
1

Time Series Forecasting Using Neural Networks

Bruno Soalheira

bruno.soalheira@tecnico.ulisboa.pt

Instituto Superior Técnico

October 2019

Artificial neural networks are a powerful machine learning technique that is used for several ends; time series

forecasting is one of them. Several of these techniques are explored with special attention to recurrent neural networks,

which are one of the methods most commonly used in time series forecasting. All these methods are presented with the

goal of better understanding recurrent neural networks. There is no predefined better algorithm to solve this type of

problems; in this field experimentation is required and only then we can draw conclusions.

In this case, feedforward neural networks and recurrent neural networks will be used to obtain models capable of

predicting time series. Two related data sets but with some important differences that will affect the results are used in

these experimentations. The main objective is to compare the two types of networks on both data sets, presenting the

limitations, drawbacks and advantages of each one of them.

In most cases, recurrent neural networks outperform feedforward neural networks for time series forecasting

problems.

Keywords: machine learning; recurrent neural networks; feedforward neural networks; time series forecasting.

1. Introduction

1.1Motivation

Time series forecasting is an area of machine

learning that has been fascinating data scientists for the

last few decades. The field of machine learning has

brought us innumerous advantages, being one of them

the capability of being able to predict what is going to

happen and the only thing we need is information. No

matter how hard and random a data set may seem,

these algorithms are capable of finding patterns that are

not possible to identify using other techniques.

Neural networks are an amazing method using for

different purposes; time series forecasting is only one of

them. They can also be used in many different other

areas like in customer research, data validation and risk

management.

2. Related Work

2.1 Time Series

Characterized as a set of data points obtained from

existing records, usually a sequence of equally spaced

points in time, tabulated or plotted in time order. In a

more mathematical way, using the definition suggested

by Robert H. Shumway and David S. Stoffer in Time

Series Analysis and Its Applications [1] “…we may

consider a time series as a sequence of random

variables �1, �2, �3, …, where the variable �1 denotes

the value taken by the series at the first time point, the

variable �2 denotes the value for the second time

2

period, �3 denotes the value for the third time period,

and so on.”

2.2 Time Series Forecasting

Mainly, it consists of predicting future events by

applying models to time series. It is an extremely

important area of machine learning because there are

several prediction problems involving time components.

Every time series problem is very specific and with its

own data characteristics, and according to that the most

fitting model(s) must be chosen to analyze the data.

2.3 Neural Networks

2.3.1 Biology

The brain consists of a large number of connected

elements known as neurons. Considering, for our own

convenience, that neurons have four principal

components: the dendrites, the axon, the cell body and

the synapses. The dendrites is short and branched and

is an extension of the nerve cell, along which impulses

received from other cells at synapses are transmitted to

the cell body. The axons are the long threadlike parts of

the nerve cells, along which impulses are conducted

from the cell body to other cells. The cell body is the

spherical part of the neuron that contains the nucleus

and is connected to both the axon and the dendrites.

The junction or point of connection between two nerve

cells, more specifically the connection between the

axon of one cell and the dendrites of the next cell is

called synapse.

2.3.2 Definition and Structure

An artificial neural network, commonly referred as

simply neural network is a type of machine learning, just

like all the methods presented in the last chapter. In its

most general form, a neural network is a machine that

is designed to model the way in which the brain

preforms a particular task; the network is usually

implemented by using electronic components or is

simulated in software on a digital computer.

It is helpful to know the structure of a neural network

in order to better understand it. Neural networks are,

usually, composed by the following elements:

• Input layer. The input layer is the very beginning

of the workflow for artificial neural networks. It

consists of artificial input neurons and brings

the initial data into the system for further

processing by subsequent layers of artificial

neurons.

• Hidden layer. The hidden layer is located

between the input layer and output layer, where

artificial neurons take in a set of weighted inputs

and produce an output through the use of an

activation function.

• Output layer. The output layer is the last layer

of a neural network that produces the outputs

for the program.

• Synapse. The synapse is the strength of the

connection between two artificial neurons.

