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Abstract 

The traditional way of implementing network 

functions and network services does not make use of 

the flexibility, adaptability and interoperability offered 

by virtualized network infrastructures. Using these 

infrastructures, it is possible to scale network solutions 

better, because the resources are being used in the 

most efficient way possible by virtualizing the 

required resources. The technologies, tools and 

products associated with it can now, be a type of 

service and therefore automated using e.g. a data 

serialization language like YAML. Considering these 

developments, the ETSI elaborated an architectural 

framework, called ETSI MANO, which is used as a 

reference model for the creation of software that does 

the orchestration and management of virtualized 

network functions and network services. This 

architectural framework has three major components, 

the NFVO, the VNFM and the VIM that are essential 

for the management and operation of virtualized 

network functions and services systems. In this 

dissertation, an analysis and study of the technologies 

associated with the three major components of the 

ETSI MANO architectural framework are performed. 

Based on the study and analysis done, a symmetric 

redundant network functions and services system is 

built on a virtualized network infrastructure. For 

testing the system, it is deployed a VNF load balancer 

and two sites, where each site has two web servers. 

Keywords: VNFs, NSs, orchestration, management. 

ETSI NFV framework. 

1. Introduction 

The network infrastructures were only present in a 

“bare metal” from not long ago, while nowadays it is 

shifting to virtualized network infrastructures. The 

growing of these infrastructures is mainly due to their 

flexibility, adaptability and interoperability properties. 

The widespread age of “Cloud” models and 

virtualization contributes to be a standard when using 

the Internet. This project aims to study and test the 

technologies that exist for the orchestration and 

management of virtual network functions and services 

in a virtual network infrastructure environment using 

the solutions that are based on the ETSI MANO 

architectural framework [1]. This dissertation aims to 

analyse these solutions, and research simple scenarios 

where they will be tested in a simple network 

architecture solution. The design of traditional 

network infrastructures in the past was benchmarked 

for the minimal loss of latency, availability, 

throughput and the capacity to carry data, resulting in 

hardware and software that were developed and 

optimized using the criteria’s described before. With 

the increase of complexity and bandwidth usage on 

technologies such as streaming platforms, Internet of 

Things or by smartphones, there was a need to scale 

and expand the existing network infrastructure without 

increasing the costs too much. Unfortunately, the 

traditional infrastructure solution posed various 

bottlenecks in terms of hardware and software 

bringing companies and developers to find ways of 

removing those bottlenecks. This led to the concepts 

of virtualized network infrastructures and virtualized 

network functions. Having a VNF system fully 

customizable and define how the VNF system 

behaves, can be achieved using the ETSI MANO 

architectural framework. The ETSI MANO 

architectural framework is the reference framework 

that companies, developers and users adopted to 

develop solutions for their needs in this constant 

changeable world of virtualized network 

infrastructures. This dissertation describes and 

analyses the desired skills that are needed to learn 

more about the optimization of VNF deployment, 

orchestration and management on virtualized network 

infrastructures environments. The main goals of this 

dissertation are to research the technologies, products 

and tools used on virtualized network infrastructures, 

and how the VNFs instantiation is done in the present 

and what is the near future for VNF management and 

orchestration on virtualized network infrastructures. 

For this, a virtualized network infrastructure is 

deployed to test the most documented and developed 

VNF placement technology that is low on resource 

utilization, reliable, secure and is part or fully 

automatable considering the available hardware at the 

time of implementation of the system solution. Several 

virtualization and high virtualization models 

(containers and virtual machine) are analysed, tested 

and compared. 
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2. State of the art 

The limitations of network infrastructures such as 

flexibility, scalability, manageability and 

interoperability limitations makes companies and 

developers design new software and hardware that 

defines how the virtualized network infrastructures are 

deployed and configured to support the use of virtual 

network functions and services. This brings new 

challenges such as multivendor implementations of 

VNFs, managing, monitoring and configuring the life 

cycles and interactions of VNFs, as well the hardware 

resource allocations of VNFs and the interaction with 

the billing and operational support systems. Those 

challenges lead for the creation of an architectural 

framework also known as the ETSI NFV architectural 

framework, which defines a reference model for 

virtual network functions and services that are 

orchestrated and managed on a virtualized network 

infrastructure. 

