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 To understand the optimal scenario which would allow to reduce building energy consumption and, as a result 
achieve economic savings, it is of the utmost importance to be able to quantify how much electricity can be 
produced in a decentralised manner, and how much the consumption will be in a specific time in the future. 
The development of energy forecasting models is therefore paramount to the achievement of higher energy 
efficiency standards, especially if coupled with implementations that enable the automatic control of the energy 
system. The aim of this work is to develop electricity consumption and production forecasting models to suggest 
possible smart energy management measures for the main campus of Instituto Superior Técnico in Lisbon. 
First, the performance of different forecasting methods for the energy production of rooftop photovoltaic solar 
modules and of the energy consumption of selected buildings on campus is simulated and analysed by means 
of real data. The results show that, among all tested supervised learning methods, artificial neural networks 
can predict the building energy consumption and the rooftop solar production with good accuracy. An 
evaluation of possible demand-response strategies exploiting a battery energy storage system is then carried 
out. Using mixed-integer linear programming the scheduling of the battery system is optimized to shift the 
consumption from peak hour to off-peak hour. Exploiting time-of-use energy tariffs, the optimized schedule 
resulted in annual net savings of about 2% including the initial investment for the battery. The work closes 
with an outlook towards possible improvements which would potentially allow the real-time implementation 
of the suggested measures.  
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1. Introduction 
Cities are where most European energy is consumed and also the 
origin of most greenhouse gas (GHG) emissions [1]. In 2007, for 
the first time in human history, the number of global urban 
dwellers outnumbered those living in rural settings. By 2050, 
urbanization will become one of the 21st century's most 
transformative trends putting cities right at the epicentre of a 
global shift from rural to urban areas, as the world's urban 
population is expected to nearly double. The latest UN estimates 
suggest that this trend is likely to lead to a total of 6.3 billion urban 
residents by 2050, approximately 70% of the predicted total 
global population.  
Massive sustainability challenges in terms of housing, 
infrastructure, natural resources, services and health will have to 
be faced as most social and cultural interactions, economic 
activities as well as environmental and humanitarian impacts will 
be increasingly concentrated in cities. The building sector 
accounts for 40% of primary energy use and 40% of total GHG 
emissions, becoming one of the largest energy consuming sectors 
in the world. The electricity consumption in building is 
continuously increasing and if no action is taken towards more 
effective energy efficiency measures, it is set to increase by 50% 
by 2050 [2]. As a consequence, buildings have become the 
primary focus of energy efficiency policies, which depend heavily 
on understanding and modelling energy consumption to evaluate 
the impact of energy efficiency measures. 
There are several ways to attempt to model and simulate a 
building in order to optimize the operation of its systems, evaluate 
audit retrofit actions, or forecast energy consumption. Different 
techniques, varying from simple regression to models that are 
based on physical principles to data-driven models, can be used 
for simulation. A frequent hypothesis for all these models is that 
the input variables should be based on realistic data when they 
are available, otherwise the evaluation of energy consumption 
might be highly under or over estimated. Electricity consumption 
patterns are though difficult to estimate as they depend on various 
seasonal, monthly, daily and hourly complex variations. As such, 
building energy consumption plays an important role in energy 
efficiency strategies and accurate energy forecasting models have 
numerous implications in energy planning and optimization of 
buildings and campuses. For new buildings, where past recorded 

