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�The sciences do not try to explain, they hardly even try to interpret, they mainly make

models. By a model is meant a mathematical construct which, with the addition of certain

verbal interpretations, describes observed phenomena. The justification of such a

mathematical construct is solely and precisely that it is expected to work.�

John von Neumann

(1903-1957)
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Abstract

To understand the optimal scenario which would allow to reduce building energy consumption and, as a

result achieve economic savings, it is of the utmost importance to be able to quantify how much electricity

can be produced in a decentralised manner, and how much the consumption will be in a specific time in the

future. The development of energy forecasting models is therefore paramount to the achievement of higher

energy efficiency standards, especially if coupled with implementations that enable the automatic control

of the energy system.

The aim of this work is to develop electricity consumption and production forecasting models to suggest

possible smart energy management measures for the main campus of Instituto Superior Técnico in Lisbon.

First, the performance of different forecasting methods for the energy production of rooftop photovoltaic

solar modules and of the energy consumption of selected buildings on campus is simulated and analysed by

means of real data. The results show that, among all tested supervised learning methods, artificial neural

networks can predict the building energy consumption and the rooftop solar production with good accuracy.

An evaluation of possible demand-response strategies exploiting a battery energy storage system is then

carried out. Using mixed-integer linear programming the scheduling of the battery system is optimized to

shift the consumption from peak hour to off-peak hour. Exploiting time-of-use energy tariffs, the optimized

schedule resulted in annual net savings of about 2% including the initial investment for the battery.

The work closes with an outlook towards possible improvements which would potentially allow the real-

time implementation of the suggested measures.

Keywords: Energy Management, Demand-Response, Building Energy System Optimization, Artificial

Neural Networks, Machine Learning, Battery Energy Storage System.
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Sammanfattning

För att förstår det optimala scenariot som skulle leda till reducerad energiförbrukning inom byggnader

och som resultat ger ekonomiska besparingar, det är viktigt att kunna kvantifiera hur mycket el can pro-

duceras på ett decentraliserat sätt och hur stort förbrukningen kommer blir till specifika tider i framtiden.

Utvecklingen av modeller till energi prognostisering är därmed särskilt viktigt för att nå högre standarder i

energieffektivitet, speciellt om implementationen kopplas till automatiska energistyrningssystem.

Syftet med detta arbete är att utveckla elförbruknings och produktionsprognosmodeller för att föreslå

möjliga smarta energihanteringslösningar till Lissabons tekniska universitet Instituto Superior Técnico.

Först simuleras och analyseras prestandan av olika prognosmetoder för energiproduktion med solcellsmod-

uler på huvudbyggnadens tak och energiförbrukningen av utvalda byggnader på universitets område med

hjälp av reell data. Resultaten visar att bland alla testade övervakade inlärningsmetoder kan konstgjorda

neurala nät förutsäga byggnadens energiförbrukning och soltaksproduktionen med god noggrannhet. En

utvärdering av möjliga strategier for efterfrågan och respons som utnyttjar ett batterilagringssystem utfördes

efteråt. Genom att använda linjärprogrammering med blandade-heltal optimeras schemaläggningen av bat-

terisystemet för att förskjuta konsumtionen från topptimmar till lågtider. Med utnyttjande av tids relaterade

energi priser, resulterade den optimerade schema i årliga nettosparande på ca 2% inklusive den ursprungliga

investeringen för batteriet.

Arbetet avslutas med en syn på förbättringar som möjligen skulle tillåta en real tids implementering av de

diskuterade åtgärderna.

Nyckelord: Energi Management, Demand-Response, Energisystemoptimering för Byggnader, Artifi-

ciellt Neuronnät, Maskininlärning, Batteri Energilatersystem.
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Resumo

Para compreender o cenário ideal que permitiria reduzir o consumo de energia nos edifı́cios e, consequente-

mente, obter poupanças económicas, é extremamente importante quantificar quanta electricidade pode ser

produzida de forma descentralizada e quanto será o consumo num momento especı́fico no futuro. O desen-

volvimento de modelos de previsão de energia é, portanto, fundamental para a obtenção de padrões mais

elevados de eficiência energética, especialmente se associados à implementação que permite o controlo au-

tomático do sistema de energia.

O objetivo deste trabalho é desenvolver modelos de previsão de consumo e produção de eletricidade para

sugerir possı́veis medidas de gestão de energia inteligente para o campus principal do Instituto Superior

Técnico em Lisboa. Em primeiro lugar, o desempenho de diferentes métodos de previsão para a produção

de energia de módulos solares fotovoltaicos no telhado e do consumo de energia de edifı́cios selecionados

no campus é simulado e analisado por meio de dados reais. Os resultados mostram que, entre todos os

métodos de aprendizagem supervisionada testados, as redes neurais artificiais podem prever o consumo de

energia do prédio e a produção solar no telhado com boa precisão. Uma avaliação das possı́veis estratégias

de resposta à demanda que exploram um sistema de armazenamento de energia da bateria é então realizada.

Utilizando programação linear inteira mista, o agendamento do sistema de bateria é optimizado para mudar

o consumo da hora de ponta para a hora de vazio. Explorando as tarifas de energia em função do tempo de

uso, o cronograma otimizado resultou numa economia lı́quida anual de cerca de 2%, incluindo o investi-

mento inicial para a bateria.

O trabalho termina com uma perspectiva de possı́veis melhorias que potencialmente permitiriam a implemen-

tação em tempo real das medidas sugeridas.

Palavras-chave: Gestão da Energia, Gestão da Procura, Optimização de Sistemas Energéticos de

Edifı́cios, Redes Neuronais Artificiais, Aprendizagem Máquina, Sistemas de Armazenamento de Energia

Eléctrica.
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Chapter 1

Introduction

Cities are where most European energy is consumed and also the origin of most greenhouse gas (GHG)

emissions [1]. In 2007, for the first time in human history, the number of global urban dwellers outnum-

bered those living in rural settings. By 2050, urbanization will become one of the 21st century’s most

transformative trends putting cities right at the epicentre of a global shift from rural to urban areas, as the

world’s urban population is expected to nearly double. The latest UN estimates suggest that this trend is

likely to lead to a total of 6.3 billion urban residents by 2050, approximately 70% of the predicted total

global population.

Massive sustainability challenges in terms of housing, infrastructure, natural resources, services and

health will have to be faced as most social and cultural interactions, economic activities as well as envi-

ronmental and humanitarian impacts will be increasingly concentrated in cities. This global context is not

unknown to Europe either. Several leading and progressive cities and towns across the European conti-

nent have already taken innovative steps to enhance the deployment and use of renewable energy resources

within their geographic boundaries. However, European cities need to make an effort to further implement

new measures to meet the ever-increasing demands for energy services and adapt to the changing energy

landscape.

The building sector accounts for 40% of primary energy use and 40% of total GHG emissions, becom-

ing one of the largest energy consuming sectors in the world. The electricity consumption in building is

continuously increasing and if no action is taken towards more effective energy efficiency measures, it is

set to increase by 50% by 2050 [2]. As a consequence, buildings have become the primary focus of energy

efficiency policies, which depend heavily on understanding and modelling energy consumption to evaluate

the impact of energy efficiency measures.

There are several ways to attempt to model and simulate a building in order to optimize the operation

of its systems, evaluate audit retrofit actions, or forecast energy consumption. Different techniques, vary-

ing from simple regression to models that are based on physical principles to data-driven models, can be

used for simulation. A frequent hypothesis for all these models is that the input variables should be based

on realistic data when they are available, otherwise the evaluation of energy consumption might be highly

under or over estimated. Electricity consumption patterns are though difficult to estimate as they depends

on various seasonal, monthly, daily and hourly complex variations. As such, building energy consumption

plays an important role in energy efficiency strategies and accurate energy forecasting models have numer-
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ous implications in energy planning and optimization of buildings and campuses. For new buildings, where

past recorded data is unavailable, computer simulation methods are used for energy analysis and forecast-

ing future scenarios. However, for existing buildings with historically recorded time series energy data,

statistical and machine learning techniques have proved to be more accurate and quicker.

Knowing how much electricity can be produced in a decentralised manner, and how much the consump-

tion will be in a specific time in the future, allows to understand the optimal scenario to achieve energy or

economics savings. In particular, coupling forecasting model with implementations that enable the auto-

matic control can help achieving optimised solutions and higher energy efficiency measures. Buildings

that are equipped with such active solutions are called intelligent building. The starting step to reach this

status, is the ability to simulate and predict energy consumption and production in an accurate manner. The

development of energy predictions is therefore paramount to the achievement of higher energy efficiency

standards and consequent energy savings.

1.1 Objectives and Research Questions

The main objective of this work is to analyse and suggest possible smart energy management measures for

the main campus of Instituto Superior Técnico (IST), the engineering school of the University of Lisbon. In

particular, the performance of different forecasting methods for the energy production of photovoltaic solar

modules and of the energy consumption of the campus are simulated and analysed by means of real data.

Moreover, the possibility of implementing demand response strategies is analysed. Pursuant to this main

objective, this work provides solutions to the following research tasks:

• Perform an extensive literature review in order to discover any previous works which share relevance

with this work’s main objective. The literature review should also examine the current state of the

technologies under consideration, investigate forecasting methods that have been employed in similar

tasks and analyse possible demand-response (DR) strategy options;

• Develop two forecasting models based on historical data in Python: one to forecast the solar photo-

voltaic energy production, and the other one to predict the energy consumption of each of the analysed

buildings on campus, using data science and machine learning approaches;

• Assess the modelling approach which best describes how energy is produced and consumed, and

assess its performance and accuracy for each of the forecasting models mentioned above;

• Create a model to assess possible demand-response strategies, including its economical aspects to

validate its feasibility in a real-life environment;

• Suggest future improvements to the proposed models to enhance the study of the implementation of

energy efficiency measures even further.
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1.2 Methodology and Thesis Outline

Considering the diverse research questions outlined above, in order to effectively carry out this work, the

present work is structured by chapters as follows:

• In Chapter 1 (the current chapter), a general introduction to the topic is given, and the main research

question and the outline of this thesis are defined;

• In Chapter 2, the background information and current state-of-the-art of the key system models (i.e.

solar photovoltaic panels, electrochemical batteries, demand response management systems) and

forecasting and optimisation methods being considered (machine learning methods and optimisation

techniques) are examined and the respective economical aspects are presented;

• In Chapter 3, the methodology which is applied to structure, carry out and test the developed machine

learning methods is presented together with the specific case study of Instituto Superior Técnico. The

economic aspect of the proposed forecast-based solution is also investigated resulting in a project-

based assessment of the proposed demand response management system;

• In Chapter 4, the results of the analysis presented in the previous chapter are highlighted, and by

means of a sensitivity and accuracy analysis validated. This leads into the choice of the best modelling

approach for the forecasting of energy consumption and generation. The results of the demand-

response optimisation are laid out and its economical feasibility analysed.

• In Chapter 5, the main conclusions of this work are drawn and possible improvements are suggested.
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Chapter 2

Background

This chapter looks to provide a clearer understanding of all concepts and technologies that are key to cre-

ate the framework of this analysis. Therefore, this chapter is divided as follows: Initially, the concepts of

energy management and flexibility are addressed in order to frame this work into the more general energy

management topic. Thereafter key technologies and methods such as solar photovoltaic energy, data-driven

prediction methods and Battery Energy Storage Systems (BESS) which enable the implementation of en-

ergy management flexibility strategies are defined. Eventually, the chapter concludes with the presentation

of methods to evaluate the financial assessment of possible flexibility strategy.

2.1 Energy Management

Energy management is a widely diffused term in literature but no cohesive definition of this term is yet

established. Different authors agree though that the focus of energy management practises is to imple-

ment continuous improvements to achieve higher energy efficiency standards and its importance has been

demonstrated in several empirical studies [3], [4], [5]. Aside from the implementation of energy efficient

technologies, energy management also deals with the maintenance of such technologies and it is often de-

scribed as the combination of engineering, management and operation [6]. It usually does not involve large

capital investments or particularly increased operating costs, but even simple measures have proved to have

large overall savings. It usually mainly consists in an accurate data and system analysis, goal setting and

continuous performance assessment and improvements [7].

The international standard ISO 50001 about energy management systems defines it as a ”set of interrelated

or interacting elements to establish an energy policy and energy objectives, and processes and procedures to

achieve these objectives” and helps organizations to develop and implement a policy to identify significant

areas of energy consumption and commit to energy reductions [8]. Aside form facilitating investments,

continuous data collection and analysis can also help detecting malfunctioning equipment, optimising the

energy system and evaluating its performance.

2.1.1 Flexibility in the Energy Field

According to the International Energy Agency (IEA), the flexibility of a power system refers to ”the extent to

which a power system can modify electricity production or consumption in response to variability, expected
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or otherwise. In other words, it expresses the capability of a power system to maintain reliable supply in

the face of rapid and large imbalances [...]” [9].

Another source described it as ”...the modification of generation injection and/or consumption patterns

in reaction to an external signal (price signal or activation) in order to provide a service within the en-

ergy system. The parameters used to characterize flexibility in electricity include: the amount of power

modulation, the duration, the rate of change, the response time, the location etc.” [10].

Recently published literature provides a wide range of definitions and detailed discussions, like in Ela et

all. [11], of the flexibility in the energy sector, but all refer to the same general concept: the extent to which

an energy system can modify its electricity production and consumption in response to variability, expected

or not [12]. The energy value chain has two clear sides: generation and consumption. From the definitions

of flexibility reported previously, it is clear that flexibility strategies can be implemented on both sides of

the energy value chain: what is defined as upward regulation, i.e. an increase in generation or a decrease

in demand, or applying what is called downward regulation, which implies a reduction in generation or an

increase in demand [10]. As a result, different types of resources excel at different forms of flexibility, and

they also incur in different costs when providing flexibility [13].

The most common examples of flexibility can be achieved thanks to energy storage options, electric

vehicles (EVs) or from the generation or consumption side. Flexibility can be characterized as well depend-

ing on its source, which can be classified as uncontrollable (which do not provide flexibility), curtailable,

shiftable, buffered or freely controllable (Figure 2.1).

Figure 2.1: Categorization of flexibility sources [14].

As it can be sensed from Figure 2.1, curtailable loads, like a PV plant, are a type of load that does

not need to recover the curtailed energy once reconnected to the power source. In contrast, in a shiftable

load the amount of electricity consumed does not increase or decrease because of a flexibility strategy but

it gets shifted in time. Different categories of loads can have different flexibility properties, which might

depend on the way they are controlled, as for example EVs, which can be considered curtailable, shiftable

or buffered depending on the chosen operational strategy [14].

Besides from its regulation potential and controllability, flexibility options can be classified according

to their scale, which is to say whether they provide low, medium or high flexibility, and their position within

the electricity grid: behind-the-meter, in the distribution network or at the generation side. As a result, dif-

ferent customer segments of flexibility options arise as for example, a Distribution System Operator (DSO)

or a Transmission System Operator (TSO) might be interested in flexibility options to manage grid con-

gestions in their network, perform voltage/reactive power control or controlled islanding and reduce in this
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way costs resulting from grid upgrading interventions. Balance Responsible Parties (BRP) could as well

exploit flexible resources to manage their portfolio and reduce deviation penalties and operation costs.

On the other end of the energy chain, prosumers, i.e. consumers who both consume and produce electric-

ity, will be empowered by their own flexibility in energy consumption, production and possibly storage

to reduce their electricity bill. Since a prosumer is capable of producing and consuming electricity and

its interaction with the electrical grid is by definition behind-the-meter, this is where prosumers can take

advantage the most from flexibility. Examples of flexibility options for prosumers are:

• Self-balancing: includes the optimum usage of production, self-consumption and selling electricity

to the grid based on divergence of prices;

• Demand Charge Reduction: involves reducing the maximum load, i.e. perform what is called peak-

shaving, which could result in a smaller contracted power and consequent cost reduction;

• Time-of-Use optimisation: exploits load shifting from high-price intervals to low-price intervals,

when tariff schemes favour off-peak consumption;

• Controlled islanding: during grid outages controlled islanding allows to maintain electricity supply

behind the meter. This option is largely practised by buildings’ complexes, such as higher education

facilities, or hospitals where uninterrupted power supply is necessary.

Flexible buildings are an example of prosumer that could help the transition to a low carbon energy

system. In the context of building, or building clusters, energy flexibility is defined as the potential for

using a building or a set of buildings to perform demand-response [15]. Junker identifies several factors

that influence the building’s ability to provide energy flexibility [16], among which: the technologies the

building is equipped with, such as ventilation, heating and storage, its physical characteristics (insulation,

architectural layout), its occupants’ behaviour and the associated comfort requirements and lastly its control

system, that allows it to respond to external signals such as carbon dioxide (CO2) emissions or electricity

price.

The energy flexibility potential of a building can be quantified deductively, which implies modelling the

building with the help of building simulation tools such as City Energy Analyst (CEA) [17], or inductively,

exploiting experimental data and time series analysis. Predicting the energy flexibility of a building’s energy

system involves a lot of challenges related to the prediction of the consumption and generation, as well as

the occupancy behaviour and technical and feasibility constraints [18].
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2.2 Solar Photovoltaic Energy

A solar photovoltaic system is a technology to generate electric power by using solar cells to convert energy

into a flow of electrons exploiting the photovoltaic effect. The basic solar photovoltaic cell is indeed made

up by joining a p-type and a n-type semiconductive layers to form a p-n junction diode. The p-type region is

composed by a semiconductive material, usually silicon, that has been doped with acceptor impurities and

therefore has one fewer valence electron; on the other end, the n-type region is the layer that has been doped

with donor impurities and is thus able to cede one additional valence electron to the other layer. When a

p-n junction is formed, this concentration difference in electrons results in the creation of a flow between

the two layers, which is exactly the working principle of the basic solar cell [19].

The preliminary step to calculate the output of a solar cell consists of implementing a model to com-

pute irradiance on its surface through one of the existing solar radiation model and, in a second moment,

implement a solar cell model to compute the power output.

2.2.1 Solar Radiation Models

In most building energy simulation applications involving solar energy, the solar irradiation is usually mea-

sured horizontally which leads to the need of calculating the effective solar radiation on the tilted surface

of interest. Besides this, the available data usually only includes the horizontal solar radiation, while the

measurement of the direct normal and/or the diffuse radiation are not as common but contribute to add an

additional level of accuracy. In the absence of direct measurements of direct normal and diffuse irradiance,

models become even more important and have to be used to split global irradiance into direct and diffuse

irradiance [20].

To this purpose, there exist multiple radiation models to translate the solar irradiation measured on the

horizontal plane to the tilted one, given a solar radiation input and appropriate correction factors and clear

sky models. The most widely used models used in building energy simulation include the Isotropic Sky, the

Klucher, the Hay and Davies, the Hay-Davis-Klucher-Reindl (HDKR) and the Perez model.

