating system that manages and

deploys the network, storage and computing resources

of a complete virtualized infrastructure over a set of

hardware resources. The following figure details the

conceptual architecture of the OpenStack elements

(services) [5]:

Figure 2: High-level overview of the OpenStack essential

projects

Resourced from [5]

These elements or projects can be classified has

essential projects and additional projects and are

explained in more detail on the subsections below. The

growth of the Internet and hardware infrastructures

network solutions implies new challenges for

operators to manage, configure and launch on demand

new services using the resources for them as efficient

as possible. OpenStack is an excellent solution for that

matter because it offers virtualization of compute,

storage, networking and many other resources. Each

component in OpenStack manages a different resource

that can be virtualised for the end user. Separating

each of the resources that can be virtualized into

separate components makes the OpenStack

architecture very modular. OpenStack can be divided

into four groups: Control, Networking, Compute and

Storage. The Control tier runs the Application

Programming Interfaces (API) services, web interface,

database, and message bus. The Networking tier runs

network service agents for networking. The Compute

tier is the virtualization hypervisor, with services and

agents to handle virtual machines. The Storage tier

manages block (Volumes; partitions) and object

(containers; files) storage for the Compute instances.

All the components use a database and/or a message

bus.

2.3.1.1. Essential OpenStack projects

The essential projects are the projects that an

OpenStack platform cannot operate without. The

essential projects to deploy an OpenStack installation

are [8] the Nova project that manages and provisions

virtual machines running on hypervisor nodes, the

Neutron project that provides network connectivity

between the interfaces of OpenStack services, the

Glance project that is a registry service that is used to

store resources such as virtual machine images and

volume snapshots, the Keystone project that is a

centralized service for authentication and

authorization of OpenStack services and for managing

users, projects, and roles and some advisable but not

mandatory projects to add to an OpenStack

installation as they facilitate the usage of the

OpenStack platform such as the Horizon project that is

 4

a web browser-based dashboard that is used to manage

OpenStack services, the Swift project that allows users

to store and retrieve files and arbitrary data, the

Ceilometer project that provides measurements of

cloud resources, the Heat project that is a template-

based orchestration engine that supports automatic

creation of resource stacks and the Cinder project that

manages persistent block storage volumes for virtual

machines. All the services communicate with each

other by APIs and the AMQP.

2.3.1.2. Relevant OpenStack additional projects

The additional OpenStack projects are software tools

that are developed as a side project to add some new

features / services to the OpenStack platform. The

most important ones for the scope of this dissertation

are the Octavia and Octavia dashboard projects that

aim to be a load balancer as service project and a GUI

of Octavia project that can manage a fleet of virtual

machines, containers, or bare metal servers on

demand, the DevStack project that is a compilation of

scripts to quickly bring up a complete and updated

version of the OpenStack platform hosted on a bare

metal or virtual machine, the Diskimage-builder

project that is a tool for automatically building

customized operating-system images to be used in

clouds and other environments, producing cloud-

images in all common formats (qcow2, vhd, raw, etc),

bare metal file-system images and ram-disk images,

the Kolla project that is a provider of production-ready

containers and deployment tools for operating

OpenStack clouds that are scalable, fast, reliable, and

upgradable using community best practices, the

Magnum project that makes container orchestration

engines such as Docker Swarm, Kubernetes, and

Apache Mesos available as first class resources in

OpenStack. Magnum uses Heat OpenStack project to

orchestrate an operating system image which contains

Docker and Kubernetes and runs that image in either

virtual or bare metal machines in a cluster

configuration, the Kuryr-kubernetes and Kuryr are

OpenStack containers networking projects that

enables native Neutron-based networking in

Kubernetes. With Kuryr-kubernetes it is now possible

to choose to run both OpenStack VMs and Kubernetes

Pods on the same Neutron network and the Kata

containers project that aims to “deliver standard

implementation of lightweight virtual machines that

feel and perform like containers but provide the

workload isolation and security advantages of virtual

machines”. The architecture of the Kuryr project is

described in more detail by the figure below:

Figure 3: Kuryr architecture

Resourced from [6]

Kuryr uses the libnetwork API to map and create

Neutron objects. By doing this, the solutions that

Neutron provides (security groups, NAT services and

floating IP´s) for networking can be used by

containers networking.

