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Abstract

This thesis presents the implementation of a Nonlinear Model Predictive Control application on a
paracetamol batch crystallization process. This control strategy uses the mathematical model of the
process and takes advantage of its current measurements to predict the future behaviour of some
chosen Controlled Variables. The controller does this by performing an optimisation routine that
minimizes the difference between the current value of the Controlled Variables and their target interval
of values. In this thesis, the optimisation is described by a penalty-based objective function, in which
penalties are added whenever the Controlled Variables are outside their target interval of values.

The controller was tested on a digital twin of the model, which is the real-time implementation of
the controller on the process. The testing consisted in submitting the controller to different scenarios
to verify whether it was able to steer the Controlled Variables into their target limits, thus, achieving
their control objectives. Tested scenarios included disturbance rejection (changing Disturbance Variable
impeller frequency), noise measurement (adding noise to one of the measured variables, span) and
plant / model mismatch (altering one of the kinetic parameters, supersaturation order) . The controller
was able to successfully steer the Controlled Variables for most cases, yielding faster results than in
open-loop mode. Reaching control objectives faster than in open-loops proves to be an advantage as it
can translate in ending a batch sooner, thus saving time.

Overall, the controller yielded quite satisfactory results, showing a promising future for this less
commonly used control strategy.
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Resumo

A presente tese descreve a implementação de uma aplicação de controlo não-linear preditiva num
modelo batch de cristalização de paracetamol. Esta estratégia de controlo consiste em usar o modelo
matemático de um sistema e as suas medidas atuais para prever o trajeto futuro das suas variáveis
controladas. O controlador prevê o trajeto futuro através de uma rotina de optimização, ao minimizar a
diferença entre o valor atual das suas variáveis controladas e o intervalo de valores desejado para as
mesmas.

O controlador foi testado num digital-twin do modelo, que consiste na implementação em tempo
real do controlador no processo. Os testes consistiram em submeter diferentes cenários ao controlador
de modo a verificar se este era ou não capaz de dirigir as variáveis controladas para os intervalos
desejados, satisfazendo, assim, os objetivos de controlo. Cenários incluı́ram rejeição de perturbações
(mudança o valor da variável de perturbação, frequência do rotor), ruı́do (adição de ruı́do a uma das
variáveis medidas) e a não correspondência do modelo com a realidade (alteração de um parâmetro
cinético, ordem de supersaturação). O controlador foi capaz de guiar as variáveis controladas para
os seus limites desejados para a maior parte dos casos testados, obtendo, também, trajectórias mais
rápidas que em cadeia aberta. Cumprir os objectivos de controlo mais rapidamente é uma vantagem
dado que pode traduzir em operações batch mais breves, poupando assim tempo.

De um modo geral, o controlador apresentou resultados satisfatórios, mostrando a hipótese de um
futuro promissor para esta estratégia de controlo menos implementada industrialmente.

Keywords: Controlo Não-Linear Preditivo, Cristalização Batch, Digital-twin, Optimização
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Chapter 1

Introduction

Model Predictive Control (MPC) is an important advanced control strategy developed in the 1970s,
that has been growing in use ever since [1]. This usage increase lays on its ability to handle complex
multi-variable systems, with multiple inputs and outputs. This strategy is based on the system’s
mathematical model and takes advantage of its current measurements to predict its future behaviour. It
does so by performing an optimisation routine, which consists in minimising the difference between the
current values of the Controlled Variables (CV) and the target ones [1,2]. This optimisation is described
by an objective function that not only includes the process’ measurements, but also its constraints. The
result of this routine is the optimal control action that will lead to the CVs to their desired value. This
control action takes form of a Manipulated Variable (MV) input.

When the model can be described linearly, linear MPC shows positive results, in both the refining
and the chemicals area [3,4]. Nonetheless, it does not yield satisfactory results when the process is very
nonlinear. To address this problem, Nonlinear Model Predictive Control (NMPC) has started to grow.

Nonlinear Model Predictive Control is based on the same concept as its linear counterpart. However,
it has a higher degree of complexity since the optimisation problem is nonlinear, which is what prevents
it from being more commonly used in industry [2, 5]. Despite the challenge, there are some processes,
in both polymerization and crystallization fields, which simply cannot be linearized, and, as such, linear
MPC cannot be used [6–10]. For them, NMPC may be a suitable alternative.

1.1 Motivation

Implementing a NMPC strategy is rather burdensome [11], thus, only complex processes will benefit
from such a difficult approach. Crystallization may just be one of those cases. Crystallization is a
very common practice in the pharmaceutical industry as a separation and purification process. It is
characterized by its high degree of nonlinearities given that crystals suffer very complex mechanisms,
such as nucleation, agglomeration and growth. Furthermore, a lack of correct measurements in real time
prevents these processes from being well controlled by more traditional approaches. It is not possible
to measure properties like crystal mass and dispersity frequently throughout an operation, as sensors
are still not sophisticated enough to do so. Hence, in this thesis, a Nonlinear Model Predictive Control
strategy was implemented on a paracetamol batch crystallization model.
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1.2 Thesis Outline

In chapter 2, a literature review on NMPC, its formulation and current applications is presented.
Additionally, some basic crystallisation concepts and control schemes typically applied to crystallisation
processes are described. Chapter 3 describes the modelling and simulation tools used for this work. In
chapter 4, a description of the crystallisation model used is presented. It also lays out how the control
scheme was designed. In chapter 5, the optimisation problem is explained, as well as how the system
responds to an optimal control formulation. Chapter 6 describes the concept of emulation and how it
was created. It also includes how the emulation was tested. In chapter 7 the system’s responses to a
set of tests are presented. In the last chapter, some conclusions and future suggestions of this work are
stated.

2



Chapter 2

Literature Review

MPC is an advanced process control technique which consists in using the mathematical model
of the system and its current measurements to calculate the optimal control action that satisfies the
system’s control objectives [1]. These control objectives are defined as certain setpoints for specific
variables, called CVs. The controller compares the current values of the CVs and the actual ones, and
optimizes what control action will minimize this difference [12]. That control action is implemented in
the form of MVs setpoints. This strategy is said to be ”predictive” as the controller decides the control
action to implement, based on the predicted behaviour of the CVs. The concept behind this strategy is
described by the following figure:

Figure 2.1: Model Predictive Control Concept [1]

y represents the past measurements of the CVs, and ŷ the predicted measurements by the controller.
The target set point refers to the CVs’ desired value. The past control action line u represents the past
control action that has been implemented by the controller, and the dashed line u the future control
action to be implemented. Different MVs set points will be given, over a control or optimisation horizon,
M. The MVs will remain constant until the end of the prediction horizon, P, since the CVs have reached
their desired value.

Ideally, the controller would be able to predict the exact behaviour of the CVs, after having
implemented a certain control action. However, in reality, due to plant / model mismatch and to
unmeasured disturbances, the predicted measurements are not equal to the actual ones [1, 13]. This

3



mismatch may be due to sensor/actuator delays or misreadings. To tackle this problem, the controller
operates in feedback cycles. After a certain period of time, the controller takes new measurements and
compares the measurements of the CVs with the values it had predicted. As they do not match, the
controller performs a new optimisation to take into account this new value, and corrects what it had
implemented. Hence, in practice, only the first element of the optimal control sequence is applied to the
system, before the calculation sequence restarts: this strategy is called the receding horizon control,
and it is very advantageous as it takes into account the most recent measurements of the state [1, 14].
For variables whose measurement is not possible frequently, state estimation calculations are used.

Both the control and the prediction horizon must be carefully chosen as they influence the
controller’s response. The longer they are, the more time the controller has to steer its CVs into the
desired setpoints. On the other hand, the shorter the horizons, the less time the controller has to satisfy
its control objectives - the more abrupt the control action must be. The duration of the cycle is also an
important matter as each cycle each control move should be long enough to include relevant system’s
dynamics, but not so long as to miss some [12].

There are three difference types of variables: MVs, CVs and Disturbance Variables (DVs). MVs are
the process variables which are allowed to be adjusted, in order to achieve the desired CV values. CVs
are the process outputs, and the desired value for them is called target setpoint. The last type of variable
is DV, which are variables that affect CVs, but unlike MVs, they cannot be adjusted [1].

Linear MPC is widely used in several industries since the 1970’s, most of which in the refining and
chemicals area [3], and it is now considered a mature technology [4]. Some of the reasons for this
success include the fact that MPC allows for direct implementation of the model in the control calculation,
taking into account the process input, state and output constraints [2]. Nonetheless, in processes whose
model may not be well described in a linear form, linear MPC fails to achieve satisfactory results. Hence,
NMPC has began to gain some attention.

2.1 Nonlinear Model Predictive Control

In NMPC, the predicted state of the system is expressed by a nonlinear function, resulting in a
nonlinear optimization problem, regardless of whether the cost function is linear, quadratic or
non-quadratic. This control strategy has failed to grow industrially when compared with its linear
counterpart due to computational challenges, given by the non-convexity of the optimization
problem [2, 5]. Furthermore, NMPC is perceived as ”by far the most complex application of process
models” [11]. In spite of its complexity, since the 1990’s, there has been an increase in NMPC industrial
applications [2], mainly in the polymers field [6–10].

2.1.1 Formulation

A general scheme of a NMPC controller is shown in figure 2.2.
The NMPC action represented in figure 2.2 can be described in the following steps, which will be

described in detail in the next sections:

1. Obtain plant measurements y

2. Estimate states of the system for immeasurable variables x’

3. Calculate optimal control input

4. Implement the optimal trajectory for the first control interval u

5. Restart step 1
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Figure 2.2: General scheme for a NMPC controller

Plant Model

The model of the system can have various forms, nonetheless, it is usually expressed by a nonlinear
continuous time differential equation as follows ( [3], [2], [15] and [5]):

ẋ(t) = f(x(t), u(t)), (2.1)

And an algebraic output equation:
y(t) = g(x(t), u(t)), (2.2)

Subject to a set of input and state constraints:

U := {u ∈ Rm | umin ≤ u ≤ umax} (2.3a)

X := {x ∈ Rm | xmin ≤ x ≤ xmax} (2.3b)

(2.3c)

In which x(t) and u(t) refer to state and input vectors at time t, respectively and f and g are continuous
time functions. umin, umax, xmin and xmax represent the constraint vectors for the input and state,
respectively.

Optimal Control Problem

As it was explained in the beginning of this chapter, in order to reach its control objectives, the
controller performs an optimisation to calculate which control action is able to steer the CVs into their
target set points. This optimal control problem is usually expressed by a cost function, typically
represented by an expression of the following form [14–17]:

min
u(t)

∫ tk+np

tk

J(u(t), x(t))dt+ Jf (u(tk+np
), x(tk+np

)) (2.4)
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Subject to the following set of constraints:

ẋ(t) = f(x(t), u(t)) (2.5)

x(tk) = xk (2.6)

y(t) = g(x(t), u(t)) (2.7)

u(t) ≤ u(t) ≤ ū(t) (2.8)

∆umin < ∆u(t) < ∆umax (2.9)

∆ymin < ∆y(t) < ∆ymax (2.10)

other constraints (2.11)

Where equation 2.5 refers to the predicted future input ẋ(t), as a function of the past output x(t)
and past control moves u(t). Equation 2.6 refers to the system state at time k. Equation 2.7 refers to
controller output, which is also a function of the past output x(t) and past control moves u(t) and equation
2.8 refers to the input control constraints. Equations 2.9 and 2.10 denote penalties on the value changes
of the variables, usually to account for actuator and system’s delays.

As the optimal control problem is non-convex, it is possible to have multiple minima, making the
task of finding the optimal solution more burdensome. Hence, many formulations include all the states,
instead of just the process outputs [18].

Parametrization

Despite being depicted as a continuous function of time in 2.1, the open-loop is often subjected to
parameterization methods, by turning an infinite dimensional problem into a finite dimensional one [15],
to allow for a solution. The most commonly implemented strategies are the following:

• Sequential approach: Model simulation and optimisation are performed sequentially. The
system’s ordinary differential equations are solved numerically in the simulation first, eliminating
the constraints and cost functions, at each iteration [14]. In spite of being more straightforward
than the remaining strategies, this strategy has a higher computational burden [18].

• Simultaneous approach: Model simulation and optimisation are performed simultaneously. The
ODEs are discretized in time and embedded in the optimisation problem as constraints. Although
this approach increases the number of constraint variables, the computational burden is lower as
it is easier to implement the constraints in the cost function [18].

• Direct multiple shooting approach: The optimisation horizon is divided into intervals and the
ordinary differential equations of the model and the cost function are solved and optimised
independently for each interval [14, 15]. This method provides a better structure for the
optimisation. However, it also increases the computational burden as there is a need to create
new sets of constraints to ensure continuity between subintervals.

