
1

Speech Recognition for a Small Aerial Robot

Ana Catarina Monteiro Ribeiro de Sá1,
1Department of Electrical and Computer Engineering, Instituto Superior Técnico, Lisbon, Portugal

Unmanned Aerial Vehicles are aircrafts that allow the gathering of data in remote areas of difficult access. Capturing audio
signals with a drone triggers a series of new applications such as in the field of Search and Rescue. The reason why Speech
Recognition hasn’t been widely developed for drones is the corrupting noise the engines add to the speech signals. The main goal
of this research is to present a study on how to overcome the bad speech recognition performances due to this specific type of
additive noise. The implementation and testing of Wiener Filter, Least-Mean-Square Adaptive Filter, Noise Gate, Motion-Dependent
Spectral Subtraction and Discrete Wavelet Transform was done for different levels of Signal-to-Noise Ratio. Due to the very promising
results, the Least-Mean-Square Adaptive Filter is chosen for further improving a Speech Recognition System. A Feedforward Neural
Network that predicts the filter’s coefficients from the information on the velocities of the 4 motors is developed and integrated in
the system resulting in a better performance. The last proposal of change in the filter is using as input two signals with different
Signal-to-Noise Ratio values instead of the noisy speech and the noise-only speech signals. Lastly, a Recurrent Neural Network for
Speech Recognition trained with speech corrupted by the drone’s ego-noise was also tested but this approach didn’t show to be
competitive with the previous implementation. Experimental results show that using the Least-Mean-Square Adaptive Filter with
filter’s coefficients computed by a Neural Network and using two noisy signals with different Signal-to-Noise Ratio values is a good
solution for the problem explored and presents robustness against the high levels of noise present.

Index Terms—Speech Recognition, Unmanned Aerial Vehicles, Noisy Speech Signal, Least-Mean-Square Adaptive Filter, Ego-noise
Cancellation.

I. INTRODUCTION

UNMANNED Aerial Vehicles (UAVs) is a technology that
deployed capture of data in areas of difficult access. The

merging of Computer Vision with drones gave a big boost to
data acquisition and the appearance of new applications but
is limited to visual data only. Being able to acquire audio
data with an UAV can be another important innovation in
these type of systems. One of the reasons why this subject
has not been widely studied and developed is due to the
challenging problem of filtering not only background noise
but most importantly, noise from the drones’ engines. This
problem becomes more significant when we deal with Micro
Aerial Vehicles (MAVs). Due to their dimensions, the high
proximity of a microphone to the source of ego-noise is
inevitable and can lead to data acquisition where the wanted
speech signal is almost completely masked by the noise signal.
With this project we want to study the possibility of integrating
a Speech Recognition system in a small UAV and propose
methods to successfully process and recognize noisy speech
signals. Besides enabling the usage of these type of systems in
search and rescue situations, the outcomes of this research can
also give an important contribution to improve Human Robot
Interaction.
With this in mind, the thesis was developed going through a
series of goals and tasks present in this article according to the
following outline: Section II gives some detailed explanation
on basic concepts of Signal Processing, Speech Recognition,
Neural Networks and UAVs. In section III we present the
two approaches to solve the problem, filtering first the noisy
signals that are to be fed to a Speech Recognition system and
train a Neural Network for Speech Recognition with noisy
input signals. For the first approach we focus in 5 filters:

Corresponding author: A. Sá (email: ana.catarina.sa@tecnico.ulisboa.pt).

Wiener Filter, Least-Mean-Square Adaptive Filter, Noise Gate,
Motion-Dependent Spectral Subtraction and Discrete Wavelet
Transform. For the second approach, we explore the usage
of a Recurrent Neural Network with Connectionist Temporal
Classification to directly convert the noisy speech signal into
the transcription of the speech. The results obtained for the
previously mentioned implementations are in section IV and
an analysis is provided. Finally, in section V we present the
conclusions taken from this research together with suggestions
for work to be done in the future on this subject.

II. OVERVIEW

A. Signal Enhancement and Filtering for Automatic Speech
Recognition

We chose to study two different approaches to solve the
problem of this research. We can either filter the noisy
speech input and then feed the result to an Automatic Speech
Recognition (ASR) system or we can teach the recognizer how
to understand noisy inputs.
Noise filtering when using drones is a challenging task not
only due to ego-noise of the drone but also to the high
variability of background noises such as winds, cars’ horns
or the sound of televisions. Background noise subtraction has
been mainly addressed in studies on sound source localization.
Examples of proposed methods for denoising are Adaptive
Beamforming [1], Blind Source Separation [2] and statistical
Room Impulse Reverberation (RIR) modeling [3]. Noise fil-
tering when focusing on the drone’s ego-noise is a challenging
task due to the high power of noise compared with the power
of the speech signal. Most of the algorithms that focus on noise
cancellation perform Spectral Subtraction. For these type of
filters there’s usually the necessity of working in the frequency
domain and this is achieved by applying a discrete Short-Time

2

Fourier Transform (STFT) to an audio signal as it is written
in equation 1.

X(k, p) =

∞∑
n=−∞

x[n]w[n− p]e−jkn (1)

where X(k, p) is the STFT of the discrete signal x[n] at
frequency k and short-time bin p passing through a window
w[n].