2.1. ETSI NFV architectural framework  

The European telecommunications standards institute 

network functions virtualization architectural 

framework is based on a complete separation of 

hardware and software criteria, where network 

functions deployment must be automated and scalable 

and the control of the network functions operational 

parameters is done by monitoring and controlling the 

state of the network [2]. This framework is structured 

by three high level blocks such as the VNFs, the NFVI 

and the NFV MANO blocks. The NFVI block is the 

foundation for this architectural framework where it 

offers the hardware and software responsible for the 

virtualization process of the virtual instances. The 

VNFs block uses the resources of the NFVI block to 

develop software that implements virtualized network 

functions and services. The NFV MANO block is on 

its own a separate architectural framework that is 

responsible for the orchestration and management of 

the VNFs and NSs resources. The NFV MANO block 

is also called the ETSI MANO architectural 

framework where it is a reference model to developers 

to create software to manage and orchestrate VNFs 

and NSs. The next sections and subsections describe 

in a more detailed manner the ETSI MANO 

architectural framework and all the relevant 

technologies that are used nowadays to accomplish 

what the ETSI MANO architectural framework 

proposes. 

2.2.  ETSI MANO block 

The ETSI MANO block decouples computation, 

storage and networking from the software that 

implements NFs by creating new entities such as, the 

VNFs, NFVI, PNFs, NSs, VNFFGs and VLs. The 

ETSI MANO architectural framework is responsible 

for managing the NFVI and orchestrate the resources 

for the NFs and VNFs. The resources that are 

considered are mainly CPU, memory, network 

components (subnets, ports, etc.) and storage. With 

this, it is important to define VNFs management 

functions based on operations such as the, 

instantiation, scaling, updating or upgrading and 

terminating of VNFs or NSs. These operations are 

accomplished by the creation of template files that use 

a template language such as TOSCA which is 

described in more detail in the following subsection. 

The ETSI MANO architectural framework 

architecture is presented in the figure below:

 

Figure 1: ETSI MANO framework 

Resourced from [1] 

The main blocks of the ETSI MANO architecture are 

the NFVO responsible for the resources allocated to 

the VIM and the lifecycle management of the NSs, the 

VNFM responsible for the lifecycle management of 

the VNF instances, where it can manage only a VNF 

instance or multiple VNF instances, the VIM 

responsible for the management and control of the 

NFVI in terms of the network, storage and compute 

resources and the Data Repositories responsible for 

the storage of the templates for the VNFs and NSs. 

Also holds information about the resources and 

instances that are being used. The ETSI MANO 

illustrates also that the NSs as the relation between 

VNFs and PNFs and defines the elements that a NS 

relates to. NSs can contain information about the 

VNFs, PNFs, VLs and VNFFGs and with this 

information create network forwarding paths to be 

used on E2E virtualized network services. The ETSI 

MANO architectural framework instantiation input 

parameters are used as descriptors which are grouped 

in a catalogue and therefore translated to records in a 

runtime context when the virtual instances are 

deployed. The descriptors are written in the TOSCA 

language and have information about the network 

itself, such as the topology, network path, resource 

requirements for the elements of the network and the 

physical elements. The records have not only the 

information given by the descriptors, but also 

additional runtime information such as CPU, network 

or disk usage. 

2.2.1. TOSCA and YAML 

TOSCA [2] or Topology and Orchestration 

Specification for Cloud Applications  is a template 
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language based on the data serialization and markup 

language YAML (Ain't Markup Language) that 

describes the virtualized network functions or services 

nodes and the relations between them. In fact, TOSCA 

is a service template language that describes 

virtualized network infrastructures workloads as a 

topology template, meaning that is basically a graph 

of node templates modelling the components and the 

relations between them. An example of a VNFD 

written in TOSCA is depicted on Tacker VNF 

descriptor site [3]. The VNFD example is from a 

NFVO and VNFM software called Tacker, which 

describes a VNF topology with three node types, a 

VDU, a VL and a CP, each with different capabilities 

and requirements. The capabilities describe the 

resources that each node will be deployed with and the 

requirements describe the virtual networks that are 

associated with each VNF. The YAML language is a 

data serialization and markup language where 

integrates and builds concepts from a lot of other 

languages, e.g. Python, JSON, Ruby, C and XML. 

YAML language indentation-based scoping is similar 

to Python language where the indentation facilitates 

the inspection of the data structures. YAML language 

literal style leverages this by enabling formatted text 

to be cleanly mixed within an indented structure 

without troublesome escaping. YAML also allows the 

use of traditional indicator-based scoping similar to 

the JSON language. YAML language core type system 

is based on the requirements of agile languages such 

as Perl, Python, and Ruby. YAML directly supports 

both collections (mappings, sequences) and scalars. 