2.1.2 Controller Stability

Stability is of high importance in MPC formulation. In control, stability refers to whether the CVs are
under control or not. In linear MPC, setting an infinite prediction horizon is usually the most practical
choice with guaranteed stability [1, 12]. Nonetheless, for nonlinear problems it is almost impossible to
obtain a solution using an infinite horizon, due to computational reasons, hence, it is only perceived
by authors as a theoretical concept [3, 15, 19] .The strategies that have been employed to address
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this problem are not yet fully developed as they do not guarantee closed-loop stability [15]. The most
common strategies used are:

• Infinite horizon: Setting the prediction horizon to infinity.

• Finite horizon: Adding a penalty to the cost function so that the system is forced to reach its initial
state at the end of the prediction horizon (zero terminal equality constraint) [3]. This is called a
stability constraint as it has no physical meaning and it is not applicable to all systems: just the
ones that have a solution at initial point t=0 [15].

• Quasi-infinite horizon: Similarly to the finite horizon strategy, this approach employs a terminal
state penalty. However, the penalty is quadratic [3]. Additionally, a terminal inequality regional
constraint is included to ensure that the final state reaches a certain area that approximates an
infinite horizon, instead of a fixed point [15].

The main challenge when it comes to stability is to establish a reasonable horizon length without
compromising performance and stability.

2.1.3 Controller Robustness

A robust NMPC formulation is one where the model used for prediction is the same as the actual
system [3,15], meaning that there is no plant/model mismatch, which is not true for real systems. Some
strategies to increase NMPC robustness have been tested, such as:

• Min-max problem: Formulating the cost function to be able to bear the worst case scenario [15].
Quite a conservative option and unreliable as it does not guarantee that the controller will perform
well in more likely and less conservative scenarios.

• Constraint tightening: Enlargement of state constraints directly in the cost function, often referred
as a contraction stability constraint [3]. This will increase the penalties’ weight in the objective
function.

• Optimising the input from a feedback controller between samples: this option requires the
implementation of a feedback controller that handles minor disturbances, between sampling time,
thus decreasing some computational burden from the NMPC controller.

2.2 Current NMPC applications

There are some processes for which nonlinear model predictive control seems attractive. Some
characteristics of such processes include batch reactors, frequent product requirements changes,
infrequent measurements of product quality and raw-material composition fluctuations [3,11].

The main industrial applications of NMPC are in the polymerization sector [6, 8, 9, 20–22]. Polymers
have highly nonlinear dynamics, specially in the interactive reactions between the chains. Moreover, the
lack of quality measurements, due to sampling problems, large dead times and high noise level also
motivates the use of a model that makes use of state estimation features. Finally, given the existence of
unmeasurable properties such as the chain length distribution and the average molecular mass, there is
no possible way to have output measurements at every sampling intervals.

Not as developed as the polymers processes, but still with a growing implementation at research
level, is the crystallization sector [23–27]. Similarly to polymers, crystals have quite complex
mechanisms such as agglomeration, growth and nucleation, with kinetics that are not easily modelled.
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Likewise, crystals have immeasurable properties in real time, namely the crystal mass and the fine size
distribution. In addition to that, factors like sensor limitations in taking reliable measurements and
inherent process uncertainties [28, 29] all provide suitable reasons to implement a nonlinear advanced
control strategy.

2.3 Crystallization

Crystallization is a very common practice in the pharmaceutical industry as a separation and
purification process [23].

2.3.1 Basic Crystallization Concepts

Crystallization is a very common practice in the pharmaceutical industry as a separation and
purification process [23]. Its driving force lays on the difference between the chemical potential of the
supersaturated solution and the solid crystal phase [23,28,30].

Figure 2.3: Solubility diagram [31]

Figure 2.3 shows the solubility curve for a typical API (Active Pharmaceutical Ingredient) [32]. Below
the curve, it is said that the system is under saturated, as its concentration is lower than its solubility.
In this case, crystals will dissolve [17]. Above the curve, the system is said to be supersaturated,
given its concentration is higher than the equilibrium one. In between these two regions (solubility and
dashed curves) lays the ”metastable zone”, where already formed crystals can grow, but it is quite
unlikely to form new ones [17, 33]. In this area, the system is already supersaturated, but it is not
yet able to respond to spontaneous nucleation [34]. Supersaturation can be induced by the following
mechanisms [23,28,35–37]:

• Cooling

• Anti-solvent addition

• Evaporation

• pH change (acid or base addition)

Cooling allows the system to reach supersaturation, maintaining the same concentration - this is
clear in figure 2.3. Although it is only efficient to use when the solubility of the compound greatly
decreases with temperature [38, 39]. Adding anti-solvent reduces the solubility of the compound,
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making it easier to reach supersaturation. Furthermore, anti-solvent addition has been claimed as the
most efficient strategy to reach supersaturation as it is quicker and able to run at low
temperatures [39, 40]. Solvent evaporation is used when the solubility curve is quite flat, making it
unfeasible to achieve supersaturation by cooling [38], despite being a less common alternative [41].
Lastly, another method to induce supersaturation is by pH change, an option used in protein
crystallization [42].

After reaching supersaturation, the solid phase can be created in either two mechanisms: primary
or secondary nucleation. The first, also defined as ”spontaneous” nucleation, can be homogeneous,
if crystals nucleate due to high levels of supersaturation alone or heterogeneous, if the presence of
insoluble impurities enables said nucleation [17, 33]. The latter, more common in industrial practice
[23,33], occurs when suspended crystals of solute are present. It can occur by several mechanisms such
as attrition, surface or dendritic breeding [17], the first of them being the most common industrially [43].
Secondary nucleation is commonly defined in mathematical terms empirically by the following Arrhenius-
type expression [17]:

Jsec = kb exp(−Eb/T ) Sb µjk (2.12)

Where kb is the pre-expontential term, b the supersaturation order, Eb the activation energy and j a
constant - all empirical constants. µk is the kth moment of the crystal size distribution and S the relative
supersaturation, defined as:

S =
C − Csat
Csat

(2.13)

In which C represents the solute concentration and Csat the saturated solute concentration. After having
nucleated, the crystals can either grow and agglomerate or dissolve. The most accepted mechanism
regarding growth argues that crystals grow at a rate proportional to the concentration difference between
the solution bulk and deposition point [33,43]. Mathematically, this mechanism can be expressed by the
following empirical expression [44,45] :

G = k1 exp(−
k2
T

) (C − Csat)k3 (2.14)

Where k1 is the growth rate constant, k2 the activation energy and k3 the supersaturation dependency
of the surface integration rate - all empiric parameters.

Usually, it is preferable for the crystals to grow in the metastable region, as it ensures proper growth,
avoiding unwanted impurities, liquid inclusion and higher attrition rates [44,46]. Operating in this region
is the compromise between unrestrained nucleation , where new nuclei can be form, and longer batch
times.

If a crystal in a solution displays a solubility value below its concentration in solution, it will dissolve.
Dissolution may also be seen as a pure diffusion mechanism, and if so, in equilibrium, its rate would be
the same as crystal growth [43]. Nonetheless, in reality, crystals dissolve faster than they grow, given
that different faces of the crystal grow at different rates. Although for purpose of simplicity , authors
usually describe dissolution rate as the opposite of growth rate [17,44].

Another typical mechanism in this process is agglomeration which can be defined as the collision
and subsequent bound between two particles. Particle size affects the type of collision, which in turn will
affect the kinetics. Generally, agglomeration rate can be described as [34]:

−A = α β N2 (2.15)

Where α is the collision efficiency, β is a particle-size dependent parameter and N is the particle density.
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Some authors choose to neglect this mechanism, due to its complexity [17,32,36,44].

The above mentioned mechanisms result in a population balance model that is usually solved by the
method of moments [45].

2.3.2 Crystals Specifications

Achieving the desired crystal properties is of high importance, in industry. The most often used
method is by their crystal size distribution, which can be expressed as a function of their number, mass
or volume, and by means of a density or cumulative distribution, depicted in the following figure [47]:

Figure 2.4: Density (dotted line) and cumulative (continuous line) volume crystal size distribution [47]

The distribution can divided into moments, which are useful to define some of its properties such as:

• Mean

• Median

• Mode

• Width

The mean is usually defined as either arithmetic (D1,0), volume over surface (D3,2) or diameter over
volume (D4,3), in which the indexes refer to the moment of the distribution [47]. For example, the
diameter over volume is obtained by:

D4,3 =
m4

m3
(2.16)

The median is simply the value at which half the population has size above and the other half below,
and it is often designated as D50. The mode is the highest peak of the distribution. Lastly, the width can
be described by its span or its coefficient of variation, expressed as:

Span =
L9 − L1

L9
(2.17) CV =

√
m3 m5

m2
3

− 1 (2.18)

These properties are used to characterize the obtained crystals, and to define the objectives of the
crystallization, essential to the control scheme definition. Quality wise, crystals with large mean size and
narrow particle size distribution are the desired goal of most crystallization procedures [29].
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2.3.3 Crystallization Process Control

Crystallization operations can be operated in either continuous or batch mode. Continuous
crystallizers are often used in large scale operations [45]. Moreover, they are easier to control and
provide advantages such quality consistency and process efficiency [36, 48, 49] which results in
economic benefits [50]. On the other hand, batch crystallizers, widely used, have been the preferred
option for small operations, as they confer flexibility in terms of volume [45, 51]. Nonetheless, the main
drawback of this mode is the variability from batch-to-batch in product requirements, a subject worthy of
attention by several authors [25,51–53].

As it has been mentioned before, crystallization processes are difficult to control [17, 29], as the
present dynamics are quite complex. Common approaches to control crystallization mechanisms
include temperature and or concentration or supersaturation control [17,29,46,52], which comprises in
measuring these two variables at each time step, and using feedback control to ensure that the solution
is maintained within the metastable region [35]. This strategy is often unfeasible as it is not always
possible to take frequent measurements, due to sampling problems, or large dead times or high noise
level. Usually, new measurements are not fast enough to go along with the system’s dynamics. Hence,
nonlinear model predictive control has started to gather some attention.

Since the desirable product consists of crystals with large mean size and narrow particle size
distribution [29], objective functions typically include mean size of product crystals, its ratio deviation,
the nucleated crystal mass to seed crystal mass at the end of the operation ratio, number-average
crystal size, coefficient of variation, weight-mean crystal size and the particle size distribution
shape [17, 25, 28, 35, 52]. In these cases, the controlled variables are often the seed mass, the mean
size of seed crystals, the width of the particle size distribution, solution concentration and temperature.
The manipulated variables usually include anti-solvent addition, heat input, temperature and
evaporation rate [17,35,52]. In terms of constraints, the most commonly used are [35]:

• Temperature rate of change

• Cooling rate

• Maximum crystal volume

• Rate of anti-solvent addition

• Solution concentration at the end of the batch

Another example of a nonlinear control application available in literature is the control of the batch
polymorphic transformation of L-glutamic acid [17]. The author used the Unscented Kalman Filter for
the state estimation. He defined the optimal control problem comprising two objectives: maximization
of crystals’ yield and minimization of the ratio between nucleated crystals and crystal seeds. The
objective function also includes an inequality constraint in the batch time and yield and an end-point
constraint on concentration. The available measurements were solute and crystal concentrations, first
and second order moments of both crystals and solution temperature. Concentration and temperature
were considered manipulated variables and kinetic parameters disturbances. For the state estimation,
Unscented Kalman Filter was used. In this work, NMPC yielded desirable results, as it satisfied control
constraints, within the batch time specified [17].

Another example includes a hierarchical control structure embracing a lower-level with a super
saturation control approach and a higher-level model-optimisation [52]. The objective function was
minimizing the desired crystal size distribution shape at the end of the batch. Constraints included
maximum and minimum temperature rate of changes and concentration. Another implicit constraint

11



was the yield, as the upper concentration bound was the maximum required for the desired crystal
yield. As previously mentioned, the metastable region was taken into account, by inputting a certain
degree of uncertainty in the nucleation parameters, by using Monte Carlo simulations.

The available measurements used were solution concentration, temperature and crystal size
distribution and the system’s disturbance was done by introducing fine particles in the system to cause
a change in the nucleation curve. The manipulated variables are the temperature and supersaturation
(via concentration). The higher-level controller NMPC was used to give an optimal temperature
trajectory, which served as input for the lower-level supersaturation controller. This optimisation routine
was able to achieve the desired control objective, being able to steer the system to the metastable
region, as intended.

NMPC was also applied [36] in an aspirin continuous crystallizer. The objective function was
minimizing crystal size and yield deviation from the desired. For that, the manipulated variables
included temperature and anti-solvent addition, controlled variables were crystal size and yield and
disturbances were feed solution flow rate and concentration. Coefficient of variation, although not a
controlled variable, was also monitored.

In the objective function formulation, both CVs have the same weight penalty, for empirical reasons,
that penalizes CVs’ values from the set-point one. Furthermore, it was added an input penalty term,
to ensure that the MVs do not change instantaneously their values, allowing for a smooth response.
Constraints included the operation limits for both MVss. Another interesting feature of this study was
the fact that the authors defined the attainable region of operation, as a function of both controlled
variables, in order to evaluate what were the possible combinations of solutions. The controller was thus
tuned to maintain the system inside this region, guaranteeing the desired CVs values. Authors claim the
importance of defining such region to that fact that if the set-point is out of it, the NMPC optimization
problem will be unfeasible [36]. Given that disturbance can shift the system out of the attainable region,
the controller capacity to reject them was also tested. Authors found that the controller was able to
keep its CVs within their desired value, thus confirming its robustness. Overall, implementing NMPC
yielded satisfying results. The authors point to a limitation regarding sensor noise and error which was
not added.

