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Resumo

A presente dissertação apresenta soluções de controlo posicional e angular para um drone recor-

rendo a métodos lineares e não lineares.

O modelo dinâmico do veı́culo aéreo é obtido. Os controladores não lineares são projetados con-

siderando o modelo completo, ao passo que, para a sı́ntese dos controladores lineares, uma linearização

das dinâmicas do sistema é requerida. Linear Quadratic Regulator e Feedback Linearization foram as

estratégias utilizadas para atacar o problema de controlo. Duas arquiteturas distintas tendo por base

a abordagem linear foram concebidas e três diferentes estruturas de controlo, explorando os conceitos

de realimentação estática e dinâmica, foram desenvolvidas com recurso à técnica não linear. A capaci-

dade de seguimento de uma trajetória na presença de medições ruidosas de sensores e a robustez a

variações significativas dos valores da massa e da inércia foram avaliadas em simulação, possibilitando,

deste modo, a determinação das soluções lineares e não lineares mais promissoras com vista a serem

posteriormente validadas experimentalmente.

A abordagem linear selecionada consiste numa estrutura de controlo em anel duplo na qual o anel

interno é responsável por estabilizar as dinâmicas angulares e o anel externo serve o propósito de con-

trolar o posicionamento. Em ambos os anéis, uma ação integrativa é incorporada. A segunda solução

compreende um anel interno não linear que resulta da aplicação do método Feedback Linearization às

dinâmicas angulares. Controladores quadráticos lineares com ação integrativa são implementados na

cadeia de integradores resultante desta aplicação e também no anel externo de modo a controlar o

movimento horizontal e estabilizar as zero dynamics. A realimentação completa dos estados é asse-

gurada não só por medições provenientes dos sensores, mas também por estimativas efetuadas por

filtros Kalman e filtros de orientação.

Os esquemas de controlo selecionados são implementados num quadricóptero disponı́vel no mer-

cado que possuı́ uma Unidade de Medida Inercial, um magnetómetro e um altı́metro. A posição inercial

do drone é obtida através de um sistema de captura de movimento. Os resultados obtidos validam a

modelação e as arquitecturas dos sistemas de controlo desenvolvidos.

Palavras-chave: Controlo, Linear Quadratic Regulator, Feedback Linearization, Ação Inte-

grativa, Seguimento de Trajetória
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Abstract

This dissertation presents full control solutions for a quadrotor using linear and nonlinear methods.

The dynamical model of the quadrotor is derived. The nonlinear controllers are designed consider-

ing this model, a linearization of the dynamics is required to synthesize the linear controllers. Linear

Quadratic Regulator and Feedback Linearization were the techniques applied to tackle the control prob-

lem. Two control structures were devised using the linear approach and three different architectures,

exploring the concepts of static and dynamic feedback, were developed for the nonlinear method. The

capacity of trajectory tracking, in the presence of measurements noise, and the robustness to significant

deviations of the mass and inertia values were evaluated in simulation. Thereby, the most promising

linear and nonlinear solutions were selected for implementation in the actual quadrotor.

The selected linear approach consists of an inner-outer loop control structure, where the innermost

loop is responsible for the attitude control and the outermost solves the positioning control. In both

loops, integrative action is incorporated. The second solution comprises a nonlinear inner loop that re-

sults from the application of static feedback linearization to the attitude and altitude dynamics. Linear

quadratic controllers with integrative action are implemented not only to the resulting inner-loop chain of

integrators, but also to the outer-loop, that controls the horizontal movement and, consequently, stabi-

lizes the zero-dynamics. The required full state-feedback relies on measurements from motion sensors

and on on-flight estimates provided by Kalman filters and an attitude filter.

The selected control systems are implemented in a commercially available drone, equipped with an

Inertial Measurement Unit, a compass and an altimeter. A motion capture system gives the inertial

position of the drone. The results obtained allow the validation of the modeling and control system

architectures.

Keywords: Control, Linear Quadratic Regulator, Feedback Linearization, Integrative Action,

Trajectory Tracking
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Chapter 1

Introduction

In recent years, the popularity of quadrotors has increased immensely as the embedded technology

advanced. This growth translated into an intensive study of these Unmanned Aerial Vehicles. Its ma-

neuverability, hovering capabilities, reduced price and small size not only enable the quadrotors to be

equated in a wide range of applications, such as infrastructure inspection or area monitoring, but also

constitute them as an excellent alternative for the experimentation of control and navigation techniques.

Similar to many other technologies that are currently used by the general population, the concept

of the unmanned aerial vehicle started being explored in war context [1]. In World War I, the United

States began the experiments but never deployed in combat. Years later, in World War II, Germany ev-

idenced the numerous advantages of considering such vehicles on the battlefield. Military from various

countries, like the United States, noticed the potential and started development programs that originated

elaborated systems. Numerous ideas were studied and demonstrated in flight with varying degrees of

success [2]. However, not only these prototypes presented poor performance [3] but also a skilful pilot

was compulsory due to the poor stability and limited control authority [2]. The tremendous technolog-

ical progress verified in the subsequent decades made possible to build and control unmanned aerial

vehicles.

Most recently, due to advances in electronics and manufacturing processes, a miniaturization of the

controllers, sensors and processors, without discarding the effectiveness of these components, became

a reality. The evolution resulted in the emergence of small configurations of unmanned aerial vehicles.

The potential inherent to this reduction in size is enormous and presents several advantages. In 2016,

PwC released the report ”Clarity from Above” that stated that the addressable market value of drone-

powered solutions is over $127 billion and that the drone revolution is disrupting a broad spectrum of

industries [4]. In Fig. 1.1, the estimated value for some key industries is schematically presented.

A relevant part of the research conducted on these small-scale UAVs concerns the quadrotors. The

quadrotor is a rotary-wing UAV that, as the name suggests, has four rotors whose arrangement gener-

ically resembles either an ”x” or a ”+” configuration. Also commonly referred to as ”drone”, this vehicle

takes-off and lands vertically and has its hovering capacity and its high maneuverability as primary char-

acteristics. The symmetry of the design leads to reduced gyroscopic effects [5] and simplicity makes the
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Figure 1.1: Potencial value of UAV-based solutions in key industries for global market (values in billions
of dollars).

manufacturing less complicated. Moreover, the vertical take-off and landing capabilities present the op-

portunity of considering the quadcopter for applications with tighter spatial constraints when compared

with fixed-wing UAVs.

The decreasing of the cost of quadrotors, that allows the spanning of their use beyond military ap-

plications and academic research, in conjunction with the characteristics formerly described results in

equating them in a panoply of public and civil applications, for instance:

• Search and rescue: in situations of natural disasters, the quadcopters can provide crucial support

in search and rescue operations and disaster management [6][7]. For instance, resorting to UAVs

is possible to cover a large area by image, which is essential in finding missing persons. Moreover,

these aerial vehicles can carry medical supplies to regions of difficult access and can provide

communication coverage in cases of networks disrupt;

• Remote sensing: drones can be used to obtain data from hazardous or remote locations, perform

geological and archaeological surveys [6] or to collect data from ground sensors and deliver to

base stations [8];

• Infrastructure Inspection: lately, an interest in the usage of UAVs to monitor large construction

projects has emerged [7]. Furthermore, the quadrotors are also often seen as an excellent tool

to apply the strategy of condition-based maintenance. Therefore, for inspecting power lines, oil,

water, and gas pipelines [9] or wind turbines [10], these vehicles are frequently employed.

• Agriculture: quadrotors can be used for crop management and monitoring [11], spraying pesticides

[6] or for irrigation scheduling [7].

• Deliveries: one billion people around the world do not have access to all-season roads [12], which

poses severe difficulties in access to medicine and critical supplies. Moreover, this connection

problem constitutes a huge barrier to economic growth especially in developing countries since

their inhabitants are unable to send the goods produced to markets [13]. To tackle this challenge,

several projects using quadrotors have succeeded operationally in recent years. The utilization of
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these vehicles ensured rapid and efficient transportation of food, medicine and goods, therefore

cutting distances with hospitals, markets and other services. Furthermore, with the breakthrough

of e-Commerce, postal and logistics companies have been avidly searching for new forms to dis-

tribute packages. Numerous experiments with UAV-based delivery systems have been conducted

in countries like Australia, Singapore and Switzerland to assess its feasibility and profitability [14].

• Surveillance: in the scope of public safety, quadcopters with cameras can be used to recognize

criminals and detect suspicious human activities, through crowd surveillance [15]. Real-time mon-

itoring of road traffic is also a possibility with drones [7]. Compared with traditional monitoring

devices, these aerial vehicles are more cost-effective and versatile, since it is possible to either

monitor large continuous road segments or a specific road segment.

The benefits of considering quadrotors are indeed obvious and range from cost-effectiveness and

improved speed to safety and efficiency. Furthermore, the quadcopters can substitute the man in haz-

ardous or tedious and repetitive tasks. In the interest of extending the functionalities and abilities of

these vehicles, thorough research from around the globe deepens the study of the topic.

1.1 Motivation

Invariably, at the core of the development of applications with quadrotors, a robust control structure

is required. Nonetheless, devising controllers for a quadrotor is undoubtedly a challenging problem.

Throughout the years, an intensive study has been conducted by the research community in this

topic once the vehicles are characterized for their mechanical simplicity and are fast-prototyping devices,

which constitutes them an excellent tool for testing innovative control techniques and designs. In addition

to that, the research community acknowledges the control problem inherent to UAVs as a stimulating

challenge.

On the one hand, the reduced size of these vehicles, besides the clear advantages addressed for-

merly, poses serious difficulties. The small sensors used on these systems are much noisier and present

more considerable biases when compared with navigation grades equivalents. Additionally, the compact

structure results in a higher susceptibility to environmental effects and the reduced scale leads to the

vibrations, which are frequent in these flight platforms, impacting the sensors. Therefore, not only the

onboard estimation is more challenging, but also the control algorithm must not present significant per-

formance deviations when measurements are noisy. On the other hand, the system is highly nonlinear,

multivariable and has coupling between dynamics. Furthermore, its high maneuverability is a conse-

quence of possessing fast dynamics, which increases the complexity of stabilizing it. Moreover, the fact

of the drone having six degrees of freedom, position and orientation, and only four actuators, hence

being an underactuated system, further intensifies the intricacy of controlling it.

In furtherance of these small aerial vehicles being autonomous, reliable onboard stabilization and

trajectory tracking capabilities are imperative. The number and complexity of the applications of these

systems are increasing at an impressive rate. Consequently, in order to keep track of this evolution,
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the control methods applied must be enhanced aiming better performance and expanded versatility.

The first control strategies considered, and still the most common nowadays, are linear and therefore

present performance limitations. With the advances in microprocessors and modeling techniques, using

real-time nonlinear control methods is an attainable objective and enables the desired improvements in

performance and robustness.

In the interest of tackling the control problem, this work proposes and discusses different architec-

tures based on linear and nonlinear control methods. The solutions are tested in simulation to draw

comparisons and assess the most promising linear and nonlinear approaches. Subsequently, the se-

lected control structures are experimentally validated.

1.2 Topic Overview

The quadcopter is a small size unmanned aerial vehicle that possesses four rotors disposed of at

the end of a structure that resembles an ”x”. Each rotor is powered by a brushless motor that has its

controller. Six variables define the pose of the quadrotor: the inertial coordinates (x, y, z), describing the

position of the center of mass in the inertial frame, and the Euler angles (ϕ, θ, ψ), denoting the rotation

of the body-fixed frame with respect to the inertial frame. The actuators receive Pulse Width Modulation

(PWM) commands that regulate the rotation speed of the rotor. This rotation generates a thrust force,

Ti, and a yaw moment τψi . In Fig. 1.2, these forces and moments, as well as the Euler angles and the

body-fixed frame, are represented. The propellers 1 and 3 rotate clockwise and the propellers 2 and 4

rotate counterclockwise.

T1

T2

T3

T4 τψ1

τψ2

τψ3

τψ4
XB

YB

ZB

ϕ

ψ

θ

World

Figure 1.2: Scheme with the forces and moments generated by each rotor and the Euler angles repre-
sented.

The position and attitude of the quadcopter are controlled through variations of the rotational speed

of the rotors. Increasing the PWM commands provided to the actuator leads to higher thrust and yaw

moment values. Thereby, regarding vertical motion, to move upwards, the rotational speed of all the

propellers must synchronously increase, and to move downwards, must synchronously decrease. Con-

cerning the horizontal motion, the movement is performed by tilting or rolling the UAV. A positive variation

of the roll angle is obtained with higher rotational speeds of the rotors 1 and 4. The motion along the

positive direction of the YB axis is attained with negative roll values. If the pair formed by the rotors 4
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and 3 rotates faster than the pair of rotors 1 and 2, the pitch angle becomes positive and the UAV moves

forward. The total sum of the reactive yaw moments produced determines the yaw motion. Similarly to

the individual thrust force, this reactive torque is higher with higher rotor speeds.

The control system computes the required total Thrust, T , roll moment, τϕ, pitch moment, τθ, and

yaw moment, τψ to follow the references. Subsequently, the thrust forces that each rotor has to generate

are determined by solving a system of four equations. This system of equations is often referred to

as ”motor mixing” and is a result of the movement dynamics being all interconnected. Posteriorly, the

determined Ti are transformed in the equivalent PWM commands, through experimentally determined

expressions, to send to the controllers of the motors.

Although the system is nonlinear, linear methods, such as the Linear Quadratic Regulator, can be

applied to tackle the control problem. To this end, performing a linearization of the system dynamics is

required. However, since the controllers are designed for the linearized system, the performance will

present limitations. Alternatively, nonlinear control methods can be considered. These approaches and

their implementation are indeed more complex than the linear ones. Nonetheless, the application of

such methods allows achieving a higher level of control performance. Irrespective of the application of

linear or nonlinear control methods, the state variables required for state-feedback that are not directly

available through sensors have to be estimated. For this purpose, one can resort, for instance, to the

Kalman filter theory.

1.3 Objectives

The ultimate objective of this work is to study and develop a full control solution for a quadrotor. To

this end, linear and nonlinear methods are explored and applied.

In furtherance of designing and evaluating the controllers before implementing them in the actual

aerial vehicle, the creation of a reliable dynamical model must be targeted. Furthermore, for the applica-

tion of linear methods, a subsequent linearization of this model is also required. On the other hand, the

nonlinear controllers are synthesized without relying on the linearized dynamics, but rather on the com-

plete model. Consequently, a higher level of performance and a larger flight envelope can be achieved.

Different control architectures will be explored both with the linear and nonlinear methods. It is aimed

to devise control strategies capable of performing a predefined trajectory, presenting null steady-state

position error and some level of robustness to model imprecision, uncertainty and disturbances.

The approaches that present the most promising results in the simulation will be implemented on a

commercially available quadrotor. In order to estimate the state-variables that are not directly available

from the sensory data, for instance, the Euler angles and the linear velocities, a Kalman filter and an

attitude filter will be applied. Additionally, the Kalman filter will be used as well for filtering the readings

provided by the motion sensors installed onboard. The estimates and the filtered measurements fulfill

the requirement for full state-feedback.
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1.4 Contributions

The main contributions documented in this thesis are the derivation of a simplified dynamical model

for quadrotors with X configuration, the subsequent linearization for a trim position, the application of

model-based LQR control with integrative action considering two different structures and the study of

three distinct control architectures that rely on the nonlinear technique Feedback Linearization.

The work developed throughout this thesis resulted in the partipation in a robotics competition and in

the submission and acceptance of a scientific paper, respectively:

• Madeiras, J., Martins, L., Cardeira, C. and Oliveira, P. (2019) Autonomous UAV Race: An onboard

vision-based solution. ’FreeBots’ Competion at ”Festival Nacional de Robótica 2019” in Gondomar,

Porto;

• Martins, L., Cardeira, C. and Oliveira, P. (2019). Linear Quadratic Regulator for Trajectory Tracking

of a Quadrotor. Accepted on the 21st IFAC Symposium on Automatic Control in Aerospace.

1.5 Thesis Outline

This document is organized as follows:

Chapter 2: The literature related to the topic of modelling and controlling a quadrotor is reviewed.

Linear and nonlinear control methods are explored;

Chapter 3: The aerial vehicle used in this project is presented by briefly describing its the main

features and characteristics.. Additionally, the physical model in which the simulation relies on is detailed

and the subsequent linearization is deduced;

Chapter 4: The theoretical formulation of the control methods chosen to tackle the control problem is

addressed, starting with the Linear Quadratic Regulator with integrative action followed by the Feedback

Linearization.

Chapter 5: With the description of the theoretical background of the control methods carried out, in

this chapter, the referred techniques are particularized for the dynamics of the quadcopter. Concerning

the linear control, two different architectures are developed, and, regarding the Feedback Linearization,

three different control structures are designed relying on it.

Chapter 6: The state-estimation required for the full state-feedback is discussed. The fundamental

theory of the Kalman filter is presented as well as the essential equations of the two attitude filters

resorted. The structure of the filter used to estimate the first and third derivative of the position is also

devised.

Chapter 7: Firstly, the gains of the controllers are obtained by analyzing the characteristics of the

resulting step-responses. With these gains, the robustness of the proposed control schemes is assessed

through the responses obtained in cases of significant deviations in the mass and inertia values. Next,

the gains of the Kalman filters used to estimate the velocity and the third derivative of the position are

determined. Lastly, with the controllers and estimators derived in this chapter, the trajectory tracking
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capacity of the quadrotor is evaluated in simulation. In this test, measurement noise is modeled as

Gaussian white noise and is inserted in the model.

Chapter 8: Aspects related to the implementation are addressed and the experimental results ob-

tained with the most promising linear and nonlinear approaches are presented and analyzed. A com-

parison between the two control architectures is established.

Chapter 9: Lastly, some concluding remarks are drawn and possible future developments are envi-

sioned.
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Chapter 2

State of the Art

In the last twenty years, the topic of modeling and control of quadrotors has progressively become

more popular. The potential regarding civil applications is unanimously recognized and transformed this

area in one of the hottest in robotics. Thereby, the study of techniques to tackle the challenges posed

by these aerial vehicles is vast and, consequently, the work produced is very diversified.

For the purpose of modeling the quadrotor dynamics, in the majority of the studies in the literature,

the Newton-Euler formalism and the Lagrange equations are considered. Concerning the Newton-Euler

approach, the work proposed in [16] derives the rigid-body dynamics of the quadcopter considering

a simple model for the thrust force and moment generated by the rotor. Later works include a more

accurate representation of the complex helicopter behavior exhibited by quadrotors. In particular, in [17]

and [18] the phenomena of blade flapping and roll and pitch rotor damping are considered in the model

of the quadcopter, thus enabling a better understanding of the oscillatory helicopter modes. In [19] a

comprehensive study of quadrotor topic is presented, introducing not only the rigid-body dynamics of

the airframe and the dominant aerodynamics, deepening the formulation of the induced drag, but also

control and estimation methods.

The study of the control of quadrotors includes various linear and nonlinear techniques. Several

previous works demonstrated the feasibility of controlling a quadcopter resorting to linear techniques.

The bulk of the bibliography reports the application of classical Proportional Integrative Derivative (PID)

controllers and modern Linear Quadratic Regulator (LQR) controllers. Bouabdallah et al. stabilized the

attitude dynamics using PID control, achieving success in hovering with the presence of small distur-

bances [20]. In this work, the referred optimal control technique is also applied to the attitude stabiliza-

tion, enabling establishing a comparison between methods. The latter presented average results, due

to model imperfections, and steady-state error, as a consequence of not including an integrative action.

On the other hand, the classic technique showed satisfactory behavior. Nonetheless, the authors state

that the LQR should have attained better results. In [21], [22] and [23], the classical approach was suc-

cessfully implemented to control the position and orientation in low speed indoor flights. A simple path

following LQR controller was applied in simulation by Cowling et al. in [24]. The control structure leads

to accuracy in path following even with the presence of modeled wind and other disturbances. Valenti
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et al. proposed a LQR-based control for position and attitude in [25]. An integrative action was included

in the position and heading subsystems and the control system is experimentally validated for hovering,

obtaining maximum deviations of 10 cm, and waypoint tracking. Bauer et al. implemented a Linear

Quadratic servo controller with a double integrator for trajectory tracking in simulation in order to null the

steady-state error when the system is subjected to ramp inputs [26]. Lastly, an inner and outer control

loop with LQR control with integration action in both loops is proposed by Raja in [27]. The control was

designed for a linear model obtained through Jacobian linearization and was successfully implemented

in a UAV, enabling an effective attitude response.

Notwithstanding that various works attest the success of tackling the control problem with linear tech-

niques, applying nonlinear control methods that consider a more comprehensive model of vehicle dy-

namics can lead to better performance. Furthermore, a wider flight envelope is obtained and resorting to

such approaches allows coping with challenges associated with parametric uncertainties, aerodynamic

disturbances, actuators saturation or measurement errors. In the literature, it is possible to find a variety

of nonlinear approaches applied to quadrotors.