data is unavailable, computer simulation methods are used for 
energy analysis and forecasting future scenarios. However, for 
existing buildings with historically recorded time series energy 
data, statistical and machine learning techniques have proved to 
be more accurate and quicker. 
Nowadays, thanks to technology, observations can be collected 
about any phenomenon and stored efficiently. This immense 
amount of data can then be analysed to extract useful underlying 
information. In particular, the goal of machine learning is to build 
a computer system that automatically learns from the data, 
disregarding its internal working principles [3]. In machine 
learning present data can be used to predict future data, by 
learning the relationship between the features and the label.  
Numerous works address electricity consumption forecasting in 
buildings, as it is of the utmost importance when it comes to 
reducing energy consumption and reaching predefined energy 
targets. The complexity of building energy consumption 
forecasting is due mainly to how the consumption can be 
structured: aside from a base load, which is caused by appliances 
that are running all the time, and seasonal load, attributable to 
temperature changes and subsequent heating or cooling, the 
fraction of the consumption that causes difficulties in its prediction 
is the active consumption. The active consumption is due to the 
activities in a building and its occupancy patterns [4]. 
Wei [5] reviews the most common methods to forecast building 
energy consumption. Among the most common ones in literature 
artificial neural networks (ANNs) and support vector machines 
(SVMs) seem to be prevalent because of their capability of 
modelling non-linear relationships, either alone or more often 
together with other optimization techniques, or using deep 
recurrent neural networks [6], [7], [8], [9], [10]. In the case of 
complex tools though, the learning methods and the tuning of the 
models, still seem to be hindering their complete real-time 
implementation as the computational impact would be too high. 
As a result, it may well be that more simple methods, such as 
linear regression, decision tree or very simple neural networks, are 
to be preferred, especially in cases where correlations patterns can 
be easily spotted or a real-time implementation is desired [11], 
[12], [13]. 
When it comes to decentralized generation, such as solar power 
production, its forecasting becomes increasingly important to 
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mitigate the impact of the intermittent nature of solar power and 
the increasing penetration of renewables in the electric grid 
thanks to new legislations favouring self-consumption and the 
increasing deployment of large-scale PV power plant. In 
particular, among all machine learning solar photovoltaic power 
forecasting, two main approaches prevail: indirect forecasting and 
direct forecasting. Indirect forecasting implies the prediction of 
solar irradiance or of meteorological prediction of weather 
variables to then use them as inputs to a physical model of the 
considered PV plant. On the other hand, direct forecasting aims 
at the direct estimation of the solar power output. 
Overall, the common result in literature concerning solar power 
forecasting is that, independently of the technique employed, 
feature selection is the most impactful parameter on the accuracy 
of the prediction for all forecast horizons [14], [15], [16], [17].  
Multiple authors propose the exploration of deep learning 
techniques in combination with proper feature management to 
try to overcome the limitations of the unpredictability of weather 
conditions that characterises solar power [18]. Also in the case of 
solar power production, the prevalent machine learning methods 
seem to be ANNs and SVMs [19], [20] but in some cases, simpler 
models, such as k-Nearest Neighbours (kNN) or Gradient Boosted 
Regression Trees (GBRT), also proved to accurate [17], [18]. 
Being able to predict building electricity consumption and 
decentralized solar power generation allows to assess energy 
management strategies and flexibility options that could 
potentially reduce electricity consumption and lead to economic 
savings. Flexible buildings are indeed an example of prosumer 
that could help the transition to a low carbon energy system. 
Junker identifies several factors influence the building's ability to 
provide energy flexibility [20], among which: the technologies the 
building is equipped with such as ventilation, heating and storage, 
its physical characteristics (insulation, architectural layout), its 
occupants' behaviour and the associated comfort requirements 
and lastly its control system, that allows it to respond to external 
signals such as CO2 or electricity price. The energy flexibility 
potential of a building can be quantified deductively, which 
implies modelling the building with the help of building 
simulation tools such as City Energy Analyst [21], or inductively, 
exploiting experimental data and time series analysis. 
Predicting the energy flexibility of a building's energy system 
involves a lot of challenges related to the prediction of the 
consumption and generation, as well as the occupancy behaviour 
and technical and feasibility constraints [22]. In the context of 
building, or building clusters, energy flexibility is defined as the 
potential for using a building, or a set of buildings, to perform 
demand-response [23], which consists of a change in the 
consumption pattern of a customer which can either reduce or 
shift its peak consumption to off-peak hours. Following a drop in 
their prices, electro-chemical batteries, especially Lithium-Ion 
(Li-Ion) batteries, have become the most popular technology in 
stationary and mobile applications and have been extensively 
studied as a form of demand-response to perform load shifting at 
customer level. Kishore provided an example of direct load 
control thanks to a home energy controller to take advantage of 
the two level pricing scheme of the utility company.  The applied 
optimization scheme could further be extended to multiple 
buildings in the neighbourhood while reducing costs [24]. 
Multiple approaches to determine the optimal capacity of  battery 
energy storage system (BESS) for peak shaving to reduce a 
building's annual energy costs have been proposed [25], [26], [27] 
and all show that a significant reduction can be achieved, 
although the compensation of the upfront investment is not 
always granted and is highly dependent on the battery size and 
the achievable profit. 
Optimal energy consumption schemes based on Time-of-Use 
BESS scheduling show vast potential to shave peak energy 
consumption and reduce the electricity bill. Such solutions 
become increasingly interesting especially if combined with 

decentralised energy generation such as photovoltaic energy to 
decrease consumption in peak hours, and learning algorithms that 
could increase the knowledge of the expected consumption to 
boost economic savings. 
The aim of this paper is to compare different electricity 
consumption and production forecasting models to suggest 
possible smart energy management measures for the main 
campus of Instituto Superior Técnico in Lisbon. First, the 
performance of different forecasting methods for the energy 
production of rooftop photovoltaic solar modules and of the 
energy consumption of the civil building on the campus is 
simulated and analysed by means of real data. An evaluation of 
possible demand-response strategies exploiting time-of-use energy 
tariffs and a battery energy storage system is then carried out. 
Using mixed-integer linear programming the scheduling of the 
battery system is optimized to shift the consumption from peak 
hour to off-peak hour. 
The present paper is divided as follows: Section 2 describes the 
basic concepts behind the tested machine learning forecasting 
algorithms whereas the methodology used to develop the 
prediction models and the demand-response model is described 
in Section 3. The results are presented in Section 4 with the 
consequent conclusions addressed in Section 5. 
 