2.3.2. Kubernetes

Kubernetes is an open source solution for managing

and orchestrating containers. The architecture type is

client-server, where it has one or more master servers

that controls and defines how the worker nodes should

act and react to the master node. Kubernetes

infrastructure is based in five different principles such

as pods, services, volume, namespaces and

deployment. Pods and Volume are the storage units of

Kubernetes, where it stores all information related to

the containers and the data of each Pod respectively,

Services are a logical set of pods and acts as a gateway

to the exterior, allowing (client) pods to send requests

to the service without needing to keep track of which

physical pods make up the service, Namespaces are

based in the Linux namespaces, where here it is a

virtual cluster (a single physical cluster can run

multiple virtual ones) intended for environments with

many users, and finally the Deployment is normally

done via a deployment file in the YAML language

which describes the configuration and state of pods.

An example of the workflow (with a single master

server and two worker servers) of Kubernetes is

depicted in the following figure:

Figure 6: Kubernetes cluster example architecture

Resourced from [7]

 5

The master node provides Kubernetes with cluster

control, making global choices for the cluster and

deciding what to do when a cluster event is detected, it

has a central management entity (kube-apiserver), a

distributed key value storage (etcd), a scheduler that

helps optimizing resource utilization (kube-scheduler)

and a controller that regulates the state of the

Kubernetes or manages the cloud provider (kube-

controller-manager or cloud-controller-manager). The

worker node has a service daemon (kubelet)

responsible for taking pod specifications and health

checks, a proxy service daemon (kube-proxy)

responsible for the networking in the worker node and

a container runtime (Docker) that is the software that

will run the containers on the Pod. Kubernetes has

also some useful features (addons) like a DNS Server,

a Web UI, a Container Resource Monitoring and a

Cluster-level Logging that can make the life easier on

the administrator of the Kubernetes platform.

Kubernetes has become in the last few years the

standard container orchestration platform, mainly

because of the performance gain by using containers

over virtual machines and the high availability of the

applications running on the containers is provided by

the use of container replicas quotas and the health

container checks.

2.3.3. Docker

Docker is a client-server application (like Kubernetes),

that leverages the technologies of namespaces, control

groups, union file formats and container formats. The

Docker engine is defined as follows:

Figure 7: Docker architecture

Resourced from [8]

Docker is composed by a docker daemon (dockerd)

that manages the Docker objects (images, containers,

networks and volumes) and the communication with

other Docker daemons to manage Docker images, a

Docker Client that consists of a REST API and CLI

(Docker command or a Docker client) being used to

interact with the Docker daemon, a Docker registry for

the storage of Docker images (default one being

Docker Hub) and a Docker object or objects that can

be images, containers or services. Docker is a fast and

consistent delivery system of applications because of

the use of containers and being a light program to run

offers great scaling, a fast deployment system and the

amount of work uses less resources in opposition of

using virtual machines.

2.4. NFVOs and VNFMs blocks

The network functions virtualization orchestrator and

the virtualized network functions manager blocks are

normally bundled together in a software suite but have

different responsibilities that need to be attended to.

The NFVO is responsible for overlooking the

instantiation, scaling, updating and terminating

network services. The VNFM is responsible for

overlooking the instantiation, scaling, updating and

terminating of virtual network functions. The next

subsection describes the software used for the

implementation of the NFVOs and VNFMs blocks.

2.4.1. Tacker

Tacker is an OpenStack additional project for NSs an

VNFs orchestration and management adhering to the

ETSI MANO architectural framework. It has a generic

NFVO and VNFM to deploy network services and

virtual network functions providing E2E solutions.