The majority of these nonlinear strategies relies on Lyapunov stability criteria [28]. One of these

control methods is the Sliding Mode Control. The SMC is widely used and is characterized by its robust-

ness, accuracy and easiness in parameter tuning. The idea of the SMC consists in designing a switching

hypersurface defined by the error and its derivatives of the state variables intended to control, such that

the selected subspace is stable and its attractor is at the origin [29]. The control law is not continuous

since it switches from one continuous control structure to another based on the current position in the

state space. Bouabdallah and Siegwart applied this nonlinear approach to stabilize the quadrotor and

maintain the roll, pitch and yaw angles to zero [30]. The proposed controller was tested in simulation

and experimentally validated, evidencing the ability to stabilize the roll and pitch angles. However, distur-

bances originated by the chattering effect are present, being more noticeable in the yaw angle response.

Xu and Ozguner developed sliding mode controllers with rate bounded PIDs capable of stabilizing and

control the position and yaw angle in simulation [31]. A continuous approximation of the sign function

is used to prevent chattering and good results are obtained in simulation with and without parametric

uncertainties. Xia et al. presented an inner and outer loop control in which SMC is applied for both

loops [32]. A comparison with classic derivative control is drawn through simulation and experimental

results, with the nonlinear control attaining better results in either tests. Combining the SMC with other

control strategies allows achieving better performance and provides additional robustness to unknown

but bounded disturbances and modeling uncertainties [33][34].

Another nonlinear method frequently equated to tackle the control problem is Backstepping. This

Lyapunov-based technique provides a powerful recursive approach for stabilizing systems that can be

represented through nested loops. Thereby, this approach is well-suited for the cascaded structure of

quadrotor dynamics. Furthermore, due to its fast convergence, leading to less computational resources

required, and its capacity to handle disturbances well, this method is seen as an interesting solution.

Nevertheless, some disadvantages are also associated, namely the sensitivity to parameter change and

the necessity of full-state measurement. Madani and Benallegue successfully applied the Backstep-
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ping approach in simulation to drive a quadrotor to track a desired trajectory and yaw angle [35]. The

researchers divided the quadrotor model into three interconnected subsystems. Good performance of

the control proposed is noticeable from the simulation results. In [30] the authors proposed and pro-

vided experimental results of a Backstepping controller for attitude stabilization. The results obtained

demonstrate the aptitude to control the rotational dynamics even in the presence of relatively high per-

turbations. This approach, when compared with results obtained with SMC, performed favorably. In

[1], an integral Backstepping controller is suggested. The developed technique proved to be capable of

controlling attitude and altitude dynamics and the integrative action eliminated the steady-state errors. A

Backstepping control algorithm for trajectory tracking for a quadrotor is presented in [36]. The proposed

controller consists of position control, that tracks the desired trajectory and relies on position and velocity

error, and attitude control, that is responsible for controlling not only the angles obtained from the outer

loop but also the yaw angle, and that resorts to the rotation matrix and body angular velocity error. The

experimental results show satisfactory tracking performance in following a small circular trajectory.

A different method commonly considered that has also attracted research interest throughout the

years is Feedback Linearization. This control algorithm algebraically transforms, entirely or partly, a

nonlinear system into a linear one resorting to change of coordinates and feedback, thus enabling the

application of linear controllers. This approach differs entirely from conventional linearization since feed-

back linearization results from an exact state transformation and not from linear approximations of the

dynamics. Hence, an accurate model is required for implementation. Das et al. in [37] discuss a

two-loop approach where, in the inner loop, responsible for altitude and attitude control, feedback lin-

earization was applied and, in the outermost, proportional derivative controllers were used to control the

horizontal movement. Additionally, in both loops, Sliding Mode control is included in order to deal more

effectively with disturbances. The simulation results validated the approach. In [38], Freddi et al. use

feedback linearization to design a double loop control structure capable of performing not only trajec-

tory tracking but also roll and pitch control in the event of a rotor failure. The simulation tests highlight

this capacity of the fault tolerant controller proposed. A distinct two-loop architecture using feedback

linearization is proposed in [39]. In this work, the attitude of the quadcopter only implicitly appears in the

transformation matrix and is not a controlled state. The aerial vehicle proved to fly with good accuracy

since the control errors obtained in hovering tests are within 3 cm for all Cartesian coordinates.

Finally, other approaches are often considered to address the challenge of quadrotor control, namely,

Model Predictive Control (MPC), Adaptive Control (AC) or H-Infinity (H∞). Within these methods, the

MPC attempts to compute an admissible piecewise continuous control input, that ensures the system

behaves like a reference model without violating the given state and input constraints [40], through op-

timization techniques that take into account the current and the future time-steps. Since MPC explicitly

considers the operating constraints, it can operate closer to hard constraint boundaries than traditional

control schemes. Furthermore, this control method can anticipate future responses of the plant and,

therefore, can take control actions accordingly. The drawbacks of this approach are mainly associated

with the requirement of an highly-accurate dynamic model and the possible calculation load of the op-

timization process. In [41], Alexis et al. suggested an algorithm using MPC to control the attitude of
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a quadrotor and experimentally validated it in an environment with atmospheric disturbances [41]. The

application of the AC algorithms aim the cases where the parameters of the system intended to control

vary or are initially uncertain and consists in adapting the control law to this variation or incertitude. This

approach, when applied to quadcopter control, allows attenuating the impact of unmodelled dynamics

and unstructured disturbances. In [42], an adaptive position tracking controller achieving global asymp-

totic stability is proposed for a quadrotor in the presence of external disturbances. Pérez-Alcocer et al.

introduced an adaptive controller for quadrotor position and orientation trajectory tracking in the pres-

ence of parametric inaccuracies, achieving better experimental results than the non-adaptive version of

the referred controller [43]. H∞ methods are applied to synthesize controllers through a mathematical

min-max optimization problem. To that effect, a good model of the system to be controlled is required.

Raffo et al. developed a hierarchical control scheme consisting of a model predictive controller to track

a reference trajectory herewith a nonlinear H∞ controller to stabilize the rotational dynamics of the

quadcopter [44]. In both controllers, integrative action is included, allowing the achievement of a null

steady-state error when sustained disturbances are acting on the system. The results obtained with

the simulation model, which included the presence of aerodynamic disturbances and parametric and

structural uncertainties, corroborate the effectiveness and robustness of the control structure.
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Chapter 3

Aerial Vehicle

The Parrot AR. Drone 2.0 is the unmanned aerial vehicle used in this project. It is imperative to have

knowledge about the drone and its dynamics prior to the beginning of the discussion about the control

strategies. Consequently, in this section, the UAV and its actuators and sensors are briefly described, the

dynamic model necessary to create the simulation is detailed and the linearized model will be deduced.

3.1 Overview

The Parrot AR. Drone 2.0 [45] is a quadrotor whose rotors arrangement resembles as “X”. This

drone was projected by the Parrot SA company aiming the mass market of videos games and home

entertainment. The vehicle includes a built-in controller for its position and yaw angle, enabling an

automatic static flight up to 50 meters high and an easiness in controlling by Wi-Fi, using a tablet or a

smartphone, and ensuring stability.

3.2 Actuators and Sensors

The thrust generation is carried out by brushless motors that are individually controlled by its AT-

MEGA8L 8-bit controller and that have each one its exclusive cutout system to turn off the engine in

case of blockage of the propellers. These actuators are controlled through Pulse Width Modulation

commands that indicate the percentage of full speed of the rotor (0% being no speed and 100% being

full speed) and that are converted to a 40-bit number. The arrangement of the rotors is depicted in

Fig. 1.2. The rotors 1 and 3 rotate clockwise and the rotors 2 and 4 rotate counterclockwise.

The quadrotor possesses an inboard Inertial Measurement Unit, two cameras and a sonar board

[46]. The IMU runs at a rate of 200 Hz and is constituted by a Bosch BMA150 3-axis accelerometer, an

Invensense IMU-3000 3-axis gyroscope and a BMP180 barometric pressure sensor. The sonar board is

equipped with two Kobitone ultrasonic transducers (one 400SR (receiver) and one 400ST (transmitter))

and an AKM Semiconductor 3-axis Compass. These sensors provide measurements of the acceleration

minus the gravity, of the angular velocities, of the height of the UAV and of the magnetic field intensity.
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The vertical QVGA (320x240) camera is used for ground speed measurement and video streams at 60

frames per second, while the frontal camera serves the purpose of capturing images and video with

a resolution of 720p at 30 frames per second with a wide angle lens, enabling the implementation of

tracking and identification algorithms.

3.3 Nonlinear Model

In this section, the nonlinear model of the UAV based on the Newton-Euler formalism is presented.

The nonlinear dynamics are described in the body-fixed {B} and in the inertial {I} frames, depicted in

Fig. 1. The unit vectors along the axis of the body-fixed frame are denoted by {~b1,~b2,~b3} and the unit

vector along the inertial frame {I} axis are denoted by {~a1,~a2,~a3}. It is assumed that the origin of the

body-fixed frame {B} is coincident with the center of mass of the quadrotor.

XI

YI

ZI

XB

YB

ZB

Figure 3.1: Reference frames in which the nonlinear dynamics are described.

Let p = [x y z]
T denote the position vector of the center of mass of the UAV in the inertial frame.

Let η = [ϕ θ ψ]
T describe the orientation vector, in terms of Euler angles, of the body-fixed frame

with respect to the inertial frame, where ϕ, θ and ψ are the roll, pitch and yaw angles, respectively. Let

ω = [p q r]T represent the angular velocity of frame {B} relative to frame {I} described in the reference

frame {B}. The rigid body equations of motion of the quadcopter according to [19] are given by:

mp̈ = −mg~a3 + IRBFT (3.1)

Iω̇ = −ω × Iω + τ (3.2)

where I corresponds to the 3× 3 constant inertia matrix described in the body fixed-frame, m is the total

mass of the quadrotor, g denotes the gravity acceleration, FT and τ denote, respectively, the principal

nonconservative forces and moments applied to the UAV airframe by the aerodynamics of the rotors,

both described in the reference frame {B}, and IRB is the rotation matrix from the body-fixed to the
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inertial frame. The Euler angles follow the sequence of rotation Z-Y-X that is described in [47]. The

resultant rotation matrix is given by:

IRB =


cos (θ) cos (ψ) sin (ϕ) sin (θ) cos (ψ)− cos (ϕ) sin (ψ) cos (ϕ) sin (θ) cos (ψ) + sin (ϕ) sin (ψ)

cos (θ) sin (ψ) sin (ϕ) sin (θ) sin (ψ)− cos (ϕ) cos (ψ) cos (ϕ) sin (θ) sin (ψ)− sin (ϕ) cos (ψ)

− sin (θ) sin (ϕ) cos (θ) cos (ϕ) cos (θ)


(3.3)

The angle rates η̇ = [ϕ̇ θ̇ ψ̇]T are obtained from the body rotational rates using the following system

of equations: 
ϕ̇

θ̇

ψ̇

 = T (η)ω =


1 sin(ϕ) tan(θ) cos(ϕ) tan(θ)

0 cos(ϕ) − sin(ϕ)

0 sin(ϕ) sec(θ) cos(ϕ) sec(θ)



p

q

r

 (3.4)

According to [3], the steady-state thrust Ti and yaw moment τψi generated by a rotor in free air can

be modeled as follow:

Ti = cTiΩ
2
i (3.5)

τψi = cτiΩ
2
i (3.6)

where cTi and cτi are coefficients possible to determine experimentally that are dependent on the area

of the disk, the radius of the rotor, the density of air, the geometry and the profile of the rotor, and the

effect of drag by the rotor flow, and Ωi is the rotation speed of the rotor i. Therefore, the relation between

the generated yaw moment τψi by a rotor and its generated thrust Ti is described by the following

expression:

τψi =
cτi
cTi

Ti = ciTi (3.7)

The roll and pitch moments, τϕ and τθ, result from the generated thrust of the rotor and its arrange-

ment relative to the center of mass of the quadcopter. Hence, the resultant total thrust T and moments

τϕ, τθ and τψ, for a quadrotor with a X-configuration, are computed through:


T

τϕ

τθ

τψ

 =


1 1 1 1

L −L −L L

−L −L L L

c1 −c2 c3 −c4




T1

T2

T3

T4

 (3.8)

where L denotes the perpendicular distance of the rotor to the x or y axis of the body-fixed frame, as

the case may be.

There are various aerodynamic and gyroscopic effects associated with the rotorcraft that increase the

complexity of the model. However, a model with such level of precision is not required, not only because

the control can overcome these secondary effects [19], but also since is widely shown in the literature

that the control can achieve high performance with the simplified model of the rotor. Consequently, high
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order effects such as blade flapping, aerodynamic drag, translational lift and vortex states caused by

axial motion are neglected. Furthermore, it is assumed that the total thrust generated T is oriented

along the ~b3 direction, i.e., parallel to the axis of the rotor, and the coefficients of the rotor are constant

(static thrust and moments).

Moreover, the quadrotor is assumed to be exactly symmetrical, which implies that the inertia matrix

is diagonal, and the rotor gyroscopic effects are neglected. Additionally, since the UAV flies at a height

higher than 0.30 meters, except when the take-off or the landing occurs, the ground effect is ignored

[48].

Considering the equations previously defined and the approximations and assumptions described,

let

x = [x y z ϕ θ ψ ẋ ẏ ż p q r]
T (3.9)

denote the vector of state-variables and let

u = [T τϕ τθ τψ]
T (3.10)

represent the input vector, the quadcopter dynamics can be written in the compact form

ẋ = f (x) + g (x) u (3.11)

where

f (x) =



ẋ

ẏ

ż

p+ q sin (ϕ) tan (θ) + r cos (ϕ) tan (θ)

q cos (ϕ)− r sin (ϕ)

q sin (ϕ) sec (θ) + r cos (ϕ) sec (θ)

0

0

−g
Iy−Iz
Ix

qr

Iz−Ix
Iy

pr

Ix−Iy
Iz

pq



(3.12)

and
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g (x) =



0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

cos(ϕ) sin(θ) cos(ψ)+sin(ϕ) sin(ψ)
m 0 0 0

cos(ϕ) sin(θ) sin(ψ)−sin(ϕ) cos(ψ)
m 0 0 0

cos(ϕ) cos(θ)
m 0 0 0

0 1
Ix

0 0

0 0 1
Iy

0

0 0 0 1
Iz



(3.13)

3.4 Linear Model

With the nonlinear model detailed, the next step consists in linearize the plant in furtherance of

enabling the implementation of linear control techniques.

The point of equilibrium for which the linearization will be deduced is the hover condition (p =

[x y z ]
T
, η = [0 0 0]

T
), where the yaw angle is additionally considered zero. Note that the lin-

earization could be performed for other conditions, however, this one was chosen given its simplicity. By

resorting the Taylor series till the first order term, the following approximations are achieved:

cos (ϕ) ' cos (θ) ' cos (ψ) ' 1 (3.14)

sin (ϕ) ' tan (ϕ) ' ϕ (3.15)

sin (θ) ' tan (θ) ' θ (3.16)

sin (ψ) ' tan (ψ) ' ψ (3.17)

Furthermore, for the equilibrium point referred, the Euler angles can be represented by

ϕ = ϕ̄+ ϕ′ = ϕ′ (3.18)

θ = θ̄ + θ′ = θ′ (3.19)

ψ = ψ̄ + ψ′ = ψ′ (3.20)
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where ϕ′, θ′ and ψ′ correspond to fluctuations around the equilibrium values ϕ̄, θ̄ and ψ̄, respectively.

3.4.1 Height Subsystem

For the height subsystem, the application of the former equations to the differential equation yields:

z̈ = cos (ϕ) cos (θ)
T

m
− g ' 1

m
(T −mg) (3.21)

Defining the following state variables and modified input of the subsystem,

xz = [z ż]T , uz = T −mg (3.22)

leads to the state-space representation described below:

ẋz =

0 1

0 0

xz +

 0

1
m

uz (3.23)

yz =
[
1 0

]
xz (3.24)

3.4.2 X Inertial Subsystem

In fact, the variation of the quadcopter position along the direction of ~b1 is a direct result of the pitch

angle variation. With this in mind, it becomes evident that the linearization of the equations that define the

inertial coordinate x described with the body-fixed frame orientation, BxI , has the linearization carried

out for the equations that relate the pitch moment, τθ, with the pitch angle, θ, as an integral part. Thus,

firstly, the linear state-space representation for the pitch angle subsystem is obtained and, subsequently,

the linear state-space representation for the position coordinate BxI is attained.

Pitch Subsystem

The pitch rate is given by

θ̇ = cos (ϕ) q − sin (ϕ) r (3.25)

differentiating in respect to time originates

θ̈ = −ϕ̇ sin (ϕ) q + cos (ϕ) q̇ − ϕ̇ cos (ϕ) r − sin (ϕ) ṙ (3.26)

By applying the approximations aforementioned, the former equation takes the form

θ̈ ' −ϕ̇′ϕ′ + q̇ − ϕ̇′r − ϕ′ṙ (3.27)

Considering small fluctuations, the product between two of them can be neglected, yielding
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θ̈ ' q̇ − ϕ̇′r − ϕ′ṙ (3.28)

Inverting the relation expressed in (3.4) gives


p

q

r

 =


1 0 − sin (θ)

0 cos(ϕ) sin (ϕ) cos (θ)

0 − sin (ϕ) cos(ϕ) cos (θ)



ϕ̇

θ̇

ψ̇

 (3.29)

By observation of the above equation, it is easy to conclude that, for the conditions established, any

product between body angle rates and Euler angles or Euler rates will be zero since all the resulting

terms will have a product of fluctuations. Replacing the term of (3.28) by the equation of interest present

in (3.11) results

θ̈ ' Iz − Ix
Iy

pr +
τθ
Iy
' τθ
Iy

(3.30)

Defining the consequent state variables and modified input of the subsystem,

xθ = [θ θ̇]T , uθ = τθ (3.31)

results in the state-space representation described below:

ẋθ =

0 1

0 0

xθ +

 0

1
Iy

uθ (3.32)

yθ =
[
1 0

]
xθ (3.33)

X Inertial State-Space Representation

The acceleration in the body-fixed frame vector, Ba, is given by

Ba =
F

m
− BRIg

−→a3 − ω × Bv =


sin (θ) g + rv − qw

−sin (ϕ) cos (θ) g + pw − ru

−cos (ϕ) cos (θ) g + T
m + qu− pv

 (3.34)

where Bv = [u v w]
T denotes the velocities in the body-fixed frame and the term ω × Bv corresponds

to the centripetal acceleration. Considering the x component of this vector and applying the relations

described in (3.29) and the approximations listed in the outset of this section, the acceleration along the

direction of ~b1, Bax, is equal to

Bax ' θg − θ̇w + ψ̇v (3.35)

Assuming that the movement along the direction of ~b1 occurs with negligible variations along the

direction of ~b3 and with a constant yaw angle, the previous equations simplify into:
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Bax ' θg (3.36)

Noticing that the forward velocity of the UAV in the body-fixed frame, u, is the integral of Bax, equation

(3.36) can be rewritten as

u̇ ' θg (3.37)

The equation obtained relates the forward velocity, u, with the pitch angle, θ. Thereby, with the

establishment of the next state-variables and modified input of the subsystem:

xx = [BxI u θ θ̇]T , ux = τθ (3.38)

the following state-space representation is attained

ẋx =


0 1 0 0

0 0 g 0

0 0 0 1

0 0 0 0

xx +


0

0

0

1
Iy

ux (3.39)

yx =
[
1 0 0 0

]
xx (3.40)

3.4.3 Y Inertial Subsystem

Analogously to the subsection 3.4.2, the linearization that will result in the state-space representation

for the y coordinate follows a similar logic by firstly performing the linearization of second derivative of

the roll angle and, posteriorly, the linearization of the y component of the linear acceleration described

in the body-fixed frame, Bay.