2.2.1.1 Models to Compute Global Irradiance on a Tilted Panel

The incident solar radiation on a tilted surface is composed by the sum of the set of radiation streams that

include direct or beam radiation, reflected radiation and diffused radiation. The total incident solar radiation

on the tilted surface GT can thus be written in the following form:

GT = GT,b +GT,d +GT,r (2.1)

where GT is the total incident solar irradiance on the tilted surface, GT,b is the beam irradiance, GT,d

is the diffused irradiance and GT,r is the ground reflected irradiance. In particular, the beam irradiance

GT,b refers to the quantity directly received without any reflection or refraction from the sun in the form

of light per surface unit, and it is also known as direct solar irradiance. The reflected irradiance includes

instead the ratio of irradiance received from the sun under the form of light after it has been reflected from

the surroundings and the various surfaces seen by the panel. Finally, the diffuse irradiance, also known

as sky irradiance or solar sky irradiance, is the fraction of total solar radiation which is received from the

sun when its direction has been changed by atmospheric scattering. Its direction is highly variable and
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mainly depends on cloudiness and atmospheric clearness. The diffused radiation is also the combination of

three components namely isotropic GT,d,i , circumsolar GT,d,c and horizon brightening GT,d,h. The isotropic

diffuse radiation component is received evenly from the entire sky dome. The circumsolar diffuse part is

received from onward dispersion of solar radiation and concentrated in the section of the sky around the

sun, whereas the horizon brightening component is concentrated near the horizon and it is most obvious in

the clear skies. As a result, the total incident solar radiation received by a tilted surface can be written as:

GT = GT,b +GT,r +GT,d,i +GT,d,h +GT,d,c (2.2)

with GT,b the beam radiation, GT,d,c the circumsolar diffuse radiation, GT,d,i the isotropic diffuse radi-

ation, GT,d,h the horizon diffuse radiation and GT,r the reflected radiation. Figure 2.2 shows the different

irradiance components.

Figure 2.2: Solar radiation components [21].

The following paragraphs present the most common models which can be used to compute the global

radiation on a tilted panel, given the global radiation on the horizontal plane. All described models handle

beam and reflected radiation in the same way so the major modelling differences are in the calculation of

the diffuse radiation. If the time period of the measurements is small enough compared to the typical time

constant of the irradiance variations, then the following assumption can be made: I = G∆t where I is the

radiation in J/m2, G is the irradiance in W/m2 and ∆t is the time period [21].

• Isotropic Sky The simplest possible model to calculate the total irradiance on a tilted panel is the

isotropic sky model presented by Liu and Jordan. It relies on the assumption that the circumsolar

and horizon brightening components are negligible compared to the others and that ground reflected

radiation is diffuse. To put it simple, it assumes all diffuse radiation is uniformly distributed over

the sky dome. As a result, the values of these components are only adjusted based on geometrically

derived factors and the model usually results in lower numerical values than the real ones. The

equation for the isotropic sky model is the following:

IT = IbRb +(
1+ cosβ

2
)+ Iρg(

1− cosβ

2
) (2.3)
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where Rb is the ratio of the beam radiation on the tilted surface to that on the horizontal surface. Rb is

a function of the transmittance of the atmosphere, and for the surfaces sloped towards the equator in

the northern hemisphere can be computed as the ratio between the cosine of θ divided by the cosine

of θz:

Rb =
cosθ

cosθz
(2.4)

• Anisotropic Sky The anisotropic sky models are improvements made to the isotropic diffuse model,

which take into account the terms that the isotropic model does not account for.

– Hay and Davies Model

According to the Hay and Davies model, the diffuse radiation is only composed of an isotropic

and a circumsolar component, no horizon brightening is present and the reflection from the

ground is dealt with like in the isotropic model. To this purpose an anisotropy index A is defined

which expresses the quantity of the diffuse radiation treated as circumsolar with the remaining

portion of diffuse radiation assumed isotropic. If the anisotropy index is null, then the model

reduces back to the isotropic model.

A =
Ib

Io
(2.5)

where is Ib the beam radiation and Io is the extraterrestrial radiation.

The total irradiance on the tilted surface can therefore be computed as:

IT = (Ib + IdA)Rb + Id(1−A)(
1+ cosβ

2
)+ Iρg(

1− cosβ

2
) (2.6)

– Klucher Model

Klucher modified the Hay and Davies model by multiplying the isotropic diffuse irradiance by

a clearness index F ′ accounting for the cloudiness.

F ′ = 1− (
Id

I
)2 (2.7)

The Hay and Davies performs well in the case of overcast skies but it underestimates the irradi-

ance under clear skies and partly overcast conditions. Under overcast skies, the clearness index

F ′ becomes zero and the model reduces to the isotropic model. The Klucher model calculates

the total irradiance as:

IT = IbRb + Id(
1+ cosβ

2
)

[
1+F ′

√
Ib

I
sin3(

β

2
)

]
×
[
1+F ′cos2

θcos3
θz
]
+ Iρg(

1− cosβ

2
)

(2.8)

The modified terms in the diffuse component try to account for the horizon brightening and for

the effect of the circumsolar radiation.

– HDKR Model

Always employing the anisotropy index, in order to account for the horizon brightening as well,
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Reindl combined the Hay and Davies and the Klucher model, resulting in the HDKR model.

The total irradiance on a tilted surface can then be calculated through:

IT = (Ib + IdA)Rb + Id(1−A)(
1+ cosβ

2
)

[
1+

√
Ib

I
sin3(

β

2
)

]
+ Iρg(

1− cosβ

2
) (2.9)

Because of the additional term in the horizon brightening component, the HDKR model pro-

vides slightly higher diffuse irradiances than the Hay–Davies model or the Klucher model.

• Perez The more complex and computationally intensive model was developed by Perez. Perez tries

to account both for the isotropic diffuse, for the circumsolar and for the horizon brightening radiation

by using empirically derived coefficients [22]. The total irradiance on a tilted surface is given by:

IT

I
=

(
1− Id

I

)
Rb +

Id

I
F1

a
b
+

Id

I
(1−F1)

(
1+ cosβ

2

)
+

Id

I
F2sinβ +ρg

(
1− cosβ

2

)
(2.10)

The coefficients F1 and F2 are the circumsolar and horizon brightness coefficients that depend on the

sky condition parameters clearness ε and brightness ∆, whereas the terms a and b take into account

the incidence angle of the sun on tilted surface. These terms can be computed according to the

following formulas:

a = max(0, cosθ) ; b = max(cos85, cosθz) (2.11)

∆ = m
Id

Ion
(2.12)

ε =

Id+Ib,n
Id

+5.53510−6θ 3
z

1+5.53510−6tθ 3
z

(2.13)

F1 = max
[

0,
(

f11 + f12∆+
πθz

180
f13

)]
; F2 =

(
f21 + f22∆+

πθz

180
f23

)
(2.14)

The coefficients f11, f12, f13, f21, f22 and f23 were derived based on a statistical analysis of empirical

data [22], [23] and are reported in Table 2.1.

Table 2.1: Perez coefficients.

[-0.0080 0.5880 -0.0620 -0.0600 0.0720 -0.0220]

[0.1300 0.6830 -0.1510 -0.0190 0.0660 -0.0290]

[0.3300 0.4870 -0.2210 0.0550 -0.0640 -0.0260]

[0.5680 0.1870 -0.2950 0.1090 -0.1520 -0.0140]

[0.8730 -0.3920 -0.3620 0.2260 -0.4620 0.0010]

[1.1320 -1.2370 -0.4120 0.2880 -0.8230 0.0560]

[1.0600 -1.6000 -0.3590 0.2640 -1.1270 0.1310]

[0.6780 -0.3270 -0.2500 0.1560 -1.3770 0.2510]
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2.2.2 Solar Cell Model

There are various solar cell models available in literature. For the modelling of the solar cell the the three-

diode-one-parameter has been chosen, although more accurate models may exist. When the sun’s rays reach

the surface of the solar cell, the photon’s energy creates free charge carriers. A solar cell under illuminated

conditions can be represented by an equivalent circuit that consists of a diode (D) and a power source (see

Figure 2.3). The power source (sun) generates a photo electric current (Is) which has a direct correlation to

the level of irradiance (G) [19].

Figure 2.3: Depiction of an ideal model equivalent circuit for an illuminated solar PV cell [21].

2.2.2.1 Three Diode - One Parameter Models

The solar cell has inherent current-voltage I (V ) characteristics that are dened by its cell structure, material

properties, and the operating conditions. The following equations can be evaluated to determine the I (V )

characteristics of a solar cell. The PV panel main standard parameters have been calculated according to

the following formulas:

V re f
T =

k ·Tcell

q
(2.15)

Ire f
O = Ire f

SC ·
em
′
V re f

T −1

V re f
OC

(2.16)

m′ =
V re f

MPP−V re f
OC

V re f
T · ln

(
1− Ire f

MPP

Ire f
SC

) (2.17)

m =
m
′

N
(2.18)

Using the one diode and three parameters’ model it is possible to calculate all the data of the simplified

circuit at different irradiances and temperature. From these values, the temperature of the cell can be

calculated as:

Tcell =
Tamb +(NOCT −20)

0.8
·G (2.19)
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From the cell temperature it is then possible to calculate all the other parameters of the circuit such as the

short circuit current, the open circuit voltage, the maximum point voltage and current, the power produced

and the efficiency of the cell, according to the following formulas. The short circuit current calculation

includes both the effects of temperature and of irradiance.

Eg

Ere f
g

= 1−C ·
(
Tcell−T re f ) (2.20)

ISCT corrected = ISC ·
[
1+αISC ·

(
Tcell−T re f )] (2.21)

IO = Ire f
O

(
Tcell

T re f

)3

· e
qN
m′
·

(
Ere f

g
kT re f −

Eg
kTcell

)
(2.22)

e
VMP
m′VT =

ISC
Io

+1

1+ VMPP
m′VT

(2.23)

VOC = m
′
VT ln

(
ISC

IO
+1
)

(2.24)

Having found the maximum power point voltage, it is immediate to find the maximum power point

current at the previously calculated Io at that irradiance and temperature. The maximum power produced in

these conditions is then simply found by multiplying the MPP current and the MPP voltage.

PMPP =VMPP · IMPP (2.25)
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2.3 Forecasting using Machine Learning

Nowadays, thanks to technology, observations can be collected about any phenomenon and stored effi-

ciently. This immense amount of data can then be analysed to extract useful underlying information. In

particular, although they differ in the approach, there are two main fields that deal with data to extract

knowledge, namely statistics and machine learning. Statistics deals with stochastic models to develop pa-

rameters to create a model that fits the data well. The goal of machine learning on the other hand, is to build

a computer system that automatically learns from the data, disregarding its internal working principles [24].

In machine learning present data can be used to predict future data and the ability of the system to adapt

and its predictive accuracy is more important than the model itself. In contrast to statistics, that primarily

deals with models to understand the data generating process, the prime machine learning goal is to be able

to learn algorithms and replicate the data, especially when considering very large data sets. Although these

two fields are different, both can be used to uncover patterns, extract knowledge from data and predict the

future from historical time series. These problems are known as forecasting problems, which can be found

in areas such as load forecasting, economics and meteorology [24].

2.3.1 Machine Learning Types of Problems

The problems that can be modelled thanks to machine learning mainly fall into three main categories,

supervised learning, unsupervised learning and reinforcement learning, although there exist also hybrids

between these learning types, like semi-supervised learning [24], [25]. In supervised learning the goal is

to model the relationship between features of the input data and a label associated with it. Once the model

has learned the relationship between the features and the label, it can be applied to unknown data to predict

the corresponding labels. Supervised learning can be further classified into classification and regression

tasks; classification involves assigning discrete categories to data, while in regression tasks the output is

continuous.

Unsupervised learning, on the other hand, tries to model the features of a dataset without reference to any

label, i.e. lets the data create an output without referencing any previous label. Among others, clustering

and dimensionality reduction are types of unsupervised learning in which the algorithms try to create dis-

tinct groups of data or, more in general, a more succinct representation of it.

The last type of learning, called reinforcement learning, does not rely on existing data, but thanks to a

feedback from the environment, the machine’s output is evaluated, positively or negatively, about its deci-

sions. The goal of the machine is to maximise its positive decisions, taking advantage of the created prior

knowledge. Such type of learning is well suited for situations in which no historical data are available or

when such data varies significantly through time [25]. Figure 2.4 gives an overview of the types of machine

learning, their methods, output data and an example of field of application in the energy sector.
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Figure 2.4: Machine Learning Types of Problems [own creation based on [24]].
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2.3.2 Machine Learning Algorithms

Machine learning algorithms can be classified into twelve groups based on their learning method, approach,

and typical applications. Table 2.2 shows a summary of the groups of ML algorithms [24].

Table 2.2: Groups of machine learning algorithms [24].

Group Learning Method Learning Approach Application Examples

Regression Analysis
Supervised,

Reinforcement

Use of relationship between

dependent and independent

variables estimated through

probabilistic method or error

function minimization

Linear Regression,

Polynomial Regression,

Least Squares Regression

Distance-Based

Algorithms

Unsupervised,

Supervised

Use of the distance between

the observed features

Classification,

Regression

K-Nearest Neighbours,

Learning Vector Quantization,

Self-Organising Maps

Regularization

Algorithms

Supervised,

Reinforcement

Extension of the regression

analysis that introduces a

penalty term to balance

complexity and precision

Decision Tree

Algorithms
Supervised

Use of sequential

conditional rules

Decision Making,

Classification,

Regression

Decision Tree Regression,

Random Forest,

Conditional Decision Tree

Bayesian Algorithms
Use of inference from

distribution of variables

Classification,

Inference Testing

Naive Bayes,

Gaussian Naive Bayes,

Bayesian Network

Clustering Algorithms Unsupervised
Maximisation intracluster

while minimising intercluster

similarities

K-Means,

K-Medians,

Hierarchical Clustering

Association Rule

Mining Algorithms

Relationship among variables

is quantified for predictive and

exploratory objectives

Apriori Algorithm,

Context Based Rule Mining

Artificial Neural

Network Algorithms

Supervised,

Unsupervised

Inspired by the biological

neural networks

Powerful enough to model

non-linear relationships

Perceptron,

Back-Propagation,

Hopfield Network,

Radial Basis Function Network

Deep Learning

Algorithms
Complex neural structures

Capable of abstracting

higher level information

from huge datasets

Deep Boltzmann Machine,

Deep Belief Networks,

Convolutional Neural Networks,

Stacked Auto Encoders

Dimensionality

Reduction

Algorithms

Supervised
Apply transformations

to data

Amplification of the signal

contained in data

prior to modeling

Principal Component Analysis,

Principal Component Regression,

Partial Least Squares Regression,

Multidimensional Scaling,

Linear Discriminant Analysis

Ensemble

Algorithms

Supervised,

Unsupervised,

Reinforcement

Formed by a combination

of multiple machine

learning algorithms

Ability to create superior results

and possibility to break into

independent models to train

over a distributed network.

Boosting, Bagging, AdaBoost,

Stacked Generalization (blending),

Gradient Boosting Machines

Text Mining Supervised
Subfield of Natural

Language Processing

Creation of insights of

ML features from unstructured

textual data

Sentiment Analysis,

Speech Recognition,

Topic Modeling
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2.3.3 Machine Learning for Electricity Consumption Forecasting

Electricity consumption forecasting in buildings is of the utmost importance when it comes to reducing

energy consumption and reaching predefined energy targets. Wei [26] reviews the most common methods to

forecast building energy consumption. Among the most common ones in literature artificial neural networks

(ANNs) and support vector machines (SVMs) seem to be prevalent because of their capability of modelling

non-linear relationships.

The complexity of building energy consumption forecasting is due mainly to how the consumption can

be structured: aside from a base load, which is caused by appliances that are running all the time, and

seasonal load, attributable to temperature changes and subsequent heating or cooling, the fraction of the

consumption that causes difficulties in its prediction is the active consumption. The active consumption is

due to the activities in a building and its occupancy patterns [27]. Edwards presents seven machine learning

methods to predict residential electrical consumption and shows that Least Squares Support Vector Machine

(LSSVM) proves to be the best method among the tested ones [28]. SVMs are though generally considered

too complex, especially for a real time implementation [29]. To avoid this drawback of SVMs, Pombeiro

proposes low-complexity models to predict electricity consumption, including ANNs and fuzzy systems

[30]. In particular fuzzy models prove to be the most reliable in their prediction overpassing ANNs. On the

same line, Tso, together with ANNs proposes a traditional regression analysis and a decision tree model.

It becomes clear that in an empirical application, the decision tree and neural network models appear to be

viable alternatives and both overcome the traditional regression model [31]. Overall, neural networks seem

to be the dominant tool applied, either alone or more often together with other optimization techniques, or

using deep recurrent neural networks [32], [33], [34], [35].

In the case of complex tools, though, the learning methods and the tuning of the models, still seem to be

hindering their complete real-time implementation as the computational impact would be too high. As a re-

sult, it may well be that more simple methods, such as decision tree or very simple neural networks, are to be

preferred especially in cases where correlations patterns can be easily spotted or a real-time implementation

is desired.

2.3.3.1 Summary of some of the reviewed works on electricity consumption forecasting

Table 2.3 summarises some of the reviewed works on electricity consumption forecasting, including the

forecast method and the main findings.
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Table 2.3: Summary of some of the reviewed works on electricity consumption forecasting.

Authors and Reference Title Year Forecast Method Main Contributions

Tso et all. [31] Predicting electricity energy con-

sumption: A comparison of regres-

sion analysis, decision tree and neu-

ral networks

2007 Regression analysis, deci-

sion tree and neural net-

works

This work compares three modelling techniques to predict electricity consump-

tion, namely regression analysis, decision tree and neural networks. Different

models are developed for the winter and summer period. Model selection is

based on the square root of average squared error. When comparing the accu-

racy in the predictions, it is found that the decision tree model performs the best

in summer and neural network model perform better than any other model in the

winter period.

Edwards et all. [28] Predicting future hourly residential

electrical consumption: A machine

learning case study

2012 Regression, FFNN, SVR,

LS-SVM, HME-REG,

HME-FFNN, FCM-FFNN

This work proposes seven ML methods to predict electrical consumption in com-

mercial and residential buildings, including regression, Feed Forward Neural

Networks (FFNN), Support Vector Regression (SVR), Least Squares Support

Vector Machine (LS-SVM), Hierarchical Mixture of Experts with Linear Regres-

sion Experts (HME-REG), Hierarchical Mixture of Experts with Feed Forward

Neural Networks,(HME-FFNN) and Fuzzy C-Means with Feed Forward Neural

Networks (FCM-FFNN). Results confirmed that Neural Network-based methods

perform best on commercial buildings but poorly on residential data. LS-SVM

is the best performing predictor for residential consumption.