Automatic Speech Recognition is the conversion of a speech
signal into a sequence of words through the analysis of the
signal’s waveform. The complexity of an ASR system can
vary according to its robustness against speech uncertainty.
The high variability of characteristics like speaker dependency
and surrounding conditions in speech is one of the biggest
barriers for the development of robust ASR systems [4].
A traditional ASR system is composed by several modules:
Feature Extraction, Pronunciation Model, Acoustic Model,
Language Model and Decoder. Feature Extraction is the first
step and has the goal of optimally choose acoustic features
of the speech signal in order to reduce model complexity
while maintaining relevant linguistic information. The Mel-
Frequency Cepstral Coefficients (MFCCs) features are a spec-
tral representation of phonemes with adaptation to the human
auditory system by using the Mel-scale instead of linearly-
spaced frequency bands. The conversion between MFCCs, m,
and frequency in Hertz,f , is computed through equation 2.

m = 2595× log10
(

1 +
f

700

)
(2)

B. Neural Networks for Speech Recognition

Deep Learning (DL) has been having a very important role
in the improvement of ASR systems and, although the goal is
to apply DL to the whole ASR process, Speech Recognition
systems have not achieved that level yet and there is still the
necessity of making feature extraction in the state-of-the-art
models.
Two types of Neural Networks (NNs) are being explored for
Speech Recognition. One is based on the idea of analysing the
speech spectrogram as an image and use Convolutional Neural
Networks [5], the most used method for image classification,
to make speech transcriptions. The other approach is to use
Recurrent Neural Networks (RNN) to compute the phonemes
of a speech signal from the features extracted in the beginning
of the ASR system. The usage of Recurrent NN is supported
by the fact that these NNs have flexibility on the quantity of
inputs and outputs of the system and exhibit temporal dynamic
behavior. In RNN each element of an input is processed at a
time and a vector containing information about the history of
past elements of the sequence is maintained. The goal is to
keep information for long time so we can have more data to
predict the output word. Since it is so difficult to store so much
information, Long-Short Term Memory (LSTM) networks [6]
were introduced to deal with this problem and have shown to
perform better than conventional RNN.

C. Unmanned Aerial Vehicles

Nowadays UAVs can have such small measures that they
can even fit in a person’s hand. The starting point of this
project was to use an implementation previously developed
of a single-channel microphone in a Crazyflie as the one
we can see in Figure 1. Due to the poor quality of the
recordings, we opted to use the DREGON dataset [7]. This
dataset is composed by motors’ noise recordings with an 8-
channel microphone array of the MikroKopter quadrotor UAV
in Figure 2.

Fig. 1: Crazyflie 2.0.

Fig. 2: MikroKopter quadrotor with 8-channel microphone
array.

With manipulation of the data through the program Audacity
[8] we converted the audio into single-channel and mixed the
tracks in order to simulate combinations of different speeds
between the 4 motors.

III. IMPLEMENTATION

A. Filtering Algorithms

The first approach followed was to filter the noisy speech
signals before feeding them to an ASR system. The 5
filters chosen were Wiener Filter, Least-Mean-Square (LMS)
Adaptive Filter, Noise Gate, Motion-Dependent Spectral
Subtraction (MDSS) and Discrete Wavelet Transform (DWT).

1) Wiener Filter
Applying a Wiener Filter to a noisy signal is a very popular

technique for speech enhancement in signal processing. This
approach is based on Minimum Mean Squared Error between
the desired signal and an estimation of that desired signal.
To use the Wiener Filter we have to consider the discrete
noisy signal, x[n], as the sum of the clean speech signal, s[n],
and the noise-only signal, n[n]. To obtain an estimation of
the clean speech we will follow the methods used in [9] that
starts by applying the Two-Step Noise Reduction Technique

3

(TSRT) followed by the speech Harmonic Regeneration Noise
Reduction (HRNR). The first step of the algorithm is to
apply the STFT to the noisy speech. Let X(k, p), S(k, p)
and N(k, p) be the k-th spectral component of the short-time
frame p of the noisy signal, speech and noise, respectively.
The evaluation of a priori Signal-to-Noise Ratio (SNR) and
a posteriori SNR is typically used for the evaluation of
the efficiency of the speech enhancement. The equations to
compute these two values of SNR are given by 3 and 4.

ˆSNRprio(k, p) =
E
[
|S(k, p)|2

]
E [|N(k, p)|2]

(3)

ˆSNRpost(k, p) =
|X(k, p)|2

E [|N(k, p)|2]
(4)

where E [.] represents the expectation operator. The spectral
gain can be then obtained through equation 5 in which function
g(.) is a gain function proposed in methods like power spectral
subtraction or wiener filter.

G(k, p) = g(ˆSNRprio(k, p), ˆSNRpost(k, p)) (5)

In the frequency domain we can now obtain the predicted
speech signal Ŝ(k, p) by applying the gain function G(k, p)
to the original signal X(k, p) as in equation 6

Ŝ(k, p) = G(k, p)X(k, p) (6)

Through the reading of [9] we conclude that the compu-
tation of the minimum of E{(Ŝ(k, p)− S(k, p))2} leads to
equation 7

G(k, p) =
E
[
|S(k, p)|2

]
E [|S(k, p)|2] + E [|N(k, p)|2]

=
ˆSNRprio(k, p)

1 + ˆSNRprio(k, p)

(7)

Looking at equation 3 we realize that from the original
signal we can only obtain X(k, p). S(k, p) and N(k, p) are
unknown matrices. To compute the value of ˆSNRprio(k, p)
we apply now the Decision Direct Approach (DD). With this
approach, the ˆSNR

DD

post(k, p) and the ˆSNR
DD

prio(k, p) are as
in the following equations:

ˆSNRpost(k, p) =
|X(k, p)|2

γ̂n(k, p)
(8)

ˆSNR
DD

prio(k, p) =

β
|Ŝ(k, p− 1)|2

γ̂n(k, p)
+ (1− β)P

[
ˆSNRpost(k, p)− 1

] (9)

where β is a value between 0 and 1 which controls the
behaviour of the decision made by the algorithm (usually
β = 0.98), Ŝ(k, p−1) is the estimation of the speech spectrum
at the previous frame, γ̂n(k, p) is the estimation of the noise
Power Spectral Density through minima controlled recursive

averaging approach [10] and P [.] represents the half-wave
rectification.

