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Abstract

This thesis presents the implementation of a Nonlinear Model Predictive Control application on a
paracetamol batch crystallization process. This control strategy uses the mathematical model of the
process and takes advantage of its current measurements to predict the future behaviour of some chosen
Controlled Variables. The controller does this by performing an optimisation routine that minimizes the
difference between the current value of the Controlled Variables and their target interval of values. In this
thesis, the optimisation is described by a penalty-based objective function, in which penalties are added
whenever the Controlled Variables are outside their target interval of values.

The controller was tested on a digital twin of the model, which is the real-time implementation of
the controller on the process. The testing consisted in submitting the controller to different scenarios
to verify whether it was able to steer the Controlled Variables into their target limits, thus, achieving
their control objectives. Tested scenarios included disturbance rejection (changing Disturbance Variable
impeller frequency), noise measurement (adding noise to one of the measured variables, Span) and plant
/ model mismatch (altering one of the kinetic parameter, supersaturation order) . The controller was able to
successfully steer the Controlled Variables for most cases, yielding faster results than in open-loop mode.
Reaching control objectives faster than in open-loops proves to be an advantage as it can translate in
ending a batch sooner, thus saving time.

Overall, the controller yielded quite satisfactory results, showing a promising future for this less
commonly used control strategy.
Keywords: Nonlinear Model Predictive Control, Batch Crystallization, Digital-twin, Optimization

1. Introduction

Model Predictive Control (MPC) is an advanced
process control technique which consists in using
the mathematical model of the system and its
current measurements to calculate the optimal
control action that satisfies the system’s control
objectives [1]. These control objectives are
defined as certain setpoints for specific variables,
called controlled variables (CVs). The controller
compares the current values of the Controlled
Variables and the actual ones, and optimizes what
control action will minimize this difference [2]. That
control action is implemented in the form of
manipulated variables (MVs) setpoints. This
strategy is said to be ”predictive” as the controller
decides the control action to implement, based on
the predicted behaviour of the CVs. The concept
behind this strategy is described by the following
figure 1.

In the shown figure, y represents the past

Figure 1: Model Predictive Control Concept [1]

measurements of the CVs, and ŷ the predicted
measurements by the controller. The target set
point refers to the CVs’ desired value. The past
control action, line u, represents the past control
action that has been implemented by the
controller, and the dashed line u the future control
action to be implemented. Different MVs setpoints
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will be given, over a control or optimisation
horizon, M. The MVs will remain constant until the
end of the prediction horizon, P, since the CVs
have reached their desired value.

Ideally, the controller would be able to predict
the exact behaviour of the CVs, after having
implemented a certain control action. However, in
reality, due to plant / model mismatch, the
predicted measurements are not equal to the
actual ones [3, 1]. This mismatch may be due to
sensor/actuator delays or misreadings. To tackle
this problem, the controller operates in cycles.
After a certain period of time, the controller takes
new measurements and compares the
measurements of the CVs to the values it had
predicted. As they do not match, the controller
performs a new optimisation to take into account
this new value, and corrects what it had
implemented. Hence, in practice, only the first
element of the optimal control sequence is applied
to the system, before the calculation sequence
restarts: this strategy is called the receding
horizon control, and it is very advantageous as it
takes into account the most recent measurements
of the state [1, 4]. For variables whose
measurement is not possible frequently, state
estimation calculations are used.

Both the control and the prediction horizons
must be carefully chosen as they influence the
controller’s response. The longer they are, the
more time the controller has to steer its CVs into
the desired setpoints. On the other hand, the
shorter the horizons, the less time the controller
has to satisfy its control objectives - the more
abrupt the control action must be. The duration of
the cycle is also an important matter as each
cycle should be long enough to include relevant
system’s dynamics, but not so long as to miss
some [2].

There are some processes for which nonlinear
model predictive control seems attractive. Some
characteristics of such processes include having
batch reactors, frequent product requirements
changes, infrequent measurements of product
quality and raw-material composition fluctuations
[5, 6].

The main industrial applications of NMPC are in
the polymerization sector [7, 8, 9, 10, 11, 12].
Polymers have highly nonlinear dynamics,
specially in the interactive reactions between the
chains. Moreover, the lack of quality
measurements, due to sampling problems, large
dead times and high noise level also motivates the
use of a model that makes use of state estimation
features. Finally, given the existence of
unmeasurable properties such as the chain length
distribution and the average molecular mass,

there is no possible way to have output
measurements at every sampling intervals.