Pombeiro et all. [30] Comparative assessment of low-

complexity models to predict elec-

tricity consumption in an institu-

tional building: Linear regression

vs. fuzzy modeling vs. neural net-

works

2017 Linear Regression, Fuzzy

C-Means, ANN

This work aims at demonstrating that low complexity non-linear models can be

used to accurately describe energy consumption baselines. The work compares

a linear regression model, a ANN model and a fuzzy model using simple pre-

dictor variables such as time-of-day, weather conditions, and occupancy. The

developed fuzzy and NN models achieve considerably better performance and

accuracy indexes than linear regression models, with the fuzzy model being the

one with the highest variance accounted for (VAF).
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Table 2.3: Summary of some of the reviewed works on electricity consumption forecasting (continued)

Authors and Reference Title Year Forecast Method Main Contributions

Escriva-Escriva et all. [36] New artificial neural network

prediction method for electrical

consumption forecasting based on

building end-uses

2011 ANN This paper presents an artificial neural network (ANN) method for short-term

prediction of total power consumption in buildings with several independent

processes. A new prediction method has been presented using a versatile and

adaptive algorithm based on artificial neural networks (ANNs) trained with the

minimum possible number of days and with features as similar as possible to

the day of prediction (DOP). The selection of the days is made with two param-

eters: labour activity parameter (LAP) to consider work patterns, and weather

conditions using the temperature coefficient (CT). Validation of the method has

been performed with the prediction of the whole consumption of the Universitat

Politècnica de València.

Hassan et all. [37] Examining performance of ag-

gregation algorithms for neural

network-based electricity demand

forecasting

2015 ANN This work examines the efficiency of different aggregation algorithms obtained

from individual neural network (NN) models put in an ensemble. An ensem-

ble of 100 NN models is constructed with a heterogeneous architecture and the

outputs are combined by three different aggregation algorithms, like simple aver-

age, trimmed mean, and a Bayesian model averaging and are employed to obtain

forecasts. A comparison of the results shows that the Bayesian model averaging

approach has been found as the best combination method to predict electricity

demand. The equal-weight is also a good method of combination, however, its

result is greatly affected here by the number of NN models that were included in

the combination.

Amber et all. [38] Energy consumption rorecasting for

university sector buildings

2017 Statistical analysis, ANN This study proposed the forecast of electricity consumption of different univer-

sity buildings at the Southwark Campus of London South Bank University in

London through Multiple Regression (MR) technique. The results demonstrate

that out of six explanatory variables, three variables, namely surrounding temper-

ature, weekday index and building type, have significant influence on buildings

energy consumption. The results showed that the chosen variables were found

to be significant in the development of the model which showed a relative good

accuracy although its simple mathematical formulation.
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Table 2.3: Summary of some of the reviewed works on electricity consumption forecasting (continued)

Authors and Reference Title Year Forecast Method Main Contributions

Biswas et all. [39] Prediction of residential building

energy consumption: A neural net-

work approach

2016 ANN This study aims to train a ANN to model building electricity consumption of

a heat pump. The used input variables include the number of days, the outdoor

temperature and the solar radiation. The model is based on Levenberg-Marquardt

algorithms which is able to address the non-linearity of the consumption pattern.

The results showed a coefficient of determination above 0.9.

Deb et all. [40] Forecasting energy consumption of

institutional buildings in Singapore

2015 Artificial Neural Network

(ANN), Adaptive Neuro

Fuzzy Interface System

(ANFIS)

The paper presents a methodology to forecast the load consumption used for

cooling in three institutional buildings in Singapore. The model is developed us-

ing two machine learning tools, ANN and ANFIS, and the energy consumption

data is divided into five classes to be used as inputs to the forecasting model. The

results show that both ANN and ANFIS forecast the cooling load energy con-

sumption of the three buildings with good accuracy. The ANFIS model needed

though to be adapted depending on the considered building whereas in the ANN

model there was no major difference in the model development methodology

across the three buildings.

Singh et all. [32] Integration of new evolutionary ap-

proach with artificial neural net-

work for solving short term load

forecast problem

2018 ANN + different optimisa-

tion algorithms

This paper proposes the integration of an ANN with an evolutionary algorithms

based on the ‘follow the leader (FTL)’ behaviour of sheep. This algorithm is

used in combination with ANN to forecast the electricity consumption thanks

to its great feature extraction properties. To validate the proposed algorithm,

the results are compared with the ones of other ANN optimised with genetic

algorithm (GA), particle swarm optimisation (PSO) and back-propagation neural

network (BPNN). The proposed algorithm based on FTL performs the best when

compared to more traditional optimisation approaches for ANN, being able to

overcome overfitting problems with a good generalisation ability.
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Table 2.3: Summary of some of the reviewed works on electricity consumption forecasting (continued)

Authors and Reference Title Year Forecast Method Main Contributions

Platon et all. [41] Hourly prediction of a building’s

electricity consumption using case-

based reasoning, artificial neural

networks and principal component

analysis

2015 Artificial neural networks,

Case-based reasoning

(CBS)

The papers present two simplified models to predict the hourly electricity con-

sumption of an institutional building. Measurements from a Canadian institu-

tional facility, along with weather forecasts, were used to develop and validate

this approach. Two artificial intelligence techniques, artificial neural networks

(ANN) and case-based reasoning (CBR), are proposed to develop the forecast-

ing models. Among 22 possible input variables, the 10 most significant ones

have been selected thanks to PCA, although no strong difference in the results

was visible between models developed with all variables and the ones using only

the PCA-selected inputs. The results show that ANN models are more accurate

than CBR models in predicting the consumption, although large amount of data

are necessary for their accurate training.

Amber et all. [42] Intelligent techniques for fore-

casting electricity consumption of

buildings

2018 Multiple Regression

(MR), Genetic Program-

ming (GP), Artificial

Neural Network (ANN),

Deep Neural Network

(DNN) and Support

Vector Machine (SVM).

This paper compares five techniques (Multiple Regression (MR), Genetic Pro-

gramming (GP), Artificial Neural Network (ANN), Deep Neural Network

(DNN) and Support Vector Machine (SVM)) to predict the electricity consump-

tion of a higher education building. The prediction models are based on differ-

ent parameters such as solar radiation, temperature, wind speed, humidity and

weekday index. Results demonstrate that ANN performs better than all other

four techniques.

Li et all. [43] Forecasting building energy con-

sumption using neural networks

and hybrid neuro-fuzzy system: A

comparative study

2011 ANN, ANFIS-GA This study compares the performance of traditional ANN with hybrid genetic

algorithm-adaptive network-based fuzzy inference system (GA-ANFIS) to carry

out building energy consumption prediction. A hierarchical structure of ANFIS

is proposed and optimised trough GA. The results show that the performance of

the ANFIS is slightly higher than traditional ANN whereas the modelling time is

comparable between the two methods. Both models’ performance is then tested

on two different data sets from the library building of Zhejiang University, China.
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Table 2.3: Summary of some of the reviewed works on electricity consumption forecasting (continued)

Authors and Reference Title Year Forecast Method Main Contributions

Gonzalez et all. [44] Prediction of hourly energy con-

sumption in buildings based on a

feedback artificial neural network

2015 Hybrid ANN This study proposes a method for short-term load forecast (STLF) in buildings

based on ANN trains by means of a hybrid algorithm. The inputs to the model

are the current and the forecasted values of temperature, the current load, and

time related variables such as date and hour. The results show a comparable

performance to similar methods presented in literature. The biggest advantage

of such method lies in its simplicity and the reasonable sources needed to apply

it to a STLF problem.

Neto et all. [45] Comparison between detailed

model simulation and artificial

neural network for forecasting

building energy consumption

2008 Physical model, ANN This paper compares two different approach to forecast building energy con-

sumption, a physical model developed in EnergyPlus and a data-driven model

based on ANN. The input features to both models are meteorological data and

historical data of energy consumption of the administration building of the Uni-

versity of São Paulo. The main source of error in the EnergyPlus prediction is

related to the correct evaluation of lighting, equipment and occupancy schedules.

The ANN model shows similar average errors as the EnergyPlus model but man-

ages overall to provide a slightly better prediction for the energy consumption

than the EnergyPlus model. However both models could benefit from the inte-

gration of more accurate occupant’s behaviour data that would probably lead to

more reliable models.

Bento et all. [46] Optimization of neural network

with wavelet transform and im-

proved data selection using bat al-

gorithm for short-term load fore-

casting

2019 ANN, Elman NN, RBFN,

SVM

The paper presents an enhanced ANN method to carry out one day ahead fore-

casts. The method includes data selection and features extraction through cor-

relation and wavelet analysis and a combination of Bat and Scaled Conjugate

Gradient Algorithms to improve neural network learning capability of the feed

forward neural network. The testing is carried out on the load of the Portuguese

national system, the load of the city of New York and the load of New England.

The proposed ANN method is then compared to other forecasting techniques

such as Elman NN, a Radial Basis Function Network and Support Vector Ma-

chine and its superior effectiveness acknowledges in all cases.
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Table 2.3: Summary of some of the reviewed works on electricity consumption forecasting (continued)

Authors and Reference Title Year Forecast Method Main Contributions

Ribeiro et all. [47] Enhanced ensemble structures us-

ing wavelet neural networks applied

to short-term load forecasting

2019 MLP, regression trees,

wavelet ensemble, naı̈ve

models

The paper proposes a pipeline to build wavenet ensembles to predict load from

real data. An ensemble aggregation algorithms composed of wavenet learners

is therefore trained with a subset of selected features with hourly load values.

The results are then compare with other forecasting techniques such as MLP,

regression trees, regression and naı̈ve models. The results show that the proposed

ensemble outperforms all other methods.

Zhang et all. [48] A composite k-nearest neighbour

model for day-ahead load forecast-

ing with limited temperature fore-

casts

2016 kNN ensemble This study developed an enhanced method to forecast one day ahead electricity

consumption based on a k-nearest neighbour (kNN) model. Th model uses an

input only very limited features such as the minimum and maximum tempera-

ture of the day. Three individual kNN models are combined into an ensemble

to improve the prediction accuracy. The final model is tested with real-world

consumption data and it shows a reasonable accuracy in its prediction confirm-

ing that it can be used as an alternative tool for day-ahead load forecasting when

only limited information is available.

Fan et all. [49] Application of the weighted K-

Nearest Neighbour algorithm for

short-term load forecasting

2019 kNN, ANN, ARIMA This paper presents the forecasting of short-term electricity load based on based

on the weighted k-nearest neighbour (wKNN) algorithm. The model was ap-

plied to develop the forecasts of the Australian load considering the inverse of

Euclidean distance as the weight. The results are compared to the ones achieved

with back-propagation neural network and the autoregressive moving average

(ARIMA) models and show that the proposed wKNN achieves greater forecast-

ing accuracy and effectiveness. The proposed wKNN method is able to reflect

well the variation in the power and shows good fitting ability over a short forecast

horizon.
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2.3.4 Machine Learning for Solar Photovoltaic Production Forecasting

The forecasting of solar photovoltaic production becomes increasingly important to mitigate the impact of

the intermittent nature of solar power and the increasing penetration of renewables in the electric grid thanks

to new legislations favouring self-consumption and the increasing deployment of large-scale PV power

plant. In particular, among machine learning solar photovoltaic power forecasting two main approaches

prevail: indirect forecasting and direct forecasting. Indirect forecasting implies the prediction of solar

irradiance or of meterological prediction of weather variables to then use them as inputs to a physical

model of the considered PV plant. On the other hand, direct forecasting aims at the direct estimation of the

solar power output.

In his work, Rana compares different direct methods of forecasting using an ensemble of neural net-

works and support vector regression algorithm, both using only previous power data and combining the

previous power data with weather variables. The results show that the ensemble of neural networks per-

forms better than the SVR for forecast horizons up to one hour, even using only previous power data and no

weather data in the input features [50]. Shi tries to increase the perfomance of a one-day ahead predictive

model by distinguishing different weather conditions. First a classification of the weather is performed

(clear sky, cloudy, foggy or rainy) and then a SVM is modeled to forecast the power output. Results show

that training different SVMs for different weather types increases the accuracy [51].

Similarly to Shi, Liu predicted the solar power output 24h ahead thanks to four different backpropaga-

tion NN based on a classification of the type of day with the addition of aereosol index data to PV power

data and meteorological data [52]. Using only historical power output data of the panels, Pedro compared

the performance of ARIMA, k-nearest neighbours, NN trained with a backpropagation algorithm and NN

trained with a GA. The results showed that the two NN-methods outperformed all other proposals [53].

Like Pedro, Chen employed an ANN to carry out a 24h ahead forecast exploiting power data from

the previous day and weather forecast for the next day. The results showed the importance of selecting

meaningful features to improve the forecast [54]. The importance of feature management is even more

evident from the work of Davo, who used principal component analysis (PCA) as feature selection method

before implementing ANN. A comparison between a model including PCA and the one developed without

showed that using PCA enhances the prediction accuracy [55].

Persson used Gradient Boosted Regression Trees (GBRT) to forecast solar energy power production

from 1 to 6 hours ahead using historical power output as well as meteorological features. The GBRT model

performed better than persistence models and climatology model on all forecast horizons [56]. Overall,

the common result in literature concerning solar power forecasting is that independently of the technique

employed, feature selection is the most impactful parameter on the accuracy of the prediction for all forecast

horizons. Multiple authors propose the exploration of deep learning techniques in combination with proper

feature management to try to overcome the limitations of the unpredictability of weather conditions that

characterises solar power.

2.3.4.1 Summary of Some of the Reviewed Works on PV Power Forecasting

Table 2.4 present a summary of the consulted papers on solar power forecasting, specifying the main find-

ings, the methods used, the forecast horizon and the metrics employed to measure the forecasting perfor-

mance.
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Table 2.4: Summary of Some of the Reviewed Works on PV Power Forecasting

Authors and

Reference Title Year Forecast

Method

Forecast

Horizon

Forecast Error Main Contributions

Shi et all. [57] Forecasting power output

of photovoltaic systems

based on weather classifi-

cation and support vector

machines

2012 Weather

classification

and SVM

1 day ahead MRE 8.64% The forecast of PV power generation is based on weather classification and SVM.

Days are classified based on weather conditions (clear sky, foggy, cloudy, rainy)

and subsequently a SVM model with 4 sub-models was developed and trained

based on the input vectors of similar category data.

Khang et all. [58] Development of algorithm

for day ahead PV genera-

tion forecasting using data

mining method

2011 K-means

clustering

method

24h ahead MAPE 11% Five years of data were analysed and classified according to rainfall probability

patterns. The processed data were then used in the PV power forecasting model.

The authors suggest to install digital camcorders to detect the status of the clouds

and modify the algorithm to account for that so that the prediction error will

decrease.

Rana et all. [59] Forecasting solar power

generated by grid con-

nected PV systems using

ensembles of neural net-

works

2015 NN ensem-

ble methods,

ANN

30 minutes

ahead

Mean Relative

Error (MRE)

16.9%-17.6%

This study compared three different approaches of ensembles of ANN to forecast

solar power generation. One method was iterative and the other two are not. The

results showed that the iterative approach is the most accurate one and that the

ensemble of NN improved the forecasting compared to a single ANN.

Pedro at al. [53] Assessment of forecasting

techniques for solar power

production with no exoge-

nous inputs

2012 Persistent

model,

ARIMA,

kNN, ANN,

ANN with

GA

1h to 2h

ahead

nRMSE 13.07%

(1h) and 18.71%

(2h)

The study compared 5 different forecasting techniques (persistent model,

ARIMA, kNN, ANN, ANN+GA) without the use of exogenous inputs. The

ANN models outperformed all other models and their optimisation with GA im-

proved the accuracy even further. The accuracy of all models highly depends

though on the seasonal characteristics of solar variability.

Liu et all. [52] An improved photovoltaic

power forecasting model

with the assistance of

aerosol index data

2015 Back propa-

gation ANN

24h ahead MAPE 7.65% A model to forecast PV power which takes into account aerosol index as an ad-

ditional input parameter is proposed. A back-propopagation NN which exploits

a previous seasonal weather classification is developed. The results showed that

the proposed model improves the prediction accuracy when aerosol index is in-

cluded as a feature.
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Table 2.4: Summary of Some of the Reviewed Works on PV Power Forecasting (continued)

Authors and

Reference Title Year Forecast

Method

Forecast

Horizon

Forecast Error Main Contributions

Rana et all. [50] Univariate and multi-

variate methods for very

short-term solar photo-

voltaic power forecasting

2016 Ensemble of

ANN and

SVM

5min to 60

min ahead

MRE

4.15%–9.34%

This paper analysed the forecasting of solar power for horizons from 5 to 60 min

ahead, from previous PV power and meteorological data. A small set of infor-

mative variables are used as inputs for an ensemble of NN and SVM. Two types

of models are developed: a univariate model, that uses only previous PV power

data, and a multivariate model, that also uses previous weather data. Both model

perform similarly, thus the PV power output for very short-term forecasting hori-

zons of 5–60 min can be predicted accurately by using only previous PV power

data, without considering weather information.

Chen et all. [54] Online 24-h solar power

forecasting based on

weather type classification

using artificial neural

network

2011 SOM and

RBFN

24h ahead MAPE 6.36%-

15.08% for sunny

and cloudy days,

MAPE 24.16%-

54.46% for rainy

days

The method uses as input past power measurements and meteorological forecasts

of solar irradiance, relative humidity and temperature. First the self-organizing

map (SOM) is trained to classify the local weather type to subsequently train a

radial basis function network (RBFN). Results show that the model developed is

very suitable to forecast sunny and cloudy days and it provides reasonably good

results for rainy days.

Persson et all.

[56]

Multi-site solar power

forecasting using gradient

boosted regression trees

2017 Gradient

boosted re-

gression tree

(GBRT)

1h to 6h

ahead

nRMSE 10%-

15%

The power output of 42 PV rooftop installations in Japan is forecast. To this

scope, historical power generation and relevant meteorological variables are used

to train a gradient boosted regression tree (GBRT) model for forecast horizons

from 1h to 6h ahead. When compared to single-site linear autoregressive and

variations of GBRT models the multi-site model shows competitive results in

terms of root mean squared error on all forecast horizons. Feature analysis shows

that variables related to lagged observations are more important for shorter fore-

cast horizons, whereas for longer horizons the importance of weather forecasts

increases. The drawback of the model is that it does not present simple updating

procedures.
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Table 2.4: Summary of Some of the Reviewed Works on PV Power Forecasting (continued)

Authors and

Reference Title Year Forecast

Method

Forecast

Horizon

Forecast Error Main Contributions

Yagli et all. [60] Automatic hourly solar

forecasting using machine

learning models

2019 68 different

methods

1h nRMSE, nMBE

(normalised

mean bias error)

68 ML methods, such as tree-based, linear/nonlinear, kernel methods, boost-

ing/bagging/Bayesian variants, quantile regression etc, are tested using irradi-

ance data from 7 locations in 5 different climate zones in the USA. Forecast

results are evaluated in both short- (daily) and long-term (over a period of two

years) averages, under 3 different sky conditions (overcast, clear-sky, and all-

sky), including the trade-off between training time and model performance in the

performance assessment. Tree-based methods were found superior in long-term

average nRMSE under all-sky conditions, whereas variants of MLP and SVR

were the best performers under clear-sky conditions. Random forest quantile re-

gression (RFqr) performed consistently well under overcast skies at all locations.