2. Background Concepts 
In this work, four different low-complexity algorithms are tested 
to forecast building energy consumption and solar power 
production, namely multiple linear regression, k-Nearest 
Neighbours, decision trees and artificial neural networks, being 
these among the most common ones found in literature which 
combined a relatively low complexity and a good prediction 
accuracy. The models are developed in Python using the Scikit-
Learn package, which offers a wide range of machine learning 
algorithms, both for supervised and unsupervised learning, as well 
as testing and validation features and it is characterized by a clean 
uniform interface [28]. These models are applied to the civil 
building of Instituto Superior Técnico to forecast its electricity 
consumption and rooftop solar power production based on real 
data. 
 
2.1 Multiple Linear Regression 
Linear regression aims to minimize the error between the 
observations and the estimations by measuring a predefined error 
function (e.g. quadratic error, and others). The term linear refers 
to a linear relationship between two or more variables, whose 
relationship in a two-dimensional space is represented by a 
straight line. In linear regression the task is to predict a dependent 
variable (y) based on a given independent variable (x) to 
undercover the coefficients of the linear model that explain such 
relationship. In the case of a univariate model the equation that 
represents such relationship is of the form: 
𝑦 = 	𝑚𝑥 + 𝑏  
where y is the variable to predict, x is the input variable, b is the 
intercept and m is the slope of the straight line. The values to be 
optimised in a regression algorithm are therefore m and b. 
Multiple straight lines can exist, depending on the parameters of 
intercept and slope and in this case, the linear regression 
algorithm fits multiple lines to the data and returns the one 
resulting in the smaller error. Extending this concept to more than 
two variable results in a multiple linear regression, as the 
dependent variable, or target variable, depends on multiple 
independent variables. Such a model can be represented by: 
𝑦 =	𝑏( +𝑚)𝑏) +𝑚*𝑏* +⋯+𝑚,𝑏,y  
In particular, the multiple linear regression model proposed aims 
at minimising the total sum of squares (SST) resulting from the 
addition of the error of the sum of squares (SSE) and the 
regression sum of squares (SSR): 
min	(∑ (𝑦2 − 𝑦45),

27)
* = ∑ (𝑦2 − 𝑦48),

27)
* + ∑ (𝑦48 − 𝑦45),

27)
*)  

 



Data-driven forecasting models for electricity consumption and solar power generation to assess possible demand-response strategies 

 

 3 

2.2 Decision Tree 
A decision tree is a non-parametric model governed simple 
decision rules inferred from the input data. Decision trees present 
three types of nodes: root nodes, i.e. all features which are going 
to be split, decision nodes, which split the samples into other sub-
trees or leaf nodes based on the chosen decision rule and leaf 
nodes which indicate the final region or class defined by the tree. 
Like other machine learning methods, depending on whether the 
variable is continuous or not, they can be used both for 
classification and regression. The decisions at the splitting point 
are usually taken to reduce the variance in the target value. When 
new data falls into a node, its predicted value is the mean of all 
the samples in that class. The main advantage of decision trees 
over other machine learning methods is their simple 
interpretability, which leaves decisions traceable along the tree 
and allows the formation of clear rules from them. 

 
2.3 K-Nearest Neighbours 
The k-Nearest Neighbour algorithm working principle is different 
from other methods as it uses a local learning approach, while 
other methods use a global learning approach [28]. Global 
learning tries to map all possible input features to an output by 
creating a function, i.e. fitting a distribution over the data. This is 
possible because of the assumptions that the treated data was 
originally generated by a function. In contrast to this, the kNN 
algorithm, or more in general local learning, denies the existence 
of an underlying function and only exploits local data. A kNN 
algorithm is the perfect example of a lazy-learning algorithm, as 
no global model of the entire domain is kept, but the computation 
is deferred until an output is requested. At this point, single 
outputs are mapped by selecting data similar to the input feature. 
As a result, the assumption the algorithm makes about the data 
are on average weaker than other algorithms but as a 
consequence, it adapts well to various data sets, provided they are 
quite small. The computational demand increases indeed linearly 
with the size of the data set because the algorithm tries to take into 
account a bigger number of training samples and of observations 
that need to be considered to find the k nearest neighbours. 
The kNN algorithm uses a function to determine the similarity of 
points (the k neighbours) which are the closest to the input point 
according to some distance metric. In the case of regression, a 
prediction is made by averaging the output of the k neighbours 
nearest to the given input feature: 
y = )

:
∑ 𝑦2;
27)   

where 𝑦2  is the nearest neighbour. The parameter k is a very 
sensitive parameters that control the fit of the algorithm. Higher 
values of k involve more neighbours contributing to the output 
and therefore a smoother fit to the training data, a lower variance 
and a high bias, and the opposite for smaller k values. To improve 
performance of the algorithm, two main parameters can be 
modified: the distance function and the function that averages the 
outputs of the k nearest neighbours, although the most common 
approaches include using the Euclidean distance and a weighted 
averaging function so that points close to each other contribute 
more to the prediction. Overall this algorithm is simple, versatile 
and easy to implement and it often performs fairly well, providing 
results that can be easily interpreted. 
 