The next figure shows how Tacker workflow and

architecture are:

Figure 9: Tacker architecture and Workflow

Resourced from [9]

Tacker has three fundamental elements. The Network

Functions Virtualization Catalog that contains the

VNF, NS and VNF Forwarding Graph descriptors. The

Virtualized Network Functions Manager (VNFM) that

creates, updates, deletes and monitors VNFs. The

Network Functions Virtualization Orchestrator

(NFVO) that optimizes resource checks and allocation

of VNFs. The NFVO can orchestrate VNFs,

throughout multiple VIMs or Sites and can create a

service function chain between VNFs by using a VNF

Forwarding Graph Descriptor. Tacker can be deployed

and configured manually or using the additional

OpenStack projects DevStack or Kolla. Tacker only

supports currently as VIMs the OpenStack and

Kubernetes platforms.

 6

3. Architecture

The architecture is to deploy and test a system that

encompasses one of each of the three main blocks of

the ETSI MANO architectural framework presented

on chapter two of this dissertation report. The

proposed architecture solution will have a frontend

network with one VNF acting as a Load Balancer and

a backend network with two web servers. The backend

network will have replicated sites (one and two) with

two virtualized infrastructure managers installed on

the different sites. A client can connect and test the

system functionalities. The architecture is depicted

below:

Figure 10: Project architecture

The system workflow starts by the users connecting to

the system via a VNF acting as a load balancer that

will redirect traffic depending on the load balancing

algorithm that was selected, connecting the users to

the sites on the backend network. Each site will have

two web servers that will be used for testing the load

balancer and the sites functionalities, e.g. handling

HTTP requests. The orchestration and management of

the global system will be done via a management

server. The management server is configured using the

necessary software researched in chapter two of this

dissertation report and some extra tools that will be

described in the next subsection. The ideal scenario

will be that, the servers on site one and the VNF

acting as load balancer will be hosted on virtual

machines, as for the servers on site two will be hosted

on containers. The process of being hosted by virtual

machines and containers is also important to test,

analyze and compare how different these host

virtualization techniques are in terms e.g. resource

utilization. The proposed architecture is a heavy

system to deploy and the available hardware is

limited, so the implementation takes all that in

consideration by building the system with the minimal

resources necessary not compromising the proposed

architecture.

3.1. Implementation

The implementation starts with phase number one

where a management server is deployed and

configured to host the DevStack and Tacker projects

used on phase number two. Phase number two main

objective is to deploy and configure the DevStack and

Tacker projects. Phase number three deploys and

configures the backend and frontend VNFs hosted on

virtual instances (containers or virtual machines). The

next subsections describe in more detail how all the

phases were processed.

3.1.1. Management server deployment and

configuration

The main goal is to deploy a bare metal or virtual

solution of a management server that consists on

installing and configuring the software of the virtual

network infrastructure that is going to be used to

deploy the architecture solution described before. The

first step is the most important one as encompasses the

research of the software and hardware requirements

for the system architecture and choosing the right

tools to deploy the management server. The tools

chosen were for a virtual solution of the management

server, just because it is easier to test the hardware

requirements for the architecture solution as is a better

modular solution than the bare metal solution, e.g. if a

virtual machine does not meet the right requirements it

is faster to install and configure the hardware and

operating system on the virtual machine. The tools

chosen to deploy the virtual solution to the

management server where, Packer [10] and Vagrant

[11] that are tools respectively, to manage updated

virtual images to be used on virtual machines and to

deploy those virtual images onto virtualization

platforms such as VirtualBox or QEMU. The problems

that were encountered here were the time necessary to

choose the right operating system and the minimal

hardware and software requirements to deploy the

management server as it depends on phase two of the

implementation of the architecture solution. The

operating system chosen was Ubuntu Server 16.04

with Ansible [43] and openstack-sdk packages

installed with sixteen GB of RAM, five CPU cores

and sixty GB of disk. Vagrant uses a Vagrantfile that is

written in the Ruby language where it defines the

virtual machine configuration to be used for the

management server.