None of the methods was found to be dominating in terms of nMBE, except for

RFqr under overcast-sky conditions and daily results showed how forecast per-

formance of a method could change with sky conditions.

Mellit et all. [61] A 24-h forecast of solar

irradiance using artificial

neural network: Applica-

tion for performance pre-

diction of a grid-connected

PV plant at Trieste, Italy

2010 ANN 24h ahead MAE 2.75%-

4.48% Co-

efficient of

correlation R

90.8%-94.14%

A MLP network is developed to forecast 24 h ahead solar irradiance for a PV

power plant. The model accepts as input parameters the mean daily irradiance

and the mean daily air temperature. A comparison between the power produced

and the one forecasted shows a good predicted performance for sunny days

(correlation coefficient >98%), slightly lower for cloudy days (95%). Results

showed that the model can be easily improved by adding more input parameters

such as cloud, pressure, wind speed, sunshine duration, geographical coordinates

and etc. if available.

Mandal et all.

[62]

Forecasting power output

of solar photovoltaic sys-

tem using wavelet trans-

form and artificial intelli-

gence techniques

2014 Wavelet

transform

and RBFNN,

BPNN

1h ahead MAPE 2.38% for

sunny days and

4.08% for cloudy

days

The model combines Wavelet Transform (WT) to filter the spikes and the

changes in PV power and meteorological time series data and radial basis

function neural network (RBFNN) to model the non-linear fluctuations of PV

power production. The combination of WT and RBFNN outperforms the simple

RBFNN. The model performance remains unsatisfactory for rainy days.
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Table 2.4: Summary of Some of the Reviewed Works on PV Power Forecasting (continued)

Authors and

Reference Title Year Forecast

Method

Forecast

Horizon

Forecast Error Main Contributions

De Giorgi et all.

[63]

Photovoltaic power fore-

casting using statistical

methods: impact of

weather data

2014 Statistical

methods

based on

MLR and

Elman NN

1h to 24h

ahead

nRMSE 10.91%-

23.99% nMAE

6.5%-19.5%

This work proposes statistical methods based on multiregression (MR) analysis

to analyse the impact of different input features, and the Elmann artificial neu-

ral network (ANN) to predict power production of a grid-connected PV plant

in Italy. Different combinations of inputs to the ANN were tested and results

showed that the best performance is found when all of the weather parameters,

including PV power output data, are considered as the inputs to the model.

Dolara et all. [64] Comparison of different

physical models for PV

power output prediction

2015 Physical

Model

24h ahead Normalized

MAE (nMAE)

<1% Weighted

MAE (wMAE)

<2%

This study investigates three physical models for forecasting the PV power gen-

eration by monocrystalline and polycrystalline PV panels were evaluated in this

study. The three models are based on three, four and five parameters respectively.

The comparison was performed using actual weather data measured by a mete-

orological station. The results showed that the accuracy of the model depends

on the data used for the calibration and the calculation of the cell temperature.

Moreover, a training period was not required in this approach unlike ANN-based

forecasting models. This approach is suitable for the initial period of a PV plant.

Mori et all. [65] Development of GRBFN

with global structure for

PV generation output fore-

casting

2012 GBRFN, DA

and particle

swarm opti-

mization

24h ahead Maximum error

0.228 pu

This work uses deterministic annealing (DA) to determine the center and width

of the RBF in a generalised radial basis function network (GRBFN). Weight

decay technique was employed to avoid overfitting the learning data of com-

plicated non-linear time series and Evolutionary Particle Swarm Optimization

(EPSO) was used to optimize weights between neurons in GRBFN. The simula-

tion results presented that the proposed model significantly reduced the errors in

comparison with conventional ANNs, such as MLP, RBFN, and GRBFN.
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Table 2.4: Summary of Some of the Reviewed Works on PV Power Forecasting (continued)

Authors and

Reference Title Year Forecast

Method

Forecast

Horizon

Forecast Error Main Contributions

Xu et all. [66] Short-term photovoltaic

power forecasting with

weighted support vector

machine

2012 Day selec-

tion algo-

rithm and

weighted

SVM

(wSVM)

1h ahead Mean square er-

ror (MSE) 21.8

This work proposes a method based on weighted support vector machine

(wSVM) to forecast short-term PV power generation. To train the algorithm,

the data for the 5 most similar days to the one to be forecast were used as inputs

to the machine. The weights in the wSVM are determined based on similarity

measurements. Results showed that the proposed wSVM makes more accurate

forecasts than ANN.

Silva Fonseca Ju-

nior et all. [67]

Forecasting regional pho-

tovoltaic power generation

- A comparison of strate-

gies to obtain one-day-

ahead data

2014 Principal

Component

Analysis and

SVR

24h ahead RMSE 10.24% This paper proposes three strategies to forecast one day ahead PV power genera-

tion using support vector regression (SVR) and past PV power data and weather

data as input features. These three strategies differentiate themselves depend-

ing on the availability of the input data. The strategy that proved to be the best

is the one whose input data are chosen based on a principal component analy-

sis (PCA), which, if applied, can lead to meaningful improvements of regional

forecast errors.

Leva et all. [68] Analysis and validation of

24 hours ahead neural net-

work forecasting of photo-

voltaic output power

2017 ANN 24h ahead nRMSE 12.5% -

36.9%

An ANN model was proposed to forecast the solar power output of a PV plant

by assessing its performance during sunny, partially cloudy and cloudy days. A

sensitivity with respect to the input data and the amount of data is carried out.

The results shower that the accuracy of the model is strictly related to the pre-

processing of the data and its accuracy.

Cococcioni et all.

[69]

24-hour-ahead forecasting

of energy production in so-

lar PV systems

2011 Time series

analysis and

ANN

24h ahead MAPE <5.0% The model implemented a 1 day forecast model to forecast PV power based

on ANN with tapped delay lines. A tool was proposed to configure the model

correctly according to the installation characteristics.
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2.3.5 Discussion of Main Findings

The main findings of the literature review presented in the previous sections are that there is no unique

criteria to classify PV power generation and building electricity consumption forecasting, however different

categories and methods can be identified depending on the forecasting time horizon, on the available data

and on the methods used.

Classification based on Forecast Horizon The forecast horizon is the period of time in the future for

which the power generation or consumption is forecast and it greatly influences the purpose and accuracy

of the models. For example, Lipperheide proposes a method to analyse the spatio-temporal variability of

solar power over different forecast horizons [70]. In his analysis, it is evident how the forecast horizon

influences the accuracy of the proposed model. In a similar fashion, Lonij shows how, given the same

model parameters for the same model, the forecasting accuracy changes with respect to the forecast horizon

[71].

A number of other works state the importance of defining the appropriate forecast horizon to consider

before the development of the forecast model, especially as far as the forecasting of photovoltaic solar

energy is concerned. In buildings instead, the forecasting of consumption is less related to seasonal and

unexpected variable effects but more related to occupancy and activities taking place in the building which

could possibly be more easily known in advance. As a result, three main categories of forecasting horizons

can be identified:

• Short-Term Forecasts: Short-term forecasting refers to the forecasting for the next hour, several

hours, one day up to a week. In power production such type of forecasting is mostly useful when

scheduling and dispatching electrical power and to enhance the security of the grid. In buildings

instead, it is useful to apply energy management strategies and scheduling of potential load-shifting.

• Medium-Term Forecasts: Medium-Term forecast are more common for power generation than in

the prediction of building energy consumption and are mainly used to predict the availability of

electric power in a more distant future, i.e. more than a week up to a month. It is common to carry

out a medium-term forecasting to plan the power system and its maintenance.

• Long-Term Forecasts: Forecasting horizons longer than a month both in electricity production and

consumption fall into what is called long-term forecasting, whose main goal is the planning of elec-

tricity generation, consumption, transmission and distribution or the creation of more general renew-

able energy production scenarios.

Classification based on Forecasting Method and Available Data Depending on the used and available

input data, it is possible to identify three main types of forecasting methods, namely engineering, statisti-

cal and machine-learning methods. Both in electricity production and consumption, engineering methods

involve physical principles based on mathematical equations to carry out a forecast and are usually based

on commercially available software, such as EnergyPlus or other open-source engineering software. These

tools are quite commonly used and proved to be precise in prediction but they required a wide range of data

as input, which might be difficult to collect, such as building layout, constructions, conditioning systems

(lighting, HVAC, etc.), utility rates or weather data, and are in most cases time-consuming when it comes
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to their implementation.

Statistical methods instead are mostly used as benchmark models and predictions are made based on statis-

tical analysis of the different input variables. Statistical methods though can be relatively simple methods

which need much less data compared to engineering methods but often fail in predicting accurately. Among

machine learning methods instead, ANNs and SVMs are the most common methods implemented and the

most popular ones in research [26]. Both methods are based on historical data and are usually quite suc-

cessful at modelling the power generation and consumption as they are able to capture the non-linearity in

the data without any prior assumption. Table 2.5 summarises the most commonly used forecasting methods

used for building energy consumption and solar photovoltaic power output prediction.

Table 2.5: Comparative analysis of the commonly used methods for the prediction of energy consumption

and solar power production [72], [73].

Methods Model complexity Easy to use Running Speed Inputs needed Accuracy

Elaborate engineering Fairly high No Low Detailed Fairly high

Simplified engineering High Yes High Simplified High

Statistical Fair Yes Fairly high Historical Data Fair

ANNs High No High Historical Data High

SVMs Fairly high No Low Historical Data Fairly high

2.3.6 Selected Machine Learning Algorithms for Regression Problems

Following the main findings from literature (section 2.3.2 and 2.3.3), four ML algorithms for regression

problems have been chosen to be tested to carry out the forecasting of building electricity consumption and

solar power generation. The mathematical derivations for each algorithm are not presented fully because

the intention is simply to give a basic understanding that will be relevant in the implementation of the

chosen models for this thesis. The general theory and mathematics behind the algorithms that have been

implemented in this project is briefly outlined below.

2.3.6.1 Multiple Linear Regression

Linear regression aims to minimize the error between the observations and the estimations by measuring a

predefined error function (e.g. quadratic error, etc.). The term linear refers to a linear relationship between

two or more variables, whose relationship in a two-dimensional space is represented by a straight line. In

linear regression the task is to predict a dependent variable (y) based on a given independent variable (x)

to undercover the coefficients of the linear model that explain such relationship. In the case of a univariate

model the equation that represents such relationship is of the form:

y = mx+b (2.26)

where y is the variable to predict, x is the input variable, b is the intercept and m is the slope of the straight

line. The values to be optimised in a regression algorithm are therefore m and b. Multiple straight lines can

exist, depending on the parameters of intercept and slope and in this case, the linear regression algorithm

fits multiple lines to the data and returns the one resulting in the smaller error. Extending this concept to
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more than two variable results in a multiple linear regression, as the dependent variable, or target variable,

depends on multiple independent variables. Such a model can be represented by:

y = b0 +m1b1 +m2b2 + ...+mnbn (2.27)

In particular, the multiple linear regression model proposed aims at minimising the total sum of squares

(SST) resulting from the addition of the error of the sum of squares (SSE) and the regression sum of

squares (SSR):

min

(
n

∑
i=1

(yi− yi)
2

)
= min

(
n

∑
i=1

(yi− ŷi)
2 +

n

∑
i=1

(ŷi− yi)
2

)
(2.28)

where yi is the real value of the observation, yi the mean value of yi of n observations and ŷi the value

modelled by the regression model.

Although linear models are quite widely used in baseline scenarios predictions, they have limited capacity

to model non-linear relations between variables.

2.3.6.2 k-Nearest Neighbours Regression

The k-Nearest Neighbour algorithm working principle is different from other methods as it uses a local

learning approach, while other methods use a global learning approach [74]. Global learning tries to map

all possible input features to an output by creating a function, i.e. fitting a distribution over the data. This is

possible because of the assumptions that the treated data was originally generated by a function. In contrast

to this, the kNN algorithm, or more in general local learning, denies the existence of an underlying function

and only exploits local data. A kNN algorithm is the perfect example of a lazy-learning algorithm, as no

global model of the entire domain is kept, but the computation is deferred until an output is requested. At

this point, single outputs are mapped by selecting data similar to the input feature.

As a result, the assumption the algorithm makes about the data are on average weaker than other al-

gorithms but as a consequence, it adapts well to various data sets, provided they are quite small. The

computational demand increases indeed linearly with the size of the data set because the algorithm tries to

take into account a bigger number of training samples and of observations that need to be considered to find

the k nearest neighbours.

The kNN algorithm uses a function to determine the similarity of points (the k neighbours) which are

the closest to the input point according to some distance metric. In the case of regression, a prediction is

made by averaging the output of the k neighbours nearest to the given input feature:

y =
1
k

k

∑
i=1

yi (2.29)

where yi is the nearest neighbour. The k parameter k is a very sensitive parameters that control the fit of

the algorithm (the bias-variance trade-off, see section 3.3.1.4). Higher values of k involve more neighbours

contributing to the output and therefore a smoother fit to the training data, a lower variance and a high bias,

and the opposite for smaller k values. To improve performance of the algorithm, two main parameters can

be modified: the distance function and the function that averages the outputs of the k nearest neighbours,

although the most common approaches include using the Euclidean distance and a weighted averaging

function so that points close to each other contribute more to the prediction. Overall this algorithm is

simple, versatile and easy to implement and it often performs fairly well, providing results that can be

easily interpreted.
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2.3.6.3 Decision Tree Regression

A decision tree is a non-parametric model governed by simple decision rules inferred from the input data.

Decision trees present three types of nodes: root nodes, i.e. all features which are going to be split, decision

nodes, which split the samples into other sub-trees or leaf nodes based on the chosen decision rule and leaf

nodes which indicate the final region or class defined by the tree. Like other machine learning methods,

depending on whether the variable is continuous or not, they can be used both for classification and regres-

sion (a regression tree). The decisions at the splitting point are usually taken to reduce the variance in the

target value. When new data falls into a node, its predicted value is the mean of all the samples in that class.

The main advantage of decision trees over other machine learning methods is their simple interpretability,

which leaves decisions traceable along the tree and allows the formation of clear rules from them.

2.3.6.4 Artificial Neural Network

Artificial neural networks are non-linear computational models inspired by biological neural networks.

Their working principle attempts indeed to mimic the human nervous system and its continuous dynamics.

A typical ANN topology includes layers and neurons, the basic unit of the artificial nervous system. In the

brain, neurons transfer continuous information between them and through the various layers of the cortex.

In the same way, in artificial neural networks, there are typically three sequential layers, an input layer, a

hidden layer and an output layer. Each layer has a specific number of neurons and each neuron possesses an

activation function that triggers the exchange of information. The simplest type of ANN is the Perceptron.

As depicted in figure 2.5, the Perceptron take several inputs (x), multiplies them by specific weights (w) to

produce an output (ŷ).

Figure 2.5: Perceptron scheme.

To characterise ANNs there are three parameters to be set: the interconnection pattern between the

neurons of the different layers, the learning process of updating the weights of the interconnections, and

the activation function that converts a neuron’s weighted input to its output activation [75]. When an ANN

presents multiple layers it forms a multilayer perceptron (MLP) (Figure 2.6).

By applying different weights to the neurons in the different layers, adaptive models can be developed

and more complex functions can be modelled. In particular, in supervised learning Feedforward Neural

Network with Back Propagation are a commonly used type of ANN. The term feedforward refers to the

direction of the propagation of information. Once divergences are found between the input and the desired
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output, they are propagated back to the previous layers. The number of input and output neurons depends

on the number of chosen input features to the model, whereas the number of output neurons corresponds to

number or outputs of the model. Finding an optimal number of hidden layers and of neurons in the hidden

layers is rather demanding. It is important to find a trade off between the network architecture and the

accuracy of the task to be solved. A wrong number of neurons will either lead to overfitting or generalise

the model too much at the point that it will not be capable of solving the task it is meant for. Higher numbers

of neurons and layers allow to solve very complex non-linear tasks even on large datasets of theoretically

any type of data.

Figure 2.6: Feedforward neural network with back-propagation scheme.
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2.4 Demand Response

Within the energy management measures, demand-side management (DSM) is the portfolio of measures

that focuses on the consumer side of the energy network. It includes a variety of measures ranging from

energy efficiency measures, to real-time control of distributed energy resource to incentive based tariff

schemes [76]. To this purpose, the energy flexibility potential (i.e. potential for using a building to per-

form demand-response, see section 2.2.1) of a building can be assessed using building simulation tools or

thanks to experimental data and time series analysis. Assessing the flexibility of a building based on price-

responding conditions using time series analysis is not a new concept, as it was already proposed by Corradi

[77]. The authors propose a dynamic model to control heating systems and reduce the peak consumption

in response to time-varying prices. In a similar fashion, Dorini develops a chance-constrained optimization

framework using real-life data to estimate the flexibility and shift the load from peak hours to off-peak hours

[78]. Dynamic characterisation of flexibility, for example of a building, has been vastly researched as it has

been highlight as one of the priorities in the EU Winter Package [79].

One mechanism to increase flexibility is demand-response. Demand response consists of a change in the

consumption pattern of a customer which can either reduce or shift its peak consumption to off-peak hours,

thus helping to balance power supply. Depending on the strategy used demand-response involves the shift of

the consumption based on different electricity tariff schemes, as for example time of use (ToU), critical-peak

price (CPP), and real-time price (RTP). Otzurk for example, proposed a home energy management system

(HEMS) in which the appliances were scheduled exploiting the ToU pricing scheme using a controller

based on the branch-and-bound algorithm to minimise overall costs [80]. Kinhekar on the other hand, tries

to accommodate both benefits for the customer and the utility company implementing an integer genetic

algorithm to shift the load by fitting the consumption power curves to the utility production curve at each

time step [81]. Another example of load scheduling for demand-response was proposed by Setlhaolo [82].

Setlhaolo implemented a mixed-integer non-linear optimisation model which showed that the households

were able to achieve electricity cost savings up to 25% thanks to the scheduling of home appliances in

response to the varying prices of ToU.

Independently of the chosen strategy, it is clear that scheduling techniques and accurate forecasts of

consumption and of generation, if present, help the customers to manage their load properly. Because of

the difficulty in predicting the load consumption, forecasts are of great help in the assessment of demand-

response strategies, especially if combined with load scheduling techniques. Demand-response schemes

need a scheduling techniques to manage loads especially in the presence of non-shiftable loads that cannot

be operated at different times. A solution to this is provided by battery energy storage system, as they allow

to partially shift load for optimal cost.