Roll Subsystem

The roll rate is expressed by

ϕ̇ = p+ sin (ϕ) tan (θ) q + cos (ϕ) tan (θ) r (3.41)

Differentiating in respect to time followed by the application of the same simplifications taking into

account for the pitch subsystem yields

ϕ̈ ' ṗ+ θ̇r + θṙ (3.42)

Once again, considering the assumption that the product of Euler rates and angular velocities origins

products of fluctuations that can be neglected, equation (3.42) simplifies into
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ϕ̈ ' τϕ
Ix

(3.43)

Letting the following equations define the state variables and modified input of the subsystem

xϕ = [ϕ ϕ̇]T , uϕ = τϕ (3.44)

the obtained state-space representation is described by

ẋϕ =

0 1

0 0

xϕ +

 0

1
Ix

uϕ (3.45)

yϕ =
[
1 0

]
xϕ (3.46)

Y Inertial State-Space Representation

Recalling (3.34), the y component of the acceleration in the body-fixed frame, after applying the same

approximations considered in the case of Bax, is given by

Bay ' −ϕg − ϕ̇w + ψ̇u (3.47)

Assuming that the movement along the direction of ~b2 occurs with negligible variations along the

direction of ~b3 and with a constant yaw angle, the previous equations simplify into:

Bay ' −ϕg (3.48)

Noting that the sideway velocity of the UAV in the body-fixed frame, v, is the integral of Bay, (3.48)

can be rewritten as

v̇ ' −ϕg (3.49)

The equation obtained relates the sideway velocity, v, with the roll angle, ϕ. Thus, by defining the

following state-variables and modified input of the subsystem:

xy = [ByI v ϕ ϕ̇]T , uy = τϕ (3.50)

where ByI denotes the y coordinate of the inertial position described according the orientation of the

body-fixed frame, the following state-space representation is obtained

ẋy =


0 1 0 0

0 0 −g 0

0 0 0 1

0 0 0 0

xy +


0

0

0

1
Ix

uy (3.51)
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yy =
[
1 0 0 0

]
xy (3.52)

3.4.4 Yaw Subsystem

The yaw rate is described by

ψ̇ = sin (ϕ) sec (θ) q + cos (ϕ) sec (θ) r (3.53)

Taking the time derivative and carrying out the simplifications considered in the previous angular

subsystems yields

ψ̈ ' ṙ + q̇ϕ (3.54)

Following an analogous logic to the presented in the sections 3.4.2 and 3.4.3 enables to linearize the

second derivative of the yaw angle:

ψ̈ ' τψ
Iz

(3.55)

Letting the state-variables and entry of the subsystem be described by

xψ = [ψ ψ̇]T , uψ = τψ (3.56)

enables the following state-space representation

ẋψ =

0 1

0 0

xψ +

 0

1
Iz

uψ (3.57)

yψ =
[
1 0

]
xψ (3.58)
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Chapter 4

Control Theory

In this chapter, the theoretical basis of the control strategies considered is addressed. The chapter

starts with the presentation of a linear modern control technique, Linear Quadratic Regulator, with the

inclusion of integrative action. Next, the concept of Feedback Linearization Control is enunciated, where

both the static and dynamic feedback control laws are discussed in detail.

4.1 Linear Quadratic Regulator with Integrative Action

The first control technique chose to tackle the problem formulated is the Linear-Quadratic Regulator

(LQR) with Integrative Action. The theory behind the LQR presented in this subsection is based on the

formulation in [49]. The LQR is an optimal controller that uses full state-feedback and that is obtained

as the solution of an optimization process where the system dynamics imposes the restrictions. The

computation of the gains for the state-feedback consists in finding a gain matrix that minimizes a cost

function, that relates the weighting of the control effort with the deviation of the states from the origin,

without neglecting the stability of the closed-loop. Therefore, the resulting poles are a consequence of

the optimization process.

This optimal control technique is a very appealing approach since it easily handles multiple actuators

and complex system dynamics. Moreover, LQR offers very large stability margins to errors in the loop

gain: gain margin of infinity, gain reduction margin of 1/2 and a minimum phase margin of 60◦ in each

control input channel [50].

�

System Dynamics

�

�
�

���� �
+ -

Figure 4.1: Structure of the Linear Quadratic Regulator.
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For a system described by the state-space representation

ẋ = Ax + Bu (4.1)

y = Cx + Du (4.2)

the optimal regulator problem determines the steady-state gain matrix K that is part of the optimal

control vector

u = −Kx (4.3)

and that ensures the minimization of the performance index

J =

∫ ∞
0

(
xTQx + uTRu

)
dt (4.4)

where the first quadratic form includes the real symmetric (n× n) matrix Q (state weighting matrix), that

enables the embodiment of a penalization on the deviation of the state x from the desired state, and the

second quadratic term accounts for the energetic effort of the control signals by attempting to limit its

magnitude resorting to the real symmetric (m×m) matrix R (control weighting matrix). Since this is an

infinite time control problem, the performance index J has no time limit and, additionally, as time tends

to infinity the control solution turns into a steady-state solution and the gain matrix K becomes constant.

Substituting (4.3) into (4.1) and into (4.4), the system and the cost function can be described respec-

tively, by:

ẋ = (A−BK) x (4.5)

J =

∫ ∞
0

(
xT
(
Q + KTRK

)
x
)
dt (4.6)

Setting

xT
(
Q + KTRK

)
x = − d

dt

(
xTPx

)
(4.7)

with P being a real symmetric matrix, resolving the time derivative and considering (4.5) yields

xT
(
Q + KTRK

)
x = −xT

(
(A−BK)

T
P + P (A−BK)

)
x (4.8)

The previous equation must hold true for any state x, therefore, it is required that

−
(
Q + KTRK

)
= (A−BK)

T
P + P (A−BK) (4.9)

It is provable that if A −BK is a stable matrix then a positive-definite matrix P that verifies the last
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equation exists. It is important to stress that more than one matrix P constitute a possible solution,

however, exists only one that is positive-definite if the system is stable.

On account of assuming R to be a real symmetric matrix, it is possible to write it as

R = TTT (4.10)

in which T is a nonsingular matrix. As result, (4.9) gains the following form

(
AT −KTBT

)T
P + P (A−BK) + Q + KTTTTK = 0 (4.11)

By rearranging the terms, the above equation becomes

ATP + PA +
(
TK−

(
TT
)−1

BTP
)T (

TK−
(
TT
)−1

BTP
)
−PBR−1BTP + Q = 0 (4.12)

The minimization of the cost function J with respect to K occurs when

xT
(
TK−

(
TT
)−1

BTP
)T (

TK−
(
TT
)−1

BTP
)

x = 0 (4.13)

which originates

K = T−1
(
TT
)−1

BTP = R−1BTP (4.14)

This equation gives the optimal gain matrix K that minimizes the cost function J . The matrix P

present in (4.14) is given by the reduced-matrix Riccati equation:

ATP + PA−PBR−1BTP + Q = 0 (4.15)

Due to the impracticability inherent in forecasting the effect of a given pair of weighting matrices Q

and R, the approach to follow, in order to find the gain matrix K that results in success regarding the

control objectives predefined, consists in simulate the corresponding closed-loop response for a range

of matrices Q and R. Nonetheless, the Q and R matrices can be initially chosen based on the Bryson’s

rule [51]:

Q = diag

(
1

x2
1max

, ...,
1

x2
nmax

)
(4.16)

R = diag

(
1

u2
1max

, ...,
1

u2
mmax

)
(4.17)

where the x2
imax

and u2
imax

represent the largest desired response or control input for that component of

the state/actuator signal.

The chosen gain matrix must be the one that origins a higher level of achievement of the closed-

loop response requirements. It is important to stress that is absolutely indispensable the system being
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controllable to apply the LQR control. Furthermore, the controllability is a sufficient condition for the

closed-loop to be stabilizable.

As a way of dealing with the effect of perturbations and with the steady-state error, an integrator was

embedded in the control structure. This inclusion translates into additional robustness of the control

system, since it ensures a sufficiently high low-frequency gain in the loop transfer function [50], and

eliminates the steady-state errors due to constant disturbances or reference input commands. In other

words, the integral term can be perceived as constantly calculating the required value of the control at

the trim point for the purpose of regulating the error [52]. The structure of the Linear-Quadratic Regulator

with Integrative action is depicted in Fig. 4.2.

System Dynamics
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Figure 4.2: Structure of the Linear Quadratic Regulator with Integrative Action.

To project the LQR control for this system with the integrator included is necessary to modify the

dynamical model considered in the computation of the optimal gains. Letting the reference signal be

represented by ref and the difference between the output of the system, y, and the reference, ref , be

ς̇ = ref − y = ref −Cx (4.18)

where ς is the state-space variable that results from adding the referred integrator. The control vector u

of the servo system is defined by:

u = −Kx + k1ς (4.19)

Combining the last two equations with (4.1) and (4.2), the dynamics of the system can be described

by

 ẋ

ς̇

 =

 A 0

−C 0

 x

ς

+

 B

0

u +

 0

1

 ref (4.20)

The use of the matrices of the modified model

Ā =

 A 0

−C 0

 (4.21)

B̄ =

 B

0

 (4.22)
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enables the unequivocal application of the LQR gain computation presented formerly while considering

the integrative action. The optimal gain matrix obtained

K̄ =
[

K −k1

]
(4.23)

is constituted by the vector of gains for the state-variables, K, and by the gain for the integrative action

k1. The gains are used in the control structure as detailed in Fig. 4.2. Note that is assumed not only

that the plant is completely state controllable, but also that a zero at the origin in the plant, capable of

canceling the integrative action, does not exist.

4.2 Feedback Linearization Control

Feedback Linearization consists in a nonlinear control approach that aims to algebraically transform

nonlinear dynamics of systems, through a nonlinear change of coordinates and nonlinear state feedback,

into a model that is linear in the new set of coordinates. In this way, the application of linear control

techniques is possible. The linear model produced is an exact representation of the original nonlinear

model over a large set of operating points [53].

In fact, most feedback linearization approaches are based either on input-output linearization or in

state-space linearization. The two concepts are exposed in [53], [54], [55] and [56]. Since in a tracking

control problem the output variables are of interest and since linearizing the state equations does not

necessarily linearize the output equations [55], the first approach is chosen. For multi-input multi-output

systems, the application of the input-output method is often referred as the feedback decoupling problem

[56] or as noninteractive control [54], since it results in a reduction of the system, at least from an input-

output point of view, to an aggregate of independent single-input single-output channels.

Given a nonlinear system of the form:

ẋ = f(x) + g(x)u (4.24)

y = h(x) (4.25)

where f(x) is an n-dimensional vector of sufficiently smooth nonlinear functions, g(x) is an (n × m)-

dimensional matrix of sufficiently smooth nonlinear functions and h(x) is an m-dimensional vector of

sufficiently smooth nonlinear functions. The derivative of the output yj , with j = 1, ...,m, is defined by

ẏj = ∇hj(x)ẋ = ∇hj(x)f(x) +∇hj(x)g(x)u (4.26)

The directional derivative of hj(x) in the direction of f(x) is denominated as Lie derivative, named in

honour of the Norwegian mathematician Sophus Lie, and is represented by [56]:

Lfhj(x) =

n∑
i=1

∂hj
∂xi

fi(x) = ∇hj(x)f(x) (4.27)
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In other words, the Lie derivative of hj(x) in the direction of a vector field f(x) is denoted as Lfhj . Thus,

(4.26) can be rewritten as:

ẏj = Lfhj(x) + Lghj(x)u (4.28)

If on the first derivative of the output yj the equality Lghj(x)u = 0 is verified, the former equation

simplifies into:

ẏj = y
(1)
j = Lfhj(x) (4.29)

Note that in this case the first derivative of yj remains independent of the inputs of the system. Notwith-

standing, higher order derivatives could present a dependence on the inputs of the system. By letting

the derivatives of yj be represented by:

y
(k)
j = Lk

f hj(x) +

m∑
i=1

LgiL
k−1
f hj(x)ui (4.30)

it is possible to introduce the concept of relative degree, rj , of the output yj . The nonlinear system is

said to have vector relative degree
[
r1 r2 · · · rm

]T
at the point x0 if [53]:

• Lgi
Lk
f hj(x) = 0 for all 1 ≤ i, j ≤ m, for all k < rj − 1 and for all x in a neighborhood of x0.

• The m×m decoupling matrix

Λ(x) =


Lg1L

r1−1
f h1(x) · · · LgmL

r1−1
f h1(x)

...
. . .

...

Lg1L
rm−1
f hm(x) · · · LgmL

rm−1
f hm(x)

 (4.31)

is non-singular at the point x0.

The integer rj represents the smallest relative degree of the j-th output with respect to any of the

m inputs. Additionally, if the equality r1 + ... + rm = n is verified, this system can be modified into a

fully linear and decoupled controllable system through state feedback and through the application of the

following transformation for each output yj [56]:

ξj,1 = yj (4.32)

ξj,2 = ξ̇j,1 = Lfhj(x) (4.33)

...

ξj,rj = ξ̇j,rj−1 = Lrj−1
f hj(x) (4.34)

ξ̇j,rj = Lrj
f hj(x) +

m∑
i=1

LgiL
rj−1
f hj(x)ui (4.35)
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From (4.35), for j = 1, ...,m, is possible to define the transformed input variables vj :

v1 = ξ̇1,r1 = Lr1
f h1(x) +

m∑
i=1

LgiL
r1−1
f h1(x)ui (4.36)

...

vm = ξ̇m,rm = Lrm
f hm(x) +

m∑
i=1

LgiL
rm−1
f hm(x)ui (4.37)

Given the equality
∑m
j=1 rj = n, the transformation described formerly defines a local diffeomorphism

[56]. The vector of transformed input variables, v, is compactly expressed as:

v = b(x) + Λ(x)u (4.38)

where Λ(x) is defined by (4.31) and b(x) is given by

b(x) =


Lr1
f h1(x)

...

Lrm
f hm(x)

 (4.39)

Solving in order to the input vector of the system, u, yields:

u = −Λ−1(x) · b(x) + Λ−1(x) · v = α(x) + β(x) · v (4.40)

where α(x) is an m-dimensional vector of nonlinear functions and β(x) is an (m×m)-dimensional matrix

of nonlinear functions. Equation (4.40) corresponds to the nonlinear static state feedback control law.

It is overt that the input-output decoupling problem only has a solution if the decoupling matrix Λ(x) is

nonsingular. Substituting the previous result into (4.30)


y

(r1)
1

...

y
(rm)
m

 =


v1

...

vm

 (4.41)

results in a set of m linear systems that are decoupled, i.e. the transformed input vj only impacts

the output yj , and formed by a chain of rj integrators. Furthermore, once each system is in a linear

and controllable form, it is possible to stabilize them by means of linear controllers. Consequently, the

modern control approach addressed in the last subsection could be used to select an appropriate control

law vj in order to satisfy the desired response requirements.

Therefore, after applying the input-output feedback linearization, which consists in the nonlinear

change of coordinates, described from (4.32) to (4.37), and in the nonlinear static-state feedback pre-

sented in (4.40), the input-output model is linear in the new set of coordinates and the system has the
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following representation:

ξ̇ = Aξ + Bv (4.42)

y = Cξ (4.43)

where ξ denotes the n-dimensional vector of the transformed state variables and is given by

ξ =
[
ξ1,1 · · · ξ1,r1 ξ2,1 · · · ξ2,r2 · · · ξm,1 · · · ξm,rm

]T
(4.44)

The matrices A, B and C of the system defined by (4.42) and (4.43) have a very simple canonical

structure.

Considering now the case in which
∑m
j=1 rj = rT < n. Assuming that the decoupling matrix Λ(x) is

nonsingular, the diffeomorphism Φ(x) =
[
ξT ΦrT+1 · · · Φn

]T
can be defined by setting the first rT

coordinates as [53]

ξj,k = Φj
k(x) = Lk−1

f hj(x) (4.45)

for 1 ≤ k ≤ rj and 1 ≤ j ≤ m. In fact, n − rT additional coordinates κT =
[
ΦrT+1, · · · ,Φn

]
are always

possible to be found such that Φ(x) has a Jacobian matrix which is nonsingular at the point x0 [54].

Furthermore, if the functions present in g(x) are involutive near x0, choosing the additional coordinates

such that LgjΦrT+i(x) = 0 for all 1 ≤ i ≤ n − rT and for all 1 ≤ j ≤ m is feasible. However, generally,

the involutivity condition is not fulfilled and the n− rT functions κ can only be written generically with the

following vector notation:

κ̇ = q(ξ, κ) + p(ξ, κ)u (4.46)

The normal form of the equations that describe (locally around a point x0) a nonlinear system, with m

inputs and m outputs, with relative degree rT =
∑m
j=1 rj at x0 is characterized by (4.46) and by the

following equations [54]:

ξ̇i,1 = ξi,2 (4.47)

...

ξ̇i,ri−1 = ξi,ri (4.48)

ξ̇i,ri = bi(ξ,κ) +

m∑
j=1

Λi,j(ξ,κ)uj (4.49)

for 1 ≤ i ≤ m and where

Λi,j(ξ,κ) = LgjL
ri−1
f hi(Φ

−1(ξ,κ)) (4.50)

bi(ξ,κ) = Lri
f hi(Φ

−1(ξ,κ)) (4.51)

for 1 ≤ i, j ≤ m. From (4.46), the concept of zero dynamics of a system with relative degree rT can be

explained. The refered dynamics are derived by solving the Problem of Zeroing the Output [54], i.e, to

find initial conditions and inputs with the constraint that the output function y(t) is identically zero for all
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times in a neighborhood of t = 0 , and, subsequently, to analyze the corresponding internal dynamics of

the system. If y(t) = 0, then ξ(t) = 0 for all t near 0. Imposing the derivative of order ri of yi(t) to be

zero, for all 1 ≤ i ≤ m, results in the inputs ui(t) to be solutions of the system of equations:

0 = ξ̇i,ri = bi(ξ,κ) +

m∑
j=1

Λi,j(ξ,κ)uj (4.52)

which can be rewritten with the following vector notation:

b(0,κ(t)) + Λ(0,κ(t))u(t) = 0 (4.53)

Bearing in mind the nonsingularity of the decoupling matrix at x = x0 by definition, is possible to describe

the input vector u(t) by

u(t) = −Λ−1(0,κ(t))b(0,κ(t)) (4.54)

Replacing the former result in (4.46) yields:

κ̇(t) = q(0, κ(t))− p(0, κ)Λ−1(0,κ(t))b(0,κ(t)) (4.55)

The dynamics characterized by (4.55) describe the internal behaviour of the system when it is forced

to track the output y(t) = 0 correspond to the zero dynamics and are rather important. In order to the

system to be locally asymptotically stable after applying feedback linearization and the further linear

controllers, these zero dynamics are required to be asymptotically stable [54].

In fact, so far, the existence of the inverse of the decoupling matrix Λ(x) was assumed. However, in

some cases, when
∑m
j=1 rj < n, the matrix is singular and, consequently, is not possible to apply the

static state feedback control law since the relative degree is invariant under this type of feedback. In

order to achieve the equality
∑m
j=1 rj = n and the consequent nonsingularity of the decoupling matrix

Λ(x), is required to resort to a more general feedback law capable of incorporating an additional set

of state variables. This is attained by adding a dynamic compensator that results in a dynamic control

transformation. The dynamic state feedback control law is modelled by:

u = α(x, ζ) + β(x, ζ)v (4.56)

ζ̇ = γ(x, ζ) + δ(x, ζ)v (4.57)

where ζ is a q-dimensional vector of controller state variables, γ is a q-dimensional vector of nonlinear

functions and δ is a (q ×m)-dimensional matrix of nonlinear functions. Note that the number of inputs

and outputs of the system remains the same. The most common approach is to perform the compen-

sation through the addition of integrators, which translates into delaying the appearance of the input

dependence to higher-order derivatives of the output. Therefore, an increase in the relative degree of

some of the output occurs which increases the possibility of the decoupling matrix being nonsingular.
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Chapter 5

Control Design

With the description of the theoretical basis effected in the preceding chapter, the control strategies

will now be discussed in detail for the dynamics of a quadcopter. Regarding the linear control method,

two different approaches will be presented. As for the nonlinear control technique, three different ways

of tackling the control problem are proposed.

5.1 Linear Quadratic Regulator with Integrative Action

The linearization performed in section 3.4 resulted in four linear decoupled subsystems, with the x

and y subsystems encompassing the pitch and roll subsystems, respectively. Thus, the implementation

of linear controllers to the dynamics of the UAV is possible.

The control approaches relying only on the LQR theory presented in section 4.1 are now addressed.

To this end, firstly, an architecture based on the direct application of the LQR with integrative action

depicted in Fig. 4.2 on each subsystem is derived. Subsequently, with the view of study an inner-outer

loop control structure, where the innermost loop is responsible for the attitude control and the outermost

solves the positioning control, a double-loop architecture is developed to tackle the control problem. In

order to implement these structures, the position and the time derivative of the error in the xy inertial

plan must be described with the body-fixed frame orientation.

5.1.1 Single Loop Structure

The first architecture using only linear controllers is illustrated in Fig. 5.1.

Linear
Control

UAV
Dynamics

 

p, [ , , ], ,û  v ̂  ż ̂  η ̂  η̇

T

τφ

τθ

τψψref

xref

yref

zref

Figure 5.1: Structure of the single loop control structure.
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The input vector, us = [T τϕ τθ τψ] is computed through:

T = uz +mg = −Kzxz − k1z ςz +mg (5.1)

τθ
τϕ

 =

uθ

uϕ

 = BRIij


−Kx1x− k1xςx

−Ky1y − k1y ςy

−Kz1z − k1z ςz

−
Kx2u+ Kx3θ + Kx4 θ̇

Ky2v + Ky3ϕ+ Ky4 ϕ̇

 (5.2)

τψ = uψ = −Kψxψ − k1ψ ςψ (5.3)

with i = 1, 2 and j = 1, 2, 3.

5.1.2 Inner-Outer Loop Structure

The LQR with integrative action is applied for each subsystem present in the outer (position control)

and in the inner (attitude control) loops. The control structure is schematized in Fig. 5.2, from which it is

noted that the references for the pitch θ and roll ϕ angles result from the position control.