Once we have obtained GDD through equation 7 we can
now advance to the TSRT method to make the prediction of
speech. The new a priori SNR is given by

ˆSNR
TSRT

prio (k, p) =
|GDD(k, p)X(k, p)|2

γ̂n(k, p)
(10)

Applying the result of equation 10 to equation 7, the
estimation of the clean speech can finally be computed through
equation 11.

Ŝ(k, p) = GTSRT (k, p)X(k, p) (11)

When listening the resulting signal, ŝ[n], a distortion is
clear. This is the result of estimation errors along the previous
method. What happens is that some harmonics are considered
as components of only noise and are removed in the filtering
process. This harmonic distortion can be overcome when we
implement the HRNR method. The principle of this imple-
mentation is that when we apply a non-linear function (that in
this case is the maximum relative to 0) to the predicted speech
signal in the time domain, ŝ(t), we obtain the harmonics at the
same positions as in the clean speech. Since these harmonics
have biased amplitudes, we cannot directly use them to restore
the speech signal but we can use them to improve the wanted
signal. We can obtain the final estimation of the clean speech
with restore of the harmonics applying equations 12 to 15.

sharmo = NL(ŝ(t)) = max(ŝ(t), 0) (12)

ˆSNR
HRNR

prio (k, p) =

GTSRT (k, p)|Ŝ(k, p)|2 + (1−GTSRT (k, p))|Sharmo(k, p)|2

γ̂n(k, p)
(13)

GHRNR(k, p) =
ˆSNR

HRNR

prio (k, p)

1 + ˆSNR
HRNR

prio (k, p)
(14)

Ŝ(k, p) = GHRNR(k, p)X(k, p) (15)

2) Least-Mean-Square Adaptive Filter
Another type of filter that can be used for noise suppres-

sion is the Least-Mean-Square (LMS) Adaptive Filter [11].
This kind of filter is based in a widely used algorithm, the
LMS. Unlike the Wiener Filter, there is no need to measure
correlation functions which makes the LMS a simple although
robust algorithm.

The LMS adaptive filtering algorithm consists in two steps:
• Filtering Process: Passing an input signal by a linear filter

and compare the result with a desired response. This
comparison originates an estimation of error.

• Adaptive Process: Adjusting the parameters of the linear
filter in order to reduce the estimated error.

4

Specifically for this project what we want to implement is
Adaptive Noise Cancelling. Figure 3 shows the block diagram
of the algorithm that will be implemented.

Fig. 3: Block diagram of Adaptive Noise Cancelling.

In this case, the inputs to the algorithm are the noisy signal
(x[n] = s[n] + n[n]) and noise-only signal (n[n]). What
happens is that the noise-only input is only correlated to the
component of noise of the noisy signal so the filtering step
is only able to approximate the output of the filter, y[n], to
the noise component of x[n]. Having this in mind, in order
to obtain an estimation of the clean speech, ŝ[n], we have to
consider that the desired signal is x[n] and by looking at the
diagram in figure 3, we can write that e[n] = x[n]− y[n] and
conclude that e[n] = ŝ[n]. The algorithm used was Matlab’s
dsp.LMSFilter [12]. Equations 16 to 20 show the computations
required to obtain the prediction of the speech-only signal.

y[n] = wT [n− 1]u[n] (16)

u[n] = [n[n] n[n− 1] ... n[n− order]] (17)

w[n] = αw[n− 1] + µe[n]sign(u[n]) (18)

sign(u[n]) =


−1 if u[n] < 0

0 if u[n] = 0

1 if u[n] > 0

(19)

e[n] = x[n]− y[n] (20)

where w[n] are the coefficients estimated of the filter
at time n, α is the leakage factor (0 < α ≤ 1) and µ is
the adaptation step size. The parameters to be defined are
the filter’s order and the value of µ. We will evaluate the
performance of the ASR system for the combinations of these
two parameters in which µ ∈ {0, 01; 0, 05; 0, 075; 0, 1; 0, 5}
and the filter order ∈ {2, 5, 7, 12, 20}.

3) Noise Gate
Noise Gate [13] is an algorithm that uses Fourier analysis.

The first step of the algorithm is applying the STFT with a
Hanning window to a segment of sound that only contains
noise, N(k, p). After obtaining the power spectrum of the
noise, we convert the power to decibels (dBs) and we can
retrieve a series of parameters that describe the noise according
to its frequency and time. These two steps are described in
equations 21 and 22.

N(k, p) = STFT{n[n]} (21)

NdB(k, p) = 10log10(N(k, p)) (22)

From the previously mentioned parameters we will define
a value for threshold. We start by computing the mean power
along every frequency, N̄(k), and then we compute the stan-
dard deviation of the mean power along every frequency, σk.
In this case, we define the threshold, λ, as in the equation 23.

λ(k) = NdB(k) + n× σk (23)

After having the threshold values for each frequency we can
now compute the power spectrum in dBs of the whole noisy
signal, x[n], as it was done in 21 and 22. On this step of
the algorithm, a comparison between the power of the noisy
signal and the threshold at each frequency and time will be
done. Equation 24 is then applied.

GdB(w, t) =

{
0dB if XdB(k, p) ≥ λ(k)

min(XdB(k, p)) if XdB(k, p) < λ(k)
(24)

If the power of the signal is above the threshold, we set
a gain of 0dB (which is translated to a non-change of the
original signal). If the power is below the threshold, we set a
negative gain equal to the minimum value of power that we
find in the noisy signal. In order to avoid abrupt changes of
power in the signal, the next step of the algorithm is to apply a
smoothing filter over frequency and time, G̃dB(k, p). Through
25 we obtain the predicted clean speech in dB.