An example of a NMPC strategy was also implemented in the sugar industry [25]. Due to variability in
feed characteristics and nucleation and evaporation rates, the conditions that create supersaturation are
not always the same, thus affecting crystal growth. Hence, a NMPC strategy was implemented, to meet
the process’ requirements. Given hardware limitations, the authors proposed the execution of NMPC
solely when the tracking error is outside a certain bound, thus decreasing the computational burden.

The objective function formulated is composed of two terms: the first one penalizing the CVs
reference trajectory and the second one penalizing the MVs’ moves. Constraints include MVs’ and
CVs’ bounds and rate of change, due to actuator and operational limitations [25]. To enable the
controller activation in certain conditions, the authors added an error function constraint: if, in the
neighborhood of the reference, the tracking error reaches a certain arbitrary value, the controller is
switched on. This error function is defined as the mean of errors between references and predicted
outputs. The magnitude of the penalties in both terms of the objective function were determined
empirically, as well as the control and optimization horizons.

MVs included feed and steam (for evaporation) flow rate The CVs were the final mass average size
of crystals, its final size distribution (measured by its coefficient of variation), fraction of crystals and
supersaturation. Given the existence of real plant measurements, they served as natural source of
noise and disturbance. Results showed the NMPC strategy lead to shorter batch times (although time
was not explicitly optimized), when compared to simple feedback control strategies. Furthermore, the
addition of the error tracking constraint helped reducing computational time. Quality wise, NMPC also

12



yielded satisfying results. The authors point to the quality of the variables estimation as one of the key
aspects to the obtained results.

Another documented industrial implementation of NMPC was done on sucrose continuous
crystallization [54]. The main objective was to ensure the desired product quality, in terms of crystal
size distribution at the end of the operation. The secondary objective was the mass of crystals.
Similarly to remaining authors, maintaining the desired supersaturation levels was the chosen control
strategy. Nonetheless, its variability with experimental conditions, such as level of impurities, make its
measurement unreliable. Hence, the CV of this paper was crystal mass. The objective function
included two terms: a penalization for the CV reference trajectory and another for the MV control
moves. In this case, the MV was the mass flow rate of the feed. Moreover, white Gaussian noise of 1%
was added to the estimated variable of crystal mass, to simulate a more industrial-like scenario. Like
the previous article described [25], NMPC strategy leaded to time saving results as well as satisfying
setpoint tracking and disturbance rejection.

2.3.4 Batch time Control

All the examples described in the previous section did not entail batch time as a concern - most of
them assumed a fixed batch time [17,27,52]. Industrially, optimising batch time is attractive as it results
in economic savings. However, in crystallization, when time is of a concern, it is usually regarded as
secondary goal [55]. Some strategies to deal with minimising time have been found in other sectors,
such as the polymerization one, both using nonlinear and linear model predictive control [55–57]. A
more conservative option done was assuming fixed batch time options, whenever plant measurements
were made [57]. Thus, an optimisation was performed on the fixed batch time possibilities. Another way
found to deal with this subject was to stop the batch operation when a control objective was met [55].
Alternatively, fixing as an end-point constraint a specification desired for the product was yet another
option found [56].
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Chapter 3

Materials and Methods

Process Systems Enterprise (PSE) provides the advanced modelling software package gPROMS,
which includes three major environments: gPROMS ProcessBuilder, gPROMS FormulatedProducts and
gPROMS ModelBuilder [58]. Parallel to that, gPROMS also includes a general software plaform for
building and testing digital applications: gPROMS Digital Applications Platform.

3.1 gPROMS FormulatedProducts

One of the environments used in this work was the gPROMS FormulatedProducts, a platform which
integrates formulated products with their manufacturing process, from pharmaceutical products, to
agrochemicals and food products. It includes several libraries; the one in the current project is named
gCRYSTAL. This library provided the model to which the control strategy was used.

3.2 gPROMS Model Builder

The model used was validated in gPROMS Model Builder software, a platform which enables the
development, validation and execution of custom models, contained inside project files. Each project
contains several sections:

• Variable: definition of variable type, its units and limits

• Models: canvas for custom modelling of flowsheets; equation-based

• Tasks: scheduling operations

• Processes: execution of simulations, using created models

• Optimisations: optimisation of processes

• Saved Variable Sets: variables values from previous ran processes

• Miscellaneous Files: imported data (.txt) from other sources

This platform was used to build the communication route between the gPROMS FormulatedProducts
model and the controller platform, gNLMPC. The relation between the platforms is schematized below:

The interface built is a gPROMS Model Builder project file that provides the connection between the
model and the controller. The created project file included:
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Figure 3.1: Scheme depicting the concept of interface between gPROMS and gNLMPC

• Master Model: Definition of variables, parameters and their equations

• Processes:

- Master: Setting and assignment of variables and parameters

- CSI: Assignment of MVs and DVs, setting of measured variables and model parameters and
initializing the steady-state calculation

- WSE: Assignment of MVs and DVs, setting of model parameters and simulating the
estimation horizon

- OP: Assignment of MVs,CVs and DVs, setting of model parameters and simulating the
prediction horizon

• Tasks:

- GetInputVariables: send MVs and DVs to gPROMS solver

- RestoreOptimalSystemState: call a saved variable set with optimal system state

- SendMeasured Variables: send measured variables from the gPROMS model to the
gNLMPC

- SendReportedVariables: send reported variables from the gPROMS model to the gNLMPC

- SendUnmeasuredDisturbances: send unmeasured variables from the gPROMS model to
the gNLMPC

• Saved Variable Sets

- CurrentSystemState: text file comprising all flowsheet’s variables at current time

- OptimalSystemState: text file comprising all flowsheet’s variables optimal values

3.3 gPROMS Nonlinear Model Predictive Controller

The main platform used for controller design was the gNLMPC. It is a software created for both offline
and online configuration, deployment and testing of nonlinear model predictive control on a plant. It is
composed of three main modules, depicted in figure 3.2.

The Manager is in charge of the management of all modules. The Data Validation (DV) checks
the consistency of data from the digital control system before being sent to CMs and from the CMs
to the digital control system. Finally, the Computational Modules (CMs) are the gPROMS processes
and tasks that provide the controller information of what to do. Some of those processes include data
reconciliation, state estimation and optimisation.
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Figure 3.2: gNLMPC software scheme

There are three main operations in gNLMPC: configuration, testing and deployment of the
controller. In the configuration section, the user can define the control variables, as well as their limits
and properties. NMPC specific parameters such as number of control intervals, their duration and
estimation and prediction horizon can also be set. In the test section, several operational scenarios
(different setpoints, step tests, etc) can be created, for different plant measurements, in order to tune
the controller. Available test options fall into one of the following three categories::

• Single Cycle: runs the sequence of data validation, computational module and results validation

• Run Replay: runs several single cycles

• Emulation: optimization and real time implementation of the optimal control profile of the MVs on
a plant model

In the deployment section, the connection to external servers in order to operate the controller is made.
Finally, troubleshooting can be executed by exporting back the case files to gPROMS Model Builder.
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Chapter 4

Model Description

The model used for NMPC, which was included in gPROMS FormulatedProducts model libraries and
developed based upon previous work [59], is a seeded batch crystallization of paracetamol, portrayed
by the following flowsheet (figure 4.1) :

Figure 4.1: Flowsheet

It comprises the following units:

• Mixed suspension mixed product removal crystallizer (”vessel”): reactor model where
crystallization specifications, such as type of operation, main mechanisms and reactions are
defined.

• Anti-solvent feed (”AS feed”): slurry feed of anti-solvent, where temperature and composition of
anti-solvent are defined.

• Anti-solvent pump (”AS pump”): pump model where anti-solvent flow rate and profile are specified.

• Temperature controller (”TC”): temperature controller unit where the control profile is specified
such as setpoint and number of control intervals.

• Particle-size distribution sensor (”PSD sensor”): unit measuring particle size distribution
parameters, including quantiles, volume fractions, densities, span, coefficient of variations and
moments of distribution.

• Liquid composition sensor (”liquid comp sensor”): unit measuring mass concentration and fraction
of liquid components, solubility and supersaturation level.
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• Data comparator: unit that compares experimental and predicted particle-size distribution and
solution concentration.

• global specifications: unit that receives general model specifications such as crystal compositions
and phases, thermodynamic properties and particle size distribution parameters like grid size and
type.

• blank outlet: simplifying unit representing the destiny of batch product.

• Simulation duration: unit that receives time specification.

Paracetamol seeds are added at the beginning of the batch with the following initial conditions (table
4.1):

Table 4.1: Crystallizer initial conditions

Composition (kg/kg)
Paracetamol 0.18227
Methanol 0.49064
Water 0.32709

Mass (kg) 0.36687

4.1 Crystallization Mechanisms and Parameters

The main mechanisms included in the simulation are secondary nucleation, growth and dissolution
and agglomeration. Only secondary nucleation by attrition was considered (as primary nucleation does
not occur in industrial processes), following a custom kinetics scheme, of empirical nature given by the
following expression, describing this mechanism [59]:

Jsec = kn (C − C∗)n µnsec
2 (4.1)

Where Jsec is the nucleation rate, C is the solute concentration. C∗ the solubility, k the nucleation rate
constant, n the nucleation order and nsec is the second nucleation order.

Likewise, growth and dissolution also follow a custom kinetics scheme, described by the following
rate expression, in which G represents the rate of growth and dissolution [59]:

G = kg (C − C∗)g (4.2)

Where k is the growth rate constant and g the growth order.

Agglomeration is described by an empirical power law of the form [59]:

βagg = a1G
a2εa3 (4.3)

Where βagg is the rate of agglomeration, a1, a2 and a3 are empirical parameters and ε is defined by:

ε =
Np d

5
imp n

3
s

V
(4.4)
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In whichNp is the stirrer’s power number, dimp the impeller diameter, ns the stirring rate and V the reactor
volume. All the empirical parameters in all three mechanisms were also based on previous work [59],
and are summarized in the following table.

Table 4.2: Model Parameters

Model Parameter

Secondary Nucleation kn n nsec
19.81 1.48 0.25

Growth and Dissolution kg g
3.84E-6 1.12

Agglomeration a1 a2 a3
0.27 1.34 1.34

The process entity (defined in chapter 3) provides the assignment and setting of variables and
parameters of the process. After running the process, it is possible to obtain the results for the
simulation. In the aforementioned conditions, the particle size distribution is depicted by the following
figure 4.2:

Figure 4.2: System’s particle size distribution

Each color represents a quantile, going from 10% (red) to 90% (black). A 10% quantile means that
10% of the particles in the solid phase are of size equal of below the one depicted by the line. That is why
bigger quantiles have higher crystal size. With time, the different particle bins reach a maximum size.
This equilibrium stage is observable in the crystal’s span (figure 4.3a), where the dispersion of particles’
size reaches a maximum in the beginning, followed by a decrease and settlement stage, changing only
slightly in the last 3000 seconds of the simulation.

Another variable worth evaluating is the volume mean size (figure 4.3b), since it is another variable
that characterizes the particle size distribution. It is possible to see the system increasing its volume in
the beginning of the simulation and reaching a settling stage at around 2000 seconds.
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(a) Evolution of particle’s span with time (b) Evolution of particle’s volume mean size with time

4.2 Control Scheme

The system’s control variables are categorized in the following table 4.3:

Table 4.3: System Variables

Variable Name Units Variable Category

Measured Manipulated Controlled Disturbance

Anti-Solvent Flow kg/s x x

Temperature ◦C x x

Volume mean size µm x x

Supersaturation µm/µm x

Span µm/µm x x

Dissolved Paracetamol kg x x

Impeller Frequency rpm x

Anti-Solvent flow and temperature were chosen as MV as they are the main drivers for
supersaturation, and, consequently, crystallization. The range of operability for Anti-Solvent flow is
between 1 and 9E-04 kg/s and for temperature is 20 and 45 ◦C. As discussed in section 2.3.3, typical
goals for crystals include achieving maximum growth with minimum particle size dispersion. Hence,
variables such as span and volume mean size were the chosen metrics for that goal. Span is defined in
the model as:

Span =
L90 − L10

L50
(4.5)

In which L90, L10 and L50 refer to the length of crystals in the particle size distribution quantiles 90, 10
and 50% respectively. This makes it a measure of particle size dispersion. Volume mean size is defined
as the mean volume of particles divided by their diameter, and it is defined in the model as:

V olumemean size =
M4

M3
(4.6)

In which M4 and M3 describe the fourth and third moment of the particle size distribution. This property
serves as a crystal growth metric, as it describes the mean volume over diameter of the particles.