Figure 1 A Typical Neural Network

2.3.3 Learning Methods

Neural networks have a learning phase which is

crucial for the potential results. There are three

methods for learning strategies:

• Supervised learning. It is the machine

learning task of learning a function that maps an

input to output based on example input-output

pairs. The example input-output pairs are

usually called training data and each of these

3

consists of an input object (usually a vector) and

an output value. The new inputs that will be

tested are called test data. This algorithm

analyses the training data and infer a function

that will be used to calculate the output values

for the new test data values [2][3].

• Unsupervised Learning. This method

has to be used when there is no training data to

learn from. The neural network analyses the

data, and then a cost function tells the neural

network how far it was from the correct result.

Basically, the model learns from the test data

and keeps adapting according to this data.

• Reinforced Learning. This algorithm

reinforces the neural network in the presence of

positive results and punishes it for negative

results, forcing the neural network to learn over

time.

2.3.4 Activation Function

In neural networks, an activation function is what

defines the output of a node given an input or set of

inputs. This output is used as input of the next node and

so on until a desired solution to the original problem is

found. It maps the resulting values into a desired range

(0 to 1 or -1 to 1, for instance) [4].

There are two types of activation functions:

• Linear Activation Function. The function is

linear. Therefore, the output of the functions will

not be confined between any range. These

functions don’t really help with the usual

problems and data that we analyze using neural

networks.

• Non-Linear Activation Function. The function is

not linear. This type of functions is commonly

used because it can adapt to complex types of

data. For example, we have the sigmoid

activation function, which is used to obtain

values between 0 and 1 (commonly used in

probability problems), we have tanh activation

function, which provides values ranging from -1

to 1 (commonly used for classification between

two classes), among many others.

2.3.5 Backpropagation

In the beginning, the weights of a neural network

are initialized randomly, and these values need to be

adjusted until we obtain the values that fit our model the

best. One of the most common ways to accomplish this

is using the backpropagation technique. It is a method

used to calculate a gradient that is needed in the

calculation of the weights used in a neural network. It is

more used in situations where there is more than a

hidden layer in a neural network [5].

Backpropagation requires three things to work properly:

• A dataset consisting of input-output pairs.

• A feedforward neural network, meaning that

there are no connections between nodes in the

same layer and that layers are fully connected.

• An error function, which defines the error

between the desired output and the obtained

output.

This method is used in any feedforward networks to

learn a training set of inputs and outputs.

The main idea behind backpropagation is to update the

weights’ values in such a way that the error becomes

minimum. First, we figure out if we have whether to

increase or decrease the values of the weights. Once

we know which way to go, we keep making smaller and

smaller adjustments until the network provides the

desired results.

2.3.6 Recurrent Neural Networks

Recurrent Neural Networks have been deeply

studied since the 1990’s. They are commonly used to

learn sequential or time varying patterns [6].

There are two types of architectures of recurrent neural

networks.

The first ones are named fully connected neural

networks. Fully connected networks do not have distinct

4

input layers of nodes, and each node has input from all

the other nodes.

The second ones are named partially connected neural

networks. Although some nodes are part of a

feedforward structure, other nodes provide the

sequential context and receive information from other

nodes.

An Elman network contains three layers and a set

of context units. The context units are connected to the

hidden layer with the fixed weight of one. At each time

step, the input is fed-forward and a learning rule is

applied. The context units save a copy of the previous

values of the hidden layer nodes with the goal of

maintaining a sort of a state, allowing this model to

perform tasks like sequence-prediction [7][8].

Let ℎ� be the hidden layer vector, 	� the output vector,

�� the input vector,
, � and � the parameter matrices

and vector and
� and
� the activation functions. The

hidden layer and the output vector are calculated the

following way:

ℎ� =
�(
��� + ��ℎ��� + ��) (1)

	� =
�(
�ℎ� + ��) (2)

Jordan networks are similar to Elman networks with

the small difference of the context units containing

information about the output layer instead of the hidden

layer. Considering the same variable from the previous

two formulas, we can obtain the value for the hidden

layer and the output vector for the Jordan networks:

ℎ� =
�(
��� + ��	��� + ��) (3)

	� =
�(
�ℎ� + ��) (4)

2.3.7 Advantages of Neural Networks

Artificial neural networks bring some benefits that

overcome some of the limitations referred in the

algorithms mentioned in the previous chapter. It is

apparent that a neural network derives its computing

power through its massively parallel distributed

structure and its ability to learn and therefore

generalize. Generalization consists on the process of

the neural network obtaining reasonable results for

inputs that were not part of the training [9].