3.1.2. DevStack and Tacker projects deployment and

configuration

After the management server is up and running, it is

time to the next phase where the DevStack and Tacker

OpenStack additional projects are deployed and

configured. These projects were chosen based on the

hardware requirements of all the software researched

for the ETSI MANO architectural framework blocks.

For the VIM block the project used for this was

DevStack where it deploys a virtualized network

infrastructure platform and installs the OpenStack and

Kubernetes VIMs. For the NFVO and VNFM blocks,

the project used was Tacker. The first step of using the

DevStack project is meeting the following

requirements such as DevStack should be run as a

 7

non-root user with root enabled privileges and having

GitHub [12] and PIP [13] (package installer for

Python) programs installed on the management server

used to deploy DevStack. The next step involves using

the GitHub program called git to download the

repository of DevStack to a folder and access the

folder. When in the DevStack folder, the most

important files to look for are the stack.sh, openrc and

local.conf files. The stack.sh is a bash script file that

uses the information of the configuration local.conf

file to install and configure the OpenStack and

Kubernetes VIMs. The openrc is also a bash script file

used to load the OpenStack environment variables to

the management server so that OpenStack can be

accessed and managed. The configuration local.conf

file that needs to be created by the user of the

management server is based from the

local.conf.kubernetes [46] file, that can be accessed on

the DevsStack GitHub site with slight modifications.

The relevant configurations options for the local.conf

file are the IPs and passwords for the services that will

utilize that information such as, the OpenStack

database and network services, the IP range and

network interface that is going to be used to give

Internet connectivity to virtual instances, e.g. virtual

machines or containers, enabling a log file, it is very

important because if anything goes wrong, it is

possible to search for errors during installation,

enabling the use of the Kubernetes VIM and selecting

the hyperkube [14] version to be installed. The

hyperkube version can be selected from google public

hyperkube image repository [15] and enabling the

necessary OpenStack services by using the

enable_plugin command tag. The OpenStack services

are then downloaded from a GitHub repository and

automatically configured with the default options. The

customization of the services is done via proper tags

and the tag availability depends if the service has

DevStack installation support. After all the

configuration is done, the file must be saved under the

DevStack folder and then run the stack.sh script. One

problem that originated running the script, was when

the management server has one network interface and

the login method to the management server is via

SSH, it is necessary to run the script on a separate

virtual terminal by using the command screen. The

script is going to run a series of installations and

configurations on the system, so it is not

recommended to run this script on a daily use

operating system installation. This is one of the

reasons why the management server is a virtual

machine described in the phase before. The script run

time depends in the amount of services it must install

and configure, but the script at a fresh install of the

operating system on the management server takes

about forty five minutes and the time decreases after

the first run, to thirty minutes. At the end of the script

the output gives useful information such as the time it

took to install and configure the script, the default IP

address used by the user of the management server to

access, e.g. via browser the OpenStack UI, the users

(admin and demo) that have relevant privileges to

access the OpenStack platform and the version of

OpenStack that was installed. In this phase the most

relevant problems that were faced were, the script

stops working as of a bug on the DevStack project as

the association of the bridge br-ex (responsible for the

routing of the external network to the internal

networks of the OpenStack platform) to the network

interface of the management server removes the DNS

name resolution of the management server and when

using a hyperkube version above version 15.0 the

installation of Kubernetes fails. These problems were

solved by, using a GitHub repository commit version

of the DevStack project older than the one that was

being used and using an older version of hyperkube.