2.4 Artificial Neural Networks 
Artificial neural networks are non-linear computational models 
inspired by biological neural networks. Their working principle 
attempts indeed to mimic the human nervous system and its 
continuous dynamics. A typical ANN topology includes layers 
and neurons, the basic unit of the artificial nervous system. In the 
brain neurons transfer continuous information between them and 
through the various layers of the cortex. In the same way, in 
artificial neural networks, there are typically three sequential 
layers, an input layer, a hidden layer and an output layer. Each 
layer has a specific number of neurons and each neuron possesses 

an activation function that triggers the exchange of information. 
The simplest type of ANN is the Perceptron, which takes several 
inputs, multiplies them by specific weights to produce an output. 
To characterise ANNs there are three parameters to be set: the 
interconnection pattern between the neurons of the different 
layers, the learning process of updating the weights of the 
interconnections, and the activation function that converts a 
neuron's weighted input to its output activation [29]. When an 
ANN presents multiple layers it forms a multilayer perceptron 
(MLP). 
By applying different weights to the neurons in the different 
layers, adaptive models can be developed, and more complex 
functions can be modelled. In particular, in supervised learning 
Feedforward Neural Network with Back Propagation are a 
commonly used type of ANN. The term feedforward refers to the 
direction of the propagation of information. Once divergences are 
found between the input and the desired output, they are 
propagated back to the previous layers. The number of input and 
output neurons depends on the numbers of chosen input features 
to the model, whereas the number of output neurons corresponds 
to number or outputs of the model. Finding an optimal number 
of hidden layers and of neurons in the hidden layers is rather 
demanding. It is important to find a trade-off between the 
network architecture and the accuracy of the task to be solved. A 
wrong number of neurons will either lead to overfitting or 
generalise the model too much at the point that it will not be 
capable of solving the task it is meant for. Higher numbers of 
neurons and layers allow to solve very complex non-linear tasks 
even on large datasets of theoretically any type of data. 
 
3. Methodology 
This section describes the case-study building, the available input 
data and the modelling process used for the forecasting and for 
the development of the demand-response assessment.  

 
3.1 Analysed Building 
The civil building is one of the main buildings on the Alameda 
campus, with a total area of about 25'152 m2 and is composed by 
seven floors, three below ground and four upper floors. The upper 
floors are composed by two blocks, an eastern and a western 
block, separated by an inner patio. The building has a central 
backbone covered by a glass ceiling that allows natural lighting 
while the access to the upper floors is granted by three towers 
(north, central and south) inside the building which extend 
themselves up to the third floor. The building hosts classrooms, 
teachers' and researchers' offices, laboratories, a library and an 
auditorium, and as such, it operates almost continuously 
throughout the year, with small exceptions during weekends and 
national holidays and during the month of August. The entire 
building is open during the week from 7am to 9pm and from 7am 
to 5pm on Saturdays while the area with some studying rooms is 
open 24/7. As a consequence, the peaks of activities correspond 
to the periods of classes, which are divided into two semester and 
mostly during weekdays. It is indeed possible to notice a lower 
occupancy and lower electricity consumption both during the 
weekends and in the month of August, when the rate of the 
activities decreases. The form of energy used in this building is 
mostly electric energy, and partially natural gas, especially in the 
rented spaces, such as the cafeteria on the ground floor of the 
building. The electric energy supplied to this building is used for 
multiple purposes, such as lightning, the HVAC system, electric 
devices and in the laboratories. 
 
3.2 Available Data 
The aforementioned models and their development process are 
introduced in greater detail in this chapter and form the different 
steps to be able to assess the profitability potential of the suggested 
energy management strategy. All models are developed, validated 
and tested using a dataset of different parameters which ranges 
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from 01/01/2017 to 31/12/2018 for a total of 730 days. To this 
purpose, three data sources are available: electricity consumption 
data, weather data and occupancy data. A more detailed 
explanation of the input data is given below and in their respective 
sections and graphically presented in Figure 1. 
 
3.2.1  Weather Data 
The weather data used was collected at the Instituto Superior 
Técnico Meteo station, situated on top of the South Tower of the 
Campus (38.736\degree N, 9.138\degree W, 90 m above sea 
level) and is available with a 5-minute resolution. 
 
3.2.2 Occupancy Data 
Building occupancy is of great importance for the implementation 
of energy efficient measures in buildings as it is strictly related to 
the energy consumption [30]. The analysed building is not 
equipped with presence sensors and therefore it is difficult to know 
the exact number of people in each area. Many works have 
investigated and analysed the performance of indirect indicators 
of people presence and, among others, WiFi connected users have 
proved to be a good estimate [31], even though such an indicator 
is obviously characterized by the uncertainty due to that fact that 
not all people in a building might be connected to the WiFi 
network with a device, or, on the other hand, they could be 
connected with multiple devices. For the scope of this work, the 
WiFi connected users are considered a valid indicator of the 
number of people in the building. All information about the WiFi 
infrastructure network of the analysed building is stored using 
RRDTool (https://oss.oetiker.ch/rrdtool/index.en.html), an 
OpenSource industry standard data logging and graphing system 
for time series data, which acquires the data at regular time 
intervals through Simple Network Management Protocol 
(SNMP). RRDTool uses data consolidation features to store the 
data which is available to download through the Cacti software 
(https://www.cacti.net). The time series of the logged number of 
devices are split between all 53 available APs of the building. For 
the purpose of this work, the sum of the connected users of all the 
53 APs has been taken into account as indicator of people 
presence in the building. 
 