Position 
Control

Attitude
Control

UAV
Dynamics

p, [ , , ]û  v ̂  ż ̂ 

T

τφ

τθ

τψ
ψref

φref

θref

,η ̂  η̇

xref

yref

zref

Figure 5.2: Structure of the inner-outer loop control structure.

In order to develop this architecture, the translational and the rotational dynamics present in the x

and y subsystems have to be considered separately. Therefore, the inner loop of the control structure

will include the pitch θ and roll ϕ subsystems, defined in subsections 3.4.2 and 3.4.3, and the outermost

loop will comprise the state-spaces obtained from (3.37) and (3.49). With the establishment of the next

state-variables and modified input of the subsystem:

xo
x = [BxI u]T , uo

x = θ (5.4)

the following state-space representation, that relates the BxI coordinate of the position with the pitch

angle, θ, is obtained

ẋo
x =

0 1

0 0

xo
x +

0

g

uo
x (5.5)

yo
x =

[
1 0

]
xo
x (5.6)
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By defining the following state-variables and modified input of the subsystem:

xo
y = [ByI v]T , uo

y = ϕ (5.7)

the following state-space representation, that relates the ByI coordinate of the position with the roll

angle, ϕ, is obtained

ẋo
y =

0 1

0 0

xo
y +

 0

−g

uo
y (5.8)

yo
y =

[
1 0

]
xo
y (5.9)

The input vector is computed through:

udl =


T

τϕ

τθ

τψ

 =


uz +mg

uϕ

uθ

uψ

 =


−Kzxz − k1z ςz +mg

−Kϕxϕ − k1ϕςϕ

−Kθxθ − k1θ ςθ

−Kψxψ − k1ψ ςψ

 (5.10)

where the time derivative of ςϕ and ςθ result from the outer loop:

 ς̇θ
ς̇ϕ

 = BRIij


−Ko

x1
x− ko1xςx

−Ko
y1
y − ko1y ςy

−Kz1z − k1z ςz

−
Ko

x2
u

Ko
y2
v

−
θ
ϕ

 (5.11)

with i = 1, 2 and j = 1, 2, 3.

5.2 Feedback Linearization Control

The control approaches based on Feedback Linearization are derived while considering the nonlinear

model presented in section 3.3.

5.2.1 Static Feedback Linearization with zero-dynamics stabilization

The first approach using feedback linearization control consists in applying it to the inner loop dynam-

ics, formed by the attitude and altitude equations, and in stabilizing the outer loop with linear controllers.

The zero-dynamics in this case will correspond to the translational dynamics in the xy plan. This solution

was first proposed in [37], where the simplification
[
ϕ̇ θ̇ ψ̇

]
=
[
p q r

]
is considered. However, this

equality will not be established here due to the fact that this assumption only holds for smaller angles of

movement.

Let yin =
[
z ϕ θ ψ

]T
define the output vector of the inner loop. The first derivative of the output
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is independent of the input. The second derivative of the output vector is given by:

ÿin =
[
z̈ ϕ̈ θ̈ ψ̈

]T
(5.12)

where

z̈ =
T cos (θ) cos (ϕ)

m
− g (5.13)

ϕ̈ =
τϕ
Ix

+ cos (ϕ) tan (θ)

(
τψ
Iz

+
p q (Ix − Iy)

Iz

)
+ tan (θ) sin (ϕ)

(
τθ
Iy
− p r (Ix − Iz)

Iy

)
+ cos (ϕ) tan (θ) q (p+ cos (ϕ) tan (θ) r + tan (θ) sin (ϕ) q)

− tan (θ) sin (ϕ) r (p+ cos (ϕ) tan (θ) r + tan (θ) sin (ϕ) q)

+
q r (Iy − Iz)

Ix
+ cos (ϕ) r

(
tan2 (θ) + 1

)
(cos (ϕ) q − sin (ϕ) r)

+ sin (ϕ) q
(
tan2 (θ) + 1

)
(cos (ϕ) q − sin (ϕ) r)

(5.14)

θ̈ = cos (ϕ)

(
τθ
Iy
− p r (Ix − Iz)

Iy

)
− sin (ϕ)

(
τψ
Iz

+
p q (Ix − Iy)

Iz

)
− cos (ϕ) r (p+ cos (ϕ) tan (θ) r + tan (θ) sin (ϕ) q)

− sin (ϕ) q (p+ cos (ϕ) tan (θ) r + tan (θ) sin (ϕ) q)

(5.15)

ψ̈ =
− cos (θ) p Iy

2 cos (ϕ) q + 4 sin (θ) Iy Iz cos2 (ϕ) q r

Iy Iz cos2 (θ)

+
2 sin (θ) sin (ϕ) Iy Iz cos (ϕ) q2 + cos (θ) p Iy Iz cos (ϕ) q

Iy Iz cos2 (θ)

+
−2 sin (θ) sin (ϕ) Iy Iz cos (ϕ) r2 − 2 sin (θ) Iy Iz q r

Iy Iz cos2 (θ)

+
− cos (θ) sin (ϕ) p Iy Iz r + Ix cos (θ) p Iy cos (ϕ) q

Iy Iz cos2 (θ)

+
τψ cos (θ) Iy cos (ϕ) + cos (θ) sin (ϕ) p Iz

2 r

Iy Iz cos2 (θ)

+
−Ix cos (θ) sin (ϕ) p Iz r + τθ cos (θ) sin (ϕ) Iz

Iy Iz cos2 (θ)

(5.16)

From the previous equations the vector relative degree is determined:

[
r1 r2 r3 r4

]T
=
[
2 2 2 2

]T
(5.17)

Let xin denote the vector of state-variables of the inner dynamics

xin =
[
z ż ϕ θ ψ p q r

]T
(5.18)

and uin describe the vector of inputs of the system

uin =
[
T τϕ τθ τψ

]T
(5.19)
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Since the altitude and attitude dynamics combined have a total of 8 state-variables and
∑4
j=1 rj = 8,

the feedback linearization can be performed through a static state feedback law. Recalling (4.38) and

(4.41), the vector ÿin transforms into: 
z̈

ϕ̈

θ̈

ψ̈

 = b(xin) + Λ(xin)uin (5.20)

yielding the following decoupling matrix

Λ(xin) =



cos(θ) cos(ϕ)
m 0 0 0

0 1
Ix

tan(θ) sin(ϕ)
Iy

cos(ϕ) tan(θ)
Iz

0 0 cos(ϕ)
Iy

− sin(ϕ)
Iz

0 0 sin(ϕ)
Iy cos(θ)

cos(ϕ)
Iz cos(θ)

 (5.21)

whose determinant is

det (Λ(xin)) =
cos (ϕ)

Ix Iy Izm
(5.22)

Thus, the decoupling matrix Λ(xin) is invertible at any point defined by −π2 < ϕ < π
2 . Therefore, by

resorting to the static state feedback control law, the inner dynamics are possible to be input-output

linearized. The vector b(xin) is directly obtained by extracting the terms that are independent of the

input of each of the second derivatives. Consequently, the static state feedback law denoted by

uin = α(xin) + β(xin)vin (5.23)

has the matrix β(xin) with the form

β(xin) =


m

cos(θ) cos(ϕ) 0 0 0

0 Ix 0 −Ix sin (θ)

0 0 Iy cos (ϕ) Iy cos (θ) sin (ϕ)

0 0 −Iz sin (ϕ) Iz cos (θ) cos (ϕ)

 (5.24)

and the entries of the vector α(xin) = [α1 α2 α3 α4]
T expressed by

α1(xin) =
mg

cos (θ) cos (ϕ)
(5.25)

α2(xin) = Iz q r − Iy q r −
Ix sin (2ϕ) q2

2
+
Ix sin (2ϕ) r2

2
− Ix cos (2ϕ) q r (5.26)
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α3(xin) =
2 Iy cos (ϕ) sin (θ) r2 − Iy cos (ϕ) sin (θ) q2 + Ix cos (θ) p r

cos (θ)

+
Iy cos (θ) p r − Iz cos (θ) p r + Iy cos3 (ϕ) sin (θ) q2

cos (θ)

+
−Iy cos3 (ϕ) sin (θ) r2 + 2 Iy sin (θ) sin (ϕ) q r

cos (θ)

+
−2 Iy cos2 (ϕ) sin (θ) sin (ϕ) q r

cos (θ)

(5.27)

α4(xin) = −Iz sin (θ) sin (ϕ) q2 + Ix cos (θ) p q − Iy cos (θ) p q

cos (θ)

− Iz cos (θ) p q + Iz cos2 (ϕ) sin (θ) sin (ϕ) q2

cos (θ)

− −Iz cos2 (ϕ) sin (θ) sin (ϕ) r2 + 2 Iz cos3 (ϕ) sin (θ) q r

cos (θ)

(5.28)

From the previous equations, one states that the pitch angle must respect the condition −π2 < θ < π
2 .

Applying the diffeomorphism described in (4.45) yields the vector of the transformed state-variables:

ξin = Φ(xin) =
[
z ż ϕ ϕ̇ θ θ̇ ψ ψ̇

]T
(5.29)

As a result of the static state feedback control law, illustrated in Fig. 5.3, and of the change of

coordinates, the inner dynamics are now linearized and decoupled. These dynamics are translated into

four single-input single-output chains of two integrators and are depicted in Fig. 5.4.

= α( ) + β( ) ⋅uin xin xin vin

T

 

τφ

τθ

τψ

vin1

vin2

vin3

vin4

xin

Figure 5.3: Block diagram representation of the static state feedback law derived for the inner dynamics.

Given the linear, decoupled and controllable form of the inner-loop dynamics, the Linear Quadratic

Regulator control technique can be employed to each chain.

Concerning the remaining dynamics of the quadcopter, the zero dynamics can be specified through

[57]:

ẍ = g

(
cos(ϕ) sin(θ) cos(ψ) + sin(ϕ) sin(ψ)

cos(ϕ) cos(θ)

)
= g

(
tan(θ) cos(ψ) +

sin(ψ)

cos(θ)
tan(ϕ)

) (5.30)

38



∫ ∫
zvin1

z˙

∫ ∫
φvin2

φ˙

∫ ∫
θvin3 θ˙

∫ ∫
ψvin4

ψ˙

Figure 5.4: Block diagram representation of the resulting dynamics after applying feedback linearization
to the altitude and attitude dynamics.

ÿ = g

(
cos(ϕ) sin(θ) sin(ψ)− sin(ϕ) cos(ψ)

cos(ϕ) cos(θ)

)
= g

(
tan(θ) sin(ψ)− cos(ψ)

cos(θ)
tan(ϕ)

) (5.31)

where the thrust T = mg
cos(θ) cos(ϕ) derives from zeroing the linear acceleration z̈. In fact, as expected, the

zero dynamics are unstable. Therefore, an outer position control loop is necessary. The control strategy

for this loop relies on the linearization performed in section 3.4 and on the LQR based outer-loop with

integrative action presented in subsection 5.1.2.

Inner Loop 
Linear 
Control 

Outer Loop 
Linear 
Control 

Static State 
Feedback 

Control 
Quadrotor 
Dynamics 

xref

yref

p, [ , ]Û  V ̂ 

zref

ψref

φref

θref

xin

xin

vin uin y

Figure 5.5: Block diagram representation of the control structure derived for the first approach using
Feedback Linearization.

This first approach using Feedback Linearization is schematized in Fig. 5.5. The ” Inner Loop Linear

Control” block is formed by the LQR controllers with integrative action designed for the set of integrators

represented in Fig. 5.4. In each chain, an additional integrator was embedded into the feedback control

to obtain additional robustness. Thus, each subsystem present in the inner loop is now represented by

the following completely controllable state-space representation:

ξ̇ini
ς̇ini

 =


0(ri−1)×1 Iri−1 0(ri−1)×1

0 01×(ri−1) 0

−1 01×(ri−1) 0


ξini
ςini

+


0(ri−1)×1

1

0

vini (5.32)

yini =
[
1 01×ri

]ξini
ςini

 (5.33)

39



5.2.2 Non-Interacting Control via Dynamic Feedback Linearization

In this subsection, a different application of the Feedback Linearization is considered. Contrary to

the previous approach, based on a double-loop control structure in which the internal dynamics were

linearized through static feedback linearization, the approach presently described proceeds to linearize

the entire dynamics of the quadcopter through a dynamic nonlinear control law and originates a control

structure with a single loop. The idea behind the exact linearization problem applied to the dynamics of

an aerial vehicle is present in [54]. This concept is extended to quadrotors in [58], [59] and [60].

In fact, the drone is considered an underactuated system since it has six outputs and only four inputs.

In furtherance of avoiding a non-square decoupling matrix Λ(x) and further difficulties in obtaining a

feasible linearizing input, the output is defined as:

ydf =
[
x y z ψ

]T
(5.34)

Recalling the equations that define the translational dynamics and (5.16), it is noted that the system

has relative degree: [
r1 r2 r3 r4

]T
=
[
2 2 2 2

]T
(5.35)

which yields
4∑
j=1

rj = 8 < n = 12 (5.36)

Hence, the decoupling matrix Λ(xdf ) is singular, which is confirmed by (5.37), and the feedback lin-

earization can not be performed through a static state feedback law.

Λ(xdf ) =



sin(ϕ) sin(ψ)+cos(ϕ) cos(ψ) sin(θ)
m 0 0 0

− cos(ψ) sin(ϕ)−cos(ϕ) sin(θ) sin(ψ)
m 0 0 0

cos(θ) cos(ϕ)
m 0 0 0

0 0 sin(ϕ)
Iy cos(θ)

cos(ϕ)
Iz cos(θ)

 (5.37)

Let udf describe the vector of inputs of the system

udf =
[
T τϕ τθ τψ

]T
(5.38)

By analyzing (5.37), one notes that the second derivatives ẍ, ÿ and z̈ are only dependent of the input T .

In order to achieve a nonsingular decoupling matrix, the appearance of this input could be postponed to

higher order derivatives that are influenced by the other inputs. As a result, the number of null entries of

the matrix Λ(x) is reduced and the possibility of being invertible increases.

In subsection 5.2.1 it was shown that the entries of the system τϕ, τθ and τψ begin to appear in the

second derivative of the Euler angles. Thus, since the linear accelerations depend on these angles,

differentiating the position outputs x, y and z two additional times results in obtaining terms that are

dependent on other entries besides the thrust T . In an effort to increase the relative degree of each
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position output by two units, compensation through the addition of two integrators on the thrust input

channel is performed [54]. This incorporation origins two new state-variables that are characterized by:
ε = T

χ = ε̇

χ̇ = ūdf1

(5.39)

where ūdf1 denotes the first entry of the input vector of the extended system, ūdf . The other inputs

remain unchanged, yielding:

[
ūdf1 ūdf2 ūdf3 ūdf4

]T
=
[
χ̇ τϕ τθ τψ

]T
(5.40)

The vector of state-variables of the extended system is represented by:

x̄df = [x y z ϕ θ ψ ẋ ẏ ż ε χ p q r]
T (5.41)

After the inclusion of the dynamic compensator, the linear accelerations are expressed through:

ẍ = (cos (ϕ) sin (θ) cos (ψ) + sin (ϕ) sin (ψ))
ε

m
(5.42)

ÿ = (cos (ϕ) sin (θ) sin (ψ)− sin (ϕ) cos (ψ))
ε

m
(5.43)

z̈ = cos (ϕ) cos (θ)
ε

m
− g (5.44)

Differentiating twice each one of the previous equations yields:

x(4) =
Ix Iy T sin (ϕ) sin (ψ) + Ix τθ cos (θ) cos (ψ) ε+ Iy τϕ cos (ϕ) sin (ψ) ε

Ix Iym

+
−Iy τϕ cos (ψ) sin (θ) sin (ϕ) ε+ 2 Ix Iy cos (θ) cos (ψ) q χ

Ix Iym

+
2 Ix Iy cos (ϕ) sin (ψ) pχ− Ix2 cos (θ) cos (ψ) p ε r

Ix Iym

+
Ix Iy T cos (ϕ) cos (ψ) sin (θ) + Iy

2 cos (ϕ) sin (ψ) q ε r

Ix Iym

+
−Ix Iy sin (ϕ) sin (ψ) p2 ε− Ix Iy sin (ϕ) sin (ψ) q2 ε

Ix Iym

+
−Ix Iy cos (ϕ) cos (ψ) sin (θ) p2 ε− Ix Iy cos (ϕ) cos (ψ) sin (θ) q2 ε

Ix Iym

+
Ix Iy cos (θ) cos (ψ) p ε r + Ix Iz cos (θ) cos (ψ) p ε r

Ix Iym

+
−Ix Iy cos (ϕ) sin (ψ) q ε r − Iy Iz cos (ϕ) sin (ψ) q ε r

Ix Iym

+
−2 Ix Iy cos (ψ) sin (θ) sin (ϕ) pχ− Iy2 cos (ψ) sin (θ) sin (ϕ) q ε r

Ix Iym

+
Ix Iy cos (ψ) sin (θ) sin (ϕ) q ε r + Iy Iz cos (ψ) sin (θ) sin (ϕ) q ε r

Ix Iym

(5.45)
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y(4) =
Ix τθ cos (θ) sin (ψ) ε− Iy τϕ cos (ϕ) cos (ψ) ε

Ix Iym

+
−Ix Iy T cos (ψ) sin (ϕ)− Iy τϕ sin (θ) sin (ϕ) sin (ψ) ε

Ix Iym

+
−2 Ix Iy cos (ϕ) cos (ψ) pχ+ 2 Ix Iy cos (θ) sin (ψ) q χ

Ix Iym

+
−Iy2 cos (ϕ) cos (ψ) q ε r − Ix2 cos (θ) sin (ψ) p ε r

Ix Iym

+
Ix Iy T cos (ϕ) sin (θ) sin (ψ) + Ix Iy cos (ψ) sin (ϕ) p2 ε

Ix Iym

+
Ix Iy cos (ψ) sin (ϕ) q2 ε− Ix Iy cos (ϕ) sin (θ) sin (ψ) p2 ε

Ix Iym

+
−Ix Iy cos (ϕ) sin (θ) sin (ψ) q2 ε+ Ix Iy cos (ϕ) cos (ψ) q ε r

Ix Iym

+
Iy Iz cos (ϕ) cos (ψ) q ε r + Ix Iy cos (θ) sin (ψ) p ε r

Ix Iym

+
Ix Iz cos (θ) sin (ψ) p ε r − 2 Ix Iy sin (θ) sin (ϕ) sin (ψ) pχ

Ix Iym

+
−Iy2 sin (θ) sin (ϕ) sin (ψ) q ε r + Ix Iy sin (θ) sin (ϕ) sin (ψ) q ε r

Ix Iym

+
Iy Iz sin (θ) sin (ϕ) sin (ψ) q ε r

Ix Iym

(5.46)

z(4) = −2 cos (θ) sin (ϕ) Ix Iy pχ+ 2 sin (θ) Ix Iy q χ 2

Ix Iym

− − sin (θ) ε r Ix
2 p+ cos (θ) cos (ϕ) ε Ix Iy p

2

Ix Iym

− sin (θ) ε r Ix Iy p+ cos (θ) cos (ϕ) ε Ix Iy q
2

Ix Iym

− − cos (θ) sin (ϕ) ε r Ix Iy q − T cos (θ) cos (ϕ) Ix Iy
Ix Iym

− Iz sin (θ) ε r Ix p+ τθ sin (θ) ε Ix + cos (θ) sin (ϕ) ε r Iy
2 q

Ix Iym

− −Iz cos (θ) sin (ϕ) ε r Iy q + τϕ cos (θ) sin (ϕ) ε Iy
Ix Iym

(5.47)

From the previous equations and (5.16) is easily concluded that the condition
∑4
j=1 rj = n = 14 was

achieved. Hence, the corresponding decoupling matrix is nonsingular and is expressed by:

Λ(x̄df ) =


Λ(x̄df )11 Λ(x̄df )12

cos(θ) cos(ψ) ε
Iym

0

Λ(x̄df )21 Λ(x̄df )22
cos(θ) sin(ψ) ε

Iym
0

cos(θ) cos(ϕ)
m − cos(θ) sin(ϕ) ε

Ixm
− sin(θ) ε

Iym
0

0 0 sin(ϕ)
Iy cos(θ)

cos(ϕ)
Iz cos(θ)

 (5.48)

with

Λ(x̄df )11 =
sin (ϕ) sin (ψ) + cos (ϕ) cos (ψ) sin (θ)

m
(5.49)

Λ(x̄df )12 =
ε (cos (ϕ) sin (ψ)− cos (ψ) sin (θ) sin (ϕ))

Ixm
(5.50)
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Λ(x̄df )21 = −cos (ψ) sin (ϕ)− cos (ϕ) sin (θ) sin (ψ)

m
(5.51)

Λ(x̄df )22 = −ε (cos (ϕ) cos (ψ) + sin (θ) sin (ϕ) sin (ψ))

Ixm
(5.52)

The respective determinant is

det (Λ(x̄df )) =
cos (ϕ) ε2

Ix Iy Izm3 cos (θ)
(5.53)

Thus, the decoupling matrix Λ(x̄df ) is invertible at any point defined by −π2 < ϕ < π
2 , −π2 < θ < π

2 and

ε 6= 0. In fact, the last condition is not verified when the quadrotor is on the ground waiting to take-off,

however, this singularity is easily overcome in the implementation by setting a different initial value.