The following points are just some of the benefits and

capabilities that neural networks offer us:

• Nonlinearity. Artificial neurons can be linear or

nonlinear. A neural network, made up of an

interconnection of nonlinear neurons, is itself

nonlinear. This is an important characteristic

because it allows us to deal with a higher variety

of problems, particularly nonlinear problems.

• Input-Output Mapping. Supervised learning is

one of the methods to train neural networks.

Each data sample in the training data consists

of an input and a desired output. The network is

trained by receiving these data samples

randomly and then the network’s synaptic

weights keep being modified in order to

minimize the network’s result and the desired

result. Providing the data samples in a different

order also helps training the network and the

train keeps going until the network reaches a

steady state, where there are no significant

changes in the synaptic weights. Thus, the

neural network learns from the data contained

in the training set by constructing an input-

output mapping for the problem at hand.

• Adaptivity. Neural networks have the capability

of changing synaptic weights according to the

goals we have in hands. In some cases, when

a neural network is trained to operate in a

specific environment it can easily be retrained

to deal with minor changes. Moreover, when a

neural network is operating in a nonstationary

environment it should be trained to deal with

constant changes and the synaptic weights

must adapt in real time. The ability to adapt a

neural network according to the situation we

5

have in hands is indeed a huge advantage, but

this will affect the robustness of the same

network. As the robustness level increases the

adaptive level tends to decrease and vice-

versa.

• Evidential Response. In the context of pattern

classification, a neural network usually provides

information about which pattern to select and

also the confidence in the decision made. The

confidence can be used to reject ambiguous

patterns and thereby improve the classification

performance of the network.

• Contextual Information. Knowledge is

represented by the very structure and activation

state of a neural network. Every neuron is

potentially affected by the global activity of the

other neurons in the network. Consequently,

neural networks deal with contextual

information very naturally.

• Fault Tolerance. A neural network,

implemented in hardware form, has the

potential to be inherently fault tolerant. In other

words, in the presence of adverse operating

conditions the neural network’s performance

will degrade gracefully.

• Uniformity of Analysis and Design. The same

notation is used in different problems and

environments where neural networks are used.

• Neurobiological Analogy. As previously

mentioned, neural networks are inspired by the

analogy with the brain. Neurobiologists look to

artificial networks as an interpretation tool to

better understand neurobiological phenomena.

On the other hand, we have engineers that try

to develop more complex models using

neurobiology as inspiration.

2.3.8 Applications Neural Networks

Neural networks have several applications. Some

applications improved its results thanks to neural

networks and I’m going to mention two of the most

relevant:

• Image Processing and Character Recognition.

Neural network’s capability of receiving several

inputs, process them and deal with non-linear

relationships is playing a big role in image

processing and character recognition.

Character recognition is used in several

problems like automatic number plates

recognition, in airports, for passport recognition

and information extraction and converting

handwriting in real time to control a computer,

for instance. Image processing and recognition

are used in facial recognition, cancer detection

and satellite imagery for agricultural and

defense usage.

• Forecasting. This is an extremely important

application of neural networks and is used in

many different contexts. For instance, neural

networks are used in weather forecasting,

earthquake prediction, mathematical finance,

astronomy, among others. All these problems

are extremely complex and that’s why they rely

on neural networks.

3. Thesis Plan

3.1 Introduction and plans

For this project, I always had in mind working with

data sets that were related with a big issue that is

becoming more and more evident as time goes by; the

climate change.

I started researching and looking for data sets that

looked interesting to work with and the initial plan was

to work with a multivariate data set that aimed to predict

if one day is either going to be an ozone day (meaning

the ozone level is above a certain predefined threshold)

or a normal day.