3.2.3 Electricity Consumption Data 
Energy consumption data was collected with hourly resolution 
from smart meters installed in the building provided by the IST 
project Campus Sustentável (http://sustentavel.unidades. 
tecnico.ulisboa.pt). These data are acquired periodically and 
correspond to the average current [Ah] of the last hour, which 
was then converted into kWh using an average voltage of 230 V 
and a power factor of 0.90 for conversion. 
 

 
Figure 1: Data extraction and integration process to create the database for the 
development of energy consumption and production prediction models with a 

15-minute sampling rate. 
 

3.3 Forecasting Development Process 
The methodology used to develop data-driven prediction models, 
whether to forecast electricity consumption or the PV panels 

power output followed the same main steps. In data-driven model 
development, the development process can be divided in the 
following main steps: collecting, preparing and pre-processing the 
data, choosing an evaluation metric and a testing procedure, 
identifying the important features, developing the model and 
tuning its hyper-parameters, evaluating the model performance 
and proceeding to a further optimization if needed. 
This process was applied iteratively for all models, both varying 
the input data, the percentage of train-test data and the hyper-
parameters fed to the different models to sense the effect of such 
parameters on the quality of the predictions. To this purpose 
different script were developed in Python for each of the model 
tested. Figure 2 summarises the model development and 
evaluation process. 
 

 
Figure 2: Model development and evaluation procedure. At the end of each simulation, 

the MAE, RMSE and coefficient of determination are computed. 
 
 
The basic testing method for machine learning models consists of 
splitting the data into two sets, a training set and a testing set, 
training the model using the training set, make prediction using 
the testing set and assess the performance of the model with an 
appropriate metric. There are two obvious drawbacks to this 
methodology: the first is that the training set might be too small 
to be split into two subsets, and the second one is that depending 
on where the split is performed the model performance might 
change. To reduce this issue common practice is to perform cross-
validation procedures, such as k-fold cross validation. K-fold 
cross-validation refers to randomly dividing the set into k folds, 
iteratively using k-1 folds for training and the k fold for testing. 
This process is repeated until all the folds are used and the value 
of the chosen performance metric is calculated as the average of 
the errors of each of the folds. It is clear that such approach is not 
appropriate for time series datasets as observations are normally 
strictly dependent on previously occurred observations and 
intrinsically carry with them a time attribute (the order in the 
dataset).  
The chosen approach is therefore to extract feature from the 
timestamp of the dataset such as the day, the month, the day of 
the week, the hour and the minute. In this way the timestamp 
features can be passed to the algorithm as numerical values and 
the algorithm can learn the relationship between the timestamp 
and the output rather than learning the relationship between 
historical outputs and the current one. 
To achieve a more rigorous procedure for validation, different 
train-test splits have been tested, incrementally increasing the 
percentage of the training set and always choosing a test set from 
the end of the data set, i.e. performing last block validation [32].  
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The method described above was the general development and 
testing method for the algorithms. Another factor influencing the 
implementation process of the different methods are the features. 
To test the most important feature for the different algorithms a 
forward stepwise method was chosen. This procedure included 
starting the model with very few predictors and iteratively assess 
its performance while increasing the number of predictors to see 
if the accuracy increases or not. The procedure is repeated until 
no further improvements can be achieved and only the four best 
combination of predictors are retained. At this point the 
hyperparameters of each of the four models need to be further 
optimized, such as the number of neighbours in kNNs, the 
number of nodes and depth of decision tree and the overall 
architecture of ANNs. The tuning of such hyperparameters 
directly affect model performance and it requires hard work to be 
found. Empirical approaches have to be used as no universal 
procedure exists [33], while tuning the hyper-parameters care 
needs to be taken not to overfit or underfit the model. 
To be able to compare different learning methods and evaluate 
their overall performance, it is useful to identify different 
performance measures against which the difference models can 
be compared. In particular, to measure regression performance 
during model testing of both electricity production and 
consumption the chosen metrics include the Mean Absolute Error 
(MAE), the Root Mean Squared Error (RMSE) and the 
coefficient of determination (R2).  