= α( ) + β( ) ⋅ūdf x̄df x̄df vdf
Quadcopter  

Dynamics

∫ ∫
τφ

τψ

τθ

T

x̄df

εūdf
1

χ

ūdf
2

ūdf
3

ūdf
4

vdf
1

vdf
2

vdf
3

vdf
4

Figure 5.6: Block diagram representation of the resulting dynamic state feedback control law.

The consequent dynamic state feedback law, illustrated in Fig. 5.6, is defined by

ūdf = α(x̄df ) + β(x̄df )vdf (5.54)

where the matrix β(x̄df ) has the form

β(x̄df ) =


β(x̄df )11 β(x̄df )12 m cos (θ) cos (ϕ) 0

β(x̄df )21 β(x̄df )22 − Ixm cos(θ) sin(ϕ)
ε 0

Iym cos(θ) cos(ψ)
ε

Iym cos(θ) sin(ψ)
ε − Iym sin(θ)

ε 0

− Izm cos(θ) cos(ψ) sin(ϕ)
cos(ϕ) ε − Izm cos(θ) sin(ϕ) sin(ψ)

cos(ϕ) ε
Izm sin(θ) sin(ϕ)

cos(ϕ) ε
Iz cos(θ)

cos(ϕ)

 (5.55)

with

β(x̄df )11 = m (sin (ϕ) sin (ψ) + cos (ϕ) cos (ψ) sin (θ)) (5.56)

β(x̄df )12 = m cos (ϕ) sin (θ) sin (ψ)−m cos (ψ) sin (ϕ) (5.57)

β(x̄df )21 =
m (Ix cos (ϕ) sin (ψ)− Ix cos (ψ) sin (θ) sin (ϕ))

ε
(5.58)

β(x̄df )22 = −m (Ix cos (ϕ) cos (ψ) + Ix sin (θ) sin (ϕ) sin (ψ))

ε
(5.59)

and the entries of the vector α(x̄df ) = [α1 α2 α3 α4]
T are expressed by

α1(x̄df ) = ε
(
p2 + q2

)
(5.60)
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α2(x̄df ) = −2 Ix pχ− Ix q ε r + Iy q ε r − Iz q ε r
ε

(5.61)

α3(x̄df ) = −2 Iy q χ− Ix p ε r + Iy p ε r + Iz p ε r

ε
(5.62)

α4(x̄df ) = −Iz sin (θ) sin (2ϕ) q2 ε− Iz sin (θ) sin (2ϕ) ε r2

cos (θ) cos (ϕ) ε

− −2 Iz cos (θ) sin (ϕ) q χ+ 2 Iz sin (θ) cos (2ϕ) q ε r

cos (θ) cos (ϕ) ε

− Ix cos (θ) cos (ϕ) p q ε− Iy cos (θ) cos (ϕ) p q ε

cos (θ) cos (ϕ) ε

− Iz cos (θ) cos (ϕ) p q ε− 2 Iz cos (θ) sin (ϕ) p ε r

cos (θ) cos (ϕ) ε

(5.63)

Using the transformation of coordinates expressed by the diffeomorphism described in (4.45) yields

the vector of the transformed state-variables:

ξdf = Φ(xdf ) =
[
x ẋ ẍ x(3) y ẏ ÿ y(3) z ż z̈ z(3) ψ ψ̇

]T
(5.64)

As a result of the dynamic state feedback control law detailed and of the change of coordinates, the

quadcopter dynamics are now linearized and decoupled. Moreover, the position dynamics corresponds

now to three chains of four integrators and the yaw angle dynamics transformed into a chain of two

integrators. The linear and decoupled dynamics of the aerial vehicle are depicted in Fig. 5.7.

∫ ∫∫ ∫
xx¨ x˙x

(3)
v1

∫ ∫∫ ∫
yy¨ y˙y

(3)
v2

∫ ∫∫ ∫
zz¨ z˙z

(3)
v3

∫∫
ψψ˙

v4

Figure 5.7: Block diagram representation of the resulting dynamics after applying dynamic feedback.

This second approach using Feedback Linearization is schematized in Fig. 5.8. The ” Linear Con-

trol” block is formed by the LQR controllers with integrative action designed for the set of integrators

represented in Fig. 5.7. In each chain, an additional integrator was included into the feedback control

to obtain additional robustness. Hence, each subsystem is now represented by the following completely

controllable state-space representation:
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Control 

Quadrotor 
Dynamics 

xref

yref

zref

ψref

ξdf

xdf

vdf ūdf y

Figure 5.8: Block diagram representation of the control structure derived for the second approach using
Feedback Linearization.

ξ̇df i
ς̇df i

 =


0(ri−1)×1 Iri−1 0(ri−1)×1

0 01×(ri−1) 0

−1 01×(ri−1) 0


ξdf i
ςdf i

+


0(ri−1)×1

1

0

vdf i (5.65)

ydf i =
[
1 01×ri

]ξdf i
ςdf i

 (5.66)

5.2.3 Inner-Outer Control Loop using Feedback Linearization

The two solutions previously presented either applied Dynamic Feedback Linearization considering

the position and yaw angle as outputs of the system, resulting in a single loop control structure, or

applied Static Feedback Linearization to the altitude and attitude dynamics, originating a double loop

control structure where only the innermost loop was designed based on this nonlinear control technique.

As a way to deepen the study, an inner-outer loop control structure using Dynamic Feedback in the

outermost loop and Static Feedback in the innermost is now derived. This approach is inspired by the

work present in [39], where a control structure with an inner loop, responsible for the angle rates, and

an outer loop, accountable for the position, velocity and acceleration, is developed. However, the vari-

ant of the feedback linearization resorted, dynamic inversion, is different from the differential geometry

method that is addressed in this section. The dynamic inversion method constructs the integral inverse

system for the controlled plant to obtain the decoupled linear system, whereas the input-output feedback

linearization aims the attainment of an exact linearization of the system while resorting to tools such as

the Lie algebra or differential manifold theory [61]. In fact, is possible to apply the Nonlinear Dynamic

Inversion technique to an outer loop of relative degree 2 [33]. Nonetheless, since the second derivatives

of the inertial position are not affine functions, is necessary to resort to simplifications, such as the Taylor

series, to overcome this particularity. Alternatively, the third derivative of the position is an affine function

and the outer-loop can be defined in order to provide references for the angle rates. This idea is explored

in this third approach.
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Let the vector of state-variables implied in the inner dynamics be denoted by

xar =
[
ϕ̇ θ̇ ψ ψ̇

]T
(5.67)

the uar describe the vector of inputs

uar =
[
τϕ τθ τψ

]T
(5.68)

and yar represent the output vector of the angle rate dynamics

yar =
[
ϕ̇ θ̇ ψ

]T
(5.69)

From (5.14), (5.15) and (5.16) is noted that the relative degree of the innermost dynamics is

[
r1 r2 r3

]T
=
[
1 1 2

]T
(5.70)

yielding
3∑
j=1

rj = 4 = n (5.71)

Therefore, the inner dynamics are possible to be input-output feedback linearized by means of a static

state feedback control law. The decoupling matrix Λ(xar) is expressed by

Λ(x) =


1
Ix

tan(θ) sin(ϕ)
Iy

cos(ϕ) tan(θ)
Iz

0 cos(ϕ)
Iy

− sin(ϕ)
Iz

0 sin(ϕ)
Iy cos(θ)

cos(ϕ)
Iz cos(θ)

 (5.72)

Note that, as expected, the matrix Λ(x) is equal to the submatrix of Λ(xin) that refers to the attitude

dynamics, i.e:

Λ(x) = Λij(xin) with i, j = 2, 3, 4 (5.73)

The determinant of Λ(x) is expressed by

det (Λ(x)) =
1

Ix Iy Iz cos (θ)
(5.74)

Hence, the decoupling matrix Λ(x) is invertible at any point defined by −π2 < θ < π
2 . The static state

feedback law

uar = α(x) + β(x)var (5.75)

has the matrix β(x) given by

β(x) = βij(xin) with i, j = 2, 3, 4 (5.76)

and the vector α(x) defined by

α(x) = αi(xin) with i = 2, 3, 4 (5.77)

The static state feedback law combined with the diffeomorphism defined by (4.45) leads to the trans-
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formed state-variables:

ξar = xar (5.78)

Having the angle rate dynamics linearized and decoupled, the focus is now on the outer-loop dynam-

ics. Let

xp = [x y z ẋ ẏ ż ẍ ÿ]
T (5.79)

denote of the vector of state-variables present in the outer-loop dynamics,

up =
[
ϕ̇ θ̇ T

]T
(5.80)

describe the vector of inputs and

yp =
[
x y z

]T
(5.81)

represent the output vector of the translational dynamics. From the equations linear accelerations. Con-

sidering the inputs, the linear accelerations are only dependent on the thrust and the relative degree is

[r1 r2 r3]
T

= [2 2 2]
T , which results in the sum of the relative degrees being inferior to the number of

state-variables. Thus, a dynamic compensation must be included in order to perform the input-output

linearization. Following a similar logic applied in subsection 5.2.2, an integrator is included on the thrust

input channel. This incorporation origins a new state-variable, ε characterized by:

ε = T

ε̇ = ūp1

(5.82)

where ūp1 denotes the first entry of the input vector of the extended system, ūp. The other inputs remain

unchanged, yielding: [
ūp1 ūp2 ūp3

]T
=
[
ε̇ ϕ̇ θ̇

]T
(5.83)

The vector of state-variables of the extended system is represented by:

x̄p = [x y z ẋ ẏ ż ẍ ÿ ε]
T (5.84)

The linear accelerations are again expressed by (5.45), (5.46) and (5.47). Differentiating each one of

the referred equations results in

x(3) =
ε (cos (ϕ) sin (ψ) ϕ̇− cos (ψ) sin (θ) sin (ϕ) ϕ̇)

m

+
ε
(

cos (ψ) sin (ϕ) ψ̇ + cos (θ) cos (ϕ) cos (ψ) θ̇
)

m

+
ε
(
− cos (ϕ) sin (θ) sin (ψ) ψ̇

)
m

+
ε̇ (sin (ϕ) sin (ψ) + cos (ϕ) cos (ψ) sin (θ))

m

(5.85)
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y(3) =
ε
(

cos (θ) cos (ϕ) sin (ψ) θ̇ − cos (ϕ) cos (ψ) ϕ̇
)

m

+
ε
(
− sin (θ) sin (ϕ) sin (ψ) ϕ̇+ sin (ϕ) sin (ψ) ψ̇

)
m

+
ε
(

cos (ϕ) cos (ψ) sin (θ) ψ̇
)

m

− ε̇ (cos (ψ) sin (ϕ)− cos (ϕ) sin (θ) sin (ψ))

m

(5.86)

z(3) =
ε̇ cos (θ) cos (ϕ)

m
− cos (ϕ) sin (θ) ε θ̇

m
− cos (θ) sin (ϕ) ε ϕ̇

m
(5.87)

From the preceding expressions the decoupling matrix for the outer dynamics is derived

Λ(x, ε) =


sin(ϕ) sin(ψ)+cos(ϕ) cos(ψ) sin(θ)

m
ε (cos(ϕ) sin(ψ)−cos(ψ) sin(θ) sin(ϕ))

m
cos(θ) cos(ϕ) cos(ψ)ε

m

− cos(ψ) sin(ϕ)−cos(ϕ) sin(θ) sin(ψ)
m − ε (cos(ϕ) cos(ψ)+sin(θ) sin(ϕ) sin(ψ))

m
cos(θ) cos(ϕ) sin(ψ) ε

m

cos(θ) cos(ϕ)
m − cos(θ) sin(ϕ)ε

m − cos(ϕ) sin(θ)ε
m


(5.88)

The respective determinant is

det (Λ(x, ε)) =
cos (ϕ) ε2

m3
(5.89)

which translates to the matrix Λ(x, ε) being nonsingular for all the points characterized by −π2 ≤ ϕ ≤ π
2

and ε 6= 0. Once again, its stressed that the last condition can be guaranteed in the implementation by

setting a positive non-zero initial value. The resulting dynamic state feedback law has the following form

ūp = α(x, ε) + β(x, ε)vp (5.90)

where the matrix β(x, ε) is represented as follow

β(x, ε) =


β(x, ε)11 β(x, ε)12 m cos (θ) cos (ϕ)

β(x, ε)21 β(x, ε)22 −m cos(θ) sin(ϕ)
ε

m cos(θ) cos(ψ)
cos(ϕ) ε

m cos(θ) sin(ψ)
cos(ϕ) ε −m sin(θ)

cos(ϕ) ε

 (5.91)

with

β(x, ε)11 = m (sin (ϕ) sin (ψ) + cos (ϕ) cos (ψ) sin (θ)) (5.92)

β(x, ε)12 = m cos (ϕ) sin (θ) sin (ψ)−m cos (ψ) sin (ϕ) (5.93)

β(x, ε)21 =
m (cos (ϕ) sin (ψ)− cos (ψ) sin (θ) sin (ϕ))

ε
(5.94)

β(x, ε)22 = −m (cos (ϕ) cos (ψ) + sin (θ) sin (ϕ) sin (ψ))

ε
(5.95)
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where the vector α(x, ε) is represented by

α(x, ε) =


0

sin (θ) ψ̇

− cos (θ) tan (ϕ) ψ̇

 (5.96)

= α(x, ε) + β(x, ε) ⋅ūp vp

∫
φ˙

θ˙

T

x

ε
ūp

1

ūp
2

ūp
3

vp
1

vp
2

vp
3

Figure 5.9: Block diagram representation of the resulting dynamics after applying dynamic feedback
linearization to the translational dynamics.

The dynamic state feedback law, depicted in Fig. 5.9, combined with the diffeomorphism defined by

(4.45) leads to the transformed state-variables:

ξp = Φ(xp) =
[
x ẋ ẍ y ẏ ÿ z ż z̈

]T
(5.97)
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Control 
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Linear 
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φ˙ ref
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y

Dynamic
State

Feedback
Control 

vp

T

τφ

τθ

τψ

x

x

ξar

ξp

Figure 5.10: Block diagram representation of the control structure derived for the third approach using
Feedback Linearization.

The third approach using Feedback Linearization is schematized in Fig. 5.10. Once again, an in-

tegrator is incorporated into the feedback control of the angular subsystems, obtaining the following

state-space representation for the inner subsystems:

ξ̇ari
ς̇ari

 =


0(ri−1)×1 Iri−1 0(ri−1)×1

0 01×(ri−1) 0

−1 01×(ri−1) 0


ξari
ςari

+


0(ri−1)×1

1

0

vari (5.98)
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yari =
[
1 01×ri

]ξari
ςari

 (5.99)

The integrative action is also included in the outer subsystems, yielding the following state-space

representation for each position subsystem:

ξ̇pi
ς̇pi

 =


0(ri−1)×1 Iri−1 0(ri−1)×1

0 01×(ri−1) 0

−1 01×(ri−1) 0


ξpi
ςpi

+


0(ri−1)×1

1

0

vpi (5.100)

ypi =
[
1 01×ri

]ξpi
ςpi

 (5.101)
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Chapter 6

Estimation

In fact, the optimal control method considered relies on full state-feedback. The reconstruction of

the state variables that are not directly available through sensors is performed resorting to estimators.

Therefore, in this chapter, the theoretical basis of the Kalman filter and the formulation of the Madgwick

attitude filter [65] and of the nonlinear attitude filter proposed by João Madeiras [66] are addressed.

6.1 Discrete Kalman Filter

The Kalman filter constitutes a solution to optimal stochastic estimation problem for linear systems

and aims the minimization of the estimation mean-squared-error under the assumptions of zero-mean

Gaussian process and sensor noises. It was first proposed by Rudolf Kalman [62] in 1960 and is a recur-

sive estimator since only the estimated state from the previous time step and the current measurement

are needed to compute the estimate for the current state.

Considering the discrete-time state-space representation for a linear time-invariant system with noise

xk+1 = Fxk + Guk + ϑ (6.1)

yk = Hxk + ν (6.2)

where ϑ is the process noise that models the uncertainty in the system and that affects the evolution

of the states, and ν is the sensor noise that models uncertainty in the measurements and that impacts

the states measurements [40]. It is typically assumed that ϑ and ν are zero mean (E [ϑ] = 0, E [ν] = 0)

and uncorrelated Gaussian white random noises so that:

ϑ ∼ N
(
0,KQ

)
(6.3)

ν ∼ N
(
0,KR

)
(6.4)
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E [ϑν] = 0 (6.5)

with the matrices KQ and KR being, respectively, positive semi-definite and positive definite. With

this assumption, an optimal estimator can be developed while aiming the balance of the effect of the

various types of random noise in the system on the estimation error. The Kalman filter gains result

from an optimization process that targets the reduction of this error. The algorithm to compute the

steady-state optimal Kalman gain Ke
k is initialized by defining the initial values of the state vector x0|0

and the covariance matrix P0|0 and can be divided in two phases [63]. In the first phase, the predicted

state-estimate x̂k|k−1 and the predicted error covariance matrix Pk|k−1 are determined. The values

are computed a priori, i.e., using the data available at the instant k − 1. The prediction phase has the

following equations:

x̂k|k−1 = Fx̂k−1|k−1 + Guk (6.6)

Pk|k−1 = FPk−1|k−1FT + KQ (6.7)

The second part of this recursive estimator is the update phase where the residue of the previous

predictions, ỹk|k−1 and Sk, respectively, the Kalman gain vector Ke
k, and the state vector and covariance

matrix estimations a posteriori, x̂k|k and Pk|k (i.e. using the data available at the present instant k) are

calculated. The update phase is formed by the ensuing equations:

ỹk = yk −Hx̂k|k−1 (6.8)

Sk = HPk|k−1HT + KR (6.9)

Ke
k = Pk|k−1Hk

TSk
−1 (6.10)

x̂k|k = x̂k|k−1 + Ke
kỹk (6.11)

Pk|k = (I −Ke
kHk) Pk|k−1 (I −Ke

kHk)
T

+ Ke
kRKe

k
T (6.12)

The performance index is given by the trace of the estimation error covariance matrix Pk|k:

J = tr
(
Pk|k

)
= tr

(
E
[
ex
kex

k
T
])

(6.13)

where ex
k denotes the state vector reconstruction stochastic error at instant k
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ex
k+1 = xk − x̂k|k (6.14)

The equations (6.6) to (6.12) describe the discrete Kalman Filter recursive algorithm for a system

represented by the state-space equations (6.1) and (6.2). Since the system considered is time invariant,

the Kalman gain vector Ke will converge to a given value.

In order to use Kalman filters, the system for which they are being designed is required to be observ-

able since the sensory data must contain information regarding all states. The structure of the filter is

depicted in Fig. 6.1.
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Figure 6.1: Structure of the Discrete Kalman Filter.

6.1.1 Complementary Filters Design

The estimation theory formerly addressed will be presently considered in the design of the velocity

and jerk estimators. To this end, complementary filters are used. These filters are independent of

the dynamics of the system since they rely on the kinematic model to establish a relation between

the sensory data and the state-variables that are intended to estimate. Therefore, these filters are a

particularly useful tool that has the advantage of not being affected by unmodelled dynamics or unknown

parameters.

Linear Velocity Estimation

The following discrete-time kinematic equations describe the position and the velocity of the vehicle

along the direction of ~a1:

xk+1 = xk + ẋk∆t+
1

2
axk(∆t)2 (6.15)

ẋk+1 = ẋk + axk∆t (6.16)

Let xk = [xk ẋk] define the state variables vector. The former equations lead to the ensuing discrete-

time state-space representation:

53



xk+1 =

 1 ∆t

0 1

xk +

 (∆t)2

2

∆t

 Iaxk (6.17)

Assuming that, between the instant k − 1 and the instant k, uncontrolled forces cause a constant

acceleration Iaxk that has a normal distribution, characterized by zero mean and variance ϑ, in order to

model the acceleration effect as white random process noise, leads to the following representation

xk+1 =

 1 ∆t

0 1

xk + ϑ (6.18)

The previous assumption is referred in the theory as the white-noise acceleration model [64]. Since

only the position is available through sensory data, the output vector is defined as

yk =
[

1 0
]

xk + ν (6.19)

Note that the process noise ϑ and the sensor noise ν considered have the normal distribution de-

scribed in (6.3) and (6.4), respectively. The kinematic model presented was derived for the velocity along

the direction described by ~a1. Nonetheless, for the remaining inertial velocities, an equivalent model can

be used. Furthermore, by applying the required rotation to the inertial velocities, the body velocities Bv̂

are computed:

Bv̂ =


û

v̂

ŵ

 = BRI


̂̇x̂̇ŷ̇z

 (6.20)

Jerk Estimation

The estimate of the jerk follows a similar logic to the one applied in the estimation of the linear

velocities. The acceleration in the inertial frame is computed by removing the effect of the centripetal

acceleration from the measurements provided by the accelerometer and by, subsequently, applying the

rotation to the inertial frame:

̂̈x = I â = IRB

(
Ba + ω × Bv̂

)
(6.21)

Thus, from sensors, one has access to the integral of the state-variable that intends to estimate. The

effect of the fourth derivative of the position can be modeled as random white process noise. Hence,

letting xk =
[
ẍk x

(3)
k

]
define the state variables vector, considering the following discrete model can be

used to estimate the third derivative of the x coordinate:

xk+1 =

 1 ∆t

0 1

xk + ϑ (6.22)
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yk =
[

1 0
]

xk + ν (6.23)

A similar model is used for the estimation of y(3) and z(3).