This phase was the most time consuming because of

all the configuration options that need to be learned

and tweaked to fulfil the needs of the architecture

solution and the limitations of hardware resources that

where presented at the time of this phase

implementation, e.g. the IST resources were so limited

and overbooked, that the private hardware resources

must be upgraded so the architecture solution

implementation could continue. After this, it is

necessary to configure the management server to

create and have access to the virtual instances that

needed for the architecture solution implementation by

loading the environment variables of the OpenStack

platform onto the management server and creating a

SSH key to be able to access to the virtual instances. A

series of configurations need to be done the

OpenStack platform each time the it is deployed such

as changing the DNS nameserver IPs on all default

OpenStack networks, creating a router to access the

virtual machines, creating ports in the router to all

default OpenStack networks, adding SSH keys to the

OpenStack platform to be able to access the virtual

instances, adding or changing the rules on the default

OpenStack security groups and adding new operating

system images to the OpenStack platform. A problem

of time consumption happens when these

configurations of the OpenStack platform occur and

the solution was using an automation tool such as

Ansible [43], which is a Red Hat project that focuses

on IT automation, using YAML has a standard to

create template files, that can deploy and modify

virtualized network infrastructures and their elements.

The template file (also called ansible playbook) was

created for configuration steps described above. Now

that the system is fully configured, it is time to use the

Tacker project. The first thing that needs to be done is

to register the OpenStack and Kubernetes VIMs onto

tacker and for that it is necessary to create two YAML

files that have the information needed to register both

VIMS. After the formulation and creation of the files

it’s time to register the VIMs onto Tacker via the

OpenStack CLI or GUI, and depending on the commit

version of Tacker, the registration of the Kubernetes

VIMs cannot work due to a bug on the code, so the

 8

GitHub branch used in Tacker must be the master

branch to fully pass these kind of problems, just

because the branch is more often updated than the

other ones.

3.1.3. Backend and frontend VNFs deployment and

configuration

With the VIMs registered, it is necessary to register

the backend and frontend VNFs by making one or two

descriptor template files for each VIM. There are two

ways to approach the configuration and deployment of

the frontend VNF, one can be done manually where it

is used a descriptor template file and all the

configuration for the load balancer is done manually

in terms of networking, failsafe protection and the

software used for the load balancer or two where it is

used a OpenStack additional project described on

chapter two called Octavia. The Octavia project is a

LBaaS where it shares the concept of XaaS [16],

where anything can be called a service in a

virtualization system. The configuration selected was

the second one because the way that Kubernetes

works with the OpenStack platform is by using the

OpenStack networks via the kuryr-kubernetes project

while the access to the Kubernetes Pods is done via an

ingress Octavia LBaaS project controller. The backend

template files for each VIM are different. Each

template file has its own configuration options just

because they use a different type of hardware and

software virtualization (containers or virtual

machines) that have different options for

configurations, e.g. on a Kubernetes template file it is

necessary to define a service type tag that can grant

access from the external network to the application

running on the containers. The configuration of the

VNFs can be done by a bash script, where for that is

necessary to use a specific image built with the

OpenStack additional project diskimage-builder, using

a user_data tag on the template descriptor file, where

configuration and installation commands can simulate

like it was a bash script file or using the management

server by running directly the bash script file with the

SSH command. These configuration options are well

documented but the safer to use would be the third

option, just because the other two have problems with

them. The first configuration option the diskimage-

builder project has software bugs where it only builds

successfully images of the latest versions of the

operating systems and when using these images with

Tacker the bash script does not run properly making

the VNF unconfigurable. The second configuration

option is a good option, but the template file

organization and length can become quite unorganized

and big due to inserting the bash script data onto the

template descriptor file. In the third option the

template descriptor file and bash script file are

separated, and the script file is loaded via SSH using

the management server for that matter. The software

tools used for the backend and frontend VNFs are a

HAProxy software is used on the frontend VNFs,

being the most documented, tested and versatile load

balancing software, and NGINX and PHP software are

used on the backend VNFs. The HAProxy software

used on the frontend VNF is preinstalled with the

Octavia OpenStack additional project and it is

configured as a HTTP load balancer with a load

balancing round-robin algorithm. The load balancer is

also configured with a “health monitor” that checks

the state of the backend servers. Layer seven policies

that do redirection based on the path that is entered on

the browser can be configured also, giving extra

security to the backend servers. The backend VNFs

will act as web servers that verify if the configurations

on the load balancer are working as intended. After

loading the configuration files onto the VNFs, it is

time to test the architecture solution implementation.