ŝdB(k, p) = XdB(k, p) + G̃dB(k, p) (25)

The denoised signal, ŝ[n], is recovered by converting
ŝdB(k, p) to linear followed by the computation of the
Inverse Short-Time Fourier Transform (ISTFT).

4) Motion-Dependent Spectral Subtraction
In [14] we find a filtering approach based in spectral

subtraction like the Noise Gate. The difference in this case
is that we divide the frequencies in l sets and an estimation
of noise is made for each set instead of estimating a threshold
along time.
The approach followed in [14] of filtering magnitude only
would never allow the recovery of the speech signal because
the phase information would be lost. The following method is
based on the one proposed but with slight changes in order to
recover the signal.
For the first part of the algorithm we have to consider a signal
containing noise-only. The algorithm works in the frequency
domain so first we have to compute the Discrete Fourier Trans-
form (DFT), N(f), and apply a triangular window according
to equation 26 to divide the noise components in each set of
frequencies.

m(l) =

fhi(l)∑
f=flo(l)

Wl(f)N(f) (26)

The window applied is defined in equation 27.

5

Wl(f) =


f−flo(l)

fc(l)−flo(l) if flo(l) ≤ f ≤ fc(l)
fhi(l)−f

fhi(l)−fc(l) if fc(l) ≤ f ≤ fhi(l)
0 otherwise

(27)

In equations 26 and 27, flo(l), fhi(l) and fc(l) represent
the lowest, highest and central frequencies in the lth set.

The assumption made in this algorithm is that the noise
is uniform within each set of frequencies. The average noise
spectrum, N l can be then obtained by:

N l =
m(l)∑fhi(l)

f=flo(l)
Wl(f)

(28)

Once we have estimated the average noise, we can apply
speech enhancement to the noisy signal x[n]. Once again we
compute the DFT of the noisy signal, X(f), and the magnitude
of the speech spectrum is computed through equation 29

S̃l(f) =

{
X(f)− N̄l if|X(f)|2 − α|N̄l|2 ≥ βN̄2

l

0 if|X(f)|2 − α|N̄l|2 < βN̄2
l

(29)

where α ≥ 1 and 0 < β < 1. To recover the speech-only
spectrum we have to apply again the window computed in 27
to the predicted speech obtained in 29.

S(f) =

∑l max
l=1 Wl(f)S̃l(f)∑l max

l=1 Wl(f)
(30)

where l max corresponds to the number of sets that the
frequencies were divided in.

The last step to recover the speech signal is to apply the
Inverse DFT.

5) Discrete Wavelet Transform
The last filter implemented is based on the Discrete Wavelet

Transform (DWT) [15]. In order to use the DWT for audio
denoising we have to follow the steps in equations 31 to 35.

x(t) = s(t)⊗ n(t) (31)

y = W (x) (32)

z = D(y, λ) (33)

ŝ = W−1(z) (34)

In this set of equations x(t) is the noisy signal which in the
time domain is the convolution of speech, s(t), with noise,
n(t). W (.) and W−1(.) represent the Wavelet Transform and
Inverse Wavelet Transform, D(.) is a denoise operation using
a threshold λ and ŝ is the predicted speech after applying the
algorithm.

When we have a discrete signal, the first step to compute
the DWT is to pass the noisy signal, x[n], through sets of
high-pass and low-pass filters. The level of decomposition
represents through how many sets of filters we pass our signal

Fig. 4: Level 3 Wavelet Transform Diagram.

by. Figure 4 shows the process of a 3 level decomposition.

In the scheme, h0[n] is the impulse response of a low-pass
filter, h1[n] is the impulse response of a high-pass filter, an is
the approximation coefficient at level n and dn is the detail
coefficient at level n. The block 2 ↓ represents a downsample
by 2 since after each filter the signal has less half of the
frequencies. In order to define the filters h0 and h1 we have
to go back to the definition of the DWT as it is explained in
[16]. The DWT is defined in equation 35:

DWT =

∫ +∞

−∞
x(t)ψj,k(t) (35)

where

ψj,k(t) =
1√
sj
ψ

(
t− k2j

2j

)
(36)

being j the scale parameter and k the shift parameter. We
can conclude now that ψj,k(t) is a dilated and translated
version of the mother wavelet ψ(t). There are several mother
wavelet functions that vary on scaling and wavelet definition
(e.g. Haar, Coiflets, Symlets, Shannon and etc.). For our
case we opted to choose Daubechies mother wavelet function
according to results in [16]. After this process we finally obtain
the values of an, d1, d2, ..., dn.
The next step of the algorithm is to perform the denoising
through the threshold of the detail coefficients. To define the
threshold we opted to use Universal Threshold specified in
equation 37. After that, the soft threshold described in 38 is
applied.

λ =
√

2ln(N) (37)

z =

{
sign(x)(x− λ) if x > λ

0 if x ≤ λ
(38)

where λ is the threshold and N is the number of samples
of the noisy signal.
Finally the last step is to reconstruct the signal performing the
Inverse DFT through the original approximation coefficient
and the estimated detail coefficients by performing the reverse
process specified in Figure 4.

6) ASR System
After applying the filter to the noisy speech, we used

Google Cloud’s Speech-to-Text API to obtain the speech
transcriptions.