6.2 Attitude Filters

6.2.1 Madgwick Attitude Filter

In fact, the Kalman filter is widely used for sensor fusion to estimate the attitude, however, for practical

reasons, the orientation filter developed by [65] was opted.

The computation is performed using the quaternion representation and fuses the measurements of

the gyroscope, accelerometer and magnetometer through an optimized gradient-descent algorithm.

The attitude filter can be summarized through the following expressions:

q̂k = q̂k−1 + ̂̇qk∆t (6.24)

̂̇qk = ω ̂̇qk − βê̇qk (6.25)

ê̇qk =
∇f
‖∇f‖

(6.26)

where q̂k represents the estimated orientation at instant k, β is a tuning parameter, that can be inter-

preted as the magnitude of the gyroscope measurement error, and ê̇qk corresponds to the direction of

the error of ̂̇qk, determined from the accelerometer and magnetometer measurements at instant k, and,

together with the constant β, define a corrective step. The filter computations start with q̂0 = [1 0 0 0]
T .

The rate of change of orientation estimated from the gyroscope measurement at instant k, ω ̂̇qk, is ob-

tained with the following formula

ω ̂̇qk =
1

2
q̂k−1 ⊗ Sωk (6.27)

in which Sωk = [0 p q r]
T considers the angular velocities at instant k and the operator ⊗ denotes a

product of quaternions. The direction of the error of ̂̇qk is computed through a gradient descent algorithm.

Thus, results from the normalization of the gradient of a solution surface that is defined by the objective

function and its Jacobian. The optimization problem aims the minimization of this objective function that

defines the difference between a predefined reference direction of the field in the inertial frame oriented

according q̂k−1 and the measured direction of the field in the body-fixed frame. The gradient of the

objective function is computed through:

∇f = JTg,d

(
q̂k−1, d̂k

)
fg,d

(
q̂k−1,

Sak, d̂k,
Smk

)
(6.28)
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where

JTg,d

(
q̂k−1, d̂k

)
=

 JTg
(
q̂k−1

)
JTd

(
q̂k−1, d̂k

) (6.29)

fg,d

(
q̂k−1,

Sak, d̂k,
Smk

)
=

 fg
(
q̂k−1,

Sak
)

fd

(
q̂k−1, d̂k,

Smk

) =

 q̂∗k−1 ⊗ Eg ⊗ q̂k−1 − Sak

q̂∗k−1 ⊗ d̂k ⊗ q̂k−1 − Smk

 (6.30)

with Eg = [0 0 0 1] denoting the direction of gravity, Sak =
[
0 B āx

B āy
B āz

]
being formed by the

normalized accelerometer measurements at instant k, Smk = [0 m̄x m̄y m̄z] being constituted by the

normalized magnetometer measurements at instant k and d̂k = [0 dx 0 dz] representing the result-

ing normalized magnetometer measurements vector after compensating for magnetic distortion. This

compensation resorts to the following expressions:

ĥk = [0 hx hy hz] = q̂k−1 ⊗ Smk ⊗ q̂∗k−1 (6.31)

d̂k =
[
0
√
h2
x + h2

y 0 hz

]
(6.32)

Note that, provided that dx 6= 0, the solution surface created by the objective function expressed in

(6.30) has a minimum defined by a single point. This objective function and its Jacobian are computed

through the next equations:

fg,d

(
q̂k−1,

Sak, d̂k,
Smk

)
=



2 (q2q4 − q1q3)− B āx

2 (q1q2 + q3q4)− B āy

2
(

1
2 − q

2
2 − q2

3

)
−

B āz2dx
(
0.5− q2

3 − q2
4

)
+ 2dz (q2q4 − q1q3)− m̄x

2dx (q2q3 − q1q4) + 2dz (q1q2 + q3q4)− m̄y

2dx (q1q3 + q2q4) + 2dz
(
0.5− q2

2 − q2
3

)
− m̄z


(6.33)

JTg,d

(
q̂k−1, d̂k

)
=



−2q3 2q2 0

2q4 2q1 −4q2

−2q1 2q4 −4q3

2q2 2q3 0

−2dzq3 −2dxq4 + 2dzq2 2dxq3

2dzq4 2dxq3 + 2dzq1 2dxq4 − 4dzq2

−4dxq3 − 2dzq1 2dxq2 + 2dzq4 2dxq1 − 4dzq3

−4dxq4 + 2dzq2 −2dxq1 + 2dzq3 2dxq2



T

(6.34)

where q1, q2, q3 and q4 are the entries of the vector q̂k−1. The structure of the Madgwick Attitude Filter

is squematized in Fig. 6.2.
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Equation (6.28)

Δf

‖Δf‖

Equation (6.27)
q

‖q‖

q̂
k

z
−1

z
−1

q̂
k−1
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ωq˙ˆk
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S
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S
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Equation (6.24)+
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Figure 6.2: Structure of the Madgwick Attitude Filter.

6.2.2 Nonlinear Attitude Filter

The second filter considered, developed by João Madeiras [66], is a nonlinear filter that fuses the

accelerometer and gyroscope measurements. The formulation is presented in the following equation:


η̂

b̂ω1

b̂ω2


k+1

=


I −∆tT (ηk) −∆tT (ηk)

0 I − T−1
BI ∆t 0

0 0 I




η̂

b̂ω1

b̂ω2


k

+


∆tT (ηk)

0

0

ωk

+


T (ηk) (K1η − I) + T

(
ηk−1

)
K2η

K3η

T−1
(
ηk−1

)
(ηk − η̂k)

(6.35)

where b̂ω1 and b̂ω2 denote sensor bias vectors correspondent to the angular velocities ω, K1η, K2η

and K3η are diagonal matrices whose entries are the steady-state Kalman gains and TBI is a diagonal

matrix whose entries correspond to the correlation time of each gyroscope axis bias instability noise.

The gains of this attitude complementary filter can be computed considering a linear system that is

obtained resorting to a Lyapunov transformation. These gains are optimal for small angular variations.

Nonetheless, for more aggressive maneuvers, the trace of the error covariance matrix does not deviate

much from the obtained when computing the optimal gains for each instant. Furthermore, this filter is

proved to be uniformly asymptotically stable assuming a bounded pitch angle
(
|θ| < π

2

)
.
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Chapter 7

Simulation Results

In the last chapters, the control and estimation strategies were mainly addressed from a theoretical

point of view. In order to forecast the performance of the approaches presented in the actual quadcopter,

simulation tests should be performed.

The prior validation of the referred strategies in the simulation is crucial since it allows to study

the impact of uncertainties and perturbations, such as external disturbances, saturation, measurement

noise or inaccuracy of the model parameters, that might significantly affect the closed-loop behavior.

Furthermore, possible adjustments or corrections are more easily identified in the simulation than during

the testing in the actual quadcopter. Moreover, a comparison between the performance of the different

methods can be made in simulation, which allows the selection of the best methods and the avoidance

of the time-consuming task of implement all in the real system. Finally, implementation errors not related

to the mathematical basis of the estimation and control solutions must be debugged before advancing

to the experimental tests.

For these reasons, a simulation model of the quadcopter was developed in furtherance of studying

the approaches and determining the most promising solutions beforehand in order to select them to be

tested experimentally. The computation of the PWM commands (Appendix A) is also included as a way

to consider the limitations imposed by saturation.

This chapter is organized in the following manner: firstly the control gains are obtained by analyz-

ing the characteristics of the resulting step-responses, namely the settling time, the overshoot and the

steady-state position error; secondly, to ascertain the robustness of the proposed controllers and its

model dependency, the impact of considering inaccurate values of the mass and the inertia of the quad-

copter is studied; subsequently, the gains of the complementary filters are computed while taking into

account the estimation error; lastly, noise is inserted in the sensory data and the capacity of tracking a

predefined trajectory is evaluated. The attitude filters are evaluated by computing the estimation error

obtained during the trajectory tracking.

The simulation model with both the estimation and control solutions follow the structure depicted in

Fig. 7.1. The selected sampling time for the simulation is 0.01 seconds. The relevant physical quantities

of the quadcopter consider in the simulation are detailed in Table. 7.1.
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Figure 7.1: Block diagram representation of the simulation model implemented.

Concerning the design parameters, it is intended to control the position of the UAV while focusing in

obtain responses with a settling time inferior to 6 seconds, with a maximum overshoot and oscillation

inferior to 2 % and without steady-state position error. Regarding the rotational responses, since they

are responsible for the stabilization of the quadcopter, a faster response, in furtherance of coping with

the references that result from the translational control in the x and y directions of the inertial frame,

is required. Therefore, the pitch/pitch rate and roll/roll rate subsystems must necessarily present step

responses with a settling time inferior to 1 second and fulfill the formerly defined overshoot, oscillation

and error requirements. Considering the yaw subsystem, once it does not present such an important

role in the stabilization of the drone as the other Euler angles, its response is not required to have

this settling time. Therefore, for this Euler angle, the aim is a settling time inferior to 3 seconds and

the already defined null static-error and overshoot and oscillation inferior to 2%. For the estimation

approaches, the objective is to minimize the absolute error of the estimation.

L (m) m (kg) Ix (kg ·m2) Iy (kg ·m2) Iz (kg ·m2)
0.127 0.460 2.24× 10−3 2.90× 10−3 5.30× 10−3

Table 7.1: Important physical quantities of the quadcopter considered in the simulation model

7.1 Step Responses

7.1.1 Linear Quadratic Regulator with Integrative Action

Single Loop Structure

Concerning the single-loop architecture that relies solely on linear controllers, the step-responses

obtained with the Q and R matrices detailed in Table 7.2 are displayed in Fig. 7.2.

Subsystem Q R
Height diag(5, 1, 3) 3

X Inertial diag(3, 1, 1, 10, 2) 25
Y Inertial diag(3, 1, 1, 10, 2) 25

Yaw diag(7, 1, 15) 1

Table 7.2: Q and R matrices used in the optimal gains computation for each subsystem.
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Figure 7.2: Step-responses obtained in simulation with the controllers designed for the single loop ap-
proach using LQR. From left to right, top to bottom: (a) Height; (b) X Inertial; (c) Y Inertial; (d) Yaw.

These responses and the Table 7.3 allow to state that the control objectives outlined were achieved.

Subsystem Overshoot, Mp (%) Settling time, ts (s)
Height 0.00 5.62

X Inertial 0.00 5.76
Y Inertial 0.00 5.78

Yaw 0.00 2.81

Table 7.3: Overshoot, Mp, and settling time, ts, of the step responses of each subsystem considered in
the first linear approach.

Concerning the stability, from the Table 7.4 one notes that all eigenvalues are inside the unit circle

and therefore the closed loop systems are stable. The actuation required during the step responses is

presented in Fig. 7.3.

Subsystem Closed-Loop Eigenvalues
Height {0.9875± 0.0104i, 0.9920}

X Inertial {0.0402, 0.9887± 0.0153i, 0.9892± 0.0006i}
Y Inertial {0.0151, 0.9887± 0.0153i, 0.9892± 0.0006i}

Yaw {0.0938, 0.9810± 0.0042i}

Table 7.4: Discrete time closed-loop eigenvalues of each subsystem considered in the first linear ap-
proach.

Inner-Outer Loop Structure

Comparatively to the first architecture derived, the control design is equal for the height and the yaw

subsystems and, therefore, will not be addressed again. The obtainment of the gains for this architecture
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Figure 7.3: Actuation obtained during the step responses in simulation with the controllers designed for
the single loop approach using LQR. From left to right, top to bottom: (a) Thrust; (b) Pitch Moment; (c)
Roll Moment; (d) Yaw Moment.

initiates with the design of the inner controllers and is followed by the outermost control.

The step-responses for the inner loop subsystems obtained with the Q and R matrices specified in

Table 7.5 are depicted in Fig. 7.4.

Subsystem Q R
Roll diag(25, 1, 1500) 200
Pitch diag(25, 1, 1500) 200

Table 7.5: Q and R matrices used in the optimal gains computation for the inner loop subsystems.
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Figure 7.4: Step-responses obtained in simulation with the controllers designed for the inner loop dy-
namics of the second linear approach. From left to right: (a) Roll; (b) Pitch.

It is possible to verify, from these responses and from the Table 7.6, the attainment of the control

requirements.

Concerning the stability, from the Table 7.7 one notes that all eigenvalues are within the unit circle.

Thus, the closed loop systems are stable.
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Subsystem Overshoot, Mp (%) Settling time, ts (s)
Roll 1.79 0.63
Pitch 1.79 0.63

Table 7.6: Overshoot, Mp, and settling time, ts, of the step responses of each inner subsystem consid-
ered in the second linear approach.

Subsystem Closed-Loop Eigenvalues
Roll {0.7309. 0.9500± 0.0350i}
Pitch {0.7869, 0.9500± 0.0355i}

Table 7.7: Discrete time closed-loop eigenvalues of each inner subsystem considered in the second
linear approach.

With the controllers for the inner loop defined, the focus is now on the outer loop linear controllers.

The Q and R matrices specified in Table 7.8 origin the step responses illustrated in Fig. 7.5.
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Figure 7.5: Step-responses obtained in simulation with the controllers designed for the outer loop sub-
systems of the second approach using linear control. From left to right: (a) X Inertial; (b) Y Inertial

Through the step responses illustrated in Fig. 7.5, the Tab. 7.8 is constructed. It is noticeable from

these results that the control design parameters aforementioned were achieved.

With regard to the eigenvalues of the consequent closed-loop systems, the Table 7.10 highlights that

all eigenvalues are within the unit circle. Hence, the closed-loop systems are stable.

The actuation required during the x and y step responses is displayed in Fig. 7.6. It is noticeable,

when comparing with the roll and pitch moments required with the single-loop approach, that the inner-

Subsystem Q R
X Inertial diag(15, 1, 10) 1× 103

Y Inertial diag(15, 1, 10) 1× 103

Table 7.8: Q and R matrices used in the optimal gains computation for each outer subsystem of the
second linear control approach.

Subsystem Overshoot, Mp (%) Settling time, ts (s)
X Inertial 0.00 5.72
Y Inertial 0.00 5.73

Table 7.9: Overshoot, Mp, and settling time, ts, of the step responses of each outer subsystem consid-
ered in the second linear approach.
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Subsystem Closed-Loop Eigenvalues
X Inertial {0.9925, 0.9927± 0.0087i}
Y Inertial {0.9925, 0.9927± 0.0087i}

Table 7.10: Discrete time closed-loop eigenvalues of each outer subsystem considered in the second
linear approach.

loop structure led to an actuation less abrupt.
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Figure 7.6: Actuation obtained during the step responses in simulation with the controllers designed
for the double loop approach using LQR. From left to right, top to bottom. From left to right: (a) Pitch
Moment; (b) Roll Moment.

The closed-loop frequency responses of the three subsystems present in the outer loop, with the

gains obtained, are depicted in Fig. 7.7. For each position subsystem, the Bode diagram of the transfer

function that relates the reference with the output, the reference with the actuation and the position

measurement noise with the output are displayed. This figure allows concluding not only that the high-

frequency noise is highly attenuated, but also that the reference is always attenuated in the transfer

function that outputs the actuation. Moreover, this transfer function has a frequency response similar to

the one verified for a band-pass filter. Given the band of frequencies that are less attenuated, one states

that the actuation can cope effectively with the references. Furthermore, the static gain of the reference

to the output transfer function is 0 dB for all position subsystems, which were forecastable given the null

steady-state error. Considering the bandwidth of the referred plots, the position subsystems have the

capacity to track frequencies up to roughly 1 rad · s−1.

7.1.2 Feedback Linearization Control

Static Feedback Linearization with zero-dynamics stabilization

Starting with the set of chains of integrators that resulted from applying static feedback linearization

to the attitude and altitude dynamics, the step-responses obtained with the Q and R matrices detailed

in Table 7.11 are displayed in Fig. 7.8.

It is possible to verify, from these responses and from the Table 7.12, the attainment of the predefined

control objectives.

Concerning the stability, from the Table 7.13 one notes that all eigenvalues are within the unit circle

and, therefore, the closed loop systems are stable.
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Figure 7.7: Bode plots obtained in simulation with the controllers designed for the outer loop of the
double loop approach using linear control. From left to right, top to bottom: (a) Height Subsystem
(Reference to Output); (b) Height Subsystem (Noise to Output); (c) Height Subsystem (Reference to
Actuation); (d) X Inertial Subsystem (Reference to Output); (e) X Inertial Subsystem (Noise to Output);
(f) X Inertial Subsystem (Reference to Actuation); (g) Y Inertial Subsystem (Reference to Output); (h) Y
Inertial Subsystem (Noise to Output); (i) Y Inertial Subsystem (Reference to Actuation).

Subsystem Q R
Height diag(15, 1, 15) 1

Roll diag(6× 104, 7.5× 102, 2× 106) 1
Pitch diag(6× 104, 7.5× 102, 2× 106) 1
Yaw diag(7.5× 103, 20, 2× 105) 1

Table 7.11: Q and R matrices used in the optimal gains computation for each subsystem.

Subsystem Overshoot, Mp (%) Settling time, ts (s)
Height 0.00 4.32

Roll 0.00 0.73
Pitch 0.00 0.73
Yaw 0.00 0.81

Table 7.12: Overshoot, Mp, and settling time, ts, of the step responses of each inner subsystem consid-
ered in the first approach.

With the controllers for the inner loop outlined, the focus is now on the outer loop linear controllers.

Since the inner loop has its dynamics linearized for all points defined by |ϕ|, |θ| < π
2 , its capacity to cope
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Figure 7.8: Step-responses obtained in simulation with the controllers designed for the inner-loop dy-
namics of the first approach using nonlinear control. From left to right, top to bottom: (a) Height; (b) Roll;
(c) Pitch; (d) Yaw.

Subsystem Closed-Loop Eigenvalues
Height {0.9861± 0.0137i, 0.990}

Roll {0.7722, 0.9322± 0.0228i}
Pitch {0.7722, 0.9322± 0.0228i}
Yaw {0.9350± 0.0630i, 0.9502}

Table 7.13: Discrete-time closed-loop eigenvalues of each inner subsystem considered in the first non-
linear approach.

effectively with the angular references provided by the outer loop increased. Therefore, the position

control in the XY inertial plan can be faster compared to the designed in the subsection 7.1.1 . The Q

and R matrices specified in Table 7.14 origin the step responses illustrated in Fig. 7.9.

Through the step responses illustrated in Fig. 7.9, the Tab. 7.14 is constructed. It is noticeable from

these results that the control design parameters outlined were achieved.

Subsystem Q R
X Inertial diag(5, 1, 30) 2× 103

Y Inertial diag(5, 1, 30) 2× 103

Table 7.14: Q and R matrices used in the optimal gains computation for each outer subsystem of the
first nonlinear control approach.

Subsystem Overshoot, Mp (%) Settling time, ts (s)
X Inertial 1.80 3.36
Y Inertial 1.80 3.36

Table 7.15: Overshoot, Mp, and settling time, ts, of the step responses of each outer subsystem consid-
ered in the first nonlinear approach.
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Figure 7.9: Step-responses obtained in simulation with the controllers designed for the zero dynamics
of the first approach using nonlinear control. From left to right: (a) X Inertial; (b) Y Inertial

With regard to the eigenvalues of the consequent closed-loop systems, the Table 7.16 highlights that

all eigenvalues are within the unit circle and thus the closed-loop systems are stable.

Subsystem Closed-Loop Eigenvalues
X Inertial {0.9897, 0.9943± 0.0091i}
Y Inertial {0.9897, 0.9943± 0.0091i}

Table 7.16: Discrete-time closed-loop eigenvalues of each outer subsystem considered in the first non-
linear approach.

Non-Interacting Control via Dynamic Feedback Linearization

The controller for the yaw angle designed for the first nonlinear control architecture is also used in

this approach. In respect to the position control, since the respective subsystems obtained with the

Feedback Linearization are equal and the design parameters are alike, the same linear controller is

considered for these inertial coordinates. Hence, the design analysis is only performed for the height

subsystem.

Subsystem Q R
Height diag(1200, 300, 100, 1, 2000) 1

Table 7.17: Q and R matrices used in the optimal gains computation for the height subsystem.

The step-response obtained with the Q and R matrices detailed in Table 7.17 is presented in

Fig. 7.10.

Taking into account the null steady-state error, the values detailed in Table 7.18 and the eigenvalues

of the closed-loop system, Table 7.19, the desired characteristics were achieved and the closed-loop

system is proved to be stable.