Support for these common types enables programmers 

to use their language’s native data structures for 

YAML manipulation, instead of requiring a special 

document object model. YAML language foremost 

design goals are human readability and support for 

serializing arbitrary native data structures [4]. 

2.3. VIMs block 

The virtualized infrastructure managers block has the 

responsibility to supervise the virtual infrastructure of 

a network function virtualization solution. In summary 

the VIM is a key component of any ETSI MANO 

architecture, and the following subsections describe 

some of the most developed solutions that exist 

nowadays for virtualized infrastructure managers. 

2.3.1. The OpenStack platform 

The OpenStack platform is an open source project that 

aims to be a cloud operating system that manages and 

deploys the network, storage and computing resources 

of a complete virtualized infrastructure over a set of 

hardware resources. The following figure details the 

conceptual architecture of the OpenStack elements 

(services) [5]: 

 

Figure 2: High-level overview of the OpenStack essential 

projects 

Resourced from [5] 

These elements or projects can be classified has 

essential projects and additional projects and are 

explained in more detail on the subsections below. The 

growth of the Internet and hardware infrastructures 

network solutions implies new challenges for 

operators to manage, configure and launch on demand 

new services using the resources for them as efficient 

as possible. OpenStack is an excellent solution for that 

matter because it offers virtualization of compute, 

storage, networking and many other resources. Each 

component in OpenStack manages a different resource 

that can be virtualised for the end user. Separating 

each of the resources that can be virtualized into 

separate components makes the OpenStack 

architecture very modular. OpenStack can be divided 

into four groups: Control, Networking, Compute and 

Storage. The Control tier runs the Application 

Programming Interfaces (API) services, web interface, 

database, and message bus. The Networking tier runs 

network service agents for networking. The Compute 

tier is the virtualization hypervisor, with services and 

agents to handle virtual machines. The Storage tier 

manages block (Volumes; partitions) and object 

(containers; files) storage for the Compute instances. 

All the components use a database and/or a message 

bus. 

2.3.1.1. Essential OpenStack projects 

The essential projects are the projects that an 

OpenStack platform cannot operate without. The 

essential projects to deploy an OpenStack installation 

are [8] the Nova project that manages and provisions 

virtual machines running on hypervisor nodes, the 

Neutron project that provides network connectivity 

between the interfaces of OpenStack services, the 

Glance project that is a registry service that is used to 

store resources such as virtual machine images and 

volume snapshots, the Keystone project that is a 

centralized service for authentication and 

authorization of OpenStack services and for managing 

users, projects, and roles and some advisable but not 

mandatory projects to add to an OpenStack 

installation as they facilitate the usage of the 

OpenStack platform such as the Horizon project that is 
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a web browser-based dashboard that is used to manage 

OpenStack services, the Swift project that allows users 

to store and retrieve files and arbitrary data, the 

Ceilometer project that provides measurements of 

cloud resources, the Heat project that is a template-

based orchestration engine that supports automatic 

creation of resource stacks and the Cinder project that 

manages persistent block storage volumes for virtual 

machines. All the services communicate with each 

other by APIs and the AMQP. 

2.3.1.2. Relevant OpenStack additional projects 

The additional OpenStack projects are software tools 

that are developed as a side project to add some new 

features / services to the OpenStack platform. The 

most important ones for the scope of this dissertation 

are the Octavia and Octavia dashboard projects that 

aim to be a load balancer as service project and a GUI 

of Octavia project that can manage a fleet of virtual 

machines, containers, or bare metal servers on 

demand, the DevStack project that is a compilation of 

scripts to quickly bring up a complete and updated 

version of the OpenStack platform hosted on a bare 

metal or virtual machine, the Diskimage-builder 

project that is a tool for automatically building 

customized operating-system images to be used in 

clouds and other environments, producing cloud-

images in all common formats (qcow2, vhd, raw, etc), 

bare metal file-system images and ram-disk images, 

the Kolla project that is a provider of production-ready 

containers and deployment tools for operating 

OpenStack clouds that are scalable, fast, reliable, and 

upgradable using community best practices, the 

Magnum project that makes container orchestration 

engines such as Docker Swarm, Kubernetes, and 

Apache Mesos available as first class resources in 

OpenStack. Magnum uses Heat OpenStack project to 

orchestrate an operating system image which contains 

Docker and Kubernetes and runs that image in either 

virtual or bare metal machines in a cluster 

configuration, the Kuryr-kubernetes and Kuryr are 

OpenStack containers networking projects that 

enables native Neutron-based networking in 

Kubernetes. With Kuryr-kubernetes it is now possible 

to choose to run both OpenStack VMs and Kubernetes 

Pods on the same Neutron network and the Kata 

containers project that aims to “deliver standard 

implementation of lightweight virtual machines that 

feel and perform like containers but provide the 

workload isolation and security advantages of virtual 

machines”. The architecture of the Kuryr project is 

described in more detail by the figure below: 

 

Figure 3: Kuryr architecture 

Resourced from [6] 

Kuryr uses the libnetwork API to map and create 

Neutron objects. By doing this, the solutions that 

Neutron provides (security groups, NAT services and 

floating IP´s) for networking can be used by 

containers networking. 