Relative supersaturation, which in the model is defined by equation 4.7 was chosen to be a CV in
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order to ensure the correct crystallization conditions are being met, as this property is the main driver for
crystallization (see section 2.3 in chapter 2). The saturated solute mass concentration is temperature
dependent as it is possible to observe in figure 4.4, which depicts the paracetamol solubility curve for
different solvents.

Relative Supersaturation =
SoluteMassConcentration− Saturated SoluteMassConcentration

Saturated SoluteMassConcentration
(4.7)

Figure 4.4: Paracetamol Solubility curve in various solvents [60]

Lastly, dissolved paracetamol was chosen as a CV to keep track of the crystallization progress and
to guarantee that there is paracetamol left to react. Impeller frequency was chosen as the sole DV as it
is a independent variable to the system, meeting the general criteria for this kind of variable.

4.3 Disturbances Impact on Controlled Variables

In the model, impeller frequency has an impact on the agglomeration kinetics, as the agglomeration
rate constant is proportional to the logarithm of the specific power input. The power input is defined by:

Power input =
Power number ∗ impeller frequency3 ∗ impeller diameter5

Operating volume
(4.8)

Therefore, an increase in the impeller frequency is expected to lead to a higher power input,
consequently increasing the agglomeration rate. Given that both birth and death rates of crystals are
exponentially dependent on this constant, it is expected to affect the CVs.

In order to establish the relation between DVs and CVs, a global system analysis was conducted.
This gPROMS feature is a simple sensitivity analysis tool - from it, the impact of changes of the impeller
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frequency on the CVs can be drawn.The results are depicted below (figure 4.5):

Figure 4.5: Impeller frequency impact on CVs

Increasing impeller frequency increases the stirring rate, which results in a higher number of
collision between solid particles. The probability of the particles binding to each other after colliding
increases as the number of collisions increases, so the agglomeration rate rises. As particles are more
agglomerated, the particles’ volume is higher, that is why volume mean size increases. If the particles
are more agglomerated, their size disparity also decreases, which is why span assumes lower values,
with the increase of the impeller frequency. The increase of agglomeration also has an impact on the
solute mass, by increasing its concentration in the liquid phase. This results in an increase of relative
supersaturation (see equation 4.7). Although it seems dissolved paracetamol is quite affected by the
increase of impeller frequency, by taking a closer look at the magnitude of y-axis, one can conclude
that its change is not as significant as the other variables.
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Chapter 5

Optimisation Problem

As mentioned in chapter 2, implementing a NMPC strategy implies solving an optimisation problem,
which involves minimising the difference between the current state of a given process and the desired
one. The result of such an optimisation is the control action that satisfies those objectives. That control
action is expressed as the optimal trajectory for the MVs. In the following chapter, how this optimisation
problem is formulated is further explained.

5.1 Formulation

As mentioned in section 2.1.1, in chapter 2, the control objectives are typically expressed as the
desired values for the CVs. However, a controller constructed to comply with specific values may be
deemed too conservative, while also making the optimisation procedure rather burdensome, as the
optimal solution would take longer to be found. In the present work, the control objectives were defined
as desired intervals for the CVs, instead of values. This conferred the controller more flexibility. A typical
CV trajectory is shown in figure 5.1.

Figure 5.1: Typical CV trajectory

The objective function that describes the optimisation problem is penalty-based, which means that
penalties are added whenever a CV is outside its desired interval, represented by the dashed lines
in figure 5.1 (another option would have been to formulate it in a constraint-based way). The interval
of values chosen are the ones intended for the CVs at the end of the batch operation. In this way,
the controller ensures that these variables comply with control objectives for that batch. The penalties
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added for the violation of these limits are different for each CV: this ensures the controller prioritized
some objectives over others.

The objective function can also contain terms to penalize a CV heading to its desired limits too fast.
The concept behind the penalty is better understood by looking at the following figure 5.2.

Figure 5.2: CV trajectory with (orange line) and without (blue line) a move-penalty

The blue line represents the trajectory for a CV without any penalties on its rate of change and the
orange line with such penalty. In both cases the control objectives for this CV are met: both trajectories
reach the intended limits. Nonetheless, the CV described by the blue line reaches those limits faster.
Sometimes it is not desirable to reach the limits faster. For example, faster crystal growth is not always
desired, as too rapid a growth leads to the infiltration of more impurities.

Another penalty that may be added to the objective function regards the MVs moves, more
specifically it concerns MV degeneracy. Degeneracy in MVs may be due to two factors: magnitude and
impact. MVs magnitude may influence the controller’s willingness to move one MV rather that another.
Whereas differences in impact (done by the MVs) on the system, which may result in the controller
choosing always to move the same MV. These differences may thus be smoothed by the addition of
penalties on the MVs moves.

Figure 5.3: MV trajectory with (grey line) and without (yellow line) a trajectory penalty

Another penalty one can add to the optimisation concerns the MVs trajectory calculated by the
controller at each cycle. Figure 5.3 shows two MV trajectories (represented by the dots). The yellow
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line depicts the trajectory without a penalty. Suppose the MV depicted is temperature. It is possible to
see the oscillation between the points. Despite being the optimal trajectory for this MV, such oscillation
might not be feasible in practice for several reasons. For example, the actuators would have difficulty
implementing a 20 ◦C difference from one cycle to another. Secondly, the sensors may not be able to
accurately measure the temperature, as it is changing, causing the controller to not have the correct
input of the system, when calculating the optimisation for the following cycle. Lastly, even if the actuator
was able to implement the temperature change before the following cycle, the system itself would not
have ”felt” that change long enough to actually make the impact the controller had predicted: reaching
45 ◦C is not the same as having being at 45 ◦C for an entire cycle. As such, a penalty on the trajectory
change between cycles may be added, which is the option depicted by the grey line, in figure 5.3. This
trajectory may be not the true optimal one, but it is more realistic and achievable.

The objective function (OF) that describes the formulation explained in the previous section can be
simplified into the following expression 5.1 [61]:

minOF = A+B + C (5.1)

in which:

• Term A includes the penalties added whenever the CVs are outside their desired limits (also
referred to as ”reference envelopes”).

• Term B features the penalties concerned with the controller’s movement actions (whenever either
a CV or a MV is changing too much),

• Term C comprises the penalties related to MVs moves between cycles

The objective function can be further formulated as follows [61]:

min
ui,k|λu

i =1
OF ≡

∑
j∈CV

λzj C
′ z,lo
j

∫ T opt

0

max(0, zref,loj (t)− z̄j(t))2 dt

+
∑
j∈CV

λzj C
′ z,hi
j

∫ T opt

0

max(0, zref,hij (t)− z̄j(t))2 dt

+
∑
j∈CV

λzj C
z
j

∫ T opt

0

z̄j(t) dt+
∑
i∈MV

λui C
u
i

∑
k=1

δk ui,k

+
∑
i∈MV

λui C
δu
i

K∑
k=1

|ui,k − ui,k−1|

(5.2)

where:

• OF: objective function

• CV: controlled variable

• MV: manipulated variable

• T opt: optimization time horizon

• K: number of control intervals

• δk: duration of control intervals

• ui,k: MV value i over control interval k
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• λui : binary switch (0/1) indicating whether MV i is included in the optimisation

• λzj : binary switch (0/1) indicating whether CV i is included in the optimisation

• C ′ z,loj , C ′ z,hij : violation penalty applied to CV when it is below or above its reference envelope limits

• zref,loj (t), zref,hij (t): lower and upper limits of reference envelopes

• z̄j(t): CV trajectory

• Czj : CV j cost penalty

• Cui : MV i cost penalty

• Cδui : MV i cost penalty at control interval boundaries

In the above formulation, the optimisation time horizon T opt is the sum of the control intervals K, of
length δk.

CVs’ trajectories

The initial focus stood upon term A, as it is the term that ensures the achievement of the control
objectives, by steering the CVs into their reference envelopes. As such, terms B and C were turned off.
This meant:

• CV binary switch λzj equal to 1

• MV binary switch λui equal to 0

• Cost penalties on CVs and MVs (Czj and Cui ) equal to 0

• MV i cost penalty at control interval boundaries Cδui equal to 0

In this way, there was no controller trade-off between terms, and the obtained solution was the most
optimal one.

The first goal was to ensure that the CVs displayed the desired value at the end of the simulation,
within the reference envelope. The reference envelopes bounds were chosen according to the CVs’
desired values at the end of the batch. The chosen values are presented in the following table:

Table 5.1: Initial values and bounds for the CVs

Variable Units Initial Value Lower bound Higher bound

Span µm/µm 128.7627 134.56575 137.28425

Supersaturation - 0.011411 0 0.023171

Volume Mean

Size
µ 196.6545 290.0341 400

Dissolved

Paracetamol
kg 0.066723 0 0.037686

The presented values were taken from the original model, after a 6000 seconds simulation. Some
CVs have wider reference envelopes than others - that is due to their flexibility. Span, a measure of
particle dispersion, is more restricted than volume mean size, which is a measure of particles’ growth,
given that assuring the desired particle size distribution is more important than achieving maximum size.
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5.2 Optimal Control

Two scenarios under optimal control were analysed. Optimal control refers to the optimal scenario
predicted by controller for the output variables. The controller parameters used for this study were:

Table 5.2: Controller Parameters

Controller Cycle Length 500 sec

Number of Control Intervals [1,1,1,1,1,5,5]

The number of control intervals is given as an array. It was observed that the system was very
dynamic in the beginning of the simulation, compared to the end. Thus, smaller cycles were chosen for
the beginning of the simulation, to capture the system’s interactions more accurately. Whereas in the
end, shorter cycles were not necessary, so to decrease the computational burden, longer cycles were
chosen.

Controller Tuning

The controller tuning under optimal control included studying how the magnitude of term A impacts
the CVs and MVs. Different penalties for each of the CVs were analysed individually. The method used
was to turn on only the CV to be analysed (CV binary switch λzj equal to 1) and to change the violation
of bound penalties (C ′ z,loj , C ′ z,hij ) to 0.1, 1, 10, 100 and 1000 accordingly. The system’s response to a
10% disturbance on DV impeller frequency was observed.

Figure 5.4: Span’s optimal trajectory

Figure 5.4 shows that span is able to return to its reference envelope (in dashed lines) and that the
optimal trajectory does not change with the penalty for bounds violation. Looking at the MVs trajectory
(figure 5.5), one observes that Anti-Solvent Flow is the same for all cases. Whereas temperature slightly
changes: with increasing penalty, the first value for temperature after initialisation is lower. Although this
is only visible from penalty 100 or higher, the other cases displayed an initial value of around 25 ◦C.
For all cases, temperature returns to 25◦C at time t=500 seconds, which is the controller cycle length.
This suggests that after the first cycle, the controller decided that the CV was already heading to his
reference envelope as desired. The magnitude of the value after initialisation seems to be related to the
magnitude of the bounds’ penalties. The higher the bound, the more pressure the controller had to make
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Figure 5.5: MVs optimal trajectory for different penalties on Span

sure that its CV returned to its reference envelope, hence, the bigger decrease in temperature (figure
5.5) .

The following CV to be analysed was supersaturation (figures 5.6 and 5.7).

Figure 5.6: Supersaturation’s optimal trajectory

Figure 5.7: MVs optimal trajectory for different penalties on Supersaturation

As it was observed for span, supersaturation’s optimal trajectory does not change with the magnitude
of the reference envelope penalty (figure 5.6). Neither do the MVs (figure 5.7). Although it did return to
its reference envelope as intended. Unlike span, supersaturation’s initial value was already inside the
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reference envelope - it only started to violate its bounds some time after time 0. This may be the reason
behind the fact that temperature does not display the same initial step as it did in the previous simulation
(figure 5.5).

Another CV to be analysed is the volume mean size (figures 5.8 and 5.9).

Figure 5.8: Volume mean size’s optimal trajectory

Figure 5.9: MVs optimal trajectory for different penalties on volume mean size

Similarly to the other analysed CVs, the optimal trajectory does not change with the reference
envelope penalties (figure figures 5.8). The same is observed for the MV Anti-Solvent Flow (figure 5.9).
Although, unlike in the other CVs case, it does not remain constant throughout the optimisation. The
same goes for MV temperature which displays different values for the first 500 seconds (figure 5.9). For
both penalties of 0.1 and 1000, initial temperature was 15. For penalty equal to 1, 10 and 100, the initial
temperature value observed was 25.54, 22.79 and 36.90◦C. The temperature value does not seem to
be proportional to the magnitude of the penalty, as it was observed for span. These results seem to
confirm the non-linearity of the system’s response to disturbances. Nonetheless, this CV seems to be
starting to violate its upper bound, and neither MVs display any change. One possible reason for that is
that the violation was not severe enough (in both time and magnitude) for the controller to take any
action before the simulation ended.