In this phase the installation, deployment, connectivity

and functionality are tested of the architecture

solution. This phase will be described in more detail

on the next section of the report. A problem occurred

in this phase were that if a test fails and it is necessary

to reboot the management server the virtual network

interfaces created by the DevStack OpenStack project

does not persist over a system shutdown or reboot, so

the solution is to remove the configurations and

installations done on the management server. Gladly

the DevStack developers thought of that and created

two scripts called unstack.sh e clean.sh. The

unstack.sh script stops all services associated with

OpenStack and the clean.sh script cleans all

configurations and installations done by DevStack on

the management server. After that it is necessary to

run the stack.sh file and to do all VNFs configuration

and deployment.

4. Evaluation

The evaluation phase is the most important phase of

all systems implementation, just because it validates

all the work that was done. It also detects if something

is not running how it should be, by testing all the

elements in the system and giving out precious

information to the administrator. With that information

the administrator can monitor and fix all the elements

that are not corresponding to the normal behaviour.

The next subsections describe the tests performed on

the architecture solution implementation.

4.1. Tests

The tests are divided on functional and performance

tests. The tests validate if the functionality, failover

and scalability of the implemented solution are

working as intended. The table below describes in a

short manner what tests were done on the

implemented solution:

Test number Test short description

1 – Functional test Verify VIMs and VNFs

deployment and

configuration

 9

2 – Functional test Verify frontend and

backend VNFs

connectivity

3 – Functional test Verify frontend and

backend VNFs

functionality

4 – Functional test Verify frontend and

backend VNFs failover

5 – Performance test Verify VNFs scalability

Table 1: Summary table of the evaluation tests

4.1.1. Tests 1 to 3

The tests one to three are done via a Python script

where issues one hundred GET requests to the VNF

acting as load balancer and outputs the graph below:

Figure 1: Distribution of GET requests with four web

servers

The algorithm chosen for these tests is the round robin

algorithm and as it is seen on the graph above, all the one

hundred requests are evenly distributed proving the web

servers and load balancer functionality. The success of the

web servers and load balancer functionality also validates

the frontend and backend VNFs connectivity (test two) and

the VIMs and VNFs deployment and configuration (test

one).

4.1.2. Test 4

Test four is where the frontend failover testing is done via a

terminal command (openstack loadbalancer failover

name_of_lb) where it simulates with an interval of time a

failover scenario that is performed on the load balancer. The

command initiates the failover by destroying the virtual

machine that hosts the load balancer, verifies that the load

balancer no longer is available and performs the

recoverability process of creating a new virtual machine

using the load balancer configuration metadata. The backend

failover is tested by creating a health monitor checker and

shutting down a backend VNF virtual machine or container

via the OpenStack CLI or GUI and verifying that the load

balancer becomes aware and do not forward HTTP traffic to

that specific virtual machine or container.

4.1.3. Test 5

Test 5 uses a scalability property on the VNFDs, where it

defines how many replicas of a VM or container a system

can make. To test this the script used on the test 1 to 3

section was slightly modified where it calculates the GET

response average time plus the computational time for each

web server. The number of replicas was increased to three

on site 2 and the script outputs the following graph and

times:

Figure 2: Distribution of GET requests with five web

servers

site1-web1 site1-web2 site2-web1 site2-web2

885 ms
886ms 887ms 884ms

Table 2: Requests time with four web servers

site1-

web1

site1-

web2

site2-

web1

site2-

web2

site2-

web3

847ms 847ms 847ms 846ms 846ms

Table 3: Requests time with five web servers

As it is seen on the graph above and tables, the time is

reduced by forty milliseconds proving that the scalability

performance is relevant and is working as intended

5. Conclusion

All the technologies described on chapter two are still

being heavily developed and complementing their

core environment to using containers. Containers in

comparison with virtual machines use less resources,

meaning better overall performance for the workflow

of a VNF solution. Nevertheless, the use of virtual

machines means a better isolation for the adopted

VNF solution that containers cannot deliver yet. That

is why kata containers enables the merge of virtual

machines and containers by adding the good features

described from both virtual machines and containers.