2.3.2.  Kubernetes 

Kubernetes is an open source solution for managing 

and orchestrating containers. The architecture type is 

client-server, where it has one or more master servers 

that controls and defines how the worker nodes should 

act and react to the master node. Kubernetes 

infrastructure is based in five different principles such 

as pods, services, volume, namespaces and 

deployment. Pods and Volume are the storage units of 

Kubernetes, where it stores all information related to 

the containers and the data of each Pod respectively, 

Services are a logical set of pods and acts as a gateway 

to the exterior, allowing (client) pods to send requests 

to the service without needing to keep track of which 

physical pods make up the service, Namespaces are 

based in the Linux namespaces, where here it is a 

virtual cluster (a single physical cluster can run 

multiple virtual ones) intended for environments with 

many users, and finally the Deployment is normally 

done via a deployment file in the YAML language 

which describes the configuration and state of pods. 

An example of the workflow (with a single master 

server and two worker servers) of Kubernetes is 

depicted in the following figure: 

 

Figure 6: Kubernetes cluster example architecture  

Resourced from [7] 
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The master node provides Kubernetes with cluster 

control, making global choices for the cluster and 

deciding what to do when a cluster event is detected, it 

has a central management entity (kube-apiserver), a 

distributed key value storage (etcd), a scheduler that 

helps optimizing resource utilization (kube-scheduler) 

and a controller  that regulates the state of the 

Kubernetes or manages the cloud provider (kube-

controller-manager or cloud-controller-manager). The 

worker node has a service daemon (kubelet) 

responsible for taking pod specifications and health 

checks, a proxy service daemon (kube-proxy) 

responsible for the networking in the worker node and 

a container runtime (Docker) that is the software that 

will run the containers on the Pod. Kubernetes has 

also some useful features (addons) like a DNS Server, 

a Web UI, a Container Resource Monitoring and a 

Cluster-level Logging that can make the life easier on 

the administrator of the Kubernetes platform. 

Kubernetes has become in the last few years the 

standard container orchestration platform, mainly 

because of the performance gain by using containers 

over virtual machines and the high availability of the 

applications running on the containers is provided by 

the use of container replicas quotas and the health 

container checks. 

2.3.3. Docker 

Docker is a client-server application (like Kubernetes), 

that leverages the technologies of namespaces, control 

groups, union file formats and container formats. The 

Docker engine is defined as follows: 

 

Figure 7: Docker architecture 

Resourced from [8] 

Docker is composed by a docker daemon (dockerd) 

that manages the Docker objects (images, containers, 

networks and volumes) and the communication with 

other Docker daemons to manage Docker images, a 

Docker Client that consists of a REST API and CLI 

(Docker command or a Docker client) being used to 

interact with the Docker daemon, a Docker registry for 

the storage of Docker images (default one being 

Docker Hub) and a Docker object or objects that can 

be images, containers or services. Docker is a fast and 

consistent delivery system of applications because of 

the use of containers and being a light program to run 

offers great scaling, a fast deployment system and the 

amount of work uses less resources in opposition of 

using virtual machines. 

2.4. NFVOs and VNFMs blocks 

The network functions virtualization orchestrator and 

the virtualized network functions manager blocks are 

normally bundled together in a software suite but have 

different responsibilities that need to be attended to. 

The NFVO is responsible for overlooking the 

instantiation, scaling, updating and terminating 

network services. The VNFM is responsible for 

overlooking the instantiation, scaling, updating and 

terminating of virtual network functions. The next 

subsection describes the software used for the 

implementation of the NFVOs and VNFMs blocks. 

2.4.1. Tacker 

Tacker is an OpenStack additional project for NSs an 

VNFs orchestration and management adhering to the 

ETSI MANO architectural framework. It has a generic 

NFVO and VNFM to deploy network services and 

virtual network functions providing E2E solutions. 