Subsystem Overshoot, Mp (%) Settling time, ts (s)
Height 0.10 3.74

Table 7.18: Overshoot, Mp, and settling time, ts, of the height subsystem step response of the second
approach using nonlinear control.
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Figure 7.10: Step-response obtained in simulation with the controller designed for the height subsystem
of the second approach using nonlinear control.

Subsystem Closed-Loop Eigenvalues
Height {0.9072, 0.9771, 0.9870, 0.9930± 0.0117i}

Table 7.19: Discrete-time closed-loop eigenvalues of the height subsystem of the second approach
using nonlinear control.

Inner-Outer Control Loop using Feedback Linearization

Regarding the inner loop linear control, the yaw angle controller is equal to the one devised for the

first nonlinear control architecture and the control of the roll and pitch rates is designed while aiming the

same target idealized for the previous roll and pitch subsystems. Therefore, it is intended to obtain fast

angular responses in order to cope with the references generated by the outer loop.

Subsystem Q R
Roll Rate diag(6× 102, 5× 104) 1

Table 7.20: Q and R matrices used in the optimal gains computation for each angle rate subsystem.

For the Q and R matrices presented in Table 7.20, the resulting step response is depicted in

Fig. 7.11.
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Figure 7.11: Step-response obtained in simulation with the controller designed for the roll rate subsystem
of the third approach using nonlinear control.

It is overt when observing the former step response and the Table 7.21 that the predefined control

objectives were achieved.

Concerning the stability, from the Table 7.22 one notes that all eigenvalues are inside the unit circle.

Hence, the closed loop systems are stable.
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Subsystem Overshoot, Mp (%) Settling time, ts (s)
Roll Rate 0.00 0.43

Table 7.21: Overshoot, Mp, and settling time, ts, of the step response of roll rate subsystem of the third
approach using nonlinear control.

Subsystem Closed-Loop Eigenvalues
Roll Rate {0.7992, 0.9048}

Table 7.22: Discrete-time closed-loop eigenvalues of the roll rate subsystem of the third nonlinear ap-
proach.

With the controllers for the inner loop defined, the outer loop linear controllers are now obtained.

Once more, the inertial coordinates subsystems are all equal after the transformation and nonlinear

feedback and, consequently, the same controller is used for all.

The Q and R matrices specified in Table 7.23 origin the step response illustrated in Fig. 7.12.
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Figure 7.12: Step-response obtained in simulation with the controller designed for the height subsystem
of the third approach using nonlinear control.

In the Table 7.24 the characteristics of the previous step response are detailed. It is noticeable from

these results that the control design parameters outlined were achieved. Regarding the stability, the

Table 7.25 evidences that all eigenvalues are within the unit circle and thus the closed-loop systems are

stable.

Subsystem Q R
Height diag(200, 1, 20, 300) 1

Table 7.23: Q and R matrices used in the optimal gains computation for the height subsystem of the
third nonlinear control approach.

Subsystem Overshoot, Mp (%) Settling time, ts (s)
Height 0.47 3.94

Table 7.24: Overshoot, Mp, and settling time, ts, of the step response of the height subsystem consid-
ered in the third nonlinear approach.
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Subsystem Closed-Loop Eigenvalues
Height {0.9558, 0.9887, 0.9887± 0.0143i}

Table 7.25: Discrete-time closed-loop eigenvalues of the height subsystem considered in the third non-
linear approach.

7.2 Robustness to model parameters variation

In fact, since the Feedback Linearization method resorts to the system dynamics to define the control

input in furtherance of canceling nonlinear terms, this nonlinear control technique can present high sen-

sitivity to modeling errors. Similarly, this model dependency is also verified in the linear control resorted

since the gains of the Linear Quadratic Regulator controllers are obtain as solution of an optimization

process where the system dynamics impose the restrictions. Consequently, as a way to assess the

robustness of the proposed architectures, several tests were performed with variations of the mass and

inertia. The tests are conducted with significant variations of the mass and of the inertia. The references

for the position are steps with an amplitude of 3 m and the reference for the yaw angle is a ramp with a

slope of 0.1 rad · s−1.

7.2.1 Linear Quadratic Regulator with Integrative Action

Single Loop Structure

The responses obtained with the model parameters variation are depicted in Fig. 7.13. It is visi-

ble that the responses altered significantly when only a reduction in the inertia was considered. It is

important to stress that, in this case, the height response does not fulfill the control objectives. How-

ever, in general, the system demonstrated some level of robustness, since the majority of the responses

obtained complied with the requirements established.

Inner-Outer Loop Structure

The responses obtained with the model parameters variation are displayed in Fig. 7.14. It is visible

that the step responses of the inertial coordinates x and y presented negligible alterations. In fact, the

settling time varied less than 0.02 seconds and the overshoot and the static error are null in all responses.

Concerning the height response, the performance altered very slightly, with the settling time varying less

than 0.3 seconds and the overshoot less than 0.2% and the static error was kept null. Regarding the yaw

angle, the fact that the responses are indistinguishable evidences that the control performance did not

changed in the various tests conducted.

In order to deepen the analysis, larger variations of the inertia matrix were considered. The results

are presented in Fig. 7.15. This further testing allows verifying that the height and yaw responses

present an oscillatory behavior, characteristic of a marginally stable system, when a decrease of 75% is

considered for the inertia matrix values.
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Figure 7.13: Responses obtained with the first approach using only LQR in the inertia and mass variation
robustness test. From left to right, top to bottom: (a) X Inertial; (b) Y Inertial; (c) Height; (d) Yaw.
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Figure 7.14: Responses obtained with the second approach using only LQR in the inertia and mass
variation robustness test. From left to right, top to bottom: (a) X Inertial; (b) Y Inertial; (c) Height; (d)
Yaw.

Therefore, given the results obtained, the inner-outer loop structure presented a higher level of ro-

bustness when compared with the single-loop control architecture. Furthermore, although significant

changes in the model parameters were consider and the amplitude of the steps required very aggres-

sive maneuvers, the responses met the performance criteria when combined variations of 50% in the

mass and inertia were studied, which demonstrates an interesting level of robustness for a linear ap-

proach.
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Figure 7.15: Responses obtained with the second approach using only LQR in the second robustness
test considering larger variations. From left to right, top to bottom: (a) X Inertial; (b) Y Inertial; (c) Height;
(d) Yaw.

7.2.2 Feedback Linearization Control

Static Feedback Linearization with zero-dynamics stabilization

The position responses obtained with the model parameters variation are displayed in Fig. 7.16. It

is overt that the step responses of the inertial coordinates x and y presented negligible alterations. In

fact, the settling time varied less than 0.01 seconds, the overshoot did not alter more than 0.1% and

the static error is null in all responses. Concerning the height response, the performance altered very

slightly, with the settling time varying less than 0.2 seconds, the overshoot less than 0.2% and the static

error was kept null. These are very promising and important results since the performance did not

deteriorate even tough significant changes in the model parameters were consider and the amplitude of

the steps required very aggressive responses. Due to the fact that the yaw responses did not change

with the variation of the mass, the graphs displayed are for tests conducted only varying the inertia of

the quadcopter.

In order to deepen the analysis and to compare to the second linear approach, larger variations

were considered. The results are depicted in Fig. 7.17. Compared to the results obtained for the

same variations with the inner-outer loop architecture using linear control, Fig. 7.15, the static feedback

linearization applied to the altitude and attitude dynamics achieved better results. Not only the responses

remained stable, but also the control performance presented a higher consistency throughout the tests,

which is reflected in the fact that all responses respected the design criteria.

As a way to study the impact of the integrative action included, new gains for the subsystems without

this inclusion were computed. It was aimed to attain very similar responses in each subsystem in order to

establish a better comparison between the results of the robustness test. The details of this computation
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Figure 7.16: Responses obtained with the first approach using Feedback Linearization in the inertia and
mass variation robustness test. From left to right, top to bottom: (a) X Inertial; (b) Y Inertial; (c) Height;
(d) Yaw.
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Figure 7.17: Responses obtained with the first approach using Feedback Linearization in the robustness
test considering larger variations. From left to right, top to bottom: (a) X Inertial; (b) Y Inertial; (c) Height;
(d) Yaw.

are presented in Table 7.26, from which is noted that the characteristics of the step responses are almost

identical to the obtained when the integrator was embedded in each subsystem.

The responses obtained are depicted in Fig. 7.18 The absence of integrative action originated the

appearance of undesired static error, especially in the height response. Furthermore, a coupling effect

between this response variation and the other subsystems is detected and the deviations from the

responses obtained without model parameters variation are noticeable. Consequently, the outcome
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Subsystem Q R Overshoot, Mp (%) Settling time, ts (s)
Height diag(8, 7) 1 0.00 4.36

Roll diag(3× 105, 9× 103) 1 0.00 0.68
Pitch diag(3× 105, 9× 103) 1 0.00 0.68
Yaw diag(2.9× 105, 1.3× 104) 1 0.00 0.83

X Inertial diag(12, 4) 1200 1.82 3.23
Y Inertial diag(12, 4) 1200 1.82 3.23

Table 7.26: Q and R matrices used in the test without integrative action and the overshoot and settling
time of the resulting step responses.

of this robustness test evidences the important role of the integrative action in diminishing the model

dependence and in increasing the robustness of the control architecture.
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Figure 7.18: Responses obtained with the first approach using Feedback Linearization without integra-
tive action in the robustness test considering large mass and inertia variations. From left to right, top to
bottom: (a) X Inertial; (b) Y Inertial; (c) Height; (d) Yaw.

In summary, the results of the model parameters variation test for the first architecture using nonlinear

control demonstrate the robustness of this approach and the importance of the integrative component.

The control performance was roughly equal in every test, which translated in the fulfillment of the design

parameters even in cases of large variations simultaneously in the values of the mass and inertia.

Non-Interacting Control via Dynamic Feedback Linearization

Carrying out the robustness tests with the second approach using Feedback Linearization led to the

responses depicted in Fig. 7.19 and in Fig. 7.20.

Contrary to the previous architecture, with the Non-Interacting Control via Dynamic Feedback Lin-

earization a fraction of the tests conducted caused an unstable behavior. This behavior is presented in

Fig. 7.20 through the height response. By analyzing the tests displayed in Fig. 7.19, it is noted that the

performance did not deteriorate significantly when one of the model parameters in the study increased.
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Figure 7.19: Responses obtained with the second approach using Feedback Linearization in the inertia
and mass variation robustness test. From left to right, top to bottom: (a) X Inertial; (b) Y Inertial; (c)
Height; (d) Yaw.

In fact, considering only this tests, the height response varied less than 0.1% and the settling time had

a variation inferior to 0.1 seconds, which corresponds to a higher robustness to the increase of mass

than the verified in the first architecture using nonlinear control. When the system presented a stable

behaviour, the control objectives were achieved. However, in general, the non-interacting control via

dynamic feedback demonstrated a higher level of control performance worsening than the verified for

the architecture with the static feedback inner loop.
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Figure 7.20: Unstable height responses obtained with the second approach using FL in the inertia and
mass variation robustness test.

Inner-Outer Control Loop using Feedback Linearization

Finally, by extending the robustness tests to the last architecture derived, the responses depicted in

Fig. 7.21 and in Fig. 7.22 are obtained.

This architecture exhibited robustness to increases of the mass and inertia since the design parame-

ters were fulfilled even in situations of simultaneous increases in these two model parameters. Similar to

the former architecture, the control structure did not present robustness to all the variations under study.
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Figure 7.21: Responses obtained with the third approach using Feedback Linearization in the inertia
and mass variation robustness test. From left to right, top to bottom: (a) X Inertial; (b) Y Inertial; (c)
Height; (d) Yaw.

Nonetheless, the height response did not vary its overshoot more than 0.2% and its settling time more

than 0.5 seconds in all of this tests, even though the other position responses demonstrated an unstable

behavior under certain variations. Overall, the results indicate a level of robustness inferior to the one

displayed by the first nonlinear control approach.
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Figure 7.22: Responses obtained with the third approach using Feedback Linearization in the robustness
tests that resulted in unstable behaviour. From left to right, top to bottom: (a) X Inertial; (b) Y Inertial; (c)
Height; (d) Yaw.
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7.3 Estimation

The complementary filters, designed in subsection 6.1.1, are applied in this section. The resulting

estimates are evaluated considering the maximum error. The attitude filters resorted are not evaluated

since they were developed and experimentally validated in other works.

From real sensor data that was acquired while fixing the drone position and while subjecting the

propellers to the PWM commands required for hovering (see Appendix A), the variances of the mea-

surement noises were computed. The values obtained are detailed from Table 7.27 to Table 7.29.

Moreover, for the position and acceleration measurements, the variances presented correspond to the
KR considered in the Kalman filters. The matrix KQ was used as a tuning parameter.

x y z

1.25× 10−9 1.51× 10−9 1.18× 10−6

Table 7.27: Variances (m) considered in the position measurement noise included in the nonlinear
model.

Bax
Bay

Baz

1.87× 10−5 3.62× 10−5 1.08× 10−5

Table 7.28: Variances (m · s−2) considered in the accelerometer measurement noise included in the
nonlinear model.

p q r

6.54× 10−4 2.82× 10−4 2.04× 10−4

Table 7.29: Variances (rad · s−1) considered in the gyroscope measurement noise included in the non-
linear model.

7.3.1 Velocity Estimation

For the estimation of the inertial velocities, the matrices KQ detailed in Table 7.30 were considered.

Estimate ̂̇x ̂̇y ̂̇z
KQ diag(1× 10−8, 25× 10−4 diag(1× 10−8, 25× 10−4) diag(25× 10−8, 4× 10−4)

Table 7.30: KQ considered in the inertial velocities estimation.

The estimates can be evaluated through Fig. 7.23 and Fig. 7.24. From the low maximum error ob-

tained is possible to conclude that the filters designed demonstrate a good level of precision. Moreover,

the performance of the estimator when the velocity rapidly varied is highly satisfactory, which is a char-

acteristic of paramount importance.

77



0 10 20 30 40 50 60 70 80 90

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Estimation

True

0 10 20 30 40 50 60 70 80 90

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Estimation

True

0 10 20 30 40 50 60 70 80 90

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Estimation

True

Figure 7.23: Comparison between the velocities obtained in simulation and the estimated. From left to
right, top to bottom: (a) ẋ; (b) ẏ; (c) ż.
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Figure 7.24: Absolute error obtained in the estimation of the inertial velocities. From left to right, top to
bottom: (a) eẋ; (b) eẏ; (c) eż.

7.3.2 Jerk Estimation

For the estimation of the third derivatives of the position, the matrices KQ detailed in Table 7.31 were

used.

The accelerometer measurements are more corrupted by noise than the position observations. Con-

sequently, jerk estimation is more difficult than reconstructing the inertial velocities.
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Estimate x̂(3) ŷ(3) ẑ(3)

KQ diag(1× 10−6, 9× 10−4) diag(4× 10−6, 16× 10−4) diag(1× 10−6, 9× 10−4)

Table 7.31: KQ considered in the jerk estimation.

To establish a comparison, in Fig. 7.25 the jerk obtained in simulation is plotted with the reconstructed

with the filter. It is visible that the third derivative of the position is far more corrupted by noise, this is due

to the amplification of the acceleration noise originated by being differentiated. Nonetheless, the filters

demonstrate the ability to correctly estimate the third derivative, which is sustained by the absolute error

displayed in Fig. 7.26.
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Figure 7.25: Comparison between the jerk obtained in simulation and the estimated. From left to right,
top to bottom: (a) x(3); (b) y(3); (c) z(3).

7.4 Trajectory Tracking

To evaluate the performance of the proposed control architectures, a trajectory was created and

given as a reference for the subsystems. This trajectory is defined with a constant yaw angle equal to

zero and, excluding the take-off, is formed by rectilinear sections, with a constant velocity of 0.05 m · s−1,

and semicircular sections, with a constant angular velocity of 0.05π rad · s−1.

In an effort to approximate even more the simulation to the actual quadcopter and to account and

study the impact of the noise of the sensors, noise disturbances were included in the nonlinear model.

These disturbances were modeled as zero-mean Gaussian white noise with the variances detailed in

Table 7.27 to Table 7.29.
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Figure 7.26: Absolute error obtained in the estimation of jerk. From left to right, top to bottom: (a) ex(3) ;
(b) ey(3) ; (c) ez(3) .

7.4.1 Linear Quadratic Regulator with Integrative Action

Starting with the linear approaches, from the observation of the Fig. 7.27, it can be concluded that

the control structures implemented allow a good following of the trajectory. The time responses have

a steady-state error for references with constant velocity, which was predictable since the integrator

included in the control structure only has the capacity to eliminate the steady-state error for constant ref-

erences. Notwithstanding, once the ramp references are followed up by constant inputs, the responses

converge without error to the desired coordinate. It is important to emphasize that the noise insertion

did not cause relevant perturbations in the position responses.
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Figure 7.27: Responses obtained during trajectory tracking in simulation with the linear control ap-
proaches. From left to right, top to bottom: (a) Trajectory Tracking in 3D space; (b) X Inertial; (c) Y
Inertial; (d) Height.
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In fact, the two control approaches did not present relevant differences so far. However, by analyzing

the angular responses depicted in Fig. 7.28, one notes that the single loop architecture led to a slightly

more oscillatory roll and pitch responses. Concerning the yaw angle, due the fact that the same controller

was used in both structures, the response is equal.
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Figure 7.28: Euler angles responses obtained during trajectory tracking in simulation with the linear
control approaches. From left to right: (a) Roll; (b) Pitch; (c) Yaw.

The forces and moments computed during the trajectory are depicted in Fig. 7.29. The smaller roll

and pitch moments required along the trajectory, when comparing the double-loop approach with the

single-loop control strategy, corroborate not only the idea of the former architecture to have a more

efficient angular response that the latter, but also the idea of the inner-outer loop being less impacted by

measurement noise. In the real system, once the perturbations can possibly be larger, the importance

of this inner loop in obtaining a smoother flight is even more evident.
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Figure 7.29: Forces and moments computed during trajectory tracking in simulation with the linear
control approaches. From left to right, top to bottom: (a) Thrust; (b) Roll Moment; (c) Pitch Moment; (d)
Yaw Moment.

7.4.2 Feedback Linearization Control

The trajectory tracking capacity of the Feedback Linearization based control structures is now eval-

uated. From the position responses obtained, displayed in Fig. 7.30, one can state that the control

architectures implemented enabled a good following of the trajectory. Once again, the static error for

references with constant velocity is present. However, due to the fact that these solutions are faster than
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the linear approaches developed, the error is inferior to the previously verified. Furthermore, is equally

relevant to stress that the noise insertion did not cause relevant perturbations in these responses.
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Figure 7.30: Responses obtained during trajectory tracking in simulation with the nonlinear control ap-
proaches. From left to right, top to bottom: (a) Trajectory Tracking in 3D space; (b) X Inertial; (c) Y
Inertial; (d) Height.

Concerning the attitude, Fig. 7.31, the roll and pitch angles responses are less impacted by corrupted

measurements with the Non-Interacting Control solution. These results are explained by the fact that

the transformed inputs of this solution are computed without considering either the angular velocity nor

the Euler rates, which are the variables corrupted by the noise with higher variance.

Since the nonlinear control has faster responses, obtaining higher maximum angle values, com-

paratively with the linear control solutions, was expected. Note that this is easily verified in the pitch

response once it is the most solicited angle during the trajectory. The control structure with the Static

FL applied to the inner loop presents an angular response less affected by the noise inserted than the

linear approaches presented in the former subsection. Thus, the application of nonlinear control to the

attitude dynamics seems to present better results. On the other hand, the inner-outer control loop using

FL is undoubtedly the most affected by the noise, regarding the angular responses, between the five

architectures tested.
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Figure 7.31: Euler angles responses obtained during trajectory tracking in simulation with the nonlinear
control approaches. From left to right: (a) Roll; (b) Pitch; (c) Yaw.

The forces and moments computed during the trajectory are displayed in Fig. 7.32. These graphs

corroborate the idea of the Dynamic FL solution being the control structure that originate the responses
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less impacted by the noise. Furthermore, establishing a comparison between the nonlinear and the liner

architectures, from the point of view of the actuation, the single loop linear control structure is the most

influenced by the noise considered.
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Figure 7.32: Forces and moments computed during trajectory tracking in simulation with the nonlinear
control approaches. From left to right, top to bottom: (a) Thrust; (b) Roll Moment; (c) Pitch Moment; (d)
Yaw Moment.

Finally, the root-mean-square error obtained with the control architectures tested is presented in

Table. 7.32. It is noticeable that the nonlinear control approaches achieved smaller root-mean-squared

values.

x (m) y (m) z (m) ψ (◦)

Single Loop 0.0812 0.0631 0.0480 0.0302
Inner-Outer Loop 0.0814 0.0633 0.0479 0.0302
Inner SFL Loop 0.0666 0.0508 0.0386 0.0216

DFL 0.0676 0.0519 0.0449 0.0216
Inner-Outer FL 0.0599 0.0459 0.0398 0.0216

Table 7.32: Root-mean-square error obtained in simulation.
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Chapter 8

Experimental Results

In this chapter are discussed aspects regarding the implementation and presented and analyzed

experimental results.