 
3.4. Demand-Response 
To carry out the assessment of the economic feasibility of the 
implementation of a battery energy storage system to perform 
demand-response, a behind-the-meter battery is optimally sized 
to minimise electricity costs exploiting cost arbitrage of time-of-
use electricity tariffs. Subsequently, the solution is analysed from 
the cost perspective point of view to ensure the investment can at 
least be paid back within the lifetime of the system considering 
current market-based battery prices. Lastly, the economic 
advantages of the chosen battery are assessed taking into 
consideration the consumption and PV production forecasts. 
To optimise the schedule of the battery and choose a reasonable 
battery size, linear programming methods are employed. On the 
line of the previous models developed, it was chosen to keep 
employing open-source programming languages such as Python. 
In particular, the open-source software package Pyomo was 
employed, which possesses broad optimization capabilities to 
formulate, solve, and analyse optimization models [34]. Pyomo 
allows fairly easy formulations to define the objective function of 
the model, the constraints, the decision variable and the 
parameters. The resulting problem is a Mixed-Integer-Linear-
Problem (MILP) whose solution can be found using the solver 
GLPK (GNU Linear Programming Kit). For MILPs GLPK 
employs as default the branch-and-bound algorithm together 
with Gomory's mixed integer cuts, and is able to solve the 
problem in a matter of minutes. 
This method was chosen in place or more complex ones, because 
it accommodates rapid cost-optimal battery sizing and has the 
advantage of being easily implemented in devices with low 
computational power. 
The formulated problem aims to cost-optimise the overall 
electricity bill for the building, taking into account real market 
electricity tariffs while considering technical battery constraints 
and real consumption and generation data. 
The considered load profile considered the year 2018 for the 
analysed building. As in the analysed period, the PV production 
was always lower than the consumption of the building, the best 
strategy for the solar power production is direct consumption. As 
a result, the input load to the model for the analysed 12 months, 
is the net load resulting from the subtraction of the power 
production from the given load collected by the smart-meters. 
Similarly, to the previous models and analyses, the input data 

used consisted of a 15-minute dataset. The economic opportunity 
that the problem aims to model is the shift of the net consumption 
from peak hours, when the electricity price is higher, to off-peak 
hours, when the associated cost is much lower. The battery can 
indeed charge during off-peak hours and discharge during peak 
hours, resulting this way in a lower overall energy cost. In order 
to do so, it is of the utmost importance to understand the applied 
tariff structure applied by the utility company, in this case 
Energias de Portugal (EDP). The applied tariff is a typical 
Medium Voltage (MV) time-varying tariff that is divided into 
seasonal and daily periods. The overall tariff includes two major 
charges: an energy charge referred to the amount of kWh 
consumed and a power demand charge that is correlated with the 
maximum peak demand over a day or over a month. The EDP 
MV weekly electricity purchasing price applied is reported in 
Table 1 and it includes VAT at the present level in Portugal (23%) 
[35]. The tariff is divided in four trimesters per year, and it 
depends on the day of the week as well as on the time during the 
day, for a total of eight different prices per year. The solar power 
production already contributes to decreasing the electricity tariff 
as its production peaks always occur in the peak hours within the 
tariff scheme. The major of the electricity consumption is though 
still concentrated in the peak hours of the weekdays.  
Based on the active energy tariff, first the overall electricity costs 
are calculated and then compared to the costs which could be 
achieved in the presence of an optimally scheduled battery. Table 
2 shows the implemented formulas in the MILP optimisation 
procedure. 
 

Table 1: EDP MV time-varying tariff. 

 
 

 
Table 2: MILP optimization formulation 

 
 

4 Results 
This section presents the most accurate prediction models 
developed. The impact of different relevant input features to 
predict electricity consumption and generation is assessed, 
enhancing those which contribute to achieving accurate models. 
Finally, the results of the optimum sizing of a BESS system to 
perform demand-response is presented. 
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4.1 Electricity Consumption Forecasting 
Additionally to the available data presented in Figure 1, a variable 
representing the academic calendar and the Portuguese national 
holiday was added (named holiday) to the electricity consumption 
forecasting database, as it is considered important to distinguish  
days with a lower activity in the building from regular working 
days. The variable taking into account the day of the week is not 
able indeed to carefully represent holidays or lower activity 
periods, such as the month of August. Another feature used as 
input to the model is an auto-regressive feature representing the 
consumption of the 15 minutes and it is labelled as ‘Energy-1’ 
throughout this paper. 
 
4.1.1.  Correlation Between Input Variables 
Figure 3 shows scattered plots showing the correlation between 
energy consumption and the possible input features of the model, 
such as occupancy, day of the week, hour of the day, temperature, 
relative humidity, wind speed, pressure, precipitation and solar 
radiation. From the first scatter plot (a) no evident correlation 
arises between consumption and occupancy, but at a closer look, 
it was noticed that these two follow the same trend and increase 
and decrease in a comparable proportion during the day. From 
plot b, it is evident the building has a weekly consumption pattern, 
with a higher consumption along the weekdays (Monday to 
Friday) and considerably lower consumption over the weekend. 
The electricity consumption is also considerably lower during 
night and it follows a characteristic bell-shaped trend during the 
day, when most activities take place. The lower six scatter plots 
(d, e, f, g, h, i) show the relationship between weather variables 
and consumption and no significant trend is to be noticed, which 
suggests that a linear correlation between such variables and the 
electricity consumption is difficult to find. Similarly to the 
occupancy, when looking more in detail at the daily trend of the 
solar radiation and the consumption a direct proportional 
relationship between these two variables becomes evident it their 
daily pattern. 
To investigate further the correlation between the possible input 
features and the target value, the linear correlation is calculated 
for each combination of variables both with the consumption and 
with themselves. The best possible features to describe the 

electricity consumption patterns should indeed be correlated the 
consumption but, at the same time, should be independent from 
each other.  
 