Not as developed as the polymers processes,
but still with a growing implementation at research
level, is the crystallization sector
[13, 14, 15, 16, 17]. Similarly to polymers, crystals
have quite complex mechanisms such as
agglomeration, growth and nucleation, with
kinetics that are not easily modelled. Likewise,
crystals have immeasurable properties in real
time, namely the crystal mass and the fine size
distribution. In addition to that, factors like sensor
limitations (in taking reliable measurements) and
inherent process uncertainties [18, 19] all provide
suitable reasons to implement a nonlinear
advanced control strategy.

2. Crystallization
Crystallization is a very common practice in the
pharmaceutical industry as a separation and
purification process [13]. Its driving force lays on
the difference between the chemical potential of
the supersaturated solution and the solid crystal
phase [18, 13, 20].

Figure 2: Solubility diagram [21]

Figure 2 shows the solubility curve for a typical
API (Active Pharmaceutical Ingredient) [22].
Below the curve, it is said that the system is under
saturated, as its concentration is lower than its
solubility. In this case, crystals will dissolve [23].
Above the curve, the system is said to be
supersaturated, given its concentration is higher
than the equilibrium one. In between these two
regions (solubility and dashed curves) lays the
”metastable zone”, where already formed crystals
can grow, but it is quite unlikely to form new ones
[23, 24]. In this area, the system is already
supersaturated, but it is not yet able to respond to
spontaneous nucleation [25] - it is the ideal area to
grow, as it minimizes impurities. Supersaturation
can be induced by cooling, anti-solvent addition,
evaporation and pH change. [13, 18, 26, 27, 28].
Cooling allows the system to reach
supersaturation, maintaining the same
concentration - this is clear in figure 2. Although it
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is only efficient to use when the solubility of the
compound greatly decreases with temperature
[29, 30]. Adding anti-solvent reduces the solubility
of the compound, making it easier to reach
supersaturation. Furthermore, anti-solvent
addition has been claimed as the most efficient
strategy to reach supersaturation as it is quicker
and able to run at low temperatures [31, 30].
Solvent evaporation is used when the solubility
curve is quite flat, making it unfeasible to achieve
supersaturation by cooling [29], despite being a
less common alternative [32]. Lastly, another
method to induce supersaturation is by pH
change, an option used in protein crystallization
[33].

3. Materials and Methods
The modelling tool used was the gPROMS
FormulatedProducts, a platform which integrates
formulated products with their manufacturing
process, from pharmaceutical products, to
agrochemicals and food products. It includes
several libraries; the one used for the current
project is named gCRYSTAL. This library provided
the model to which the control strategy was used.
The control strategy was implemented on
gNLMPC, a gPROMS digital application platform,
that allows the controller’s configuration, tuning
and deployment.

4. Model Description
The model used depicts a batch crystallization of
paracetamol, where the crystal seeds are added
at the beginning of the batch. The main
mechanisms included in the simulation are
secondary nucleation, growth and dissolution and
agglomeration. Only secondary nucleation by
attrition was considered (as the primary one does
not occur in industry), following a custom kinetics
scheme, of empirical nature given by [34]:

Jsec = kn (C − C∗)n µnsec
2 (1)

Where Jsec is the rate of nucleation, C is the solute
concentration. C∗ the solubility, k the nucleation
rate constant, n the nucleation order and nsec the
second nucleation order.

Likewise, growth, dissolution also follow a
custom kinetics scheme [34]:

G = kg (C − C∗)g (2)

Where G is the growth and dissolution rate, k is the
growth rate constant and g the growth order.

Agglomeration is described by an empirical
power law of the form [34]:

βagg = a1G
a2εa3 (3)

Where βagg is the agglomeration rate, a1, a2 and a3
are empirical parameters and ε is defined by:

ε =
Np d

5
imp n

3
s

V
(4)

In which Np is the stirrer’s power number, dimp the
impeller diameter, ns the stirring rate and V the
reactor volume.