6

B. Feedforward Neural Network

It is easy to understand that the motor’s velocity is going
to influence the noise profile. The conjugation of different
motors speeds in the 4 motors will lead to numerous noise
profiles. In [14] the idea of relating the motors’ speeds to
the filter bank coefficients is explored. We want to understand
if we can improve the system by using a Feedforward Neural
Network that predicts the filter coefficients based on the speeds
of each motor. For the implementation of this section we will
only apply the Feedforward NN to the filter previously studied
that obtains the best results. To find the relation between the
velocities and the filter’s coefficients start by defining the
training process. The inputs, x, are first passed through a linear
layer and then by a non-linear activation function described in
39 and 40, respectively.

ŷ = xAT + b (39)

LeakyRELU(ŷ) =

{
x if x ≥ 0

0, 01x if x < 0
(40)

where A and b are the parameters computed by the NN and
ŷ is the output of the NN.
After repeating this process as many times as the number of
layers defined, we compute the gradient of the loss of this
process. The method chosen was Mean Squared Error Loss
which is described in equation 41:

ln = (yn − ŷn)2 (41)

where yn are the filters’ coefficients.
Having the gradient of the loss we apply backpropagation in
order to update the gradients and find the weights for each
layer. Finally, we apply Adam [17] optimization model so we
can retrieve the appropriate weights.

Repeating the described process several times leads to an
optimization of the prediction made by the Neural Network.
In the next section we will present a small study on which
are the three best parameters to use by varying the number of
hidden layers between {1, 2, 3} and the hidden layer’s dimen-
sion between {2, 4, 6, 8, 10, 16, 20} and see the performance
through the number of epochs setting the maximum limit to
5000.

C. Neural Network for Speech Recognition

The last method we want to explore is to use only a Neural
Network implemented for Speech Recognition that is trained
with noisy inputs.
In order to quickly test this approach, we are using an already
existent Neural Network [18]. When trying to decide which
NN to use, we looked for the state-of-the-art NN that have
been used for Speech Recognition.
Some words are more likely to appear after a specific word.
The same happens with letters individually. Recurrent Neural
Networks [19] are the best type of NN that can deal with
this temporal dependency. More specifically, Bidirectional
Recurrent Neural Networks allow us to obtain an output based

on information from data on the past and the future.
Connectionist Temporal Classification (CTC) is a loss function
that has been highly used for speech recognition. For ASR,
most of the inputs are observations of a sentence and the
outputs are the transcription of the sentence but our inputs
might not be in the same number as our outputs. An input
might be a single word or part of a word (a phoneme). CTC
allows the prediction of the most probable label for a given
sequence of inputs. More on Recurrent Neural Networks using
CTC loss function can be read in [20].

IV. RESULTS

In this section we show the results obtained for each of
the approaches explained in the previous section. We settled
a list of 53 commands with 198 words in total for testing.
Word Error Rate (WER) is the chosen metric to evaluate the
performance of the systems. WER is computed according to
equation 42

WER =
S +D + I

N
(42)

where S is the number of substitutions, D the number of
deletions and I the number of insertions in the hypothesis and
N the total number of words in the reference. In order to
test the robustness of the systems against different levels of
noise, we changed the power of the clean speech signals before
mixing with noise-only signals so we would obtain the levels
of SNR of −10dB,−5dB, 0dB, 5dB, 10dB.

A. Speech Recognition without Filtering

1) DREGON dataset
To analyze the decrease of performance of the Speech

Recognizer we started by recording the commands with a
cellphone microphone. For this case we obtained a WER
of 3, 046% This result is as expected due not only to the
conditions of recording mentioned in the previous chapter but
also due to the fact that the cellphone is composed by two
microphones in order to perform noise cancellation.
The test performed to the DREGON dataset without filtering is
when we added the noise-only files of this dataset to the speech
only audio files. Table I shows the WER values obtained for
the different SNRs values that we are testing.

TABLE I: WER for no filtering in DREGON dataset.

SNR(dB) WER

-10 94,949%
-5 75,253%
0 53,030%
5 45,455%
10 30,808%

As it is clear now, the values of WER decrease when the
SNR is increased. Although the outcomes tend to be more
acceptable when the energy of speech is greater, we want to
reduce this percentage to as close to 0 as possible.

7

B. Speech Recognition with Filtering

The results of the previous section support the purpose of
this research. We will now present the results obtained when
the filters explained in the previous chapter are applied to the
sound files. From now on, the DREGON dataset is the only
dataset used.

The WER values for the 5 filters can be seen in Table II.

TABLE II: WER for all the filters and for different SNR
values.

SNR(dB) WF LMS NG MDSS DWT

-10 99,492% 4,040% 96,954% 93,939% 99,495%
-5 96,954% 3,535% 89,848% 77,273% 94,949%
0 89,848% 3,030% 76,142% 52,525% 82,323%
5 74,619% 5,584% 59,391% 43,939% 60,606%
10 59,898% 4,061% 43,655% 30,808% 49,495%

1) Wiener Filter
As it was expected we can see a decrease of the WER

when the SNR increases. Since the Wiener Filter is such
a popular filter used for noise removal, we were expecting
better results. Actually what happens is that there is a clear
noise removal (in the absence of speech period there is
almost no noise) but the voice is distorted and unclear. This
distortion decreases as we increase the speech energy and
that explains the improvement of results with the increase
of the SNR values. This filter is indeed able to have a good
performance in noise-only segments but it is not able to
achieve a satisfactory reconstruction of the speech-only signal.