The last CV to be analysed is the dissolved paracetamol (figures 5.10 and 5.11).
For this CV the optimal trajectory is also independent of the bound’s violation (figure 5.10). In this

case, temperature does exhibit the same pattern: remaining constant (figure 5.11). However, MV Anti-
Solvent Flow seems to be displaying a step behaviour, starting from its upper limit value of 9E-05 kg/s
(figure 5.11). For the first step, it seems that the higher the penalty, the later and more abrupt the
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Figure 5.10: Dissolved Paracetamol optimal trajectory

Figure 5.11: MVs optimal trajectory for different penalties on Dissolved Paracetamol

change is. For the second step, this change is barely noticeable and for the third even more. One
possible reason for this is the fact that the CV is only violating its reference envelopes for the first 3000
seconds. So, the magnitude difference is only visible when there is a violation, which makes sense:
when there is no violation, the controller just needs to maintain its MVs values. The magnitude of the
steps are also related to the control intervals - they were defined as four cycles of 500 seconds and two
cycles of 2500 seconds. Hence, each step corresponds to the new value of each cycle.

Besides the controller’s behaviour, one may also see from these experiments, which MVs the
controller chooses to change. CVs like volume mean size and dissolved paracetamol seem to be more
dependent on the anti-solvent flow. For both cases, the MV decreases its initial value, which is related
to the type of envelope violation. For dissolved paracetamol, its initial value was above its limits, which
means that new crystals had to grow. That is why, for the first 2000 seconds, anti-solvent flow is at its
maximum allowed value and the CV is decreasing. After 2000 seconds, there is no need to keep
anti-solvent flow at its maximum as the CV is almost reaching its reference envelope. After reaching the
desired area, the MV could settle at an even lower value, that allows the CV to settle inside its bounds.
For span and supersaturation, their relation to MVs cannot be established so well, as they were not
enough time outside their reference envelopes. Nonetheless, for volume mean size, both MVs
changed, which makes the case eligible for a further analysis. The exact same scenarios were tested,
although this time with only one of the MVs active at a time. In this way, it is possible to see the reason
why both MVs were changed and not just one.

The initial intention of this test was to see the impact of changing the penalties added whenever the
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CVs were outside their reference envelopes, in an optimal scenario. In some cases, different penalties
resulted in different MVs trajectories, without impacting the CVs trajectories. These tests made it
possible to confirm the penalty-based nature of the objective function, as the controller will always find
an optimal solution and implement it, regardless of the magnitude of that penalty. For the subsequent
scenarios, however, the exact penalty magnitude had to be specified .The final chosen penalties for the
CVs are shown in table 5.3.

Table 5.3: CVs Reference Trajectory Penalties

Penalty Span Supersaturation
Volume

Mean Size

Dissolved

Paracetamol

Lower Limit 1000 1 1000 1

Upper Limit 10000 1000 100 100

As previously stated, the penalties are going to be multiplied by the square difference between the
target intervals and the current values of the CVs (see equation 5.2 in chapter 5). Therefore, the choice
of their magnitude had to take into account the CVs’ absolute value. Not only that, but the magnitude
difference between penalties help the controller to prioritize some CVs, over others. That is why span is
the CV with higher penalty: it is the main indication of the crystal’s quality, which is the reason why its
upper limit has a higher penalty than its lower limit. On the contrary, supersaturation is not a
measurement of crystal’s quality, but an indication about the progress of the crystallization - if it is a
positive value, there is crystallization, otherwise, there is no reason to continue with it, as crystals are
starting to dissolve. The high penalty for the upper limit is to guarantee that a minimum supersaturation
is achieved. The lower limit is less of a concern, hence its lower penalty. Regarding the crystal’s
volume mean size, a growth indicator, ensuring a minimum is more important than enforcing a
maximum, thus, the difference in penalties. Lastly, for dissolved paracetamol, setting a higher upper
limit violation aims to ensure a maximum liquid mass allowed in the crystallizer.

Disturbance Rejection

Disturbances of ± 5, 10 and 15 % on the DV impeller frequency (with a initial value of 250 rpm)
were performed and the optimal trajectory of the CVs, as well as for the MVs are presented (figures
5.12 and 5.13). Regarding span, it is possible to verify that only for ±5 disturbances, does the CV
return to its reference envelope. One possible reason is the narrow bounds chosen to this CV. It is
also worth pointing out that negative disturbances increase the trajectory, showing a reverse relation
between impeller frequency and span [1], which matches the system’s dynamics: a higher impeller
frequency improves mixing which promotes a more uniform growth, thus decreasing the particles’ span.
When it comes to supersaturation, the controller is more successful as it is able to steer this CV back
to its reference envelope for all cases. Also for this CV, the relation towards the disturbance is reverse
as lower impeller frequencies result in higher violations in magnitude and time: a - 15% disturbance not
only shows a higher initial peak but also takes longer to return to its reference envelope. This happens
for the same reasons given above. Volume mean size shows a different trend comparing to the above
mentioned CVs, as lower impeller frequency values yield lower volume mean size values. An explanation
may lay on model itself: one can see in equation 4.3, that the agglomeration rate is proportional to the
stirrer’s velocity and a higher degree of agglomeration results in a higher volume size of the particles.
Similarly to span, only for ± 5% disturbances is the controller able to steer this CV into its reference
envelope. Violating the upper limit of the reference envelope is not of a particular concern, as crystal
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Figure 5.12: CVs trajectories

Figure 5.13: MVs trajectories

growth is one of the main goals. Lastly, except for 10 and 15% disturbances, the controller is able to
steer dissolved paracetamol into its reference envelope. Similarly to volume mean size, these two cases
fail to return to their reference envelopes. This means that dissolved paracetamol is slower to crystallize
under higher impeller frequencies. This goes in agreement with the proposed hypothesis that stirrer
rates promote a more uniform slow crystallization process.

Looking at the MV temperature (figure 5.13), one can see that the higher the impeller frequency, the
higher the initial temperature. After the first control interval of 500 seconds, temperature settles at its
initial point of 25 ◦C. On the other hand, Anti-Solvent Flow starts from its upper bound of 9E-5 in all
cases. Then, the more negative the disturbance, the lower the final value is.
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Chapter 6

Emulation Definition

In the following chapter, the emulation mode is further explained. As it was briefly explained in
chapter 3, emulation is the real-time implementation of the controller’s optimal control action on a digital
twin of the model. The emulation is performed in cycles, and the controller’s tasks in each cycle are
explained below:

1. Cycle 1: Data Reconciliation. The optimal initial steady state conditions are calculated. The task
is described by the following optimisation routine:

min
u,d

∑
i∈M

λi
ω − ω̄i
σi

(6.1)

Subject to :
f(x, 0, y, u, d, θ) = 0 (6.2)

zmin ≤ z ≤ zmax (6.3)

Where x and y are state variables, u and d are the MVs and DVs respectively, θ is a time-invariant
parameter, M the group of variables to which measurements are available, ω and ω̄i denote
measured variables and their measurements respectively and σi is the standard deviation of the
measured variables (due to sensor or actuator characteristics, for example). λi is a binary factor,
which specifies whether a measured variable should be taken into account in the optimisation.
Variables whose measurements are not available will not be included. Lastly, zmin and zmax are
the bounds for z, which represents variables {x, y, u, d}.

2. Cycle 1: Optimisation and Prediction. The controller performs the optimisation procedure
described in chapter 5.

3. Cycle 1: Digital Twin: the gPROMS simulation of the digital twin of the model is ran with the optimal
trajectory calculated in the Optimisation and Prediction procedure.

4. Cycle 2: State Estimation. The initial conditions from cycle 1 are received and used to solve the
plant’s current state.

5. Cycle 2: Optimisation and Prediction. Similar to procedure to optimisation in cycle 1.

6. Cycle 2: Digital Twin. Similar to cycle 1.
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7. Cycle 3 - End: Similar to cycle 2. The controller will calculate the estimate of the state based on
the previous cycle.

As stated in chapter 3, the gNLMPC platform offers three operation possibilities to the controller:
configuration, testing and deployment. Only the deployment features of the platform were used not in
the present thesis as it concerns the connection to a plant’s servers. How the two other features were
explored will be explained next.

6.1 Configuration of Controller Parameters

The controller tuning is done in the configuration section, where different controller parameters are
specified. Three main parameters were studied: controller cycle length, number of control intervals and
prediction horizon.

Controller Cycle Length

Different controller cycle lengths were tested, in order to see its impact on both CVs and MVs. Shorter
cycles are expected to provide a better understating of the process, which leads to more reasonable
control actions and better reference trajectory and disturbance rejection [25]. However, longer cycles
duration seem to be better at identifying and dealing with measurements noise [51]. Furthermore.the
smaller the length of the control cycles, the greater the computational burden of the controller, since it
must run more optimisation routines to reach the same objectives [62].

Number of Control Intervals

The number of control intervals was also tested to verify whether it had any impact on the MVs and
CVs. The number of control intervals multiplied by the controller cycle length results in the optimisation
horizon. Hence, changing the number of control intervals is the same in principle as change the
optimisation horizon.

Firstly, the computational burden is expected to increase with the increase of the number of control
intervals, given that the optimal trajectory will be divided in more intervals. This may improve the
efficiency of the optimisation, as it forces the controller to calculate more accurately the CVs’ trajectory.

Some experiments show that the sampling intervals have little effect on the size of the terminal
regional (where the estimates converge) [63]. Other experiments show that the plateau values are
expected to be the same, just the path is tending progressively to a continuous profile, as the number of
intervals increases [53].

Prediction Horizon

The prediction horizon’s impact on the controller was also investigated. This parameter is defined
in the software as an integer multiple of the controller cycle length. Its number represents the number
of controller cycles to include after the optimization cycles. Essentially, the objective of this test was to
determine whether the distance between T opt and T pred in the MV optimal trajectory (represented in
figure 6.1) had any impact on CVs and MVs trajectory.
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Figure 6.1: Optimization and Prediction Time Horizons

6.2 Testing

After having studied the impact of some controller parameters, it was possible to proceed to the
testing phase. The testing consisted in creating disturbance scenarios to see how the controller
responded, in terms of stability and robustness.

Stability

Stability tests were first performed in order to certify that the controller was able to run in ”Emulation”
mode. The test included running a first cycle of a cold-start initialization to obtain the optimal steady-state
values for the MVs. The following cycles were ran with a warm-start estimation routine, as explained in
the previous section. This test also served to draw a baseline.

Disturbance Rejection

The controller’s ability to do disturbance rejection was tested by making step changes on the DV
impeller frequency.

Measurement Noise

As sensors and actuators may not always provide a 100% accurate measurement, the ability to
handle noise was tested by adding it to one of the variables. Noise was added to one measured variable,
span, which is also a CV. This was done by multiplying the outputted measurement by a random number
between 0.95 a 1. This meant that every measure taken after each cycle was multiplied by one random
number (different from cycle to cycle).

Plant / Model Mismatch

A quite frequent problem with model-based controllers is that the model description of the process is
not accurate, namely the kinetic parameters and constants are not absolutely valid. As stated in chapter
2, this makes the prediction harder for the controller, given that what it predicts for the CVs will not
happen. As such, the ability of the controller to achieve its control objective in spite of plant / model
mismatch was tested by changing one of the kinetic parameters, more specifically the supersaturation
order. The parameter suffered a -5% deviation from its original value.
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Chapter 7

Emulation Results

The results of the configuration and testing of the controller on emulation mode are demonstrated in
the following chapter.

7.1 Configuration of Controller Parameters

The testing of the emulation began with studying the impact of the controllers’ configuration
parameters on the model.

7.1.1 Controller Cycle Length

For a base case without disturbances, different controller cycle lengths were tested: 250, 500, 750,
800, 900, 1000 and 1100. The measured values for the CVs are depicted below:

Figure 7.1: CVs measured values for different controller cycle lengths

39



From the figures 7.1, it is possible to observe the impact of the controller cycle length on the CVs’
trajectory. In CV span, its initial peak is successively decreases, as the controller cycle length increases.
For lengths above 1000, the peak does not even violate the upper limit of the reference envelope. This
difference fades away as the cycles continue, given that for all hypothesis, span returns to its reference
envelope in the same cycle. The same behaviour is observed for supersaturation, as it returns to its
bounds within the same cycle for all cases. Although for this CV, the difference in its initial peak is
not so clear as it was for span. Still, a certain delay in larger cycle lengths shows how some of the
system’s dynamics is affected. On the contrary, for volume mean size and for dissolved paracetamol,
the change in controller cycle length does not seem to pose significant differences, as their behaviour
is similar for all cases. This points to the premise that the controller cycle length has an higher impact
on span and supersaturation. One possible reason for that is CVs’ dynamics: the more complex the
dynamics, the more behaviour the controller misses. In span’s case that is quite visible as its initial
peak is almost ignored for higher cycle lengths. In the case of the last two CVs, they display an almost
constant behaviour throughout the emulation, rendering the computational burden of a lower cycle length
meaningless.

Figure 7.2: MVs measured values for different controller cycle lengths

It was not the change of the controller cycle length that directly affect the CVs trajectories. In actual
fact, the controller cycle length affected the MVs trajectory, more specifically the time they were being
updated, thus affecting the CVs. This is quite visible in the MVs’ trajectories displayed in figure 7.2.