I ended up deviating from the initial plan because I

decided that I wanted to see the differences of how

feedforward neural networks and recurrent neural

networks deal with seasonal and non-seasonal data

sets. I had in mind that feedforward neural networks

would perform well on seasonal data sets because

6

there is no need of memory since the pattern is very

clear.

Still with the climate change subject in mind, I found

two interesting related univariate data sets. The first one

was the seasonal data set and it contained information

regarding the mean monthly global temperatures for a

period of 65 years over the twentieth century. The

second one was the non-seasonal data set and it

contained information regarding the yearly number of

sunspots over a period of 314 years; a factor that greatly

affects the temperatures and one that we can’t control.

Basically, I want to predict both data sets using

feedforward neural networks and recurrent neural

networks and then compare the performance of each of

the algorithms. During the recurrent neural networks

experimentations I want to compare Elman networks

and Jordan network and check how impactful their small

differences in structure affect the results.

3.2 Technologies used

At first I wanted to develop this project in Python,

which is a language that I am comfortable with and it is

commonly used to solve this types of problems. After a

discussion with my supervisor, professor Andreas

Wichert, who recommended me to use R, I decided to

change and use this R language because it is a

language more directed to implement machine learning

techniques than Python. I was not as comfortable with

R as I was with Python but the learning process was

fine; it didn’t take me a long time to get used to the

language. I was also familiar with the language from the

SAD course (Sistemas de Apoio à Decisão) where I

used this language to perform similar activities like data

pre-processing and application of several data mining

algorithms like SVM (Support Vector Machine), kNN (k-

Nearest Neighbours), LVQ (Learning Vector

Quantization), Decision Trees and even Neural

Networks.

For IDE I chose R Studio, which I had some

familiarity with it because I used it during the SAD

course.

3.3 Evaluation Method

As mentioned the before, I plan on comparing the

performance of both recurrent neural networks and

feedforward neural networks and to accomplish this I

will use measures of accuracy. The main measure used

will be RMSE (root-mean-squared-error) and, when

needed, I will recur to other measures to dissipate the

doubts.

The evaluation process will consist of dividing the

data sets in two parts: a training data set and a test data

set. The training data set will be used to train our neural

networks. Then we will compare the predictions from

our models against the test data sets. For this, we will

compare the results graphically and numerically using

the previously mentioned measurement of accuracy

and others if needed.

4. Comparing feedforward neural

networks with recurrent neural

networks

4.1 Choosing the data sets

To start off with my experiments, I decided to pick

two related data sets; a simpler one where the

seasonality is very clear and there are not many

deviations from the regular values and a more complex

one where there are clearly more deviations from the

pattern. Both data sets were obtained from

datamarket.com and the first one is called “mean-

monthly-temperature-1907-1972” and it contains 792

observations of the mean monthly global temperatures

in Fahrenheit starting on January, 1907 and ending on

December, 1972. The second data set is called “yearly-

mean-total-sunspot-number” and it contains 315

observations of the mean yearly number of sunspots

starting on 1700 and ending on 2014. I decided to

choose these two data sets because there is a clear

relation between them as I explained in the previous

chapter. The number of sunspots is a huge factor on the

temperatures around the planet.

4.2 Pre-processing

7

It is important to mention this process since it can

greatly affect the results. If we don’t perform a correct

pre-processing of the data it will negatively affect the

results. This process is a data mining technique that

involves transforming raw data into an understandable

format that can be used for several purposes, including

analysis. Real world data is often incomplete,

inconsistent, and/or lacking in certain behaviors or

trends; therefore it is likely to contain many errors. Some

of the steps of data pre-processing include checking out

for missing values, values normalization/

standardization, checking out the consistency of the

data types, splitting the data into training and test data

sets, among others.

4.3 Experimentations introduction and

notes

The results I’m about to present are in compliance

with what I expected in the beginning with exception of

one or two points that I will mention later on.