The next figure shows how Tacker workflow and 

architecture are: 

 

Figure 9: Tacker architecture and Workflow 

Resourced from [9] 

Tacker has three fundamental elements. The Network 

Functions Virtualization Catalog that contains the 

VNF, NS and VNF Forwarding Graph descriptors. The 

Virtualized Network Functions Manager (VNFM) that 

creates, updates, deletes and monitors VNFs. The 

Network Functions Virtualization Orchestrator 

(NFVO) that optimizes resource checks and allocation 

of VNFs. The NFVO can orchestrate VNFs, 

throughout multiple VIMs or Sites and can create a 

service function chain between VNFs by using a VNF 

Forwarding Graph Descriptor. Tacker can be deployed 

and configured manually or using the additional 

OpenStack projects DevStack or Kolla.  Tacker only 

supports currently as VIMs the OpenStack and 

Kubernetes platforms. 
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3. Architecture  

The architecture is to deploy and test a system that 

encompasses one of each of the three main blocks of 

the ETSI MANO architectural framework presented 

on chapter two of this dissertation report. The 

proposed architecture solution will have a frontend 

network with one VNF acting as a Load Balancer and 

a backend network with two web servers. The backend 

network will have replicated sites (one and two) with 

two virtualized infrastructure managers installed on 

the different sites. A client can connect and test the 

system functionalities. The architecture is depicted 

below: 

 

Figure 10: Project architecture 

The system workflow starts by the users connecting to 

the system via a VNF acting as a load balancer that 

will redirect traffic depending on the load balancing 

algorithm that was selected, connecting the users to 

the sites on the backend network. Each site will have 

two web servers that will be used for testing the load 

balancer and the sites functionalities, e.g. handling 

HTTP requests. The orchestration and management of 

the global system will be done via a management 

server. The management server is configured using the 

necessary software researched in chapter two of this 

dissertation report and some extra tools that will be 

described in the next subsection. The ideal scenario 

will be that, the servers on site one and the VNF 

acting as load balancer will be hosted on virtual 

machines, as for the servers on site two will be hosted 

on containers. The process of being hosted by virtual 

machines and containers is also important to test, 

analyze and compare how different these host 

virtualization techniques are in terms e.g. resource 

utilization. The proposed architecture is a heavy 

system to deploy and the available hardware is 

limited, so the implementation takes all that in 

consideration by building the system with the minimal 

resources necessary not compromising the proposed 

architecture. 

3.1. Implementation 

The implementation starts with phase number one 

where a management server is deployed and 

configured to host the DevStack and Tacker projects 

used on phase number two. Phase number two main 

objective is to deploy and configure the DevStack and 

Tacker projects. Phase number three deploys and 

configures the backend and frontend VNFs hosted on 

virtual instances (containers or virtual machines). The 

next subsections describe in more detail how all the 

phases were processed. 

3.1.1. Management server deployment and 

configuration 

The main goal is to deploy a bare metal or virtual 

solution of a management server that consists on 

installing and configuring the software of the virtual 

network infrastructure that is going to be used to 

deploy the architecture solution described before. The 

first step is the most important one as encompasses the 

research of the software and hardware requirements 

for the system architecture and choosing the right 

tools to deploy the management server. The tools 

chosen were for a virtual solution of the management 

server, just because it is easier to test the hardware 

requirements for the architecture solution as is a better 

modular solution than the bare metal solution, e.g. if a 

virtual machine does not meet the right requirements it 

is faster to install and configure the hardware and 

operating system on the virtual machine. The tools 

chosen to deploy the virtual solution to the 

management server where, Packer [10] and Vagrant 

[11] that are tools respectively, to manage updated 

virtual images to be used on virtual machines and to 

deploy those virtual images onto virtualization 

platforms such as VirtualBox or QEMU. The problems 

that were encountered here were the time necessary to 

choose the right operating system and the minimal 

hardware and software requirements to deploy the 

management server as it depends on phase two of the 

implementation of the architecture solution. The 

operating system chosen was Ubuntu Server 16.04 

with Ansible [43] and openstack-sdk packages 

installed with sixteen GB of RAM, five CPU cores 

and sixty GB of disk. Vagrant uses a Vagrantfile that is 

written in the Ruby language where it defines the 

virtual machine configuration to be used for the 

management server. 

3.1.2. DevStack and Tacker projects deployment and 

configuration  

After the management server is up and running, it is 

time to the next phase where the DevStack and Tacker 

OpenStack additional projects are deployed and 

configured. These projects were chosen based on the 

hardware requirements of all the software researched 

for the ETSI MANO architectural framework blocks. 