2.4.1 Battery Energy Storage System

The importance of energy storage is to mitigate energy fluctuations, whether on the production or on the

consumption side, is widely recognised [83], [84] and contributes to the increasing importance that energy

storage systems are playing in the future of the smart grid. Energy storage options range widely in size,

application, geographical applicability, energy conversion process and response timing. The most com-

mon ones include flywheels, compressed air energy storages, electro-chemical batteries, and large thermal

storage tanks. Figure 2.7 summarises the most common storage systems based on their energy conversion
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process (electro-mechanical, electro-magnetic, electro-chemical and thermal) [85].

Figure 2.7: Classification of different energy storage systems [86].

The increasing employment of energy storage technology has been caused by the fast growing imple-

mentation of renewable energy sources and by the possibility to exploit financial incentives related to the

services such a technology can offer. Figure 2.8 summarises the most common services provided by storage

technologies, in particular by BESS, depending on whether their application is centralised and connected at

the transmission or distribution level or decentralised and integrated behind the meter [86].

Figure 2.8: Services provided by BESS [86].

Among all storage technologies, the most common employed ones to perform load shifting at customer
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level are electrochemical battery energy storage systems. In particular, following a drop in their prices

Lithium-Ion (Li-Ion) batteries have become the most popular technology in stationary and mobile applica-

tions and have been extensively studied as a form of DR.

Kishore provided an example of direct load control thanks to a home energy controller to take advantage

of the two level pricing scheme of the utility company. The applied optimization scheme could further be

extended to multiple buildings in the neighbourhood while reducing costs [87]. Prasatsap proposed an

approach to determine the optimal capacity of battery energy storage system (BESS) for peak shaving at

Naresuan University in Thailand. The results show that the optimal capacity for the BESS is successful

in shaving the peaks of consumption during high-price periods and that an oversized BESS could further

decrease peaks but would results in reduced savings [88]. Lorenzi compares the potential of demand-

response exploiting storage in batteries and domestic-hot-water to reduce the bill in the residential sector.

The results suggest that with the current market prices of batteries, demand-response using hot-water tanks

should be preferred but a significant decrease in the batteries’ price could make storage an interesting

alternative [89].

Kim presented a method to size and integrate BESS to reduce a building’s annual energy costs [90]. The

results highlighted that a significant reduction can be achieved, although the compensation of the upfront

investment is not always granted and is highly dependant on the battery size and the achievable profit.

Semigran and Tsim (2014) quantified the savings derived from using a battery, showing that significant

reduction in cost can be achieved to partly compensate for the upfront cost of buying a battery.

Optimal energy consumption schemes based on ToU BESS scheduling show vast potential to shave peak

energy consumption and reduce the electricity bill. Such solutions become increasingly interesting espe-

cially if combined with decentralised energy generation such as photovoltaic energy to decrease consump-

tion in peak hours, and learning algorithms that could increase the knowledge of the expected consumption

to boost economic savings.
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Chapter 3

Model Development

This chapter provides an explanation as to how the different models were developed and implemented and

how their performance was assessed. All the simulations were carried out using Python and its available

packages, which allowed for the calculation of different models such as the technical model developed

to calculate the photovoltaic electricity production, the two machine learning models used to carry out

the forecasting of demand and supply and the optimization and sensitivity analysis concerning the energy

management system proposed, as well as different performance indicators.

3.1 Case Study: Instituto Superior Técnico

As stated in the objectives of this thesis, the developed models have been applied and tested to carry out the

analysis of the main campus of Instituto Superior Técnico, an engineering higher education and research

facility situated in Lisbon, Portugal. Due to the high number of buildings present on its main campus, the

Alameda campus, the analysis focused on four main buildings, that correspond to 50% of the total demand,

namely the civil building, the central building and the south and north towers. The exact position of these

buildings is highlighted in Figure 3.1.

To be able to assess a possible energy management strategy and carry out the forecasting for both the

electricity consumption and production, three main models have been developed:

• a technical model to assess the power output from a predefined number of rooftop photovoltaic panels,

which are planned to be installed on the buildings;

• a machine learning model to carry out a short-term forecasting of both the electricity production and

the electricity consumption of the above-mentioned buildings;

• a model to assess the profitability potential of different energy management strategies, in particular

of DR strategies.

For the sake of consistency, the complete analysis focuses on the civil pavilion, since the two towers are

not going to be equipped with PV panels and therefore there is no possible assessment of the PV production.

As far as the central pavilion is concerned, its complete analysis could be carried out in a similar fashion

to the civil pavilion and therefore only the results of the civil building are presented in detail in this thesis.
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Figure 3.1: Map of the Alameda campus highlighting the analysed buildings: (a) central building, (b) civil

building, (c) south and (d) north towers.

However, to further assess the feasibility of the consumption forecasting model proposed, the machine

learning models related to the forecasts of the consumption have been tested on all four buildings and the

results of the different models are summarised in section 4.1.7.

3.1.1 The Civil Pavillion

The civil pavillion is one of the main buildings on the Alameda campus, with a total area of about 25152 m2

and is composed by seven floors, three below ground and four upper floors (Figure 3.2 shows the blueprint

of the ground floor of the building). The upper floors are composed by two blocks, an eastern and a western

block, separated by an inner patio. The building has a central backbone covered by a glass ceiling that

allows natural lighting while the access to the upper floors is granted by three towers (north, central and

south) inside the building, which extend themselves up to the third floor. The building hosts classrooms,

teachers’ and researchers’ offices, laboratories, a library and an auditorium, and as such, it operates almost

continuously throughout the year, with small exceptions during weekends and national holidays and during

the month of August. The entire building is open during the week from 7am to 9pm and from 7am to

5pm on Saturdays while the area with some studying rooms is open 24/7. As a consequence, the peaks

of activities correspond to the periods of classes, which are divided into two semesters and mostly during

weekdays. It is indeed possible to notice a lower occupancy and lower electricity consumption both during

the weekends and in the month of August, when the rate of the activities decreases.

The form of energy used in this building is mostly electric energy, and partially natural gas, especially

in the rented spaces, such as the cafeteria on the ground floor of the building. The electric energy supplied

to this building is used for multiple purposes, such as lightning, the HVAC system, electric devices and in

the laboratories.
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Figure 3.2: Blueprint of the ground floor of the civil building.

3.1.2 Available Data and Model Overview

The aforementioned models and their development process are introduced in greater detail in this sub-

chapter and form the different steps to be able to assess the profitability potential of the suggested energy

management strategy. Figure 3.3 shows a model overview and the main calculations performed in each of

them. All models are developed, validated and tested using a dataset of different parameters which ranges

from 01/01/2017 to 31/12/2018 for a total of 730 days. To this purpose, three data sources are available:

electricity consumption data, weather data and occupancy data. A more detailed explanation of the input

data is given below and in their respective sections.

Figure 3.3: Overview of the developed model.

Weather Data The weather data used was collected at the Instituto Superior Técnico Meteo Station,

situated on top of the South Tower of the campus (38.736◦N, 9.138◦W, 90 m a.s.l. 1) and is available with

a 5 minute resolution.

1above sea level
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Occupancy Data Building occupancy is of great importance for the implementation of energy efficient

measures in buildings as it is strictly related to the energy consumption [91]. The analysed building is not

equipped with presence sensors and therefore it is difficult to know the exact number of people in each area.

Many works have investigated and analysed the performance of indirect indicators of people presence and,

among others, WiFi connected users have proved to be a good estimate [92], even though such an indicator

is obviously characterized by the uncertainty due to that fact that not all people in a building might be

connected to the WiFi network with a device, or, on the other hand, they could be connected with multiple

devices. For the scope of this work, the WiFi connected users are considered a valid indicator of the number

of people in the building.

All information about the WiFi infrastructure network of the analysed building is stored using RRDTool

(https://oss.oetiker.ch/rrdtool/index.en.html), an open-source industry standard data logging and graphing

system for time series data, which acquires the data at regular time intervals through Simple Network Man-

agement Protocol (SNMP). RRDTool uses data consolidation features to store the data which is available

to download through the Cacti software (https://www.cacti.net). The time series of the logged number of

devices are split between all 53 available access points (APs) of the building. For the purpose of this work,

the sum of the connected users of all the 53 APs has been taken into account as indicator of people presence

in the building.

Electricity Consumption Data Energy consumption data was collected with hourly resolution from

smart meters installed in the building provided by the IST project Campus Sustentável (http://sustentavel.

unidades.tecnico.ulisboa.pt). These data are acquired periodically and correspond to the average current in

Ah of the last hour, which was then converted into kWh using an average voltage of 230 V and a power

factor of 0.90 for conversion.
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3.2 Electricity Production Modelling

The first model developed aims to calculate the power output from the PV panels installed on the roof of the

building, as no historical data longer than a week were available to develop the forecasting model. Whether

the aim is to develop a univariate model, that only uses previous production data, or a multivariate model,

that combines the use of past power data and meteorological data, such as solar irradiance, temperature,

humidity and wind speed as presented by Rana [50], the need for historical data of PV power is plain. The

following sections present the calculation and analysis process of the potential power production and gives

a better understanding of the necessary inputs and outputs of the model.

3.2.1 Model Development Process and Input Data

The first step in setting up and running a model to assess PV power production is obtaining irradiance and,

more in general, weather data. Such data is typically used to predict the output power of the proposed

system, while power data, if available, is used to validate that the model, or, if in a real-time application, the

PV system is functioning properly. The solar power generated from PV systems depends on solar irradiance

and other weather variables such as temperature, humidity, wind speed and cloud cover. In particular, the

model used as input the total solar irradiance and the ambient temperature from 01/01/2017 to 31/12/2018

with a 5 minute resolution. The development of such a model include three main tasks:

1. the implementation of the Perez model to to transform the total horizontal irradiance into the effective

irradiance on the surface of the PV panel throughout the day;

2. the usage of a solar cells model (the one diode and three parameters model) to find the current and

the voltage at the maximum power point;

3. the calculation of the AC power using the peak inverter efficiency.

3.2.2 Solar Radiation Model

Among the different existing models to compute the solar radiation presented in 2.2.1 and, in particular,

the total irradiance on a tilted surface, the Perez model is the one offering the most accurate representation

of the diffuse component of the solar radiation with respect to its three components, namely the isotropic

diffuse, the horizon brightening and the circumsolar radiation [20]. In the model to assess the solar power

output calculation, it was decided to include a model to transform the total horizontal irradiance into the

effective tilted irradiance, so that the overall model to calculate the solar power output could be easily used

both in the case where the panels are installed flat on a roof and in the case of tilted panels. After the

preliminary calculations of solar time, astronomical parameters and solar angles, the total irradiance on the

tilted surface has been calculated according to the Perez model (see section 2.2.1.1):
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3.2.3 Solar Cell Model

There are innumerous commercial PV modules on the market today, each possessing its own strengths and

weaknesses. The maximum power point and the AC power produced have been calculated thanks to the data
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sheets provided, the ones of the photovoltaic panel Amerisolar AS-6P30 (250W) and the inverter Involvar

MAC250A. This particular panel and inverter were chosen because they are already installed in the solar

energy laboratory and for which a week of historical data was available to validate the model. The key

performance metrics for this type of module and inverter can be seen in the data sheet in Appendix A and

B.

3.2.4 Model Validation

The developed model was validated using historical data from the solar energy laboratory (a photovoltaic

panel) installed at the Department of Physics on the South Tower on the main campus of Instituto Superior

Técnico. Given specific input parameters, such as the solar radiation, the temperature and the data sheets of

the panel and the inverter, it was possible to calculate the parameters and expected outputs of the installation

and compare them with the experimental measurements of power. This way, it was possible to conclude

whether the developed model, which makes use of the Perez model to calculate the total radiation on a

tilted surface, accurately models the energy produced. The model validation used previous power data

from a week in December 2017 and showed an average error in the power output between 5% and 10%.

Figure 3.4 shows an example of the daily calculated solar power produced versus the power measured for

a 250W panel, where the deviation between the two graphs could be due to an underestimation of the cell

temperature.

Figure 3.4: Measured power output versus calculated power output for one 250W panel.
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3.3 Machine Learning Models

One of the most commonly used Python packages to implement machine learning is Scikit-Learn and it

was therefore chosen to carry out the development of this work. The Scikit-Learn package offers a wide

range of machine learning algorithms, both for supervised and unsupervised learning, as well as testing and

validation features and it is characterized by a clean uniform interface. Once the basic use and syntax are

clear, it allows to switch between algorithms or models in a reasonable amount of time [74].

Choosing the most suitable ML tool implies a trade-off between advantages and disadvantages of each

one of the models. Therefore, among all supervised regression learning tools, four different methods (multi-

ple linear regression, decision trees, kNN regressors, and artificial neural networks) were tested for the two

tasks of predicting electricity consumption and production and their specific parameters optimized being

these among the most common ones found in literature which combined a relatively low complexity and a

good prediction accuracy (see sections 2.3.2 and 2.3.3).

3.3.1 Model Development Process

The methodology used to develop data-driven prediction models, whether to forecast electricity consump-

tion or the PV panels power output followed the same main steps. In data-driven model development, the

development process can be divided in the following main steps:

• Collecting, preparing and pre-processing the data (section 3.3.2);

• Choosing an evaluation metric and a testing procedure (section 3.3.3);

• Identifying the important features (section 4.1.1 and 4.1.6);

• Developing the model and tuning its hyper-parameters (section 3.3.4);

• Evaluating the model performance and proceed to a further optimization if needed.

This process was applied iteratively for all models, both varying the input data, the percentage of train-test

data and the hyper-parameters fed to the different models to sense the effect of such parameters on the

quality of the predictions. To this purpose, different script were developed in Python for each of the model

tested.

3.3.2 Data Collection and Preprocessing

For all machine learning tools, it is good habit to pre-process the input data to see if there is any significant

trend, periodicity and irregularity. In general the databases used were relatively clean and, as a result, the

main task in data preprocessing consisted of scaling (up or down) all features in order for them to have the

same timestamp to be merged in the same database. The resulting database was therefore containing 70080

rows for two years of data, equivalent to 96 points a day.

A few missing points have been replaced interpolating the previous and the following point in the

dataframe. Considering the data has a 15 minute resolution, an interpolated value is considered a good

estimation. At this point, outliers have been identified, as for example, a few positive values of solar power

output at night, and removed. Another preprocessing procedure included denormalising categoric variables

into a set of boolean variables, as for examples holiday flags in the electricity consumption dataframe,
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paying attention to continuous input variables, such as wind direction, which are difficult to handle by

classifiers since there is continuity between 0◦and 360◦, or normalization of input variables.

After the preprocessing phase, the dataframes were sorted correctly according to a regular timestamp

of 15 min. It should therefore be clarified that all values refer to the energy consumption or production in

kWh per 15 minutes.

3.3.3 Performance Measures

To be able to compare different learning methods and evaluate their overall performance, it is useful to iden-

tify different performance measures against which the difference models can be compared. In particular, to

measure regression performance during model testing of both electricity production and consumption the

chosen metrics include the Mean Absolute Error (MAE), the Root Mean Squared Error (RMSE) and the

coefficient of determination (R2).

• Mean Absolute Error (MAE): The mean absolute error is the average of the difference between

a real and its correspondent predicted value. It measures how far the predicted values are from the

actual output but it disregards the direction of the error, i.e. whether the value is over or under the

real value. Mathematically, it is represented as :

MAE =
1
n

n

∑
i=1
|ŷi− yi| (3.2)

• Root Mean Square Error (RMSE): Specifically, the RMSE measures the square root of the average

value of the squares of the errors, formulated as:
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√
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• Coefficient of determination (R2): The coefficient of determination accounts for the percentage of

points that fall on the line formed by a regression equation. It varies from 0 to 1, being 1 a perfect

representation of the modelled data. The higher the coefficient, the more points the regression line

passes through and the higher the ability of the model to predict future events. The coefficient of

determination can also be thought as a probability of a new point to fall on the regression line. More

specifically, it indicates the proportion of the variance in the dependent variable that is predicted or

explained by the predictive variables.
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(3.4)

3.3.4 Development and Testing Process

A time series forecast can be made for different steps in the future, such as one hour ahead or one day

day ahead. The lengths of the steps in the future is the forecast horizon whereas the starting point from

which it is made, is called the forecast origin. It can be easily sensed that longer forecast horizons are

usually less accurate because of the variability of the features influencing the output and the aggregation of

errors. The basic testing method for machine learning models consists of splitting the data into two sets,
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a training set and a testing set, training the model using the training set, make prediction using the testing

set and assess the performance of the model with an appropriate metric. There are two obvious drawbacks

to this methodology: the first is that the training set might be too small to be split into two subsets, and

the second one is that depending on where the split is performed the model performance might change.

To reduce this issue common practice is to perform cross-validation (CV) procedures, such as k-fold cross

validation. K-fold cross-validation refers to randomly dividing the set into k folds, iteratively using k-1

folds for training and the k fold for testing. This process is repeated until all the folds are used and the

value of the chosen performance metric is calculated as the average of the errors of each of the folds. It

is clear that such approach is not appropriate for time series datasets as observations are normally strictly

dependent on previously occurred observations and intrinsically carry with them a time attribute (the order

in the dataset).

The chosen approach is therefore to extract feature from the timestamp of the dataset such as the day,

the month, the day of the week, the hour and the minute. In this way the timestamp features can be passed

to the algorithm as numerical values and the algorithm can learn the relationship between the timestamp

and the output rather than learning the relationship between historical outputs and the current one.

To achieve a more rigorous procedure for validation, different train-test splits have been tested, incre-

mentally increasing the percentage of the training set and always choosing a test set from the end of the

data set, i.e. performing last block validation [93].

The method described above was the general development and testing method for the algorithms. An-

other factor influencing the implementation process of the different methods are the features. To test the

most important features for the different algorithms a forward stepwise method was chosen. This proce-

dure included starting the model with very few predictors and iteratively assessing its performance while

increasing the number of predictors to see if the accuracy increases or not. The procedure is repeated until

no further improvements can be achieved and only the four best combination of predictors are retained. At

this point the hyperparameters of each of the four models need to be further optimized, such as the num-

ber of neighbours in kNNs, the number of nodes and depth of decision tree and the overall architecture of

ANNs. The tuning of such hyperparameters directly affects model performance and it requires hard work

to be found. Empirical approaches have to be used as no universal procedure exists [60] and care needs to

be taken not to overfit or underfit the model (see section 3.3.4.2) while tuning the hyper-parameters.
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Figure 3.5: Model development and evaluation procedure. At the end of each simulation, the MAE, RMSE

and coefficient of determination are computed.