Before I present the results and conclusions I

obtained, it is important to mention an important fact

about the experimentations on this project; it is known

that neural networks have hidden layers and these

layers will be the main concern during our

experimentations. There are no rules for choosing the

number of hidden layers and hidden nodes and the only

way to figure them out is by experimenting several

values for them and analyzing if the results are

improving or not. By default, the nnetar function, has a

number of hidden layers of one (which cannot be

changed) and a number of hidden nodes predefined as

well. This predefined number of hidden nodes will be my

starting point and I will proceed by testing with smaller

and higher number of nodes in order to figure out which

is the best number to obtain the best results possible.

For the Elman and Jordan networks the process will be

similar but I can also choose the number of hidden

layers of the network.

4.4 Experimentations conclusion

From these experimentations, I can conclude that

for the seasonal dataset the feedforward neural network

performed sufficiently well. On the other hand, for the

non-seasonal dataset the results were not even close to

satisfactory. Using the recurrent neural networks, either

Jordan network or Elman network, the results were

positive for both the seasonal and non-seasonal

dataset.

The main conclusion we can take is that recurrent

neural networks are a better approach when we are

dealing with time series.

5. Conclusion

5.1 Results

To sum up the obtained results I present them in the

following tables of Figures 2 and 3. In the first table we

have the RMSE values corresponding to the networks

with one hidden layer.

Figure 2 Comparison between all the networks with

one hidden layer

Figure 3 Results from the Elman network with two

hidden layers

So, the main conclusion we can infer from these

results are:

• Feedforward neural networks are worth taking

into account when dealing with seasonal time

series data sets; they might even outperform

recurrent neural networks or other techniques.

8

• Elman neural networks slightly outperformed

Jordan neural networks but the difference is not

significant so it is worth taking both into account

when dealing with these problems.

• The deeper the neural network is the better it

will perform with complex problems. It is

important to note that increasing layers will also

increase the cost and the time consumed, and

sometimes it is not worth because the results

might not be that much better or even, in some

cases, they might get worse.

5.2 Improvements

Even though we chose to work with neural

networks, other algorithms (some of them described in

Chapter 2) would be able to solve this type of problems

and maybe with even better results. Regarding the

neural networks, we could try different activation

functions.

We used training and test data sets containing 80% and

20% of the data, respectively. We could improve the

results by trying different sizes for these partitions. We

could also use different parts of the data for these

partitions; for example the training data set being the

last years of the data set and the test data set being the

beginning or even split the test data set and make part

of the prediction in the beginning and part of the

prediction in the end.

5.3 Difficulties

As previously mentioned, it took me some time to

get used to the R language.

The pre-processing was also a part that was time

consuming; it was hard to figure out some things like,

for instance, that some variable were not defined as the

type they should be and that I had to turn my vectors

into time series objects.

During the model training part, the hardest parts

were figuring out what were the best accuracy

measures to compare the results and researching on

the neural networks function and the meaning of their

parameters.

Certainly, I faced more problems, but these are the

ones that come to mind and the ones that I struggled

the most with.

References

1. Shumway, R.H. and Stoffer, D.S. (2000). Time

Series Analysis and Its Applications. Springer

International Publishing.

2. Russel, S.J. and Norving, P (2010). Artificial

Intelligence: A Modern Approach. Prentice Hall.

3. Geman, S.; Bienenstock, E. and Doursat, R.

(1992). Neural networks and the bias/variance

dilemma. Neural Computation.

4. Hinkelmann, K. Neural Networks. University of

Applied Science Northwestern Switzerland.

5. Nielsen, M.A. (2015). Chapter 6. Neural

Networks and Deep Learning.

6. Medsker, L.R. and Jain, L.C. (1999, Dec 20).

Recurrent Neural Networks: Design and

Applications. CRC Press.

7. Sak, H.; Senior, A. and Beaufays, F. (2014).

Long Short-Term Memory recurrent neural

network architectures for large scale acoustic

modeling.

8. Milos, M. (2012). Comparative analysis of

Recurrent and Finite Impulse Response Neural

Networks in Time Series Prediction. Indian

Journal of Computer and Engineering.

9. Shmueli, G. and Lichtendahl Jr., K.C. (2015, Jul

17). Pratical Time Series Forecasting with R: A

Hands-On Guide. Axelrod Schnall Publisher.