For the VIM block the project used for this was 

DevStack where it deploys a virtualized network 

infrastructure platform and installs the OpenStack and 

Kubernetes VIMs. For the NFVO and VNFM blocks, 

the project used was Tacker. The first step of using the 

DevStack project is meeting the following 

requirements such as DevStack should be run as a 
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non-root user with root enabled privileges and having 

GitHub [12] and PIP [13] (package installer for 

Python) programs installed on the management server 

used to deploy DevStack. The next step involves using 

the GitHub program called git to download the 

repository of DevStack to a folder and access the 

folder. When in the DevStack folder, the most 

important files to look for are the stack.sh, openrc and 

local.conf files. The stack.sh is a bash script file that 

uses the information of the configuration local.conf 

file to install and configure the OpenStack and 

Kubernetes VIMs. The openrc is also a bash script file 

used to load the OpenStack environment variables to 

the management server so that OpenStack can be 

accessed and managed. The configuration local.conf 

file that needs to be created by the user of the 

management server is based from the 

local.conf.kubernetes [46] file, that can be accessed on 

the DevsStack GitHub site with slight modifications. 

The relevant configurations options for the local.conf 

file are the IPs and passwords for the services that will 

utilize that information such as, the OpenStack 

database and network services, the IP range and 

network interface that is going to be used to give 

Internet connectivity to virtual instances, e.g. virtual 

machines or containers, enabling a log file, it is very 

important because if anything goes wrong, it is 

possible to search for errors during installation, 

enabling the use of the Kubernetes VIM and selecting 

the hyperkube [14] version to be installed. The 

hyperkube version can be selected from google public 

hyperkube image repository [15] and enabling the 

necessary OpenStack services by using the 

enable_plugin command tag. The OpenStack services 

are then downloaded from a GitHub repository and 

automatically configured with the default options. The 

customization of the services is done via proper tags 

and the tag availability depends if the service has 

DevStack installation support. After all the 

configuration is done, the file must be saved under the 

DevStack folder and then run the stack.sh script. One 

problem that originated running the script, was when 

the management server has one network interface and 

the login method to the management server is via 

SSH, it is necessary to run the script on a separate 

virtual terminal by using the command screen. The 

script is going to run a series of installations and 

configurations on the system, so it is not 

recommended to run this script on a daily use 

operating system installation. This is one of the 

reasons why the management server is a virtual 

machine described in the phase before. The script run 

time depends in the amount of services it must install 

and configure, but the script at a fresh install of the 

operating system on the management server takes 

about forty five minutes and the time decreases after 

the first run, to thirty minutes. At the end of the script 

the output gives useful information such as the time it 

took to install and configure the script, the default IP 

address used by the user of the management server to 

access, e.g. via browser the OpenStack UI, the users 

(admin and demo) that have relevant privileges to 

access the OpenStack platform and the version of 

OpenStack that was installed. In this phase the most 

relevant problems that were faced were, the script 

stops working as of a bug on the DevStack project as 

the association of the bridge br-ex (responsible for the 

routing of the external network to the internal 

networks of the OpenStack platform) to the network 

interface of the management server removes the DNS 

name resolution of the management server and when 

using a hyperkube version above version 15.0 the 

installation of Kubernetes fails. These problems were 

solved by, using a GitHub repository commit version 

of the DevStack project older than the one that was 

being used and using an older version of hyperkube. 

This phase was the most time consuming because of 

all the configuration options that need to be learned 

and tweaked to fulfil the needs of the architecture 

solution and the limitations of hardware resources that 

where presented at the time of this phase 

implementation, e.g. the IST resources were so limited 

and overbooked, that the private hardware resources 

must be upgraded so the architecture solution 

implementation could continue. After this, it is 

necessary to configure the management server to 

create and have access to the virtual instances that 

needed for the architecture solution implementation by 

loading the environment variables of the OpenStack 

platform onto the management server and creating a 

SSH key to be able to access to the virtual instances. A 

series of configurations need to be done the 

OpenStack platform each time the it is deployed such 

as changing the DNS nameserver IPs on all default 

OpenStack networks, creating a router to access the 

virtual machines, creating ports in the router to all 

default OpenStack networks, adding SSH keys to the 

OpenStack platform to be able to access the virtual 

instances, adding or changing the rules on the default 

OpenStack security groups and adding new operating 

system images to the OpenStack platform. A problem 

of time consumption happens when these 

configurations of the OpenStack platform occur and 

the solution was using an automation tool such as 

Ansible [43], which is a Red Hat project that focuses 

on IT automation, using YAML has a standard to 

create template files, that can deploy and modify 

virtualized network infrastructures and their elements. 