Regarding anti-solvent flow, the delay in reaching its optimal value is noticeable. It becomes clear
that the optimal trajectory for this variable is to assume the value of 9E-05 kg/s, regardless of the cycle
length. However, longer cycles take longer to implement this change, thus the system continues a larger
amount of time without its optimal trajectory. This explains the CVs behaviour depicted in figure 7.1.
For temperature, it is harder to retrieve some remarks as some trajectories are quite oscillatory. Lower
cycle lengths seem to maintain this MV around its initial value of 25◦C for most of time. Whereas for
cases 800,900 and 1000 temperature displays quite some oscillating step changes. These results point
to the importance of choosing the correct cycle length: in cases 800 and 900, the oscillation would not
be acceptable, given that the rate of change is too fast. One would have to input some penalty on the
controller for the rate of change, which would not be necessary for lower cycles. For case 1100, it returns
to a more steady behaviour. This may suggest that the duration of a cycle may affect the stability of the
MV trajectory.

Another interesting aspect to take into account is the execution time per cycle, which is the time
the controller takes to read the measured variables, update them, calculate the CVs’ optimal trajectory,
implement the MVs next values and run a simulation with them.

Table 7.1 shows the average cycle time for the different cycle lengths. The cycle duration affects
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Table 7.1: Average cycle time for different controller cycle lengths

Controller Cycle

Length (sec)
250 500 750 800 900 1000 1100

Average Cycle Time (sec) 1314 628 3165 503 994 359 379

the optimisation procedure, and it seems that when cycles are too large, namely the last two cases,
the controller finds it easier to reach a solution. Whereas shorter cycles, due to capturing more of the
system’s interactions, are evidence that the controller may be spending more time optimising.

This study allowed to verify the importance of choosing the right controller cycle length carefully: it
has to be small enough to portray accurately the system’s dynamics, but not too small as to burden
the controller. The following tests were performed for a controller cycle length of 500 seconds as it is a
suitable compromise between accurate trajectory and optimisation efficiency.

7.1.2 Control Intervals

Different control intervals were tested, for a -5% step change on DV impeller frequency and a
controller cycle length of 500 seconds. By making a step change on DV, the impact of this configuration
parameter on the controller is more visible (as opposed to no disturbance). Four different control
intervals were tested: 1, 2, 5 and 15 seconds. This means that the optimisation horizon was 500, 1000,
2500 and 7500 seconds, respectively. The CVs trajectory for the different cases is shown in figure 7.3.

Figure 7.3: CVs measured values for different control intervals

No difference is observed between the cases of 1, 2 and 5 control intervals (they overlap), for none
of the variables. One hypothesis is that the difference in horizon is not enough to allow the controller
to find a better solution for the optimisation. However, for the case of 15 control intervals it is possible
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to observe some changes. In span, the initial peak for a higher optimisation horizon is smaller and
happens sooner. In spite of that, the end point for all cases seems to be quite similar, both outside the
desired limits. When it comes to supersaturation, the opposite scenario is observed as the initial peak
is higher for a higher optimisation horizon. Although a delay in this case is still present, in all cases this
CV returns to its reference envelopes at the same time. For the remaining variables, the same pattern is
verified as in both, the 15 control interval case not only shows a faster response, but it is the only case
that complies with the control objectives. The control action responsible for the observed behaviour is
depicted in figure 7.4.

Figure 7.4: MVs for different control intervals

As expected, all cases show the same trajectory with the exception of the 15 control intervals case, in
which temperature displays some oscillation in its values, whereas anti-solvent flow has a value almost
three times larger than the remaining cases. In the remaining cases, both MVs remain in their initial
point. It seems to be indicating that the optimisation horizon was too short for the controller to be able
to find a better solution to satisfy its control objectives. Similar to the previous study, the average cycle
time between cases are shown in table 7.2.

Table 7.2: Average cycle time for different control intervals

Optimisation Horizon (sec) 500 1000 2500 7500

Average Cycle Time (sec) 211 219 235 628

As expected, larger optimisation horizons take more time to run. However, the benefits of choosing
a larger horizon were clear, as the controller was not able to comply with the control objectives for the
shorter horizons. This study confirms what was already anticipated: the optimisation horizon should
be as long as possible in terms of accuracy. One must take into account the computational burden
associated with it and do a compromise, when choosing the duration of its optimisation horizon. The
following scenarios were tested with a 7500 seconds optimisation horizon.

7.1.3 Prediction Horizon

In gNLMPC, prediction horizon is defined as the number of cycles ran after the optimisation horizon
has finished. In other words, it is the time interval after the CVs have reached their control objectives
and the controller will keep the MVs at their current value.
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Figure 7.5: CVs measured values for different prediction horizons

For a scenario without any disturbance, different prediction horizons were tested. A prediction
horizon of to 5 means 5 controller cycles were ran after the control horizon has finished. From figure
7.5, it is possible to see that the CVs are not changing with the change of prediction horizon. This may
be due to two reasons. Either there is only one solution for the optimisation problem, and the controller,
regardless of the prediction horizon, has only one choice of trajectory to implement, or the prediction
horizon has truly no impact on the controller. Taking a closer look at the objective function 5.2 in
chapter 5, one observes that only the optimisation horizon is taken into consideration. One concludes
that the time interval after the optimisation horizon has no influence on the controller’s optimisation. In
gNLMPC, the optimisation horizon can be manipulated in two ways: either by changing the number of
control intervals or the controller cycle length (both cases already discussed previously). That is the
true way of altering the controller’s behaviour.

7.2 Controller Testing

The controller parameters used for the testing are summarized in the following table 7.3.

Table 7.3: Controller Parameters

Controller Cycle Length 500 sec

Number of Control Intervals 15

Number of Prediction Cycles 5

The scenarios submitted to test the controller are shown next.
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7.2.1 Disturbance Rejection

± 5, + 10 and + 15% disturbance tests were performed on impeller frequency in cycle 2 of a 20-
cycle emulation. The measured and optimal trajectories are presented in figure 7.6. The dotted blue
line represents the closed-loop control trajectories (with the controller active), the orange one the open-
loop trajectories (with the controller inactive) and the grey line the optimal trajectory (predicted by the
controller). The dashed lines represent the lower and upper bounds of the reference envelopes.

Figure 7.6: Span measured and optimal trajectories for the different disturbance rejection tests

Looking upon span’s trajectories (figure 7.6), it is observed that the controller is only able to steer the
CV back to its reference envelope for a + 5% disturbance, in the last cycle. For - 5% test, the measured
trajectory is above the optimal one, and for the + 10 and 15% cases the measured trajectories are below
the optimal ones. The possible reason for this incapacity relies on the fact that the reference envelopes
are too narrow, making it harder for the controller to achieve such conservative goals. For +10 and
15% disturbances, the optimal trajectories are not able to fully return to their reference envelopes, thus
confirming how restrictive the bounds are. Physically, it is more attractive for span to be as low as
possible, as long as the crystals have grown. Thus, the controller’s incapacity to steer this CV to its
minimum bound is not worrisome.

It is possible to see that in spite of not being fully able to steer the CVs back to their reference
envelopes, it is still more effective to have the controller active. With the exception of the +10% case,
the closed loop response shows better results than its open loop counterpart, as the first steers the CV
faster to their reference envelope.

Another aspect to notice is the mismatch between the optimal trajectory and the closed-loop one,
which for a +5% disturbance is barely noticeable, but for the remaining ones, it is quite visible. This
shows that the controller is not able to predict exactly the impact of the MVs on this CV, which may be
due to the high degree of non-linearity associated with this particular variable.

It is possible to see in figure 7.7 that, similarly to span, supersaturation is more effectively steered
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Figure 7.7: Supersaturation measured and optimal trajectories for the different disturbance rejection
tests

for the + 5% step test, given that it is the only case that respects this CV’s lower bound. For the rest of
the cases, the measured values go below 0. When supersaturation reaches negative values, dissolution
takes place of crystallization and there is no need to continue with the batch process. Hence, this
lower limit violation is not only not worrisome but it is actually an advantage as the batch time can be
shortened. Shortening batch time, maintaining the same control objective standards is a very attractive
feature as it may result in economic savings.

Another positive result to remark is the fact that the measured trajectories are quite close to their
optimal ones - they only show slight deviation in their initial peak, around 2000 seconds time. This
happens because of the delay in the control actions, which is not immediately felt by the system. The
match between the closed-loop and optimal trajectories is higher for this CV, when compared to the prior
one, despite having less penalties associated to it. This shows that this CV is better controlled and that
the control actions that lead the prior CV, span, to its reference envelopes also help this CV to reach its
control objectives.

Looking upon volume mean size trajectories (in figure 7.8), one can see that the controller is able to
lead this CV to its reference envelopes for both ± 5% step disturbances. Nevertheless, steepest
disturbances are not as effectively controlled. In spite of being close to their optimal trajectories,
measured values for the + 10 and 15% step tests are above their reference envelopes. The controller is
not able to steer the CV given that it is not able to find an optimal solution inside the bounds. One
possible reason for that is the fact that the penalty for this CV upper limit violation is quite low compared
to other CVs, so it is not the controller’s main concern to comply with this limit. In physical terms, as
long as span’s upper limit is not violated, it is attractive to have the highest value possible for this CV,
as it translates in larger crystals.

There is a slight mismatch between the closed-loop and optimal trajectories for the -5% case, in the
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Figure 7.8: Volume mean size measured and optimal trajectories for the different disturbance rejection
tests

first 2000 seconds. The reason for this has been explained in the previous sections: there is a delay in
the implementation of the control action causing the initial mismatch. Nonetheless, after 2500 seconds
this is no longer observed. This shows that the controller is able to predict well the impact of the MVs
changes on this CV.

Additionally, regardless of the case, the closed-loop trajectory reaches the reference envelopes faster
than the open-loop one, which shows the benefits of having such a control strategy implemented.

Lastly, dissolved paracetamol is able to be steered into its reference envelopes for all disturbances
(figure 7.9), thus, confirming the controller’s ability to meet the control objectives for this variable, despite
being the lowest in terms of priority (see penalties for each CV in table 5.3 in section 5.2). This could
also be due to the control actions that satisfy the more important control objectives are in agreement
with the goals for this CV, which is an indication of the compatibility of control targets.

Another interesting aspect is that not only is the closed-loop trajectory faster than the open-loop one
(similarly to the remaining CVs), but also for the +5% case, the open-loop trajectory does not even reach
its reference envelope. This means that for this case in particular, the control objectives would not be
met, if it were not for the controller. This particular CV shows clearly the benefit of having implemented
such control strategy, as reaching the reference envelopes faster translates into a faster crystallization,
because it means that paracetamol is transforming into crystals sooner.

Similary to the other CVs, in the -5% case, there is a mismatch between the optimal and closed-loop
trajectories. However, for the remaining cases, the there is perfect match between the two. This confirms
the controller’s ability to predict this CV response to the control action implemented.

The MVs trajectories are depicted below in figure 7.10. As it has been seen for other disturbances,
Anti-Solvent Flow heads to its upper limit and settles there for the entire emulation. One hypothesis
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Figure 7.9: Dissolved Paracetamol measured and optimal trajectories for the different disturbance
rejection tests

for this behaviour is that it is the optimal solution to maximize crystal growth, and that is achieved by
promoting crystallization. This results in increasing anti-solvent flow to its maximum possible, as long as
it still complies with other goals, such as particle disparity. Yet the same is not observed for temperature.
A + 5 % disturbance barely changes this MV out of its initial value of 25 ◦C. In the rest of the cases,
temperature oscillates between its bounds (from 20 to 45 ◦C), sometimes from one cycle to another.

Figure 7.10: MVs trajectories to disturbance rejection tests for the different disturbance rejection tests

Another interesting aspect to notice is that trajectories for + 10 and 15 % are the same, meaning that
the controller’s solution to both disturbances are the same. This means that the controller may not able
to cope with higher disturbance as its response would be the same.

Both MVs control actions would not be feasible in reality as the anti-solvent flow could not increase
so abruptly in one single cycle, and temperature could not swing as much either. In both cases, the
actuators would not be able to implement these changes so quickly, which would mean that the system
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would not receive them either. This would result in increasing the plant / model mismatch, as the
controller would not take into account this delay. In case of the temperature, this problem would be even
more serious as the changes are not from one cycle to another, this oscillation happens throughout
the emulation. So the sensors would measure a temperature, which would not be true by the time this
measurement reached the controller. This would lead to the controller receiving past information, when
performing its optimisation routine. In order to tackle this issue, two options were studied: adding a rate
of change penalty and a control action penalty. The results for both this options will be shown below.

7.2.2 Rate of change penalty

The term C in the objective function 5.2 was activated - this meant choosing the parameters Cδui and
|ui,k − ui,k−1|, which are the penalties applied to the rate of change and the maximum rate of change
allowed per cycle for the MVs. Adding a penalty to the rate of change is the way to tell the controller to
find a new solution that avoids a rapid change between variables. The rate of change per cycle refers
to the maximum change the controller allows for that variables, between cycles.The rates and penalties
applied in each MVs are shown in table 7.4.