4.1.2 Forecasting Results 
Comparing the four best model developed and plotting the 
forecast values against actual values (Figure 5), it can be seen that 
all algorithms tend to forecast values that in general are lower 
than the actual values, especially the peaks of consumption during 
the working days and at night, when the consumption level is 
lower. A possible explanation could be that at night the 
consumption is not related to the activities in the building but it 
caused by the base load which does not vary with time, and fitting 
a function over the consumption pattern may lead it to 
underestimate the base load at times due to the smoothness 
constraints of the functions. 
Overall all analysed tools clearly outperform the multiple linear 
regression which to be viable requires at least 80% of the available 
data and still does not provide satisfactory results. Both kNN and 
decision tree perform better than the linear regression but are not 
able to capture the daily consumption pattern. Artificial neural 
networks seem to be the best choice, but more accurate results 
would require further tuning and testing of the algorithm. Figure 
4 shows the results for the best preforming ANN without the 
autoregressive feature (on the left) and with the autoregressive 
feature (on the right) and Table 3 summarises the performance of 
all the tested algorithms. 
Figure 5 shows scattered plots between modelled and real 
consumption values. It is possible to notice that the linear 
regression model present sparse points, whereas the kNN model 
captures more the relationship between the input features and the 
values to be predicted. The decision tree model shows a slight 
better performance than the kNN model and it can be seen that 
the points are denser the closer they are to the trend line. The 
artificial neural network shows a better linearity with the trend 
line, as expected by the higher coefficient of correlation between 
predicted and real values and proves to be the more precise tool 
to model the energy consumption in the civil building. 
  

Figure 3: Scattered plots showing the correlation between energy consumption and (a) occupancy, (b) day of the 
week, (c) hour of the day, (d) temperature, (e) relative humidity, (f) wind speed, (g) pressure, (h) precipitation and (i) 

solar radiation. 
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Figure 4: Artificial neural network model versus real consumption data. 

Table 3: MAE, RMSE and coefficient of determination of the best models tested for the electricity consumption model. 

Figure 5: Comparison of predicted versus real consumption values for (a) multiple linear regression model, (b) k-nearest 
neighbours model, (c) decision tree model and (d) artificial neural network model including an autoregressive feature. 

Figure 7: Artificial neural network model versus real consumption data. 

Table 4: MAE, RMSE and coefficient of determination of the best models tested for the electricity production model. 
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4.2 Generation 
The chosen forecasting approach for solar power production 
involved a direct forecasting method, i.e. the forecasting of the 
solar power output based on weather variables and the 
corresponding PV power data that has been previously calculated 
for the 120 kW installed on the civil building. Developing a 
machine learning approach for solar power forecasting results in 
a model which is specific of the location as the variation of the 
meteorological parameters and their related output is highly 
dependent on the specific PV plant layout and geographical 
location. This is due to the fact that the correlation of the 
meteorological parameters and the PV power output is not the 
same for different locations or for different technical specifications 
of the solar panel or inverter. 
 

4.2.1.  Correlation Between Input Variables 
Figure 6 presents the scatter plots between the energy production 
and the weather variables. As expected, the relationship between 
the electricity production and the hour of the day shows a trend 
which reflects the average trend of the solar radiation during a 
sunny day. Plot b shows a strong linear correlation with the solar 
radiation and a mild correlation with temperature.  
From the last scatter plot (plot h) it is immediate to identify that 
the power production increased with decreasing precipitation. 
 
4.2.2 Forecasting Results 
Analysing the four tested models for the solar power production 
the superior performance of the ANNs is clear. The linear 
regression, the decision tree and the kNN are not fully able to 
capture the relationship between all weather variables and the 

Figure 6: Scattered plots showing the correlation between energy production and (a) temperature, (b) 
solar radiation, (c) wind speed, (d) month, (e) hour, (f) relative humidity, (g) pressure and (h) 

precipitation. 

Figure 8: Comparison of predicted versus real production values for (a) multiple linear 
regression model, (b) k-nearest neighbours model, (c) decision tree model and (d) artificial 

neural network model including an autoregressive feature. 
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power output and present oscillatory trend during the day (kNN 
and decision tree) whereas the linear regression overestimates the  
performance at night. The ANN manages to understand the 
dynamics between the input features and the output, it models 
both the peaks of production during the day as well as no 
production at night. Figure 7 shows the results for the best 
performing ANN without the autoregressive feature (on the left) 
and with the autoregressive feature (on the right). 
Figure 8, represents scatterplots between the prediction and the 
real values for the four tested models. The main takeaways are 
that the linear regression model is not even close to accurately 
model the dynamics of the solar power production and its 
forecasted values are much lower than the real ones. The kNN 
and the decision tree algorithm already perform better but it can 
be seen that for higher values in the real production they 
underestimate quite considerably. The ANN instead manages to 
concentrate the points along the trend line and shows a more 
symmetric graph than all other models. 
 