3.3.4.1 Hyper-parameters

• K-Nearest Neighbours (kNN): The scikit-learn package for supervised neighbours-based learning

offers different methods and parameters that can be tuned. The overall principle behind this method

is to find the best number of training samples closest in distance to the input and make a prediction

from these samples. The number of these samples needs to be set as a constant (k-nearest neighbour

learning), or can vary according to the local density of points (radius-based neighbour learning). The

distance parameter can be any metric: standard Euclidean distance and Minkowski distance are the

two common choices. Considering that kNN is sensitive to the domain of its input values, it is im-

portant to normalise to the same scale the values beforehand to make different distances comparable.

Additionally two different weighting functions were tested, one that provides a uniform weighting to

all of the nearest neighbours, and one that weights the contribution according to the distance from the

input point. The tested parameters for the method included a varying number of neighbours from 5

to 60, two distance metrics (Euclidean and Minkowski) and two different weighting of the features

(uniform and distance).

Considering that increasing the training test size, the number of features to consider and the number

of neighbours or the radius, increases the computational time and that kNN is not very good in the

presence of uninformative variables, always less than 6 input features were tested every time.
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• Decision Tree: It was decided to test decision trees since they are very adequate in dealing with

categoric and boolean features, such as holiday flags. The parameters to be tuned include the size

of the tree, its maximum depth and its minimum number of leaves. Not optimising these parameters

proved to be very computationally demanding and lead to fully grown unpruned trees. It is possible to

see that if the maximum depth of the tree is set too high, the decision tree learns too fine details from

the training data resulting in an overfitting. At each branching split the algorithm performs internal

optimization to decide which attributes to use using different criterion metrics. The tested criteria

included a maximum depth ranging from 0 to 20 and two criteria, ’mse’ for the mean squared error

and ’mae’ for the mean absolute error.

• Artificial Neural Network: The hyper-parameters that can be controlled for the artificial neural net-

work are the number of hidden layer, the number of neurons per hidden layer, the activation function

and the solver. The learning rates tested included adaptive, constant and inverse scaling whereas

the activation function included the logistic sigmoid function, the hyperbolic tangent function and

the rectified linear unit function. The solver used tries to optimise the squared-loss using stochastic

gradient descent.

3.3.4.2 Bias versus Variance Tradeoff

The bias-variance tradeoff is the problem associated with finding the perfect balance between two sources

of errors in machine learning models: errors due to variance and error due to bias. Bias refers to the

error between the expected prediction of the model and its real values in the training data. This results in

underfitting the model, i.e. the model is too simple to learn the underlying structure of data and predictions

are therefore bound to be inaccurate. Underfitting and, therefore a high bias, can occur when fitting a simple

model to complicated data. The opposite situation is called overfitting and occurs when fitting a complex

model to simple data. Overfitting leads to a low bias because the model results to be flexible, but, at the same

time, the variance is high because the model is too influenced by the training data. As a result, the model

will perform well on the training data, but it is not capable of generalizing well to new unseen instances.

To avoid overfitting, good approaches are trying to simplify the model by choosing a model with fewer

parameters, selecting fewer input features in the training data or reducing the noise in the training data so

that even a complex algorithm does not learn the noise in the training data. Tuning the hyperparameters of

the different methods is an important part of building a machine learning system. They are normally set

before learning and an experimental iterative process needs to be carried out to find their optimum values

as they greatly influence the bias-variance trade-off.

Figure 3.6: Graphical illustration of underfitting (left), overfitting (right) and an adequate fitting (center) of

the model on the data [74].
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3.4 Demand-Response Model

The main goal of this section is the assessment of the economic feasibility of the implementation of a battery

energy storage system to perform demand-response. The first task consists of optimally sizing a behind-

the-meter battery to minimise electricity costs exploiting cost arbitrage of time-of-use electricity tariffs.

Subsequently, the solution is analysed from the cost perspective point of view to ensure the investment can

at least be paid back within a fixed hypothetical lifetime of the system considering current market-based

battery prices.

To optimise the schedule of the battery and choose a reasonable battery size, linear programming meth-

ods are employed. On the line of the previous models developed, it was chosen to keep employing open-

source programming languages such as Python. Python scripts are indeed easy to build-on and can easily

be translated in other languages to be integrated in other programs [94]. In particular, the open-source soft-

ware package Pyomo was employed, which possesses broad optimization capabilities to formulate, solve,

and analyse optimization models [95]. Pyomo allows fairly easy formulations to define the objective func-

tion of the model, the constraints, the decision variables and the parameters.

The resulting problem is a Mixed-Integer-Linear-Problem (MILP) whose solution can be found using

the solver GLPK (GNU Linear Programming Kit). For MILPs, GLPK employs as default the branch-and-

bound algorithm together with Gomory’s mixed integer cuts, and is able to solve the problem in a matter of

minutes.

This method was chosen in place of more complex ones, because it accommodates rapid cost-optimal

battery sizing and has the advantage of being easily implemented in devices with low computational power.

3.4.1 Model Development Process

The formulated problem aims to cost-optimise the overall electricity bill for the building, taking into ac-

count real market electricity tariffs while considering technical battery constraints and real consumption

and production data.

The considered load profile consisted of 12 months of data for the year 2018 for the analysed building,

taking also into account the month of August, when the consumption and the activities in the building are

negligible compared to the rest of the year. As in the analysed period, the PV production was always lower

than the consumption of the building, the best strategy for the solar power production is direct consumption.

As a result, the input load to the model for the analysed months is the net load resulting from the subtraction

of the power production from the given load collected by the smart-meters. Similarly to the previous models

and analyses, the input data used consisted of a 15 minute dataset.

The economic opportunity that the problem aims to model is the shift of the net consumption from peak

hours, when the electricity price is higher, to off-peak hours, when the associated cost is much lower. The

battery can indeed charge during off-peak hours and discharge during peak hours, resulting this way in a

lower overall energy cost. In order to do so, it is of the utmost importance to understand the applied tariff

structure applied by the utility company, in this case Energias de Portugal (EDP). The applied tariff is a

typical Medium Voltage (MV) time-varying tariff that is divided into seasonal and daily periods. This tariff

has been used in the simulations as its values are very close to the real ones but it is not the one actually

applied to the Alameda campus. The overall tariff includes two major charges: an energy charge referred

to the amount of kWh consumed and a power demand charge that is correlated with the maximum peak
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demand over a day or over a month. The EDP MV weekly electricity purchasing price applied is reported

in Table 3.1 and it includes VAT at the present level in Portugal (23%) [96]. As it can be seen from Table

3.1, the tariff is divided in four trimesters per year, and it depends on the day of the week as well as on

the time during the day, for a total of eight different prices per year. The solar power production already

contributes to decreasing the electricity tariff as the production peaks always occur in the peak hours within

the tariff scheme. The bigger share of the electricity consumption is though still concentrated in the peak

hours of the weekdays.

Based on the active energy tariff, first the overall electricity costs are calculated and, once the battery is

sized, the possible achievable savings in the presence of an optimally scheduled battery are calculated.

Table 3.1: EDP medium voltage quadri-hourly tariff schedule.

Period Time of Use Monday - Friday Saturday Sunday Tariff [e/kWh]

Periods I, IV Peak
9:30 - 12:00

18:30 - 21:00
/ / 0.1382

Half-Peak
7:00 - 9:30

12:00 - 18:30

21:00 - 00:00

9:30 - 13:00

18:30 - 22:00
/ 0.1111

Normal Off-Peak
00:00 - 2:00

6:00 - 7:00

00:00 - 2:00

6:00 - 9:30

13:00 - 18:30

22:00 - 00:00

00:00 - 2:00

6:00 - 00:00
0.0777

Super Off-Peak 2:00 - 6:00 2:00 - 6:00 2:00 - 6:00 0.0666

Periods II, III Peak 9:30 - 12:30 / / 0.1408

Half-Peak
7:00 - 9:30

12:30 - 00:00

9:00 - 14:00

20:00 - 22:00
/ 0.1124

Normal Off-Peak
00:00 - 2:00

6:00 - 7:00

00:00 - 2:00

6:00 - 9:00

14:00 - 20:00

22:00 - 00:00

00:00 - 2:00

6:00 - 00:00
0.0791

Super Off-Peak 2:00 - 6:00 2:00 - 6:00 2:00 - 6:00 0.0728

3.4.2 Optimization

To find the optimum battery size an optimization procedure is developed. The model takes as input a vector

for the load and a vector of the respective electricity costs, with a 15 minute timestep and tries to find the

optimum schedule, i.e. charged and discharged energy to and from the battery in order to minimise the costs

of the electricity bill, while respecting the technical specifications for the battery. The starting point is the

definition of the objection function (section 3.4.2.1), of the variables and their boundaries in an algebraical

way so that they can be interpreted by Pyomo.

Pyomo allows to define two different types of models, a so called concrete model, where parameters are

defined at the same time as the model definition and an abstract model, in which the parameters are specified

at a later stage. A concrete model is used as all parameters are specified during model development and

before the simulations are run. Initially multiple simulations are run, varying the charging and discharging

power and the capacity of the battery to find the best combination for the given problem and in a second

moment, once the specifications of the battery are known, a comparison using the forecast load and solar

power is carried out.
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3.4.2.1 Objective Function

The main goal of the optimisation is to reduce the total electricity bill by increasing or decreasing the

electricity bought from the grid at different times. Considering the site has a PV installation, the model

could possibly be more complex and include a selling price for the electricity sold to the grid in the case

of negative consumption but, as this situation does not occur in the analysed months, the decision variable

reduces to the positive net load consumed at each timestep (a negative load would correspond to an excess

in production which could be sold to the grid). The net load to be bought from the grid is a function of the

load of the building and of the battery action and can be written as:

Loadnet(t) = Loadbuilding(t)+Loadbattery(t) (3.5)

The objective function becomes then:

ob jectiveFunction = min

(
n

∑
t=0

(Loadnet(t) ·Priceelectricity(t))

)
(3.6)

At this point, constraints and boundaries have to be defined so that the model represents the battery

parameters. In particular, the constraints aim to guarantee the following characteristics:

• a minimum and a maximum state of charge (SoC) of the battery, SOCmax and SOCmin, have to be

respected;

• a charging and a discharging power limits have to be set;

• a charging and discharging efficiency, ηcharge and ηdischarge, have to be taken into account (battery

charging and discharging efficiencies of 90% were considered.).

On its turn, the SoC is defined splitting it into a positive and a negative component, namely ∆SoC,pos

and ∆SoC,neg, which represent the energy coming from the grid to the battery and energy exiting the battery

(SoC(t) = ∆SoC,pos(t)+∆SoC,neg(t)). When charging or discharging the battery, an efficiency needs to be

taken into account, and ∆SoC,pos and ∆SoC,neg are therefore defined as:

Egrid(t) = ∆SoC,pos(t)/ηcharge (3.7)

EoutBattery(t) = ∆SoC,neg(t) ·ηdischarge (3.8)

3.4.2.2 Equality Constraints

The equality constraints aim to ensure that the balance of energy flows within the system is respected. The

term referring to the battery in equation 3.5, can indeed be split in two other terms: the energy coming from

the grid and the energy going out from the battery:

Loadnet(t) = Loadbuilding(t)+Egrid(t)+EoutBattery(t) (3.9)

The mixed integer formulation of the problem aims on the other hand, to ensure that the battery can

only either charge or discharge at a particular timestep. To this purpose, boolean variables for charging and

discharging are set, boolcharge(t) and booldischarge(t), and the following constraint is added:
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boolcharge(t)+booldischarge(t) = 1 (3.10)

3.4.2.3 Inequality Constraints

For a BESS ,the charged and discharged energy is limited by the capacity of the battery and by the charging

and discharging power limits. This consists of two governing rules: one rule representing the minimum and

maximum states of charge and another rule setting how much the state of charge changes at each period.

The maximum and minimum states of charge can be set in the bounds of the variable SoC as they are simple

constants to be assigned when initializing it:

0≤ SoC(t)≤Cbattery (3.11)

For the charging and discharging power limits, there are also two constraints to be set and therefore the

following equations were added:

Egrid(t)≤ Plimitcharge · t (3.12)

EoutBattery(t)≥ Plimitdischarge · t (3.13)

A last constraint to ensure physical sense within the model guarantees that the energy used locally

coming from the battery cannot exceed the actual demand and can be written as follows:

EoutBattery ≤ Loadnet(t) (3.14)

In addition to the previous constraints, upper and lower boundaries are attributed to all the decision

variables. In particular, the SoC is limited through upper and lower bounds and charging and discharging

rates are constrained by the technical limits of the batteries through time.

Table 3.2 summarises all parameters used in the optimisation.

Table 3.2: Battery optimisation parameters.

Symbol Parameter Unit

Loadnet(t) Net load kWh

Loadbattery(t) Battery load kWh

Loadbuilding(t) Building load kWh

SoC(t) Battery State of Charge -

SoCmax Battery maximum State of Charge -

SoCmin Battery minimum State of Charge -

ηcharge Battery charging efficiency %

ηdischarge Battery discharging efficiency %

Egrid(t) Energy coming from the grid kWh

EoutBattery(t) Energy exiting the battery kWh

Plimitdischarge Discharging power limit kW

Plimitcharge Charging power limit kW

boolcharge(t) , boolcharge(t) Boolean variables for charging and discharging -

∆SoC,neg(t) Negative change in battery SoC -

∆SoC,pos(t) Positive change in battery SoC -
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Chapter 4

Results and Discussion

The main goal of this thesis is to evaluate the feasibility of machine learning tools to predict the electric-

ity consumption and production of a higher education building, to be able to investigate energy efficient

strategies that could possibly be implemented, such as demand-response using a battery energy storage sys-

tem. Pursuant to this main goal, a model to calculate the PV power output is developed and data-driven

supervised learning models are built both to estimate consumption as well as to predict the electricity gen-

eration based on different sets of readily available parameters, such as day of the week, hour, occupancy

and weather variables. All machine learning tools’ specific settings, from the input variables to the specific

hyper-parameters, such as the number of neighbours to consider in kNN regression to the number of neu-

rons for a neural network, have to be optimized. This chapter presents and analysis of all different models

tested with their respective parameters.

4.1 Electricity Consumption Model

The available data to develop the electricity forecasting model was already presented in section 3.1.2. Figure

4.1 shows the data extraction and integration process to create the necessary database for the development

of energy consumption prediction models with 15-min sampling rate and recalls the available input features.

Additionally to the available variables, a variable representing the academic calendar and the Portuguese

national holiday was added (named holiday), as it is considered important to distinguish days with a lower

activity in the building from regular working days. The variable taking into account the day of the week is

not able indeed to carefully represent holidays or lower activity periods, such as the month of August.

4.1.1 Correlation between Input Variables

Before going into the actual development of the models and their results, it is useful to carry out an analysis,

often called exploratory data analysis, to examine the available input variables and their correlation with the

electricity consumption. Such correlations will indeed provide an insights to the relationships between the

features and the target value to be forecast and might help explaining the output’s sensitivity on the inputs

in the prediction model. In machine learning, exploratory data analysis provides insights to the importance

of the predictive variables based on the change in the model performance that occurs including or excluding

predefined predictors from the inputs.
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Figure 4.1: Data extraction and integration process to create the database for the development of energy

consumption and production prediction models with 15-min sampling rate.

Figure 4.2: Scattered plots showing the correlation between energy consumption and (a) occupancy, (b)

day of the week, (c) hour of the day, (d) temperature, (e) relative humidity, (f) wind speed, (g) pressure, (h)

precipitation and (i) solar radiation.
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Table 4.1: Correlation coefficients between variables.

Correlation (%) Variable 1 Variable 2

38.5% Electricity Consumption [kWh] Occupancy [#]

36.0% Electricity Consumption [kWh] Day of the week (Mon-Sun)

44.2 % Electricity Consumption [kWh] Holiday (T/F)

10.7% Electricity Consumption [kWh] Hour of the day (0-24)

10.8% Electricity Consumption [kWh] Solar Radiation [W/m2]

Figure 4.2 shows scattered plots of the correlation between energy consumption and the possible input

features of the model, such as occupancy, day of the week, hour of the day, temperature, relative humidity,

wind speed, pressure, precipitation and solar radiation. From the first scatter plot (a) no evident correlation

arises between consumption and occupancy, but at a closer look, plotting the daily change in occupancy

and consumption, it is possible to notice that these two follow the same trend and increase and decrease

in a comparable proportion during the day. From plot b, it is evident the building has a weekly consump-

tion pattern, with a higher consumption along the weekdays (Monday to Friday) and considerably lower

consumption over the weekend. The electricity consumption is also considerably lower during night and

it follows a characteristic bell-shaped trend during the day, when most activities take place. The lower

six scatter plots (d, e, f, g, h, i) show the relationship between weather variables and consumption and

no significant trend is to be noticed, which suggests that a linear correlation between such variables and

the electricity consumption is difficult to find. Similarly to the occupancy, when looking more in detail at

the daily change in solar radiation and consumption a direct proportional relationship between these two

variables becomes evident in their daily pattern.

To investigate further the correlation between the possible input features and the target value, the linear

correlation is calculated for each combination of variables both with the consumption and with themselves.

The best possible features to describe the electricity consumption patterns should indeed be correlated to

the consumption but, at the same time, should be independent from each other. Table 4.1 presents a table

with the most significant coefficients of correlation between the input variables and the consumption. The

table reports only correlation coefficients higher than 10%.

It can therefore be inferred that the variables depicted in Table 4.1, such as occupancy, the day of the

week, the hour of the day and whether it is a holiday or not, could possibly be the ones that best describe

significant relations with the consumption. The highest correlation is between the energy consumption and

whether it is a holiday (44.2%), followed by occupancy (38.5%) and the day of the week (36%). Another

input feature that has been tested in combination with the most representative features is an auto-regressive

feature representing the electricity consumption of the past 15 minutes and it is labelled as ’Energy-1’

throughout the results.

The next subsections (4.1.2, 4.1.3, 4.1.4, 4.1.5) present the results of the application of the four models,

multiple linear regression, decision tree, kNN and neural networks, to assess their feasibility in representing

how electricity is consumed in the civil building. The testing and tuning procedure of the parameters

followed the model development process explained in section 3.3.4 and the performance of the different

models has been assessed according to the metrics presented in section 3.3.3.
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4.1.2 Multiple Linear Regression

Different combinations of input variables and percentages of training and testing data have been tested for

the linear regression model. The resulting most performing model according to different input parameters

are presented in Table 4.2.

Table 4.2: MAE, RMSE and coefficient of determination of the tested consumption multiple linear

regression models for different input features.

Simulation Weekday Day Month Hour Minute Occupancy Holiday Radiation Energy-1 MAE [kWh] RMSE [kWh] R2

1 • • • • • • 22.6 29.3 0.19

2 • • • • • • • 19.2 25.8 0.25

3 • • • • • • • • 19.0 25.6 0.26

4 • • • • • • • • • 4.6 6.7 0.95

The third best model for the linear regression was developed considering the variables relative to the

day of the week, the ones representing the time of the year (day and month), the time of the day (hour

and minute) and the occupancy, resulting in a MAE of 22.6 kWh, a RMSE of 29.3 kWh and a coefficient

of correlation between predicted consumption and real consumption of 0.19. Adding more variables, like

whether the analysed day is a holiday or not, decreases slightly the MAE to 19.2 kWh and the RMSE to

25.8 kWh, while the coefficient of correlation increases to 0.25. Adding the solar radiation increases the

performance of the model even more, reducing the MAE to 19.0 kWh and the RMSE to 25.6 kWh, while

enhancing a bit more R2.