Table 7.4: Rate of change and penalties for both MVs

Variable Rate of change per cycle Penalty

Anti-Solvent Flow 1E-5 kg/s 1E5

Temperature 1 ◦C 1

The rate of change penalty for temperature was chosen according to literature [36]. The order of
magnitude of the penalty between the variables is not due to importance but for units reasons, given that
the objective function is not scaled. A -5% disturbance step was performed and the differences between
the original case without rate of change penalties and the modified one with the penalty were compared.
The MVs trajectories are shown in figure 7.11.

Figure 7.11: MVs trajectories with and without the rate of change penalty

It is possible to verify that the addition of a penalty was successful, as anti-solvent flow takes more
time to reach its optimal value (of 9E-05 kg/s) and temperature shows a lower degree of oscillation. It is
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also worth noting that whereas temperature effectively oscillates less, meaning another optimal solution
was found, different from the original one, regarding anti-solvent flow, this does not hold true. Given that
this variable changes its maximum allowed per cycle, one can conclude that the controller was not able
to find a new optimal solution, but instead just complied with the penalties given.

The next aspect to verify was whether the controller had been able to achieve the desired control
targets despite the penalties. The CVs trajectories are depicted in figure 7.12.

Figure 7.12: CVs trajectories with and without the rate of change penalty

As expected, the CVs were affected by the change: in the modified case, the trajectories show a
slight delay when compared to the original case. Nonetheless, with the exception of volume mean size,
in both cases, the end-point is similar, which seems to indicate that the penalties added did not prevent
the controller from reaching its goals. The fact that the rate of change penalty made the variables rate
of change slower confirms the optimality of the original solution, as it leads the CVs sooner to their
reference envelopes, which is an advantage.

In the disturbance rejection test (section 7.2.1), the controller was able to find its optimal solution in
the second cycle - the optimal trajectory was the same for the remaining cycles, as there was no plant /
model mismatch. However, after adding a rate of change penalty, it was observed a different behaviour
- the controller optimised distinct trajectories for the first 5 cycles, depicted in figure 7.13.

From figure 7.13, it is possible to see the CVs evolution throughout the emulation. With increasing
the number of cycles, the optimal trajectory of the CVs, becomes faster and better at reaching the
target limits. The differences between cycle 1 and cycle 6 are quite clear, particularly for dissolved
paracetamol, where the last cycle takes less 3000 seconds than the first. This analysis demonstrates
how the controller progressively improves its optimal trajectory to better respond to the disturbance
subjected.
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Figure 7.13: CVs optimal trajectories for different cycles

Anti-Solvent Flow rate of change

As no literature had been found with rate of change for anti-solvent flow, rates of change of the MV
Anti-Solvent Flow were tested to analyse their impact on the controller actions, and conclude which one
would be most suitable for the current case. Rates of change of 0.5, 1 and 2E05 kg/s were tested. The
MV trajectories for the three different cases are shown next in figure 7.14.

Figure 7.14: Anti-Solvent Flow trajectory for different rates of change

As expected, faster rate of change results in larger steps between cycles, and, as it was stated in
the previous section, the controller is not able to find another optimal solution. It just limits itself to take
longer to reach its upper limit, to comply with the penalties added.

Looking at the CVs (figure 7.15), it is possible to verify that despite the trajectories being different
for all the cases, the controller is still able to steer them into their reference envelopes. This is because
the rate of change was not slow enough to compromise the control objectives. Even the slower rate of
change, the 0.5 case, only allows the anti-solvent flow to increase or decrease a maximum of 0.5E-5
kg/s per cycle, which results in this MV, only reaching its upper limit in cycle 12. Still, for all CVs except
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Figure 7.15: CVs measured values for different Anti-Solvent rates of change

volume mean size, in less than 4 cycles, there is no observable difference between the cases. For
volume mean size, the 0.5 case is not able to lead it to the same end-point as the remaining cases.
However, it still complies with its lower limit of 290, which is the main concern of the controller.

7.2.3 Control action Penalty

Another means to achieve the same end could be adding a penalty for the controller moves
specifically, instead of penalizing the moves at the bounds change. This was achieved by activating
term B of the objective function, equation 5.2. The activation included assigning values to the MV cost
penalty, Czj . Penalties 10 and 100 were tested, for a -5% disturbance step test, and the results were
compared with the original case, without any penalties. The MVs trajectories are shown in figure 7.16.

Figure 7.16: MVs trajectories under a control action penalty

Anti-Solvent Flow took longer to reach its upper bound and temperature did not show any oscillation,
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but rather decrease its initial value to 20◦C and remained there until the end of the cycles. The MVs
trajectories were the same regardless of the penalties, indicating that the penalties had no impact on the
controller. The CVs path is shown next (figure 7.17).

Figure 7.17: CVs setpoints under a control action penalty

Although their trajectory is slightly different, all CVs end their trajectory in the end in the same value
for both cases. This shows that the changes in control action penalty did not affect the controller reaching
its control objectives. This is because the delay in reaching the optimal value did not compromise the
control objective of settling inside the reference envelope. The CVs trajectories were the same for both
penalties given that the MVs trajectories were the same as well.

The MVs trajectories for both types of penalties were compared, to reflect on which one would be
most suitable for the current case (figure 7.18).

Figure 7.18: MVs trajectories for different types of penalties

Regarding temperature, both methods seem to yield feasible results, although the objective function
with term B shows a more rapid decrease in values. When it comes to anti-solvent flow, the same
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remarks are viable, as both terms seem to show viable solutions, however, using term C penalties is a
more conservative option, given that it takes slightly more time increasing and it only starts to do so after
3 cycles.

The CVs for the original and both cases of penalties are shown in figure 7.19.

Figure 7.19: CVs setpoints for different types of penalties

From figure 7.19, it seems that the penalties using term B result in slightly faster responses than using
term C. One of the reasons to that may be the fact that MV Anti-Solvent Flow shows a higher delay with
term C, when compared to term B (figure 7.18). Nonetheless, both terms lead to the controller reaching
its control objectives.

7.2.4 Anti-Solvent Effect

As it has been observed previously, anti-solvent flow seems to be tendentiously hitting its upper
bound, in many of the scenarios tested. Thus, a global system analysis was conducted in order to
find an explanation as to why the anti-solvent flow always hit its upper bound. This gPROMS feature is
essentially a sensitivity analysis where the relationships between some input variables (called factors)
and output variables (called responses) are analysed. The input variables are changed within some
specified bounds and the impact on the responses is analysed. For this global system analysis, anti-
solvent flow was chosen as a factor and the controlled variables as the responses. The results are
shown in figure 7.20.

One can see that the higher anti-solvent flows values clearly maximizes volume mean size and
minimizes supersaturation, which were the control objectives for these CVs. These were possibility
the main factors contributing to this MV trajectories hitting its upper bound. Another CV, span, shows
an oscillating relation with anti-solvent flow, inside a narrow range of values. Hence, it may not have
contributed so bluntly as the previous two CVs. This nonlinear relationship between span and Anti-
Solvent Flow may explain why this variable was the one the controller struggled the most in steering into
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Figure 7.20: Global System Analysis Results - Responses

its bounds, despite being the one with higher penalties. In other words, due to the non linear nature of
the relationship between these two variables, the controller had more difficulty in choosing the correct
Anti-Solvent Flow that satisfied the span’s control objectives.

Furthermore, lower anti-solvent flows led to less dissolved paracetamol at the end of the batch.
Nonetheless, given this was a secondary objective (reaching Particle Size Distribution goals like
volume mean size was more important - see penalties table 5.3 on section 5.2), a minor penalty was
implemented, thus, the controller setpoints did not show this tendency.

The sensitivity analysis confirmed that the controller was implementing the more suitable trajectory
for the anti-solvent flow, given that they are in agreement with the control objectives.

7.2.5 Noise

As referred in section 6.2, noise was added to one of the measurements, span, which is also a CV.
Step changes on DV impeller frequency were performed (similarly to the ones done in section 7.2.1),
and compared the original case with the case with the noise added. The CV trajectories for both cases
is shown in figure 7.21.

From figure 7.21, it is possible to verify that the noise was successfully added to the CV, as its
trajectory shows a higher degree of fluctuation, when compared to its original trajectory. In spite of
having noise, at the end of the emulation, this CV reached the same end point as the original case. This
indicates that the controller was able to accomplish the targets and perform noise rejection.

The MV anti-solvent flow trajectories is not shown as the addition of noise did not affect this variable’s
values (in all cases, this variable hit its upper bounds, as expected). However, temperature showed
different values (figure 7.22).

In both cases (with and without added noise), temperature shows quite some oscillation. For a ± 5%
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Figure 7.21: CV Span with and without noise

Figure 7.22: MV Temperature with and without noise

disturbance change, the case with added noise seems to have more oscillation. For the + 10 and 15%
both scenarios, with and without noise, display the same degree of oscillation, without a clear pattern.
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A controller able to tackle measurement noise rejection is a clear advantage. In the current case,
this variable was not only a CV, but the most problematic one, as it was possible to verify throughout the
several disturbance rejection tests performed (shown in 7.2.1). Span was the CV most affected by the
different cycle lengths. It was also the CV that the controller struggled the most to lead to its reference
envelopes in the disturbance rejection tests. These facts all point to the overall good performance of the
controller in handling noise measurement rejection.

7.2.6 Plant / Model Mismatch

As explained in chapter 6, one of the kinetic parameters of the model was changed, in order to
determine the robustness of the controller. This scenario is also important to analyze how accurate the
kinetic parameters have to be. The wider the tolerable region of acceptance of the kinetic parameters,
the more robust the controller is.

A minus 5% change in the model parameter ”supersaturation order” was conducted. This parameter
is used in the nucleation rate expression, described by equation 4.1 in chapter 4.

The envisaged idea was to perform the usual disturbances of ± 5 and + 10% on the impeller
frequency and see whether the controller was able to steer the CVs back to their reference envelopes
as usual.

For a -5%, the CVs trajectories are shown in figure 7.23.

Figure 7.23: CVs measured values with and without model parameter mismatch for a minus 5%
disturbance on impeller frequency

The model parameter change is barely noticeable. In CVs supersaturation and dissolved
paracetamol the trajectories are the same. However, despite still being settling inside the reference
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envelopes, span shows slightly higher values for the original parameter, whereas volume mean size
slightly lower.

Regarding MVs, Anti-Solvent Flow exhibits the usual behaviour of settling in its upper bound of 9E-05
kg/s. Temperature is shown in figure 7.24.

Figure 7.24: MV Temperature with and without model parameter mismatch for a minus 5% disturbance
on impeller frequency

The modified case shows a more oscillating behaviour, when compared to the original case.
For a +5% step change on disturbance variable (figure 7.25), the scenario is very different from the

previous case, as the trajectories for the CVs are different. Span seems to show overall lower values
throughout the emulation, whereas the remaining variables display the opposite tendency. A slight delay
is also observed. Nonetheless, for all cases, the end-point is very close to the original case, showing
the quality of the controller.

It seems that controller continues to show its oscillating behaviour with or without the model
parameter disturbance (figure 7.26). Although the modified case seems to swing less. The other MV
anti-solvent flow is not shown as it shows its normal behaviour of hitting its upper bound. Lastly, for a +
10% step change on impeller frequency (figure 7.27), the differences between the CVs seem less than
for the + 5% case. Supersaturation and dissolved paracetamol are practically the same. Volume mean
size exhibits a slightly lower value, and Span a slightly higher value. The overall changes are less
visible than expected taking into account the + 5% case.

For this case, temperature shows the same degree of oscillation for the original and the modified
scenarios (figure 7.28). The observed delay in the CVs is not observed in the MVs trajectories. Anti-
Solvent Flow is not shown as it displays the usual behaviour.

The overall results of this scenario are positive, as the controller was able to steer its CVs into the
same end-point despite the model parameter change. It seems as if the controller is capable of handling
some degree of plant/model mismatch. MV anti-solvent flow exhibits the same pattern as before. This
indicates that for a mismatch of this magnitude, setting this variable to its upper bound is still enough
to steer the CVs into their limits. MV temperature showed a very oscillating trajectory between cases.
From these scenarios, the question as to why is temperature oscillating so much arose. In the + 10%
case, temperature swings between its bounds in both the original and the modified case. The oscillation
is not the same, whereas the CVs are practically the equal. This led to the following question: how much
impact does temperature really have on the CVs. A study on how much this MV affected the CVs was
conducted in order to determine the reason behind such an oscillating behaviour.
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Figure 7.25: CVs measured values with and without model parameter mismatch for a plus 5%
disturbance on impeller frequency

Figure 7.26: MV Temperature with and without model parameter mismatch for a plus 5% disturbance
on impeller frequency
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Figure 7.27: CVs measured values with and without model parameter mismatch for a plus 10%
disturbance on impeller frequency

Figure 7.28: MV Temperature with and without model parameter mismatch for a plus 10% disturbance
on impeller frequency
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7.3 CV Trajectory Penalties

To confirm the hypothesis of the differences in the impact of the MVs, the penalties for the CVs
violating their bounds (parameters C ′ z,loj , C ′ z,hij in the objective function, equation 5.2 in chapter 5) were
changed, while keeping the penalties for the rest of the CVs constant. This test was made to check
whether increasing or decreasing the importance of each of the CVs changed the controller’s behaviour
or not. For this test, only term A of the objective function (equation 5.2 in section 5) was active.