4.3 Demand-Response Results 
This section presents the results of the optimization of the battery 
schedule which had the goal to assess the profitability of the 
implementation of a BESS system to exploit load shifting from 
high-price intervals to low-price intervals, when tariffs favour off-
peak consumption. Initially multiple simulations had to be carried 
out to find an optimal reasonable combination of capacity and 
maximum charging and discharging power, which would allow to 
exploit different time of use of electricity while taking into account 
battery life and the economics of the investment. The simulations 
were first run for a representative week in May, as it was clear that 
the biggest economic savings would arise from weeks of regular 
activities and classes in the building, rather than in summer or 
holiday periods. Once the optimal combination was found, yearly 
long simulations have been run and the profitability of the 
proposal was assessed taking into consideration the initial 
investment for the battery. 
Once the system is modelled, a sensitivity analysis was carried out, 
varying the size of the battery to find the one that would allow to 
achieve the most savings along its lifetime. To this purpose, 
following IRENA's 'Electricity storage and renewables' report 
[36] and Bloomberg technology report [37] a battery lifetime of 
15 years and a corresponding industry price of 300€/kWh 
Lithium-Ion batteries was assumed. Both reports highlight how 
Lithium-Ion battery system prices have fallen from 600€/kWh in 
2013 to around 275€/kWh and are projected to fall even below 
200€/kWh in the coming few years, implying stand-alone 
batteries are prone to become increasingly employed. The results 
of the possible annual savings are shown in Table 5 and are 
calculated comparing the electricity bill for the given tariff with 
and without the battery. 

 
Table 5: Battery savings resulting from exploiting ToU electricity tariff. 

 
 
From Table 5 it can be seen that increasing the capacity reduces 
the minimal achievable cost and therefore increases slightly the 
savings. However, after a certain threshold, no further 
improvement can be noticed, as the battery prices becomes too 
high compared with the possible savings. As the goal is to achieve 
the biggest possible savings while avoiding paying for an oversized 
battery, the cost-optimum solution for the civil building could be 
a 900 kWh battery. 
 

5 Conclusion 
The goal of this article was to assess the performance of different 
forecasting data-driven models for both electricity consumption 
and power generation, including learning algorithms based on 
different methods such as distance-based algorithms, decision tree 
algorithms and artificial neural networks. The development of 
these models allowed the identification of the variable that best 
describe the consumption patterns in the analysed buildings, that 
proved to be highly correlated with the occupancy data and the 
time of the day and of the year. The inclusion of such variables in 
the forecasting of electricity consumption allowed to consistently 
increase the performance index of the predictions. The 
occupancy data follows indeed a clear trend which can be noticed 
in the consumption as well and is strongly related to the activities 
occurring in the building. The inclusion of the knowledge of the 
academic calendar helped the model performance as well, by 
allowing to distinguish between actual working days and holiday 
periods. The model that proved to be the most suitable to predict 
the electricity consumption was the artificial neural network 
model which showed a MAE of 1.4 kWh, and a RMSE of 2.9 
kWh when including input features related to the occupancy, the 
academic calendar, the time and an auto-regressive feature. 
Weather variables did not contribute in the improvement of the 
model performance indexes, indicating that electricity 
consumption is more correlated to occupancy than to weather 
conditions. 
The same procedure was carried out for the solar power 
forecasting. In this case, the artificial neural network model was 
again the one able to represent better how power is generated, 
showing a  MAE of 0.6 kWh, and a RMSE of 1.7. For this last 
model, the key input features were as expected the solar radiation, 
the temperature, the humidity, the wind speed, an autoregressive 
feature and features related to time, such as hour of the day and 
month. These features were expected as the most important 
parameters influencing solar power production are related to the 
time of the year and of the day, which influence the angles 
between the sun rays and the panel surface, and radiation and 
temperature. 
The comparison of the above-mentioned  data-driven models for 
both electricity consumption and power generation led to two 
different artificial neural network models able to carry out 
predictions with a relatively good accuracy. With these models in 
place, a simulation was performed to assess possible economic 
savings resulting from the implementation of demand-response 
strategies exploiting the flexibility of a BESS system. A MILP 
optimisation was set up to find the optimum battery size and 
schedule which would allow to shave the daily peaks of energy 
consumption which characterise the building and 'shift' them to 
off-peak hours when the electricity tariff is lower. 
The results showed that using a behind-the-meter BESS could 
potentially lead to economic savings. Such savings are though 
highly dependent on the size of the battery and its consequent 
upfront investment. Assuming an optimistic battery lifetime, the 
net savings that could be achieved with an optimised schedule 
represent at most 1.64% of the total energy costs without a 
battery. The optimisation developed did not take into account 
battery degradation mechanisms which lead to the reasonable 
assumption that the possible savings in reality would not be 
sufficient to reach break-even for the investment. On the other 
hand, the forecast possible decrease in the coming years in battery 
economics could alter the results of the proposed business case 
and prove it to be lucrative. 
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