2) Least-Mean-Square Adaptive Filter
For the testing of the LMS Adaptive Filter we changed the

parameter µ and the order of the filter. The results obtained
for the different values of SNR led us to settle with the
parameters {order = 5, µ = 0.05}.
In opposition to the previous filter, this time we can affirm
that the performance of the ASR system does not depend
on the SNR values. Also, the WER values obtained are
very close the the ones obtained when there was no noise
(3, 046%). When listening to the audio files, in the beginning
we can still listen to the noise of the motors that decrease
with time until the point that no sound is listened. When
the segment of the speech command arrives we listen to it
with almost no distortion making its perception very clear.
Indeed we verify that the speech commands are as clear
when SNR = −10dB as for the case when SNR = 10dB.
Although the outcome using this type of filtering was very
satisfactory and extremely suitable in solving this project’s
problem there is a major limitation. It is necessary to have
the noise-only profile in order for the filter to work. This
problem will be addressed further in the paper.

3) Noise Gate
To test the performance of this filter we tested the sound

files not only for the different SNR values, as it was done for
the other filters, but also for three different sets of thresholds.

On the equation 23, we applied the values 1, 1,5 and 2 to n.
The best WER values obtained were for σ = 1 therefore we
present the values in table II.
Once again we detect the relation mentioned before between
the WERs and the SNR values. The resulting audio show
the worst performance in noise removal. What we actually
listen to is the constant presence of the motors’ noise that
is increasingly more attenuated as the SNR values increase.
This attenuation is the origin of the speech enhancement that
we are able to detect. This goes according to the explanation
given in section III since we only decrease the noise and
we maintain the speech. There is almost no distortion in the
listened commands but, as it is clear from the results, there
is still a lot of interference by the motors’ noise.

4) Motion-Dependent Spectral Subtraction
For the MDSS filter we set the values of α and β to 2 and

0, 5, respectively.
The presence of the strong correlation between the results
obtained and the SNR values is very clear also for this type
of filtering. Actually, when listening to the resulting audio
files we notice only a very small attenuation of the sound
(speech and noise) and, sometimes, the noise is even harsher
than in the original noisy file. Also, since we consider the
noise as a constant value within each channel, we actually
introduce more noise in the silent parts.
In addition to the not satisfactory results, we also noticed
that this algorithm had a greater computational cost than all
the others and that the running time was also not acceptable
since we want to integrate this filter in a real time system.

5) Discrete Wavelet Transform
For this last filter we chose 17 levels of decomposition.

Looking at the numbers it is clear that the algorithm doesn’t
perform good, specially for the cases where the noise is
higher than the speech. This outcome was expected since
this algorithm is mainly used to remove noise encountered
in signals with much less oscillations than in our case. The
audio files generated by this algorithm still present lots of
noise. We notice that with the increase of the SNR, the
predicted speech suffers more distortion. This filter doesn’t
show a promising solution for our problem.

6) Conclusions
Based on the results obtained in the previous subsections,

we elaborated the graphic in figure 5 showing the performance
of the systems along the SNR values.
Three of the filters were not able to improve the performance
of the ASR and even resulted in a higher WER compared to no
filtering. Although Wiener Filter, Discrete Wavelet Transform
and Noise Gate have removed some of the noise in the original
audio file (and that is clear when we listen to them), they also
ended up introducing more distortion to the speech segments
leading to the bad outcomes of the ASR system.
The results for the MDSS algorithm are extremely close to
the no filtering results. This shows that the statement done in
subsection 4) about the attenuation of noise being very soft is
indeed true and that the computational cost associated to the

8

denoise of the signal is not worth.
It is clear that the LMS Adaptive Filter introduces a great
improvement to the systems results and has an almost perfect
performance. This happens due to the constant adaptation
through time to the noise of the motors and also due to the
fact that the noise is uncorrelated to speech. This uncorrelation
makes it possible to isolate the speech signal with no distortion
leading to WER values in the neighborhood of the WER
obtained before introducing noise (3, 046%). We conclude that
apart from the LMS Adaptive Filter, none of the other filters
are apt to improve our results. In fact, most of the times
they decrease the performance of the system increasing its
computational costs.
On the other hand, the LMS Adaptive Filter proved to be a
great solution for our problem and its usage will be further
developed in the next section.

Fig. 5: Comparison of results between original signal and all
filtered signals for all the SNR values.

C. Speech Recognition with Filtering using Neural Networks

1) Applying the Neural Network to the LMS Adaptive Filter
The starting point of this section is to define the parameters

of the Neural Network. From each of the training files we
have the velocity of each motor (that is constant through the
file) so the input of our NN is of size 4. As for the output, we
found that the best performance is when we have a 5th order
filter so the output is of dimension 6.
In order to find the best parameters we need to set a classifier.
For our case we decided to use again the MSE.

cost =

N∑
n=1

ln (43)

In equation 43, ln is as defined in equation 41 and N is the
total number of outputs for the training set. Since our training
set is composed by 266 files and each file produces 6 outputs,
N = 1596. By observing the cost associated to the number
of epochs when we have different hidden layers’ dimensions,

the only information we could retrieve is that in less than 500
epochs the NN converges to the best predictions. When we
increase the number of hidden layers, the number of epochs
necessary to converge for the best result is smaller. Also, we
analyzed the cost after stabilization associated to each NN
when we change the number of hidden layers and the layers’
dimensions. The values obtained from the worst case to the
best case had a difference of 0, 0287. We saw a slight improve
of the cost when we increase the number of hidden layers. We
opted to implement the NN with 2 hidden layers with size 10.
With these parameters settled we will present in table III the
performance of the ASR system when we directly apply the
coefficients computed through the NN to the filtering process.

TABLE III: WER for filtering with LMS Adaptive Filter using
a Neural Network.

SNR(dB) WER

-10 3,046%
-5 3,553%
0 3,046%
5 4,061%

10 3,553%

The results obtained are still very close to the optimal
outcome (0%). We can conclude that it is possible to use a
NN to relate the motors’ speeds information to the needed
filter coefficients.