7.3.1 Span

Span was given the following values for its reference envelope violations: 0.1,1,10,100 and 1000. For
a +10% disturbance, a 20-cycle emulation was performed. The different penalties did not change neither
the optimal path calculated by the controller nor the measured values. All the cases are displayed in
figure 7.29.

Figure 7.29: Span’s Optimal and Measured Trajectory

The word ”cycle” refers to the controller cycles, which is done at every 500 seconds of emulation.
At each cycle, the controller produces a new optimal trajectory. Cycles 1 and 2 have different optimal
trajectories from the rest because the step disturbance was only introduced in cycle 2 (and the system
received it in cycle 3). It is also possible to testify the mismatch between optimal and actual trajectories,
specifically in the second half of the emulation. The controller is also not able to steer the CV back to its
reference envelope. One possible reason for that is the very narrow window between upper and lower
envelope limits.

The different reference envelope violations have impact on MV temperature trajectories, as it is
possible to observe in figure 7.30. As expected, higher envelope violations lead to higher oscillation
between MVs bounds (20 to 50 ◦C) in the values calculated by the controller. One concern regarding
oscillation is the physical constraint associated to it: the actuators would not be able to increase
system’s temperature in 25 ◦C from one cycle to another. Hence, if the most suitable option was to use
higher envelope violation penalties, then one would have to add a MV movement penalty to prevent
such rapid moves. MV anti-solvent flow settles at its upper limit, without changing it.
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Figure 7.30: MVs trajectories

7.3.2 Supersaturation

The reference trajectory penalties were changed for the supersaturation (for the values 0.1,1,10 and
100) and the results are depicted in figure 7.31.

Figure 7.31: Supersaturation’s Optimal and Measured Trajectory

As it was shown for span, supersaturation seems to be unaffected by penalty changes, although one
of the MVs, temperature shows quite an oscillating trajectory (figure 7.32).

Figure 7.32: MVs trajectories
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7.3.3 Volume Mean Size

Volume Mean Size reference envelope violations were given the values of 0.1, 1, 10, 100 and 1000,
for a positive 10% step disturbance on impeller frequency. The optimal and measured trajectories for all
this tests showed the same behaviour described previously and are displayed in figure 7.33.

Figure 7.33: Volume Mean Size’s Optimal and Measured Trajectory

For this CV, the controller is not able to steer to the reference envelope, when the disturbance is
performed (that is why for the first two cycles, the CV is able to be steered into its limits). Nonetheless, the
CVs’ measured values are very close to its optimal trajectory, meaning there is little mismatch between
the predicted behaviour and the actual one, for this variable.

Figure 7.34: MVs trajectories

As it was observed for Span, higher penalties seem to generally lead to higher MV oscillation (figure
7.34). For this case, it also seems that too low of a violation also leads to some oscillation. Similarly to
the already discussed cases, anti-solvent flow settles at its upper bound.

7.3.4 Dissolved Paracetamol

The same procedure was performed for dissolved paracetamol, whose penalties were given the
values of 1, 10, 100 and 1000. The CVs trajectories are shown in figure 7.35. For this variable, the
differences between cycles are barely noticeable after 4000 seconds. For all cases, this CV is able to
return to its reference envelopes.

For this case, the MVs exhibit the same pattern (figure 7.36) as the rest of the MVs, previously shown.

62



Figure 7.35: Dissolved Paracetamol Optimal and Measured Trajectory

Figure 7.36: MVs trajectories

7.3.5 Reference Trajectory Penalty Change Remarks

Changing the penalties of each of the reference trajectory does not seem to influence the CVs
measurements, which is odd as one of the MVs, temperature, is quite oscillating. Given that the other
MV, anti-solvent flow shows the same trajectory for all simulations, an hypothesis regarding the
difference in influence of these two MVs grows in relevance. Anti-Solvent Flow shows a much more
significant impact on the CVs, than temperature. Hence, the CVs only change when MV anti-solvent
flow changes. Temperature may be oscillating because the controller is trying to strongly find a solution
(between its allowed limits of 20 to 45 ◦C) that changes the CVs trajectories, because regarding
anti-solvent flow, it has already found the optimal solution. Some scenarios were conducted to test this
hypothesis, which will be explained in the following section.

7.4 Temperature

The temperature oscillation was further investigated, as to understand why the controller outputted
such an unstable action. As such, step tests were made to each of the MVs individually, to see how
the system responded. For these cases only term A of the objective function 5.2 was active, without
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considering any additional penalties.
With only MV Anti-Solvent Flow turned on, step tests of± 5,10 and 15% on temperature’s initial value

of 25 ◦C were performed. The measured values for all CVs are depicted in the following figure 7.37.

Figure 7.37: CVs measured values

As it is possible to observe, there is no difference in CVs measured values - they all follow perfectly
their optimal trajectory. For all cases, the only active MV, anti-solvent flow is held at its upper bound,
9E-05 kg/s. One possible reason for this behaviour may be the fact that the magnitude steps tests may
not have been large enough for the CVs to show any differences.

7.5 Anti-Solvent Flow

The same test was performed but now for the other MV, Anti-Solvent Flow, to check whether this MV
yielded the same results.

In this case, a different behaviour is observed, confirming the impact this MV has on the CVs. As
it is also possible to see in figure 7.38, the changes done were not enough to make the CV display a
behaviour hard to control - in all cases, they return to their reference envelopes. Another interesting
result to take note is how the more negative the disturbance is, the more delayed the CVs are - the
longer they take to reach their reference envelopes. This result holds true for all CVs. Physically, this
result is expected as increasing the Anti-Solvent addition speeds up the crystallization reaction.

These results seem to confirm the higher dependence on MV Anti-Solvent Flow, when compared to
temperature. A closer look to the model revealed that this MV was not explicitly defined in the kinetics
expression rate - it was taken into account indirectly through supersaturation. From the paracetamol
solubility curve (figure 4.4 in chapter 4), it is possible to observe the supersaturation’s dependence on
temperature. In the current model, paracetamol is dissolved in water and methanol. For paracetamol
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Figure 7.38: CVs measured values

dissolved in water, the solubility barely changes with temperature, whereas for paracetamol dissolved in
methanol it shows some variation. It is hypothesised that for the ternary mixture in the current model,
the temperature change was not significant enough to impact the solubility change. A 15% temperature
change (from 25 ◦C to 28.75) may not have been noticeable given it was too small in scale. This inhibited
the CVs of being affect by temperature changes, rendering its manipulation meaningless and leaving the
burden to Anti-Solvent Flow.
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Chapter 8

Conclusions and Future Work

8.1 Conclusions

The main goal of this thesis of implementing a Nonlinear Model Predictive Control application on
a batch crystallization of paracetamol model was successfully achieved. The first two chapters give
a theoretical background on the concept behind NMPC, and what parameters should be taken into
consideration, when designing a controller of such type. Chapter 2 also gives an overview of the typical
control strategies used in crystallization processes, including their advantages and disadvantages. The
third chapter provides an outline on gNLMPC, the digital application platform used to configure and
test the controller. In chapter 4, a description of the model is shown, including the main occurring
mechanisms, such as nucleation, growth, dissolution and agglomeration. It also includes the layout of
the control scheme, covering which variables are controlled, manipulated and disturbance. The chosen
Manipulated Variables were anti-solvent flow and temperature as they regulate supersaturation, which
is the main driving force for crystallization. Additionally, supersaturation was chosen as a Controlled
Variables. Other Controlled Variables included span, volume mean size and dissolved paracetamol. The
first two characterize the particle size distribution, regarding particle’s dispersity size and their growth
and the last one concerns the liquid mass of paracetamol in the crystallizer.

Chapter 5 provides a detailed look on the formulation of the optimisation problem, more specifically
how the objective function was constructed. It shows that the objective function was written in a penalty-
based way, given that penalties are added whenever the Controlled Variables are outside their target
limits. This not only ensures that the controller always finds a solution, but it also allows the controller
to prioritize some CVs over others. The result of such optimisation is the perfect control action that
satisfies the control objectives, implemented by a set of Manipulated Variables’ inputs. Furthermore,
this chapter shows how different penalties were added under an optimal control scenario (without plant
/ model mismatch) and it was demonstrated that the CVs response did not change when their trajectory
penalties were changed. This confirms the penalty-based nature of the controller, as it will always show
the optimal solution regardless of the penalties.

Chapter 6 provides a definition of the emulation mode, more specifically the steps behind this real-
time implementation of the controller on the model. This chapter also comprises the two main steps
needed to implement the controller: the configuration of its parameters and further testing. It describes
how the configuration consisted in studying the different controller parameters, such as the cycle duration
and number of control intervals. Regarding the testing, it explains the main scenarios the controller was
subjected to analyse its stability and robustness.

Chapter 7 delivers the main results from this thesis, obtained both from the study of the configuration
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parameters and also from the scenarios tested, on emulation mode. From the configuration parameters,
the impact of the duration of a cycle on the controller’s response shows the importance of the choice of
this parameter. It demonstrates that the cycle duration should be as short as possible for the controller
not to miss the system’s dynamics. Furthermore, it shows how longer cycles cause a delay on the
implementation of the optimal values for the MVs. This impacts negatively the CVs as the system
spends more time without the control action that will lead to its control objectives. Another impactful
parameter on the controller is the optimisation horizon. It is observed that longer optimisation horizons
lead to an overall better performance of the controller, as it was able to lead the CVs into the desired
interval of values, whereas shorter ones were not.

The results from the different scenarios tested show the controller’s ability to perform disturbance
rejection, more specifically, it demonstrates how the controller is able to steer the CVs into their target
limits, for most cases, for different step changes done on Disturbance Variable impeller frequency. The
chosen parameters for the controller tuning also allowed to shorten the batch cycles, which is an
attrractive feature. The disturbance rejection scenario also shows that the controller was able to
successfully predict its CVs’ trajectory, as their optimal trajectories matched their measured values.
Considering that both MVs showed too fast setpoint changes (which would not be feasible in reality,
increasing the plant/model mismatch), a rate of change penalty during and in between cycles was
added. The results show the successful implementation of such penalty in both cases, that allows the
MVs to move less abruptly, while still complying with the control objectives.

The results of the tests also show the controller’s ability to handle noise, as it was able to comply
with the control objectives in spite of one of the CVs, Span, had been added with measurement noise.
The results for a plant / model mismatch scenario were also depicted, where one of the kinetic
parameters, supersaturation order, was changed. It is demonstrated that despite having an impact on
the Controlled Variable, the controller is able to steer them into the desired limits, thus confirming the
controller’s satisfactory performance.

In conclusion, the real-time implementation of a Nonlinear Model Predictive Control on a
paracetamol batch crystallization process was possible. The controller showed good performance,
yielding satisfactory results, under different scenarios. Not only was the controller able to comply with
the laid out control objectives, but it also did so faster than in open loop, thus, showing its time saving
capabilities. The results show the possibility of the application of such a control strategy on other
crystallization models.

8.2 Future work

The results given in this work were obtained either via simulation, either via emulation (real time
implementation on a simulation model). Thus, in order to truly confirm the benefits portrayed by the
results shown, an application on a real model, with industrial data should be performed.

This thesis could be used as a first study of how a Nonlinear Model Predictive Control application
using gNLMPC should be carried out, and how the models should be constructed. In a next step, the
controller should be able to be tested against more realistic scenarios, using real plant noise and data.
Furthermore, state estimation capabilities could be added, to provide the controller with the right tools
to handle scenarios where measurements are not attainable at all cycles. Concerning the process itself,
this thesis conveys the importance of constructing models specifically to be used for control. Models
should not be built in a rigid manner, in order to provide variables with enough flexibility to impact the
Controlled Variables. For example, temperature should be taken into account directly in the kinetic
expressions, and not indirectly, as a function of supersaturation, otherwise the controller will tend to
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provide oscillating setpoints as the change done in the CVs is not impact-full enough. This flexibility
issue is also important to avoid controller’s degeneracy, as it may try to move preferentially one the MVs
as opposed to the other due solely to size differences. Controller’s degeneracy may also be avoided by
carefully choosing the correct limits for both CVs and MVs, hence, this should be taken into account as
well. Furthermore, the models should be constructed with only the essential mechanisms taking place
in a plant in order not to burden the controller with additional calculations, meaningless for the control
objectives.

The chosen model is a batch process, which usually is not controlled with NMPC. As observed in this
thesis, using such control strategy can lead into time savings, as the controller achieved faster results,
than in open-loop mode. This feature could be further explored, given that saving time is an important
parameter in industry.

Finally, having faster optimisation algorithms, able to provide values for the MVs in real-time is the
main area where there is room for improvement, when it comes to Nonlinear Model Predictive Control,
as it is the major cause for the lack of implementation in industry.
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