Adding further weather variables, such as wind speed, pressure, precipitation etc. does not show any

further improvement of the model, and the corresponding performance indexes decrease slightly, highlight-

ing that the most important features to describe electricity consumptions are those representing the time of

the year and of the day, the occupation and the holiday. The solar radiation feature helps instead the linear

regression model to better represent the electricity consumption, probably because of the similar daily trend

of these two parameters.

Figure 4.3: Multiple linear regression model versus real consumption (simulation 3 and 4).

Figure 4.3 shows two representative weeks in November: the dashed green line represents the real

consumption measured by the smart-meters, whereas the blue line represents the predicted consumption of

the best linear regression model. The left graph show the results of simulation 3, whereas the graph on the

right uses the same input feature with the additional contribution of the auto-regressive feature. In the left

graph, it is possible to see that the linear regression model does not capture well the load profile and its
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variations and its employability is therefore limited. The model does not track the daily variation of the

consumption and has difficulties in recognising the lower consumption values that occur during weekends.

Moreover, in the linear regression model, the training percentage of the data needed to accurately model the

consumption was around 80% of the total available dataset, as with a lower percentage of training data the

model was tracking the consumption even less accurately. This highlights how the needed period to train a

linear regression model needs to be longer to account for possible variations in consumption, as otherwise

the model would not be sensible to events like the lower consumption associated with the month of August.

4.1.3 Decision Tree

The second model tested was a decision tree regressor algorithm that extracts predictive information in the

form of human-understandable rules. Its basic functioning rule is like an ’if-else’ statement that explains the

decisions that lead to a prediction. Being the decision tree algorithm based on conditional probabilities, it

is expected that this algorithm performs better than the linear regression model, especially in differentiating

between weekday and weekend consumption and holiday and working days.

At each conditional decision, i.e. at each branching split, the decision tree regressor performs an internal

optimization to select the most important features at each step. This ensures that the decision tree is sensible

to case specific values in its prediction. Table 4.3 outlines the performance of the four most performing

decision tree models. Similarly to the linear regression model, the most representative model, is the one

that, besides the time-related features, accounts for the holidays and occupancy with a MAE of 14.1 kWh,

a RMSE of 15.3 kWh and a correlation coefficient of 0.52, metrics which all improve with the addition of

the autoregressive feature.

Table 4.3: MAE, RMSE and coefficient of determination of the tested consumption decision tree

regression models for different input features.

Simulation Weekday Day Month Hour Minute Occupancy Holiday Energy-1 MAE [kWh] RMSE [kWh] R2

1 • • • • • 21.3 28.3 0.34

2 • • • • • • 15.7 21.1 0.45

3 • • • • • • • 14.1 15.3 0.52

4 • • • • • • • • 3.4 4.8 0.97

Figure 4.4 shows an example of the prediction of the decision tree regression model. In contrast to the

multiple linear regression the decision tree is able to model the weekend considerably better than the linear

regression, as it is able to make a clearer distinction between the days of the week. Nonetheless, the model

is still not capable of capturing the daily peaks of consumption accurately, which might suggest that without

the knowledge of the consumption of the past 15 minutes, the model does not include branches for higher

values of the consumption.
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Figure 4.4: Decision tree regression model versus real consumption data (simulation 3 and 4).

4.1.4 K-Nearest Neighbours

The kNN algorithm takes a different learning approach from the previously tested algorithms as instead of

using a global approach, if uses a local approach, which is usually easy to implement and interpret. Using

a function to determine the similarity of points, it should perform well in estimating the consumption as it

makes weaker assumptions about the data, and does not try to discover an underlying function to be able

to model all data across the entire input domain. For this reason, it should perform better than the other

algorithms with smaller set sizes. The algorithm was indeed reaching results very close to the ones depicted

in Table 4.4 with just 50% of data used in the training set. The best results were though achieved with 80%

training data and 20% testing data and are presented in Table 4.4.

As the set size increases and the algorithm needs to account for more data points, the time to fit the

algorithm increases considerably as the number of examples it has to examine to determine the nearest

neighbours becomes large. Similarly to the decision tree, the information related to the occupancy of the

building and the holidays was fundamental to achieve a MAE of 15.0 kWh, a RMSE of 18.2 kWh, and a

coefficient of determination of 0.53 which become 3.5 kWh, 4.9 kWh and 0.96 respectively when including

the auto-regressive feature.

Table 4.4: MAE, RMSE and coefficient of determination of the tested consumption k-nearest neighbours

regression models for different input features.

Simulation Weekday Day Month Hour Minute Occupancy Holiday Energy-1 MAE [kWh] RMSE [kWh] R2

1 • • • • • 22.4 27.4 0.36

2 • • • • • • 17.5 23.1 0.44

3 • • • • • • • 15.0 18.2 0.53

4 • • • • • • • • 3.5 4.9 0.96

From the plot of Figure 4.5 it is possible to see that although the model is able to discern between

weekdays and holidays, its forecast electricity consumption values (blue line) are always underestimated

compared to the real values (dashed green line). The auto-regressive feature helps the model performance

but create a lot of oscillations when forecasting the highest and the lowest values.



4.1. Electricity Consumption Model 61

Figure 4.5: K-Nearest Neighbours regression model versus real consumption data (simulation 3 and 4).

4.1.5 Artificial Neural Network

The last tested model is a neural network model. In particular, the function used implements a multi-

layer perceptron (MLP) that trains using backpropagation with no activation function in the output layer.

Therefore, it uses the square error as the loss function, and the output is a set of continuous values. After

numerous iterations to find the best combination of layers and neurons, the most reliable model was imple-

mented using all time-related variables, occupancy data and holiday and was composed of 7 neurons in the

input layer, 7 neurons in the first hidden layer, 22 in the second hidden layer and 1 neuron in the output

layer. According to Table 4.5 the model resulted in a MAE of 9.1 kWh, a RMSE of 10.4 kWh, and a R2

of 0.63. This model followed a similar behaviour as the kNN model or the decision tree model, where the

performance was decreasing when considering additional weather variables as input features, in opposition

to the multiple linear regression model where the solar radiation variable was helping to achieve a better

performance.

Table 4.5: MAE, RMSE and coefficient of determination of the tested consumption artificial neural

network models for different input features.

Simulation Weekday Day Month Hour Minute Occupancy Holiday Energy-1 N◦neurons MAE [kWh] RMSE [kWh] R2

1 • • • • • 33 13.4 21.1 0.57

2 • • • • • • • 33 10.2 15.6 0.61

3 • • • • • • • 7, 22 9.1 10.4 0.63

4 • • • • • • • • 7, 22 1.4 2.9 0.97

As it can be seen in the left graph of Figure 4.6 the neural network model (simulation 3) follows better

the peaks of electricity consumption during the day, but it is still not perfectly capable to track all the peaks,

underestimating always the consumption. It can be though noticed from the right graph that the addition of

the auto-regressive feature (simulation 4) almost completely solved this issue. Fine tuning its parameters

is hard and it is difficult to find the best combination of hidden layers and neurons. As explained in the

model development process (section 3.3.4), the best possible combination of model parameters were found

increasing incrementally the number of neurons and hidden layers while checking the model performance

metrics. When incrementing the number of layers to a third layer, the model performance kept decreasing

and it was therefore chosen to stop the testing of additional hidden layers.
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Figure 4.6: Artificial neural network model versus real consumption data (simulation 3 and 4).

4.1.6 Comparison of the Different Models

Comparing the four model developed and plotting the forecast values against actual values it can be seen

that all algorithms tend to forecast values that in general are lower than the actual values, especially for

the peaks of consumption during the working days and the values at night, when the consumption level is

lower. A possible explanation could be that at night the consumption is not related to the activities in the

building but it is caused by the base load which does not vary with time, and fitting a function over the

consumption pattern may lead it to underestimate the base load at times due to the smoothness constraints

of the functions. Overall all analysed tools clearly outperform the multiple linear regression, which, to

be viable, requires at least 80% of the available data and still does not provide satisfactory results. Both

kNN and decision tree perform better than the linear regression but are not able to capture well the daily

consumption pattern. Artificial neural networks seem to be the best choice but more accurate results would

require further tuning and testing of the algorithm.
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Figure 4.7: Comparison of predicted versus real consumption values for (a) multiple linear regression

model, (b) k-nearest neighbours model, (c) decision tree model and (d) artificial neural network model.

Figure 4.7 shows scattered plots between modelled and real consumption values. It is possible to notice

that the linear regression model present sparse points, whereas the kNN model captures more the relation-

ship between the input features and the values to be predicted. The decision tree model shows a slightly

better performance than the kNN model and it can be seen that the points are more dense the closer they are

to the trend line. The artificial neural network shows a better linearity with the trend line, as expected by the

higher coefficient of correlation between predicted and real values and proves to be the more precise tool to

model the energy consumption in the civil building. Figure 4.8 shows the same trend in the results as Figure

4.7 but in this case, the input features included the auto-regressive feature relative to the consumption of the

past 15 minutes (the plots represent the results for simulation 4 of all tested algorithms).
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Figure 4.8: Comparison of predicted versus real consumption values for (a) multiple linear regression

model, (b) k-nearest neighbours model, (c) decision tree model and (d) artificial neural network model

including an autoregressive feature.



4.2. Electricity Production Model 65

4.2 Electricity Production Model

As far as the solar power forecasting is concerned, the chosen forecasting approach involved a direct fore-

casting method (see section 3.2), i.e. the forecasting of the solar power output based on weather variables

and the corresponding PV power data that has been previously calculated for the 120 kW installed on the

civil building. Developing a machine learning approach for solar power forecasting results in a model which

is specific of the location as the variation of the meteorological parameters and their related output is highly

dependant on the specific PV plant layout and geographical location. This is due to the fact that the corre-

lation of the meteorological parameters and the PV power output is not the same for different locations or

for different technical specifications of the solar panel or inverter.

4.2.1 Correlation between Input Variables

Again, before starting the development of the actual predictive model, it is important to gain familiarity

with the variables available. As it is possible to verify from Table 4.6, the PV power output has a high

linear correlation with the solar radiation (70.9%) and with temperature (45.6%), which is expected since

these two variables are the ones that influence the most the PV production and were used as inputs to the

physical model (the Perez and the three-diode-one-parameter model) used to generate the power data for

the machine learning model. The relative humidity is mildly correlated with the power output, which is

reasonable as it probably accounts for more humid, rainy days. Wind speed, pressure and hour of the day

are the last three variables that show a correlation higher than 10% but notably lower than the previously

mentioned variables, 14.7%, 14.2% and 10.8% respectively.

Table 4.6: Correlation coefficients between variables for the PV forecasting model.

Correlation (%) Variable 1 Variable 2

70.9% Electricity Production [kWh] Solar Radiation [W/m2]

45.6% Electricity Production [kWh] Temperature [◦C]

31.5% Electricity Production [kWh] Relative Humidity [%]

14.7% Electricity Production [kWh] Wind Speed [m/s]

14.2% Electricity Production [kWh] Pressure [mbar]

10.8% Electricity Production [kWh] Hour of the day (0-24)

Figure 4.9 presents the scatter plots between the energy production and the weather variables. As

expected, the relationship between the electricity production and the hour of the day shows a trend which

reflects the average trend of the solar radiation during a sunny day. Plot (b) shows a strong linear correlation

with the solar radiation and plot (a) a mild correlation with temperature. From the last scatter plot (plot (h))

it is immediate to identify that the power production increases with decreasing precipitation.

4.2.2 Multiple Linear Regression

In the case of multiple linear regression, the study of the correlation of the different meteorological inputs,

such as solar radiation, humidity, wind speed and direction, and pressure, with PV power output, is of the

utmost importance when building a multiple linear regression model. In a first attempt, as explained in
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Figure 4.9: Scattered plots showing the correlation between energy production and (a) temperature, (b)

solar radiation, (c) wind speed, (d) month, (e) hour, (f) relative humidity, (g) pressure and (h) precipitation.
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section 3.3.1, only solar radiation and temperature where used as inputs, and the other variables were added

iteratively to assess how the performance of the model was changing. By adding the hour of the day and the

month, the model performance improved slightly, as it is possible to see from the MAE that decreases from

2.1 kWh to 1.7 kWh, the RMSE that went from 3.0 to 2.8 kWh and R2 which increased from 0.36 to 0.37.

Adding the additional feature of the pressure improved the model even further to an overall MAE of 1.5

kWh, a RMSE of 2.5 kWh, and a coefficient of determination of 0.39. The autoregressive feature relative

to the PV power generation of the last 15 minutes improved the model notably (simulation 4).

Table 4.7: MAE, RMSE and coefficient of determination of the tested production multiple linear

regression models for different input features.

Simulation Radiation Temperature Relative Humidity Wind Speed Hour Month Pressure Energy-1 MAE [kWh] RMSE [kWh] R2

1 • • • • 2.1 3.0 0.36

2 • • • • • • 1.7 2.8 0.37

3 • • • • • • • 1.5 2.5 0.39

4 • • • • • • • • 0.9 2.0 0.61

Figure 4.10 shows predicted value and real values of the power production for a week in November. It

is to be noted that the term real in the ML models for the solar power production refers to the power data

generated through the physical model, which has been validated with a week of real production measure-

ments, as no historical data were available. From the graph, it can be seen that the model fails at capturing

the trend of the production and is not even able to properly capture the absence of production at night (left

graph) without the help of the autoregressive feature (right graph).

Figure 4.10: Multiple linear regression model versus real production data (simulation 3 and 4).

4.2.3 Decision Tree

The most performing decision tree implemented used solar radiation, temperature, relative humidity, wind

speed, pressure and time related variables. The most performing tree that was not overfitting the data

managed to reach a MAE of 1.1 kWh and a RMSE of 2.5 kWh accounting for a total R2 of 0.37. Including

the autoregressive feature improved the model even further to a MAE of 0.5 kWh, a RMSE of 1.9 kWh and

a coefficient of determination of 0.66. Overall the decision tree performed better than the multiple linear

regression as the algorithm was able to understand the trend of data.
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Table 4.8: MAE, RMSE and coefficient of determination of the tested production decision tree regression

models for different input features.

Simulation Radiation Temperature Relative Humidity Wind Speed Hour Month Pressure Energy-1 MAE [kWh] RMSE [kWh] R2

1 • • • • 1.9 2.9 0.33

2 • • • • • 1.6 2.6 0.35

3 • • • • • • • 1.1 2.5 0.37

4 • • • • • • • • 0.5 1.9 0.66

Figure 4.11 confirmed that the decision tree model performs better than linear regression. The tree is

able indeed to distinguish the production between day and night more precisely. The method fails though

at modelling well the peaks of the power production during the day without overfitting (left graph) if no

autoregressive feature is included (right graph).

Figure 4.11: Decision tree regression model versus real production data (simulation 3 and 4).

4.2.4 K-Nearest Neighbours

The kNN regression model implemented the same features as the decision tree and the linear regression, but

it was decided not to test it with a number of features above six, as the computational time would become

too long to be considered for an application. The kNN algorithm performs slightly worse than the decision

tree but overall its performance is quite close to it (see Table 4.9).

Table 4.9: MAE, RMSE and coefficient of determination of the tested production k-nearest neighbours

regression models for different input features.

Simulation Radiation Temperature Relative Humidity Wind Speed Hour Month Energy-1 MAE [kWh] RMSE [kWh] R2

1 • • • • 2.0 3.1 0.29

2 • • • • • 1.8 2.4 0.32

3 • • • • • • 1.4 2.8 0.35

4 • • • • • • • 0.7 1.8 0.64

From Figure 4.12, it is clear how similarly the kNN algorithm performs to the decision tree algorithm.

The biggest error in the kNN algorithm is the delayed decrease in the power production before night. At

sunset, the algorithm overestimated production considerably (left graph). The same trend was present in

the decision tree algorithm but it was less pronounced (see Figure 4.11). The autoregressive feature (right

graph) though proved to be useful to help the algorithm follow a more realistic trend.
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Figure 4.12: K-Nearest Neighbours regression model versus real production data (simulation 3 and 4).

4.2.5 Artificial Neural Network

The MLP is used to develop a suitable short-term forecasting model for 1 hour ahead solar power. After

the tuning of its hyper-parameters, the best performing models consisted of two hidden layers with 10 and

20 neurons respectively. The input features used are the same as for the decision tree model and result in a

MAE of 0.8 kWh, a RMSE of 2.4 kWh and a coefficient of correlation of 0.55.

Table 4.10: MAE, RMSE and coefficient of determination of the tested production artificial neural

network models for different input features.

Simulation Radiation Temperature Relative Humidity Wind Speed Hour Month Pressure Energy-1 N neurons MAE [kWh] RMSE [kWh] R2

1 • • • • 10, 20 1.5 2.8 0.45

2 • • • • • • 10, 20 0.9 2.6 0.52

3 • • • • • • • 10, 20 0.8 2.4 0.55

4 • • • • • • • • 10, 20 0.6 1.7 0.72

From Figure 4.13, it is clear how the MLP can reproduce well the pattern of the power production.

Including the autoregressive feature, the model is able to capture both peaks and valleys considerably well.

Its MAE is of 0.6 kWh in contrast to all the other model which presented MAEs above 1. The coefficient

of correlation it accounts for is also much greater than in the other cases and its RMSE is the lowest of all

tested models.

Figure 4.13: Artificial neural network model versus real production data (simulation 3 and 4).
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4.2.6 Discussion of the Different Models

Analysing the four tested models for the solar power production the superior performance of the ANNs is

clear. The linear regression, the decision tree and the kNN are not fully able to capture the relationship

between all weather variables and the power output and present oscillatory trend during the day (kNN and

decision tree) whereas the linear regression overestimates the performance at night. The ANN manages to

understand the dynamics between the input features and the output, it models both the peaks of production

during the day as well as no production at night.

Figure 4.14: Comparison of predicted versus real production values for (a) multiple linear regression

model, (b) k-nearest neighbours model, (c) decision tree model and (d) artificial neural network model.

Figure 4.14 represents scatter plots between the prediction and the real values for the four tested models.

The main takeaways are that the linear regression model is not even close to accurately model the dynamics

of the solar power production and its forecast values are much lower than the real ones. The kNN and the

decision tree algorithm already perform better but it can be seen that for higher values of the real production

they underestimate quite considerably. The ANN instead manages to concentrate the points along the trend

line and shows a more symmetric graph than all other models. Figure 4.15 shows similar scatter plots

for the simulation which included the autoregressive feature. The relative performance between the tested

algorithms remains the same, as ANN prove to be superior in modelling power production even in this case.