2) Real life adaptation of the system
Although the previous results look very promising, there is a

big issue regarding to the implementation of the algorithm in a
drone. We are only able to perform the denoising if the noise-
only profile perfectly matches the noise profile of the noisy
signal. What happens in real life is that we cannot capture the
noise-only profile of the drone. Specially in a small UAV the
integrated microphones will always capture both the noise and
the speech due to the drone’s size. To overcome this problem
we came up with the idea of capturing the noisy signal at
different SNR by using two directive microphones with one
facing the motors and the other facing the opposite side or
by integrating two microphones: one that is very close to the
motors and will be used in the algorithm as if it was the
noise-only signal and another one that will have a greater SNR
because it will be implemented further away from the motors.
Using the coefficients previously predicted by the NN, we will
now obtain the clean speech signal through the subtraction of
the signal with higher SNR and the filtered signal with lower
SNR.
In order to test the performance of this improved system, we
start by analyzing which is the minimum difference of SNR
between the signals captured by the two microphones that can
be used to obtain acceptable results. A difference of 0, 5dB
between the two signals resulted in good WER values. An
increase of 0, 5dB is actually translated into a signal with
power 1, 12 times higher than the power of the one with
lower SNR. We believe this value can be easily met since
in the case of using directive microphones facing opposite
sides the SNR will be very different and for the case when

9

we have microphones at different distances, increasing the
distance of one of the microphones to the noise source not
only we decrease the power of noise but most likely we will
be increasing the power of speech due to approximation of the
microphone to the speech source. We will now proceed to the
testing using the difference of SNR of 0, 5dB. The results can
be seen in table IV.

TABLE IV: WER for filtering with LMS Adaptive Filter using
∆SNR = 0, 5.

SNR(dB) WER

-10 14,213%
-5 14,213%
0 3,046%
5 2,538%

10 4,061%

Figure 6 shows the comparison between all the implemen-
tations with the LMS Adaptive Filter.

Fig. 6: Comparison between results from all the systems using
LMS Adaptive Filtering.

Figure 6 shows that for signals with lower values of SNR
the performance of the system is still a little far from the
performances previously obtained but for positive values of
SNR the system can even perform better than previously. The
WER obtained when we have input signals of SNR = −10dB
and SNR = −5dB is considerably greater than in the other
two cases that we are comparing. These percentages of error
are translated in 28 words incorrectly guessed or not guessed at
all. The relation we can find from the two sets of testing when
varying the ∆SNR is that when we increase the difference
between the SNR values of the input signals, we considerably
decrease the WER when dealing with signals of negative SNR.

3) Conclusions
In figure 7 we can observe the evolution of results obtained

as we improved and adapted the system. On the bars of the
left we can see the WER when no filtering was applied to the
input signal. On the central bars we have the results obtained
when applying the LMS Adaptive Filter with the filtering
coefficients being computed as the algorithm performs. The
bars on the right show the results when we compute the
filtering coefficients through a Feedforward Neural Network
and we use as input signals two noisy signals with different
values of SNR (for this case ∆SNR = 0, 5dB).
Filtering the input signal, independently of the value of

SNR, significantly improved the performance of the system.
Although the case of only applying the LMS Adaptive Filter
shows an overall best result, as it was already mentioned, it
is not realistic to think that we can use this implementation
in a real system. The new implementation proposed has a
slight worse performance but comparing with the results when
there’s no filtering, the WER achieved is always better and the
values are very satisfying.
This improved system allows us to infer the filtering coef-
ficients from the information on the motors’ speeds leading
to a straight away denoising and not an adaptive denoising
through time. Also, we showed now that it is possible to use
the LMS Filter even though we don’t have the isolated noise
profile. The counterpart of this implementation is the necessity
of including another microphone in the UAV but the results
presented until now sustain the necessity of doing so.
In conclusion, using a Neural Network to predict filter’s
coefficients and two microphones to capture input signals at
different SNR showed to be a good and relevant solution for
the problem stated in this thesis.

Fig. 7: WER values for best systems in each subsection.

D. Speech Recognition using Recursive Neural Networks

Based on the work developed in [21] we decided to use the
default parameters of the CTC Recurrent Neural Network of
6 hidden layers and change the number of epochs to 100. The
number of hidden layers is almost the double as the NN studied
in the paper and the number of epochs is within the range
studied. Feeding the NN with the LibriSpeech dataset mixed
with noise, after approximately two days of running time, we
obtained the outputs of the NN for the test set when the SNR
is 10dB (best scenario of study). The outputs obtained were
sequences of letters that wouldn’t form words. Furthermore,
most of the speech commands were translated into the letters
’o’, ’f’ and ’r’, independently of the phoneme that they are
actually made of.
The first step of this implementation is to obtain the MFCCs.
In the situation of drones, the noise profile of the motors
is highly correlated to their speeds and in lots of cases,
this noise profile will mask the speech signals. Trying to
make a correspondence between MFCC and phonemes when
there’s so much unpredictability associated to the MFCC
corresponding to a single phoneme is a task very difficult to
overcome. We believe that unless there is a high volume of

10

training data covering all types of noise and phonemes the
chances of reaching acceptable results are very low.
Due to the very poor results obtained for the less challenging
case of study we decided not to proceed with this approach.