The template file (also called ansible playbook) was 

created for configuration steps described above. Now 

that the system is fully configured, it is time to use the 

Tacker project. The first thing that needs to be done is 

to register the OpenStack and Kubernetes VIMs onto 

tacker and for that it is necessary to create two YAML 

files that have the information needed to register both 

VIMS. After the formulation and creation of the files 

it’s time to register the VIMs onto Tacker via the 

OpenStack CLI or GUI, and depending on the commit 

version of Tacker, the registration of the Kubernetes 

VIMs cannot work due to a bug on the code, so the 
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GitHub branch used in Tacker must be the master 

branch to fully pass these kind of problems, just 

because the branch is more often updated than the 

other ones. 

3.1.3. Backend and frontend VNFs deployment and 

configuration 

With the VIMs registered, it is necessary to register 

the backend and frontend VNFs by making one or two 

descriptor template files for each VIM. There are two 

ways to approach the configuration and deployment of 

the frontend VNF, one can be done manually where it 

is used a descriptor template file and all the 

configuration for the load balancer is done manually 

in terms of networking, failsafe protection and the 

software used for the load balancer or two where it is 

used a OpenStack additional project described on 

chapter two called Octavia. The Octavia project is a 

LBaaS where it shares the concept of XaaS [16], 

where anything can be called a service in a 

virtualization system. The configuration selected was 

the second one because the way that Kubernetes 

works with the OpenStack platform is by using the 

OpenStack networks via the kuryr-kubernetes project 

while the access to the Kubernetes Pods is done via an 

ingress Octavia LBaaS project controller. The backend 

template files for each VIM are different. Each 

template file has its own configuration options just 

because they use a different type of hardware and 

software virtualization (containers or virtual 

machines) that have different options for 

configurations, e.g. on a Kubernetes template file it is 

necessary to define a service type tag that can grant 

access from the external network to the application 

running on the containers. The configuration of the 

VNFs can be done by a bash script, where for that is 

necessary to use a specific image built with the 

OpenStack additional project diskimage-builder, using 

a user_data tag on the template descriptor file, where 

configuration and installation commands can simulate 

like it was a bash script file or using the management 

server by running directly the bash script file with the 

SSH command. These configuration options are well 

documented but the safer to use would be the third 

option, just because the other two have problems with 

them. The first configuration option the diskimage-

builder project has software bugs where it only builds 

successfully images of the latest versions of the 

operating systems and when using these images with 

Tacker the bash script does not run properly making 

the VNF unconfigurable. The second configuration 

option is a good option, but the template file 

organization and length can become quite unorganized 

and big due to inserting the bash script data onto the 

template descriptor file. In the third option the 

template descriptor file and bash script file are 

separated, and the script file is loaded via SSH using 

the management server for that matter. The software 

tools used for the backend and frontend VNFs are a 

HAProxy software is used on the frontend VNFs, 

being the most documented, tested and versatile load 

balancing software, and NGINX and PHP software are 

used on the backend VNFs. The HAProxy software 

used on the frontend VNF is preinstalled with the 

Octavia OpenStack additional project and it is 

configured as a HTTP load balancer with a load 

balancing round-robin algorithm. The load balancer is 

also configured with a “health monitor” that checks 

the state of the backend servers. Layer seven policies 

that do redirection based on the path that is entered on 

the browser can be configured also, giving extra 

security to the backend servers. The backend VNFs 

will act as web servers that verify if the configurations 

on the load balancer are working as intended. After 

loading the configuration files onto the VNFs, it is 

time to test the architecture solution implementation. 

In this phase the installation, deployment, connectivity 

and functionality are tested of the architecture 

solution. This phase will be described in more detail 

on the next section of the report. A problem occurred 

in this phase were that if a test fails and it is necessary 

to reboot the management server the virtual network 

interfaces created by the DevStack OpenStack project 

does not persist over a system shutdown or reboot, so 

the solution is to remove the configurations and 

installations done on the management server. Gladly 

the DevStack developers thought of that and created 

two scripts called unstack.sh e clean.sh. The 

unstack.sh script stops all services associated with 

OpenStack and the clean.sh script cleans all 

configurations and installations done by DevStack on 

the management server. After that it is necessary to 

run the stack.sh file and to do all VNFs configuration 

and deployment. 

4. Evaluation 

The evaluation phase is the most important phase of 

all systems implementation, just because it validates 

all the work that was done. It also detects if something 

is not running how it should be, by testing all the 

elements in the system and giving out precious 

information to the administrator. With that information 

the administrator can monitor and fix all the elements 

that are not corresponding to the normal behaviour. 