The problems encountered while doing this

dissertation were mainly, the documentation of the

researched technologies that needs improvement on

explaining how some of the projects work and what

certain aspects of the projects do, e.g. to lost a lot of

time searching for a solution when the installation

script used by the DevStack project stops working.

Unfortunately, due to limitations on the hardware

resources it was not possible to test all the

technologies described on chapter two and to scale the

proposed architecture solution as it was intended. The

projects used on the implementation of the proposed

architecture are still being heavily developed, and still

need optimization regarding merging the features of

containers and virtual machines. Nevertheless, the

 10

implementation of the architecture was successful and

describes well what is the expectation for the future of

virtualized network functions and services.

6. Future work

For future work, if the resources permit, it is very

important to implement and research other possible

architecture scenarios. For example, creating a multi

VNF network service where it deploys different VNFs

with different virtual networks graphs. With these

virtual network graphs, it is possible to create virtual

network paths and selecting witch VNFs are

associated with each virtual network path.

References

[1] NFV, “GS NFV-MAN 001 - V1.1.1 - Network

Functions Virtualisation (NFV); Management

and Orchestration,” 2014.

[2] “TOSCA-Simple-Profile-YAML-v1.1-csprd01

TOSCA Simple Profile in YAML Version 1.1

Specification URIs,” 2016.

[3] “OpenStack Docs: VNF Descriptor Template

Guide.” [Online]. Available:

https://docs.openstack.org/tacker/latest/contrib

utor/vnfd_template_description.html.

[4] “YAML Ain’t Markup Language (YAMLTM)

Version 1.2.” [Online]. Available:

https://yaml.org/spec/1.2/spec.html.

[5] “Chapter 1. Components Red Hat OpenStack

Platform 9 | Red Hat Customer Portal.”

[Online]. Available:

https://access.redhat.com/documentation/en-

us/red_hat_openstack_platform/9/html/archite

cture_guide/components.

[6] “Kuryr - Bringing Containers Networking to

OpenStack Neutron · GalSagie.” [Online].

Available:

http://galsagie.github.io/2015/08/24/kuryr-

part1/.

[7] “Introduction to Kubernetes Architecture.”

[Online]. Available: https://x-

team.com/blog/introduction-kubernetes-

architecture/.

[8] “Docker overview | Docker Documentation.”

[Online]. Available:

https://docs.docker.com/engine/docker-

overview/.

[9] “Tacker - OpenStack.” [Online]. Available:

https://wiki.openstack.org/wiki/Tacker.

[10] “Documentation - Packer by HashiCorp.”

[Online]. Available:

https://www.packer.io/docs/.

[11] “Documentation - Vagrant by HashiCorp.”

[Online]. Available:

https://www.vagrantup.com/docs/.

[12] “GitHub Guides.” [Online]. Available:

https://guides.github.com/.

[13] “pip - The Python Package Installer — pip

19.3.1 documentation.” [Online]. Available:

https://pip.pypa.io/en/stable/.

[14] “kubernetes/cluster/images/hyperkube at

master · kubernetes/kubernetes · GitHub.”

[Online]. Available:

https://github.com/kubernetes/kubernetes/tree/

master/cluster/images/hyperkube.

[15] “Container Registry - Google Cloud

Platform.” [Online]. Available:

https://console.cloud.google.com/gcr/images/g

oogle-containers/GLOBAL/hyperkube-

amd64?gcrImageListsize=30&pli=1.

[16] R. C. Garcia and J.-M. Chung, “XaaS for

XaaS: An evolving abstraction of web services

for the entrepreneur, developer, and

consumer,” in 2012 IEEE 55th International

Midwest Symposium on Circuits and Systems

(MWSCAS), 2012, pp. 853–855.