Anti-Solvent Flow and temperature were chosen
as MVs as they are the main drivers for
supersaturation, and, consequently,
crystallization. Typical goals for crystals include
achieving maximum growth with minimum particle
size dispersion. Hence, variables such as span
and volume mean size were the chosen metrics of
that goal. Span is a measure of particle size
dispersion and volume mean size is defined as
the mean volume of particles divided by their
diameter, which can be a measure of the crystals’
growth. Relative supersaturation was chosen to
be a CV in order to ensure the correct
crystallization conditions are being met. Lastly,
dissolved paracetamol was chosen as a CV to
keep track of the crystallization progress and to
guarantee that there is paracetamol left to react.
Impeller frequency was chosen as the sole DV as
it is a independent variable to the system, meeting
the general criteria for this kind of variable.

5. Optimisation

The control objectives were expressed as the
desired interval of values for the CVs, at the end
of the batch, since constructing a controller to
comply with specific values may be deemed too
conservative, while also making the optimisation
procedure rather burdensome, as the optimal
solution would take longer to be found. The
objective function that describes the optimisation
problem is penalty-based, which means that
penalties are added whenever a CV is outside its
desired interval. The interval of values chosen are
the ones intended for the CV at the end of the
batch operation. In this way, the controller ensures
that these variables comply with control objectives
for that batch. The penalties added for the
violation of these limits are different for each CV:
this ensures the controller prioritizes some
objectives over others.

Additional terms may be added to the objective
function to penalize a CV heading to its desired
limits too fast or to penalize a MVs that is either
changing too much within or between cycles.

The objective function used in the present work
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is defined by equation 5 [35].

min
ui,k|λu

i =1
OF ≡

∑
j∈CV

λzj C
′ z,lo
j

∫ T opt

0

max(0, zref,loj (t)− z̄j(t))2 dt

+
∑
j∈CV

λzj C
′ z,hi
j

∫ T opt

0

max(0, zref,hij (t)− z̄j(t))2 dt

+
∑
j∈CV

λzj C
z
j

∫ T opt

0

z̄j(t) dt

+
∑
i∈MV

λui C
u
i

∑
k=1

δk ui,k

+
∑
i∈MV

λui C
δu
i

K∑
k=1

|ui,k − ui,k−1|

(5)

where OF is the objective function, CV the
controlled variable, MV the manipulated variable,
T opt the optimization time horizon, K the number
of control intervals, δk the duration of control
intervals, ui,k the MV value i over control interval
k, λui the binary switch (0/1) indicating whether MV
i is included in the optimisation, λzj the binary
switch (0/1) indicating whether CV i is included in
the optimisation, C ′ z,loj and C ′ z,hij the violation
penalties applied to CV when it is below or above
its reference envelope limits, zref,loj (t), zref,hij (t)
the lower and upper limits of reference envelopes,
z̄j(t) the CV trajectory, Czj the CV j cost penalty,
Cui the MV i cost penalty and Cδui , the MV i cost
penalty at control interval boundaries. In the
above formulation, the optimisation time horizon
T opt is defined by the sum of the control intervals
K, of length δk.

6. Results
The controller was tested in emulation mode,
which is the real-time implementation of the
controller’s optimal control action on a digital twin
of the model. The tuning of the controller
consisted in changing one the of model’s
parameters and studying its impact on both CVs
and MVs. The testing included submitting the
controller to several scenarios. One of them was
performing ± 5% step changes on the disturbance
variable, impeller frequency, on the second cycle
of a 20-cycle emulation.

6.1. Disturbance Rejection
The measured and optimal trajectories for one of
the CVs, dissolved paracetamol are presented
below in figure 3. The dotted blue line represents
the closed-loop control trajectories (with the
controller active), the orange one the open-loop

trajectories (with the controller inactive) and the
grey line the optimal trajectory (predicted by the
controller). The dashed lines represent the lower
and upper bounds of the reference envelopes.

Figure 3: Paracetamol Liquid Mass measured and optimal
trajectories for the different disturbance rejection tests

The presented variable is able to be steered into
its reference envelopes for all disturbances, thus,
confirming the controller’s ability to meet the
control objectives. An interesting aspect to note is
that not only is the closed-loop trajectory faster
than the open-loop one, but also for the +5% case,
the open-loop trajectory does not even reach its
reference envelope, at the end of the batch. This
means that for this case in particular, the control
objectives would not be met, if it were not for the
controller. This case clearly shows the benefit of
having implemented such control strategy, as
reaching the reference envelopes faster translates
into a faster crystallization, because it means that
paracetamol is transforming into crystals sooner.
Furthermore, in the -5% case, there is a mismatch
between the optimal and closed-loop trajectories.
However, for the other case, there is perfect match
between the two. This confirms the controller’s
ability to predict this CV response to the control
action implemented. The slight observed
mismatch is only visible in the first cycles. This
shows that the controller may predict that its
actions have an instantaneous impact of the
model, thus not taking into account some delay.