V. CONCLUSION

During this research we have tested the robustness of vari-
ous Speech Recognition systems to speech inputs corrupted
by noise produced by a drone’s motors. The Least-Mean-
Square Adaptive Filter is presented as the right and very
promising solution for the denoising problem being the worst
WER result obtained very close to 0%. A Feedforward Neural
Network developed to predict the filter’s coefficients based
on the information of the speeds of each motor also showed
to work. The fact that the denoise is made in real time and
not adaptively enabled the possibility of matching or even
improving the previously obtained WER. Finally, in order to
adapt the system to a real-life situation, a slight alteration to
the method is proposed. In the new implementation a signal
captured with less SNR is used as the noise-only input and
another signal captured with higher SNR is used as the noisy
speech. In conjugation with the coefficients available through
the training of a NN in ideal conditions (when the noise
signal input is indeed noise-only) we were able to generate
results that, for better conditions (higher SNR of the input
noisy speech), matched the previously tested systems and, for
worst conditions (negative SNR input signals), the percentage
of WER is not ideal but still acceptable to start introducing this
technology in real systems. Lastly, the training of a Recurrent
Neural Network for Speech Recognition with speech already
corrupted by ego-noise of a drone was attempted but the results
showed up not to be competitive with the previously proposed
system.
Using LMS Adaptive Filtering and a Neural Network for
filter’s coefficients prediction is robust against different values
of SNR of the inputs which is the main challenge to overcome
in the problem being studied.

A. Future Work

To give continuation to this research it would be important
to confirm the results obtained through testing in a real
implementation. In the implementation it would be interesting
to discover which is the best way of integrating the two
microphones capturing the noisy signals with different signal-
to-noise ratios. It would also be important to confirm if the
theoretical value presented of ∆SNR = 0, 5dB between the
two input signals is enough and achievable.
Since NNs for Speech Recognition is still an area being widely
researched, trying to create end-to-end Neural Networks for
Speech Recognition with different architectures and trained
with noisy inputs should also keep being explored.

REFERENCES

[1] L. Pfeifenberger, T. Schrank, M. Zohrer, M. Hagmüller and F. Pernkopf,
Multi-channel speech processing architectures for noise robust speech
recognition: 3rd CHiME challenge results. 2015 IEEE Workshop on
Automatic Speech Recognition and Understanding (ASRU), 2015.

[2] T. Tezuka, T. Yoshida and K. Nakadai, Ego-motion noise suppression
for robots based on Semi-Blind Infinite Non-negative Matrix Factoriza-
tion. 2014 IEEE International Conference on Robotics and Automation
(ICRA), 2014.

[3] K. Kinoshita, M. Delcroix, S. Gannot, E.A.P. Habets,E. A. and R. Haeb-
Umbach, W. Kellermann, V. Leutnant, R. Maas, T. Nakatani, B. Raj,
A. Sehr and T. Yoshioka, A summary of the REVERB challenge: state-
of-the-art and remaining challenges in reverberant speech processing
research. EURASIP Journal on Advances in Signal Processing, 2016.

[4] B. Gold, N. Morgan and D. Ellis, Speech and Audio Signal Processing:
Processing and Perception of Speech and Music, 2nd ed. New York,
USA: Wiley-Interscience, 2011.

[5] O. Abdel-Hamid, A. Mohamed, H. Jiang, L. Deng, G. Penn and D. Yu,
Convolutional Neural Networks for Speech Recognition. IEEE/ACM
Transactions on Audio, Speech, and Language Processing, 2014.

[6] S. Hochreiter and J. Schmidhuber, Long Short-Term Memory. Neural
Computation, 1997.

[7] M. Strauss, P. Mordel, V. Miguet and A. Deleforge, DREGON: Dataset
and Methods for UAV-Embedded Sound Source Localization. 2018
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), 2018.

[8] Audacity, www.audacityteam.org.
[9] C. Plapous, C. Marro and P. Scalart, Improved Signal-to-Noise Ratio

Estimation for Speech Enhancement. IEEE Transactions on Audio,
Speech, and Language Processing, 2006.

[10] I. Cohen and B. Berdugo, Noise Estimation by Minima Controlled
Recursive Averaging for Robust Speech Enhancement. Signal Processing
Letters, IEEE, 2002.

[11] S. Dixit and D. Nagaria, LMS Adaptive Filters for Noise Cancellation:
A Review. International Journal of Electrical and Computer Engineering
(IJECE), 2017.

[12] Mathworks, www.mathworks.com/help/dsp/ref/dsp.lmsfilter-system-
object.html, 2012.

[13] Audacityteam,
wiki.audacityteam.org/wiki/How Audacity Noise Reduction Works.

[14] A. Ito, T. Kanayama, M. Suzuki and S. Makino, Internal noise sup-
pression for speech recognition by small robots. INTERSPEECH-2005,
2005.

[15] C. Gargour, M. Gabrea, V. Ramachandran and J. Lina, A short intro-
duction to wavelets and their applications. IEEE Circuits and Systems
Magazine, 2009.

[16] S. Mihov, R. Ivanov and A. N. Popov, Denoising Speech Signals by
Wavelet Transform. Annual Journal Of Electronics, 2009.

[17] D. P. Kingma and J. Ba, Adam: A Method for Stochastic Optimization..
2014.

[18] M. Rubashkin and M. Mollison, TensorFlow RNN Tutorial.
www.svds.com/tensorflow-rnn-tutorial, 2017.

[19] M. Schuster and K. K. Paliwal, Bidirectional recurrent neural networks.
IEEE Transactions on Signal Processing, 1997.

[20] A. Graves, S. Fernández, F. Gomez and J. Schmidhuber, Connectionist
Temporal Classification: Labelling Unsegmented Sequence Data with
Recurrent Neural Networks. New York, USA: ACM, 2006.

[21] A. Graves, A. Mohamed and G. Hinton, Speech recognition with deep
recurrent neural networks. 2013 IEEE International Conference on
Acoustics, Speech and Signal Processing, 2013.