The next subsections describe the tests performed on 

the architecture solution implementation. 

4.1. Tests   

The tests are divided on functional and performance 

tests. The tests validate if the functionality, failover 

and scalability of the implemented solution are 

working as intended. The table below describes in a 

short manner what tests were done on the 

implemented solution: 

Test number Test short description 

1 – Functional test Verify VIMs and VNFs 

deployment and 

configuration 
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2 – Functional test Verify frontend and 

backend VNFs 

connectivity 

3 – Functional test Verify frontend and 

backend VNFs 

functionality 

4 – Functional test Verify frontend and 

backend VNFs failover 

5 – Performance test Verify VNFs scalability 

Table 1: Summary table of the evaluation tests 

4.1.1. Tests 1 to 3 

The tests one to three are done via a Python script 

where issues one hundred GET requests to the VNF 

acting as load balancer and outputs the graph below: 

 

Figure 1: Distribution of GET requests with four web 

servers 

The algorithm chosen for these tests is the round robin 

algorithm and as it is seen on the graph above, all the one 

hundred requests are evenly distributed proving the web 

servers and load balancer functionality. The success of the 

web servers and load balancer functionality also validates 

the frontend and backend VNFs connectivity (test two) and 

the VIMs and VNFs deployment and configuration (test 

one). 

4.1.2. Test 4 

Test four is where the frontend failover testing is done via a 

terminal command (openstack loadbalancer failover 

name_of_lb) where it simulates with an interval of time a 

failover scenario that is performed on the load balancer. The 

command initiates the failover by destroying the virtual 

machine that hosts the load balancer, verifies that the load 

balancer no longer is available and performs the 

recoverability process of creating a new virtual machine 

using the load balancer configuration metadata. The backend 

failover is tested by creating a health monitor checker and 

shutting down a backend VNF virtual machine or container 

via the OpenStack CLI or GUI and verifying that the load 

balancer becomes aware and do not forward HTTP traffic to 

that specific virtual machine or container.  

4.1.3. Test 5 

Test 5 uses a scalability property on the VNFDs, where it 

defines how many replicas of a VM or container a system 

can make. To test this the script used on the test 1 to 3 

section was slightly modified where it calculates the GET 

response average time plus the computational time for each 

web server. The number of replicas was increased to three 

on site 2 and the script outputs the following graph and 

times: 

 

Figure 2: Distribution of GET requests with five web 

servers 

 

site1-web1 site1-web2 site2-web1 site2-web2 

885 ms 
886ms 887ms 884ms 

Table 2: Requests time with four web servers 

 

site1-

web1 

site1-

web2 

site2-

web1 

site2-

web2 

site2-

web3 

847ms 847ms 847ms 846ms 846ms 

Table 3: Requests time with five web servers 

 

As it is seen on the graph above and tables, the time is 

reduced by forty milliseconds proving that the scalability 

performance is relevant and is working as intended 

5. Conclusion 

All the technologies described on chapter two are still 

being heavily developed and complementing their 

core environment to using containers. Containers in 

comparison with virtual machines use less resources, 

meaning better overall performance for the workflow 

of a VNF solution. Nevertheless, the use of virtual 

machines means a better isolation for the adopted 

VNF solution that containers cannot deliver yet. That 

is why kata containers enables the merge of virtual 

machines and containers by adding the good features 

described from both virtual machines and containers. 

The problems encountered while doing this 

dissertation were mainly, the documentation of the 

researched technologies that needs improvement on 

explaining how some of the projects work and what 

certain aspects of the projects do, e.g. to lost a lot of 

time searching for a solution when the installation 

script used by the DevStack project stops working. 

Unfortunately, due to limitations on the hardware 

resources it was not possible to test all the 

technologies described on chapter two and to scale the 

proposed architecture solution as it was intended. The 

projects used on the implementation of the proposed 

architecture are still being heavily developed, and still 

need optimization regarding merging the features of 

containers and virtual machines. Nevertheless, the 
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implementation of the architecture was successful and 

describes well what is the expectation for the future of 

virtualized network functions and services.  

6. Future work 

For future work, if the resources permit, it is very 

important to implement and research other possible 

architecture scenarios. For example, creating a multi 

VNF network service where it deploys different VNFs 

with different virtual networks graphs. With these 

virtual network graphs, it is possible to create virtual 

network paths and selecting witch VNFs are 

associated with each virtual network path.    
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