In figure 4, the MVs trajectories are displayed.
Anti-Solvent Flow heads to its upper limit and
settles there for the entire emulation. One
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Figure 4: Manipulated Variables measured trajectories for the
different disturbance rejection tests

hypothesis for this behaviour is that settling in its
upper limit is the optimal solution that maximizes
crystal growth. As long as other control objectives,
such as particle disparity, are achieved, the
controller can promote crystal growth by
increasing anti-solvent flow.

Yet the same is not observed for temperature. A
+ 5 % disturbance barely changes this MV out of
its initial value of 25 ◦C. For the - 5 % case,
temperature oscillates between its bounds (from
20 to 45 ◦), sometimes from one cycle to another.

Both MVs’ optimal trajectories would not be
feasible in reality as the anti-solvent flow could not
increase so abruptly in one single cycle, and
temperature could not swing as much either. In
both cases, the actuators would not be able to
implement these changes so quickly, which would
mean that the system would not receive them
either. This would result in increasing the plant /
model mismatch, as the controller would not take
into account this delay. In case of the temperature,
this problem would be even more serious as the
changes are not from one cycle to another, this
oscillation happens throughout the emulation. So
the sensors would measure a temperature, which
would not be true by the time this measurement
reached the controller. This would lead to the
controller receiving past information, when
performing its optimisation routine. In order to

tackle this issue, a rate of change penalty was
added to the MVs. The results for both this option
will be shown below.

6.2. Rate of Change Penalty
The term C in the objective function (equation 5)
was activated - this meant choosing the
parameters Cδui and |ui,k − ui,k−1|, which are the
penalties applied to the rate of change and the
maximum rate of change allowed per cycle.
Adding a penalty to the rate of change is the way
to tell the controller to find a new solution that
avoids a rapid change between variables. The
rate of change per cycle refers to the maximum
change the controller allows for that variables,
between cycles.The rates and penalties applied in
each MV are shown in table 1.

Table 1: Rate of change and penalties for both MVs

Variable Rate of change Penalty

per cycle

Anti-Solvent Flow 1E-5 kg/s 1E5

Temperature 1 ◦C 1

The rate of change penalty for temperature was
chosen according to literature [27]. The penalty
difference between variables is not due to
importance but for scaling reasons, given that the
objective function is not scaled.

A -5% disturbance step was performed and the
differences between the original case without rate
of change penalties and the modified one with the
penalty were compared. The MVs trajectories are
shown below:

It is possible to verify that the addition of a
penalty was successful, as anti-solvent flow takes
more time to reach its optimal value and
temperature shows a lower degree of oscillation. It
is also worth noting that whereas temperature
effectively oscillates less, meaning another
optimal solution was found, different from the
original one, regarding anti-solvent flow, this does
not hold true. Given that this variable changes its
maximum allowed per cycle, one can conclude
that the controller was not able to find a new
optimal solution, but instead just complied with the
penalties given.

The next aspect to verify was whether the
controller had been able to achieve the desired
control targets despite the penalties. The CVs
trajectories are depicted in figure 6.
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Figure 5: Manipulated Variables measured trajectories with
and without the rate of change penalty

As expected, the CVs were affected by the
change: in the modified case, the trajectories
show a slight delay when compared to the original
case. Nonetheless, with the exception of volume
mean size, in both cases, the end-point is similar,
which seems to indicate that the delay the
penalties added did not prevent the controller from
reaching its goals. The fact that the rate of change
penalty made the variables rate of change slower
confirms the optimality of the original solution, as
it lead the CVs sooner to their reference
envelopes, which is an advantage.