All models though present significant improvements in the prediction and in comparison to Figure 4.14,

their prediction values lie much closer to the trend line than without the autoregressive feature.
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Figure 4.15: Comparison of predicted versus real production values for (a) multiple linear regression

model, (b) k-nearest neighbours model, (c) decision tree model and (d) artificial neural network model

including an autoregressive feature.

4.3 Time Horizon

The results presented in the previous section, both for the electricity consumption and solar power produc-

tion considered a forecast horizon of 1 hour. With the aim of having an algorithm that could be further

used to implement energy management strategies, simulations have been performed also for a longer fore-

cast horizon, i.e. 24 hour. Table 4.11 reports the results for a longer forecasting horizon. The electricity

consumption model show a slight improvement of its results, as the time related variables used as inputs to

the model, help it understand the dynamics of the correlation between consumption and the input features

used. In the case of the solar power production, the horizon of the forecast assumes a bigger importance

in the model as the input features are more related to weather variables than to time dependent variable or

occupancy trend. Considering the case when clouds suddenly appear in the sky, then there is no way for

the model to know that and adapt itself based on previously seen observations. A possible solution to this

could be feeding the model with forecasts of weather related variables and assess again its performance.

Table 4.11: Performance comparison based on forecast horizon.

Simulation
MAE [kWh]

1 hour

MAE [kWh]

24 hours

RMSE [kWh]

1 hour

RMSE [kWh]

24 hours

R2

1 hour

R2

24 hours

Electricity Consumption 1.4 1.2 2.9 2.6 0.97 0.98

Solar Power Production 0.6 1.1 1.7 2.5 0.72 0.55
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4.4 Limitations of Data-Driven Models

Data driven models have proven to be useful for prediction of both building energy consumption and solar

power forecasting. However, to be considered for specific applications, it is important to consider the

training set used as the model might not be suitable to explore scenarios that go beyond their training

range. The models indeed might not be able to cope well with new instances that go beyond what it has

learned, as they would not be able to generalise and make accurate predictions, especially if they were tested

with limited data set. For example, a model that was trained with data collected from one building, might

not perform well on unseen testing data representing another building, as it might have different physical

properties, occupancy behaviours or operation strategies. The training set needs to have a sufficient variety

to be representative for a specific application.

As mentioned in section 3.1, to further confirm the feasibility of the forecasting algorithm and input

features proposed, simulations similar to the ones carried out for the civil building have been carried out for

three other buildings, namely the central building, the north tower and south tower. The results are reported

in Table 4.12, Table 4.14 and Table 4.13 respectively, and proved that the approach followed for the civil

pavilion can be generalised to other buildings of the campus.

The second major problem of machine learning prediction models is that they function as black-box

models. The internal procedures are not fully known and even though their prediction accuracy might be

sufficient, they might be limited when it comes to providing an understanding of the causes behind them.

To address this issue, physical models in combination with machine learning models (i.e. hybrid, grey-box

models) help to minimise the disadvantages of both approaches.

Table 4.12: MAE, RMSE and coefficient of determination of

the best models tested for the central pavilion.

Central Pavillion Weekday Day Month Hour Minute Occupancy Holiday Energy-1 Radiation MAE [kWh] RMSE [kWh] R2

Linear

Regression
• • • • • • • • • 4.8 6.4 0.90

Decision Tree • • • • • • • • 3.4 4.2 0.95

K-Nearest Neighbours • • • • • • • • 3.6 4.4 0.94

Artificial Neural Network • • • • • • • • 2.8 3.0 0.97

Table 4.13: MAE, RMSE and coefficient of determination of

the best models tested for the south tower.

South Tower Weekday Day Month Hour Minute Occupancy Holiday Energy-1 Radiation MAE [kWh] RMSE [kWh] R2

Linear

Regression
• • • • • • • • • 5.0 7.5 0.91

Decision Tree • • • • • • • • 3.7 4.7 0.94

K-Nearest Neighbours • • • • • • • • 3.8 4.9 0.92

Artificial Neural Network • • • • • • • • 3.0 3.2 0.95
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Table 4.14: MAE, RMSE and coefficient of determination of

the best models tested for the north tower.

North Tower Weekday Day Month Hour Minute Occupancy Holiday Energy-1 Radiation MAE [kWh] RMSE [kWh] R2

Linear

Regression
• • • • • • • • • 4.9 5.6 0.88

Decision Tree • • • • • • • • 3.2 4.0 0.91

K-Nearest Neighbours • • • • • • • • 3.8 4.1 0.92

Artificial Neural Network • • • • • • • • 2.9 3.2 0.98
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4.5 Demand-Response Model

This section presents the results of the optimization of the battery schedule which had the goal to assess

the profitability of the implementation of a BESS system to exploit load shifting from high-price intervals

to low-price intervals, when tariffs favour off-peak consumption. Initially multiple simulations had to be

carried out to find an optimal reasonable combination of capacity and maximum charging and discharging

power, which would allow to exploit different time of use of electricity while taking into account battery

life and the economics of the investment. The simulations were first run for a representative week in May,

as it was clear that the biggest economic savings would arise from weeks of regular activities and classes

in the building, rather than in summer or holiday periods. Once the optimal combination was found, yearly

long simulations have been run and the profitability of the proposal was assessed taking into consideration

the initial investment for the battery.

4.5.1 Sensitivity Analysis

Once the system is modelled, a sensitivity analysis was carried out, varying the size of the battery to find

the one that would allow to achieve the most savings along its lifetime. To this purpose, following IRENA’s

’Electricity storage and renewables’ report [97] and Bloomberg technology report [98] a battery lifetime

of 15 years and a corresponding industry price of 300 e/kWh Lithium-Ion batteries was assumed. Both

reports highlight how Lithium-Ion battery system prices have fallen from 600 e/kWh in 2013 to around

275 e/kWh and are projected to fall even below 200 e/kWh in the coming few years, implying stand alone

batteries are prone to become increasingly employed. The results of the possible annual savings are shown

in Table 4.15 and are calculated comparing the electricity bill for the given tariff (see section 3.4.1) with

and without the optimally scheduled battery system.

Table 4.15: Battery savings resulting from exploiting ToU electricity tariff.

Battery

(Capacity, Power)
Post-Optimisation Cost (e) Savings (e) Savings (%)

300 kWh, 150 kW 188335.39 1583.36 0.84

500 kWh, 200 kW 187491.87 2426.88 1.28

700 kWh, 300 kW 186958.15 2960.60 1.56

800 kWh, 350 kW 186839.21 3079.54 1.62

900 kWh, 400 kW 186801.40 3117.35 1.64

1000 kWh, 400 kW 186820.18 3098.57 1.63

From Table 4.15 it can be seen that increasing the capacity reduces the minimal achievable cost for

electricity and therefore increases slightly the savings. However, after a certain threshold, no further im-

provement can be noticed, as the battery price becomes too high compared with the possible savings (Figure

4.16). As the goal is to achieve the biggest possible savings while avoiding paying for an oversized battery,

the cost-optimum solution for the civil building could be a 900 kWh battery.
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Figure 4.16: Possible savings with an optimally scheduled battery versus battery capacity.

4.6 Limitations of the Demand-Response Model

A significant limitation to the model is that a single pricing scheme (the EDP price scheme) is considered,

whereas it could be interesting to investigate other tariffs with different pricing schemes which depends on

the peak demand and load type and the possibility of stacking multiple revenue streams. Additionally, as

the peak demand charge is calculated and charged at campus level and not at building level, the optimisation

only takes into account the price of the energy and not the one related to the daily, monthly or yearly peak

power depending on the type of contract with the utility. If that was the case, there is potential for additional

savings should batteries be deployed throughout campus. In this case, the battery scheduling would try to

exploit the period with a low tariff as well as reducing power demand peaks. Another limitation is that

the battery degradation, cycling and maintenance mechanisms are not considered, and as such it does not

accurately reflect energy losses occurring within the BESS. Considering the initial investment, other revenue

streams or arbitrage opportunities for the battery could be investigated and implemented in the model. It

would be wise as well to assess market conditions not only as they are nowadays but also how they are

going to shift and evolve in the years to come, especially in relation to the price of batteries.

Finally, the model developed was built considering historical data, but being able to accurately forecast

the load and the solar power production, the battery scheduling could be implemented online on a rolling

basis to eliminate the assumption of perfect forecast connected to the offline model developed.
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Chapter 5

Conclusion and Future Work

This final chapter aims to conclude with a brief summary of the work, the accomplishments made, and

gives suggestion as to how the research could potentially be extended further. The main objective was to

develop two models which would forecast the electricity consumption and production for some buildings of

Instituto Superior Técnico at a predefined forecast horizon and assess which input variables to each of these

models were paramount to obtain accurate results. To achieve this, an additional physical model to assess

the electricity production of some rooftop solar panels had to be developed. Eventually, the results were

then used to suggest possible energy management strategies. In particular, a MILP model was developed to

schedule a battery system and quantify possible economic savings resulting from exploiting off-peak hours

to charge the battery. The achievement of this goal involved multiple steps, which are explained in the

following section together with an overview of possible further works related to this thesis.

5.1 Discussion and Conclusion

The initial task carried out was a through analysis of literature, which contributed to provide support in

the development of this work while at the same time allowing it to differentiate itself from the others. The

literature analysed the current state of the art involving both solar radiation models, data-driven models of

both building electricity consumption and solar power generation, and possible demand-response options.

In a second moment, Python, the chosen tool to carry out the thesis was studied and its packages thoroughly

comprehended so that all models could be built using the same programming language. Next came the

creation of different models.

The first model allowed for the simulation of the PV power output which was needed to carry out

the predictions as no historical data was available. The model used the Perez model to transpose the total

irradiance measured on the horizontal plane to the tilted plane of the panel and the three diode one parameter

model to model the solar cell. Based on the simulations performed to validate the model using a week of

historical data, the error of the model was proved to be between 5% and 10% compared to the recorded

power data. As already noticed from literature, the Perez model probably overestimated the solar irradiance

received by the panel which results in slightly higher values for the produced solar power.

Following this, the comparison of different data-driven models for both electricity consumption and

power generation was performed, and included learning algorithms based on different methods such as
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distance-based algorithms, decision tree algorithms and artificial neural networks. The development of these

models allowed the identification of the variables that best describe the consumption patterns in the analysed

buildings, that proved to be highly correlated with the occupancy and the time of the day and of the year.

The inclusion of such variables in the forecasting of electricity consumption allowed to consistently increase

the performance index of the predictions. The occupancy data follows indeed a clear trend which can be

noticed in the consumption as well and is strongly related to the activities occurring in the building. The

inclusion of the knowledge of the academic calendar helped the model performance as well, by allowing to

distinguish between actual working days and holiday periods. The model that proved to be the most suitable

to predict the electricity consumption was the artificial neural network model which showed a MAE of 1.4

kWh, a RMSE of 2.9 kWh, and a coefficient of correlation of 0.97 when including input features related to

the occupancy, the academic calendar and the time. Weather variables did not contribute to the improvement

of the model performance indexes, indicating that electricity consumption is more correlated to occupancy

than to weather conditions. The same procedure was carried out for the solar power forecasting. In this

case, the artificial neural network model was again the one able to represent better how power is generated,

showing a MAE of 0.6 kWh, a RMSE of 1.7 and a coefficient of correlation of 0.72. For this last model,

the key input features were, as expected, the solar radiation, the temperature, the humidity, the wind speed

and features related to time, such as hour of the day and month. These features were expected as the initial

physical solar model developed uses the inputs related to the time of the year and of the day to calculate

the angles between the sun rays and the panel surface and radiation and temperature to quantify the power

output. The comparison of the above-mentioned data-driven models for both electricity consumption and

power generation led to two different artificial neural network models able to carry out predictions with

a relatively good accuracy and required countless hours of coding and iterations to find hyper-parameters

useful for the scope.

With these models in place, a simulation was performed to assess possible economic savings resulting

from the implementation of demand-response strategies exploiting the flexibility of a BESS system. A

MILP optimisation was set up to find the optimum battery size and schedule which would allow to shave the

daily peaks of energy consumption which characterise the building and ’shift’ them to off-peak hours when

the electricity tariff is lower. The results showed that using a behind-the-meter BESS could potentially lead

to economic savings. Such savings are though highly dependent on the size of the battery and its consequent

upfront investment. Assuming an optimistic battery lifetime, the net savings that could be achieved with an

optimised schedule represent at most 1.64% of the total energy costs.

The optimisation developed did not take into account battery degradation mechanisms which lead to the

reasonable assumption that the possible savings in reality would not be sufficient to reach break-even for

the investment. On the other hand, the forecast possible decrease in the coming years in battery economics

could alter the results of the proposed business case and prove it to be lucrative.
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5.2 Recommendation for Future Work

Some areas that could be further explored and possibly extended related to this work include:

• It would be wise to validate the solar production model with a longer dataset of real historical data

to confirm the model calculates an accurate amount of power even outside the range against which it

was tested.

• It could be interesting to consider using typical meteorological years (TMY) for Lisbon as input to

the solar model instead of real-data coming for the Técnico meteo station. Some of the radiation data

provided were indeed strangely high for the location, which could be due to an inaccurate calibration

of the radiation measuring devices. A simulation with a TMY could provide interesting and possibly

more insightful results for a data-driven approach. The data coming from a TMY database is indeed

the result of long-term averages of meteorological conditions for a year given a specific location.

The TMY values are generated from years of data much longer than a year and specifically selected

to present the range of weather of the location with a P50 case, which means these values will be

exceeded in 50% of all years.

• The power forecasting model prediction accuracy could be boosted in a real-time implementation by

eliminating the calculation of night time data (between sunset and sunrise). As the power production

is zero, the model would not have to make a trade-off between fitting day time data and night time

data, reducing this way the computational effort.

• The integration of an automatic API for the recognition of national holidays without a fixed day and

automatic inclusion of the academic calendar would be useful for a real-time implementation of the

forecasting.

• As far as the real-time forecasting is concerned, the software which was used to extract the data

related to occupancy (RRDTool) offers the possibility to communicate with the wireless controller

to grab statistical data from it which would definitely increase the accuracy of the predictions in the

building electricity consumption model, as the results presented involved averages of historical data,

as no data with a higher resolution was available.

• Concerning the actual implementation of the prediction models, the investigation of the model real-

time performance and computational effort should be verified.

• As mentioned in the previous chapter, a penalty factor for battery cycling and degradation mechanics

could be implemented to achieve more realistic battery operation modelling.

• An opportunity cost that the implement model does not account for involves the scheduling of the

battery considering not only the energy tariff but the maximum power demand over the day, over

the month or over the year depending on the specific contract with the utility company. Introducing

the different charges related to peak power demand could result in an additional savings, or even a

possible reduction of the contracted power. To this purpose, other variables in the MILP optimisation

such as the peak power and its related charge could be introduced and an optimisation at campus level

employing multiple batteries could be carried out.
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• Similarly, instead of iteratively optimise for different battery sizes to find the optimum one, the opti-

misation could concurrently cost-optimise the battery sizing and operation, by defining as additional

variables the battery capacity and maximum charging and discharging rate, instead of having them as

fixed parameters, especially when considering multiple batteries.

• A limitation to the battery model is that it optimises the schedule considering the current EDP MV

tariff. The same methodology and model could be adapted to investigate other electricity tariffs

related to energy and/or peak demand charges available.

• In the eventuality that the PV power production is not directly consumed and there is excess power

produced, the MILP optimisation model could be modified to account for an eventual storage of

surplus solar power and/or a selling price of electricity to the grid, if it proves to be more profitable.

• Finally, the biggest drawback of batteries is their high initial capital cost. To compensate it, the

investigation of the stacking of additional revenue streams such as ancillary services and not only

tariff arbitrage could be investigated.
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Increased lifetime and reliability (double lifetime) 

No single-point failure with system availability of 99% 

 

Maximized energy harvest (Average +16%) 

Reduced power loss with shade,  dust and debris  

 

Simple design,  with Plug and Play chain installation 

Improved safety with no high voltage hazards 

No indoor bulky and noisy inverter unit 

 

Internet 24h smart monitoring for each PV module 

 

INVOLAR 
Microinverters 

MAC250A -  Europe 

The INVOLAR MAC250 Microinverter offers the latest technology in power inverters. Each Microinverter is  connected to one PV 

module in the solar panel array. Unlike conventional Inverters, in the event of single panel failure the remaining panels continue to 

produce power.  
 

By performing Maximum Power Point Tracking (MPPT) at PV module level, INVOLAR Microinverters minimize the 

effects of shading, debris, snow, panel orientation differences and mismatches or PV module aging,  

improving the system’s energy harvest and customer income by an  average of 16% over the system lifetime. 

 

With the MAC250 inverter to inverter chain interconnection, which dispenses costly bus cables, even DIY installation is a breeze. 
 

 

These advantages in combination with a much longer product warranty, enables an INVOLAR Microinverter system to greatly  

improve the end customer’s Return On Investment, system interactivity and overall investment satisfaction.  
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Model  MAC250A - Europe 

Input Data (DC)   

Recommended Input Power (STC) 250W/200W~260W* 

DC voltage operating range 20V~50V  

MPPT Voltage Range  24V~40V  

Maximum DC Current  10.4A 

Output Data (AC)   

Rated AC Power @ 25
o
C  235W  

Rated AC Current  1.02A 

AC voltage Range 230V/184V~264V 

AC frequency  50Hz/47Hz~51Hz 

Power Factor  >0.99  

Current THD  <3.5%  

Maximum Units Per Branch  16 

Efficiency   
Peak Inverter Efficiency  95.2%  

CEC Weighted Efficiency  94.1%  

Nighttime Power Consumption  <170mW  

Mechanical Data   
Enclosure Environmental Rating  Outdoor - IP65/NEMA6 

Operating Temperature Range  -40oC~+65oC 

Dimensions (WxHxD)  230mm x195mm x 35mm  

Weight 2.44kg 

Features   

Microinverter chain interconnection  Only a string termination cable is required 

PV Panel type Mono/Polycrystalline Si 60/72 cells* 

PV Panel DC connector MC4 

Communication PLCC with eGate/eLog unit 

Compliance UL1741/IEEE1547 - CE - EN50438 - ENEL - 

VDE0126 -  G83/1- CQC - AS4777 

Warranty 15 - 25 Years (depending on location) 

Technical Specifications  

INVOLAR Corporation Ltd.  Tel: +86(0)2150272208    Fax: +86(0)2150277705 

 
 

E-mail: info@involar.com       Web: www.involar.com 

 

V.  M2832 

 

*Prior to installation please inform INVOLAR on panel model to be used. 

  The MAC250A is the most flexible microinverter on the market, if another panel type is required please 

  contact INVOLAR for further information. 
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