As it has been observed previously, anti-solvent
flow seems to be tendentiously hitting its upper
bound, in many of the scenarios tested. Thus, a
global system analysis was conducted in order to
find an explanation as to why the anti-solvent flow
always hit its upper bound. This gPROMS feature
is essentially a sensitivity analysis where the
relationships between some input variables (called
factors) and output variables (called responses)
are analysed. The input variables are changed
within some specified bounds and the impact on
the responses is analysed. For this global system
analysis, anti-solvent flow was chosen as a factor
and the CVs as responses. The results are shown
in figure 7.

One can see that maximum anti-solvent flows
clearly maximizes volume mean size and
minimizes supersaturation, which were the control

Figure 6: CVs trajectories with and without the rate of change
penalty

objectives for these CVs. These were possibly the
main factors contributing to this MV hitting its
upper bound. Another CV, span, shows an
oscillating relation with anti-solvent flow, inside a
narrow range of values. Hence, it may not have
contributed so bluntly as the previous two CVs.

6



Figure 7: Global System Analysis Results - Responses

Due to the non linear nature of the relationship
between these two variables, the controller had
more difficulty in choosing the correct anti-solvent
flow that satisfied the span’s control objectives.

Furthermore, lower anti-solvent flow values led
to less dissolved paracetamol at the end of the
batch. Nonetheless, given this was a secondary
objective (reaching Particle Size Distribution goals
like volume mean size was more important), a
minor penalty was implemented, thus, the
controller values did not show this tendency.

The sensitivity analysis confirmed that the
controller was implementing the values more
suitable for the anti-solvent flow, given that they
are in agreement with the control objectives.

6.3. Noise Measurement
The controller’s ability to handle noise was tested
next. Noise was added to one of the
measurements, which is also a CV, span. Step
changes on DV impeller frequency were
performed (similarly to the ones done in section
6.1), and compared the original case with the
case with the noise added. The CV trajectories for
both cases is shown below (figure 8).

Figure 8: CV span with and without noise

From figure 8, it is possible to verify that the
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noise was successfully added to the CV, as its
trajectory shows a higher degree of fluctuation,
when compared to its original trajectory. In spite of
having noise, this CV still ended the batch in the
same point as the original case. This indicates
that the controller was able to accomplish the
targets and perform noise rejection.

The trajectory of the MV anti-solvent flow is not
shown as the addition of noise did not affect this
variable’s values (in all cases, this variable hit its
upper bounds, as expected). However,
temperature showed different trajectories,
depicted by figure 9.

Figure 9: MV temperature with and without noise

In both cases (with and without added noise),
temperature shows quite some oscillation.. For a
± 5% disturbance change, the case with added
noise seems to have more oscillation. For the +
10 and 15% both scenarios, with and without
noise, display the same degree of oscillation,

without a clear pattern.
A controller able to tackle measurement noise

rejection is a clear advantage. In the current case,
this variable was not only a CV, but the most
nonlinear one, as it was possible to verify in the
sensitivity analysis shown before. This points to
the overall good performance of the controller in
handling noise measurement rejection.

7. Conclusions

The main goal of implementing a Nonlinear Model
Predictive Control application on a batch
crystallization of paracetamol model was
successfully achieved.

The controller was tested on a digital twin of the
model, which is the real-time implementation of
the controller on the process. The testing
consisted in submitting the controller to different
scenarios to verify whether it was able to steer the
Controlled Variables into their target limits, thus,
achieving their control objectives. Tested
scenarios included disturbance rejection
(changing Disturbance Variable impeller
frequency) and noise measurement (adding noise
to one of the measured variables, Span) . The
controller was able to successfully steer the
Controlled Variables for most cases, yielding
faster results than in open-loop mode. Reaching
control objectives faster than in open-loops proves
to be an advantage as it can translate in ending a
batch sooner, thus saving time.

In one of the disturbance rejection tests, the
controller’s optimal trajectories for the manipulated
variables were not feasible in a real plant, as they
changed too fast from one cycle to another.
Hence, a rate of change penalty between cycles
was added. Having done this, the controller was
able to, not only keep achieving its control
objectives, but it was also able to comply with the
penalties submitted, smoothing the optimal
trajectories for the MVs.

A sensitivity analysis showed the importance of
choosing the correct limits of operability for the
Manipulated Variables, as Anti-Solvent Flows
showed the tendency of clipping to its upper
bound for most scenarios tested, as it maximized
crystal growth (one of the control objectives).

Overall, the controller yielded quite satisfactory
results, showing a promising future for this less
commonly used control strategy.
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