Since the simulation allowed to assess the most promising approaches and once testing all strategies

developed would be very time-consuming, one linear and one nonlinear control strategies were chosen

to test in the actual UAV. Thereby, a comparison between the linear and nonlinear control approaches

is possible. This selection is based not only on the results presented in the trajectory following but

also on the robustness to model parameters variation. Consequently, for the linear approach, the inner-

outer loop control structure using LQR with integrative action was opted and, for the nonlinear control,

the strategy selected was the static feedback linearization with zero-dynamics stabilization. The ”Inner-

Outer Control Loop using Feedback Linearization” approach presented slightly lower root-mean-squared

error in the trajectory tracking when compared with the static feedback linearization approach. However,

the later presents a higher level of robustness and is computationally less demanding, given its reduced

number of calculations. For this reason, the later was opted instead.

The experimental tests consist of evaluating the capacity of the quadcopter, with the control devel-

oped, to perform the trajectory considered in the simulation. The control and estimation solutions were

implemented with a sampling time of 0.01 seconds. Posteriorly, comparisons between the experimen-

tal and the simulation results are drawn. Histograms of the position and yaw angle tracking error are

presented to deepen the analysis.

8.1 Implementation

In order to implement the control structure in the quadrotor, the ”AR Drone 2.0 Quadcopter Embed-

ded Coder” developed by [67] was used. This Simulink project enables direct access to the sensors

and the actuators of the quadcopter. The inertial position of the vehicle is provided by a motion capture

system [68].

In Fig. 8.1, the connections established between the computer running the Qualisys Track Manager

(QTM), the host computer, where the Simulink model is compiled, and the hardware board of the UAV
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are summarized. The computer where the QTM is running transmits the data, at a rate of 100 Hz,

through an ethernet cable to the host computer using the User Datagram Protocol (UDP) and has the

port 9091 as the endpoint of communication. The data received is sent through a Wi-Fi connection to the

port 6000 of the quadrotor also using the UDP as the transport layer. The Simulink model is compiled to

C-Code before being executed and a binary file, possible to run on the operating system of the quadrotor,

is generated and deployed to the hardware board. A wireless File Transfer Protocol (FTP) connection to

the port 5551 assures the deployment. An additional Transmission Control Protocol (TCP) connection

to the port 23 of the vehicle is created to send string commands. The indications are given to clear

old executable files and to manage permissions. The Simulink model on the host computer is executed

in normal mode; therefore, to the purpose of sending the take-off/land and emergency commands, the

UDP connection on port 6000 is used. The quadcopter sends the flight data in real-time through a UDP

connection that uses the port 6001 of the host computer as the endpoint of communication. The UDP

connections enable real-time communication with the generated code deployed to the hardware board.

The IP addresses and the ports used are schematically represented in Fig. 8.1.

Host Computer

 IP: 192.168.1.1

Port: 6000

IP: 192.168.1.2
    Port: 6001

AR.Drone 2.0

IP: 169.254.54.38
     Port: 9091

     Wi-Fi Connection

Ethernet Connection

Port: 23   Port: 5551

IP: 169.254.54.27

Qualisys

Figure 8.1: Network Diagram describing the connections between the computer running the Qualisys
Track Manager, the host computer and the UAV.

The control techniques and the estimation approaches considered were implemented in the Embed-

ded Coder Simulink environment. The structure of the resulting control software designed is displayed

in Fig. 8.2.

As was previously stated, communication in real-time with the quadrotor relies on UDP connections.

Thereby, the blocks ”UDP Receiver” and ”UDP Sender” are accountable for these connections. The

first block receives the x and y inertial coordinates, flight instructions and position and yaw references.

The flight instructions correspond to indications to take-off or land and to an emergency flag. This block

operates at 200Hz to minimize data loss. To send the state-variables and PWM commands to the host

computer the second block is used. These indications affect after the first 10 seconds, in which not only

the correction of the sensor measurements takes place but also the convergence of the estimators.

The ”IMU Sensors” block outputs a bus signal directly from the IMU board containing multiple mea-

surements. Since the IMU board operates at 200 Hz, a higher sampling rate, 400 Hz, was defined in

this block in furtherance of avoiding the fragmentation of data due to the loss of packets. This block

outputs, additionally, a checksum flag that indicates an error in the transmission of the data when it is 1

and indicates success when is 0. Posteriorly, the signals mentioned above are processed, filtered and

used in the estimations. The pre-processing, in short, corresponds to the calibration and the removal of
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Figure 8.2: Structure of the control software implement in Simulink that originates the binary file deployed
to the UAV operating system.

the offsets of the sensor measurements. Afterwards, the gyroscope, accelerometer and magnetometer

measurements are filtered using Kalman filters. After the filtering, these vectors are used in the estima-

tion of the Euler angles, resorting to one of the attitude filters described in section 6.2. The velocities

are also estimated in this block, using for this end the Kalman filters designed in 6.1.1.

The control law is applied in the “Control Law / PWM Computation” block, whose inputs are the

state-variables, obtained from sensory data and estimation, and the references, yielding the thrust and

moments required. The resultant control vector is subsequently transformed into PWM Commands using

the formulas detailed in Appendix A.

The “PWM Logic” block manages the after-effect of the application of the control law by considering

the flight instructions received from the host computer. When the emergency command is 0 and the

take-off signal is 1, the PWM commands sent to the motors are equal to the computed in the previous

block. If the emergency command is equal to 1, a vector of zeros is sent to the motors to stop the flight

immediately. Finally, if the take-off signal is equal to 0, the PWM commands are reduced progressively

to land the UAV smoothly.

The “Motors” block converts the four PWM values arising from the “PWM Logic” block into a 40-bit

number that is fed to the controllers of the rotors. Additionally, it outputs a GPIO ERROR signal that

is 1 when the propellers are blocked, causing the “Stop” block to terminate the control software, and 0

otherwise.

8.2 Linear Approach

The experimental results obtained with the selected linear control approach are now presented and

discussed. The trajectory tested is equal to the simulated one and, by observing Fig. 8.3, it is possible to

verify a good tracking by the quadrotor. It is important to stress that the take-off is present in the results

depicted and that the altimeter does not measure heights inferior to 30 cm.
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Figure 8.3: Trajectory tracking in 3D space obtained with the selected linear control approach.

The controllers had to be adjusted when implemented in the UAV. The matrices Q and R used in

this adjustment are detailed in Table. 8.1.

Subsystem Q R

Yaw diag(18, 2, 2) 30
X Position diag(3, 1, 2) 300
Y Position diag(3, 1, 2) 500

Height diag(3, 1, 1) 1

Table 8.1: Q and R matrices used in the adjustment of the linear controllers implemented in the UAV.

This new set of controllers was also used for generating new simulation responses to compare with

the experimental results. By comparing the UAV results and the simulation responses displayed in

Fig. 8.4, the similarities between them are manifest, which indicates that the nonlinear model considered

possesses a satisfactory degree of proximity. Note that, for the yaw angle case, only the reference and

the quadrotor response are depicted since the simulation presented residual error and, consequently,

considering the scale used, would be indistinguishable from the reference.

For attitude estimation, the Madgwick attitude filter was considered in this approach. The tuning

parameter β used was 0.05. The roll and pitch angles estimated during the take-off and the following of

the trajectory are depicted in Fig. 8.5. It is noticeable that these angles presented reduced values during

the totality of the experimental test. Hence, the small angle approximation considered in the linearization

of the dynamics was verified, which contributed to attaining a good performance overall with the linear

control implemented.

The thrust force and moments computed by the control structure are shown in Fig. 8.6. A heavier

battery was used in the tests, leading to higher values of thrust. Nonetheless, despite this change

in the total mass of the UAV, since the integral action was included, the results did not deteriorate.

88



0 20 40 60 80 100 120 140 160 180 200

-2

-1.5

-1

-0.5

0

0.5

1

Reference

UAV

Simulation

0 20 40 60 80 100 120 140 160 180 200

-2

-1.5

-1

-0.5

0

0.5

1

Reference

UAV

Simulation

0 20 40 60 80 100 120 140 160 180 200

-1

-0.5

0

0.5

1

1.5

2

Reference

UAV

Simulation

0 20 40 60 80 100 120 140 160 180 200

-5

-4

-3

-2

-1

0

1

2

3

4

5

Reference

UAV

Figure 8.4: Responses obtained during trajectory tracking in simulation and in the experimental tests
with the selected linear control approach. From left to right, top to bottom: (a) X Inertial; (b) Y Inertial;
(c) Height; (d) Yaw.

0 20 40 60 80 100 120 140 160 180 200

-5

-4

-3

-2

-1

0

1

2

3

4

5

UAV

0 20 40 60 80 100 120 140 160 180 200

-5

-4

-3

-2

-1

0

1

2

3

4

5

UAV

Figure 8.5: Roll and pitch angles responses obtained during trajectory tracking in experimental test using
the selected linear control approach. From left to right: (a) Roll; (b) Pitch.

Regarding the moments, the higher values were required when the position control was activated, since

the quadcopter had to compensate for the positional drift that occurred during the take-off. Throughout

the tracking, due to the trajectory not being aggressive, the actuation did not present abrupt variations.

From Fig. 8.7, where the PWM commands are displayed, one notes that the actuation did not saturate

during the take-off and the trajectory tracking.

The root-mean-square error for the trajectory tracking in simulation an in the real system is detailed in

Table. 8.2. The height response obtained with the quadrotor has almost the same error that was obtained

in simulation, whereas the other subsystems showed a forecastable increase in the real system due to
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Figure 8.6: Actuation during experimental test with the selected linear control approach. From left to
right, top to bottom: (a) Thrust; (b) Roll Moment; (c) Pitch Moment; (d) Yaw Moment.
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Figure 8.7: PWM Commands computed during trajectory tracking with the selected linear control ap-
proach.

the discarding of the higher order dynamics effects. In general, the errors were kept under reasonable

values with the transition to the drone.

x (m) y (m) z (m) ψ (◦)

Simulation 0.0865 0.0714 0.0556 0.0295
Experimental 0.1010 0.0781 0.0570 0.2244

Table 8.2: Root-mean-square error obtained in simulation and in the experimental test with the selected
linear control approach.
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The histograms of the absolute error for the inertial coordinates and the yaw angle during the tracking

of the trajectory (initiates at 20 seconds) are presented in Fig. 8.8. Even though the deviations are larger

in the real system, they are still considered reduced. The local maxima visible in the position histograms

are a consequence of the static error in the following of ramp inputs. Nevertheless, the maximum

instances of error for all of these coordinates correspond approximately to zero, which is symptomatic

of the capacity of the control system to maintain these coordinates at a constant value. The inertial

coordinate x presented the higher deviations, which was expected since that was the subsystem more

solicited. The values of the yaw angle obtained demonstrate that the goal defined for this Euler angle

was achieved.

Figure 8.8: Absolute error histograms obtained with the selected linear control approach. Left to right,
top to bottom: (a) X Inertial; (b) Y Inertial; (c) Height and (d) Yaw.

8.3 Nonlinear Approach

Implementing the static feedback linearization with zero-dynamics stabilization led to the experimen-

tal results that are exhibited and discussed in this subsection. Through observation of Fig. 8.9, one

notices that this approach achieved a successful tracking of the predefined trajectory. Similar to the lin-

ear control results, the take-off is displayed as well and the previously referred saturation of the altimeter

measurements is also evident.

The first attitude controllers designed in simulation led to an oscillatory behavior in the actual aerial

vehicle. In furtherance of correcting this issue, the third diagonal entry of the matrix Q was reduced

so the integral of the error would not be so penalized in the cost function and could achieve slightly

bigger values. The remaining diagonal entries were adjusted while targeting the fulfillment of the simu-

lation design criteria. Concerning the outer loop control, tests before the trajectory tracking experiment

demonstrated the need to decrease the penalization considered in the quadratic cost function associated
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Figure 8.9: Trajectory tracking in 3D space obtained with the selected nonlinear control approach.

Subsystem Q R

Roll diag(7.5× 103, 20, 2× 105) 1
Pitch diag(7.5× 103, 20, 2× 105) 1
Yaw diag(7.5× 103, 50, 1× 105) 1

X Position diag(5, 1× 10−3, 40) 2× 103

Y Position diag(5, 1× 10−3, 40) 2× 103

Table 8.3: Q and R matrices used in the adjustment of the controllers of the selected nonlinear approach
implemented in the UAV.

with the velocity. New simulations responses were obtained with these new controllers in furtherance

of comparing with the experimental results. In Fig. 8.10, the simulation and experimental responses

are depicted. Identically to the linear control approach, similarities between the two results are evident,

demonstrating once more the proximity between the nonlinear model developed and the actual system.

For attitude estimation, the nonlinear attitude filter proposed by João Madeiras [66] was implemented

in this approach. The filters parameters used are equal to the reported in his work [66]. The roll and

pitch angles estimated during the take-off and the following of the trajectory are depicted in Fig. 8.11.

The thurst force and moments computed by the control structure are shown in Fig. 8.12. Once

again, a heavier battery was used, leading to higher values of thrust, and the integral action was able to

overcome this change.

In order to compare the actuation computed by each control scheme implemented, the variance of

the resulting force and moments is computed. To this end, the control actions are smoothed resorting

to a moving-average with a sliding window of 400 points. Then, these smoothed signals are subtracted

from the forces and moments to extract the variations. Finally, the variance of the computed difference

for each actuation is obtained. From Table 8.4, one verifies that the nonlinear control origins thrust and

moments with lower variance than the linear control considered.
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Figure 8.10: Responses obtained during trajectory tracking in simulation and in the experimental tests
with the selected nonlinear control approach. From left to right, top to bottom: (a) X Inertial; (b) Y Inertial;
(c) Height; (d) Yaw.
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Figure 8.11: Roll and pitch angles responses obtained during trajectory tracking in experimental test
using the selected nonlinear control approach. From left to right: (a) Roll; (b) Pitch.

Control Approach T (N) τϕ (N ·m) τθ (N ·m) τψ (N ·m)

Linear 1.50× 10−3 4.47× 10−5 3.20× 10−5 3.81× 10−5

Nonlinear 1.30× 10−3 5.92× 10−6 9.99× 10−6 2.62× 10−5

Table 8.4: Variance of the Thrust and Moments computed by each control approach implemented in the
quadcopter.

From Fig. 8.13, is visible that the PWM commands did not saturate during the experimental test.

The root-mean-square error for the trajectory tracking in simulation an in the real system obtained
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Figure 8.12: Actuation during the experimental test with the selected nonlinear control approach. From
left to right, top to bottom: (a) Thrust; (b) Roll Moment; (c) Pitch Moment; (d) Yaw Moment.
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Figure 8.13: PWM Commands computed during trajectory tracking with the selected nonlinear control
approach.

with the nonlinear control approach is detailed in Table. 8.5. Compared to the linear control implemented,

it is noticeable that the error decreased with the application of the static feedback linearization technique

to the altitude and attitude dynamics. Furthermore, this nonlinear method enabled achieving experi-

mental results more similar to the simulation. The improvement achieved with the nonlinear control is

partly due to the faster position responses, which has as a consequence lower steady-state error in the

following of ramp inputs.

By analyzing the histograms of the absolute error for the inertial coordinates and the yaw angle
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x (m) y (m) z (m) ψ (◦)

Simulation 0.0632 0.0482 0.0385 0.0223
Experimental 0.0666 0.0518 0.0394 0.1715

Table 8.5: Root-mean-square error obtained in simulation and in the experimental test with the selected
nonlinear control approach.

during the tracking trajectory (initiates at 20 seconds) displayed in Fig. 8.14, it is noted that a higher

number of approximately zero absolute error instances was obtained with the second control approach

implemented. Moreover, as a result of presenting faster responses, this approach has the local maxima

of the histograms closer to zero than the previous control structure considered. Analogously to the

inner-outer control using LQR with integrative action, the response with more deviations is the inertial

coordinate x and the one with less is the height, which is the affected at the smallest scale by unmodelled

high-order effects. Overall, the implementation of the static feedback linearization inner-loop improved

the tracking performance of the control structure, not only attaining the objectives but also leading to

better results.

Figure 8.14: Absolute error histograms obtained with the selected nonlinear control approach. Left to
right, top to bottom: (a) X Inertial; (b) Y Inertial; (c) Height and (d) Yaw.
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Chapter 9

Conclusions

The work developed throughout this thesis aimed to provide solutions to full control a quadcopter.

Linear and nonlinear techniques were applied to tackle this problem, with different architectures being

studied and devised for each technique. The developed strategies were all tested in simulation, which

allowed to determine the most auspicious. The selected approaches were successfully validated in a

commercially available quadcopter.

The dynamical model of the UAV considered, obtained resorting to the Newton-Euler formalism,

proved to be accurate and sufficient, even though higher order effects were neglected. The first solution

presented consists of an inner-outer loop control structure, constituted by linear quadratic controllers with

integrative action whose design relied on the linearization of the nonlinear dynamics, an attitude filter,

based on an optimized gradient-descent algorithm, and Kalman filters to estimate the velocities. The

second solution conceived, in terms of control, results from the application of Feedback Linearization

to the attitude and altitude dynamics and has its horizontal movement controlled resorting to an LQR-

based outer-loop with integrative action. Concerning the estimation, this solution relies on Kalman filters

to estimate the Euler angles and the velocities. These two strategies correspond, respectively, to the

linear and nonlinear control structures that presented better results in the simulation tests conducted.

Both schemes demonstrated the capacity to seamlessly follow a predefined trajectory in the presence of

measurement noises in simulation. Furthermore, in the robustness test to model parameters variation,

the first architecture was able to meet the performance criteria when simultaneous variations of 50% in

the mass and inertia were considered, which constitutes an interesting level of robustness for a linear

approach. The nonlinear solution was capable of handling variations of 50% in the mass together with

inertia values four times lower and four times higher than the value considered in the model without

considerably affecting its responses. Further tests, in which the integrative action was removed from the

architecture of the nonlinear strategy, evidenced the critical role of this action in diminishing the model

dependence and in increasing the robustness of the control architecture.

Both control solutions were successfully implemented on an off-the-shelf quadrotor. The results

obtained in trajectory tracking validated the proposed strategies and, given the manifest similarities be-

tween the attained responses with the actual aerial vehicle and in simulation, evidenced the satisfactory
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degree of accuracy of the nonlinear model considered. The integrative action present in both architec-

tures led to null steady-state position error, even when a heavier battery was used. The small angle

approximation considered in the linearization of the dynamics was verified, which contributed to achiev-

ing good overall performance with the linear controller. Notwithstanding, the application of the static

feedback linearization to the attitude and altitude dynamics improved the performance since the ob-

tained position and yaw angle error was inferior compared with the obtained with the first solution. The

highest root-mean-square error obtained with the linear approach was 0.1010 m, for the x inertial coordi-

nate and, with the nonlinear control scheme, was 0.0666 m, verified for the same coordinate. Moreover,

the second control scheme originated an actuation with less variation than the first solution.

In summary, the primary objective of this work was achieved. Two different control solutions, using

linear and nonlinear methods, capable of following a predefined trajectory and presenting null steady-

state position error and a reasonable level of robustness to model imprecision, uncertainty and distur-

bances, were successfully devised, tested in simulation and validated in experimental tests resorting to

a commercially available quadcopter.

9.1 Future Work

In the interest of proceeding with the work developed during this thesis, the future work should not

only focus on extending the capacities of the proposed solutions but also on improving the results. Elim-

inating the steady-state velocity error and applying sliding mode control simultaneously with Feedback

Linearization, thus increasing the robustness and dealing more effectively with disturbances, are some

possibilities that can enhance the solutions proposed.

Disturbances and actuators saturation, for instance, can be equated in the formulation of the problem

and defining a Lyapunov function in order to prove stability can be explored.

Ultimately, the future work must aim outdoor flight through a versatile nonlinear control solution that

only relies on onboard sensors. In furtherance of achieving this goal, a reliable optical flow has to be

implemented and the disturbance rejection capacity of the control structure should be improved.
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Appendix A

PWM Commands Computation

The Parrot AR.Drone 2.0 has four rotors that are respectively driven by four motors, generating forces

and moments that are applied to the body of the quadrotor. The angular velocity of these motors are

controlled by an electronic speed controller that receives Pulse Width Modulation (PWM) signal [69].The

PWM Commands are computed from the Thrust and Moments that result from the control law and range

from 0 to 100%.

In order to determine the referred relations, an experiment, similar to the one conducted in [48],

was performed. As a result, for each rotor, the thrust generated with PWM commands ranging from 0

to 100% with increments of 5% was computed. From the previous works followed, one notes that the

relation between the PWM command and the Thrust generated by a rotor is quadratic. Therefore, a

second-order polynomial was used to approximate the trends of each data set. The fitting is displayed

in Fig. A.1, from which is noted that slightly different results were achieved for each rotor.


T1

T2

T3

T4

 =


1.1400× 10−4 · PWM2

1 + 1.0180× 10−2 · PWM1 + 6.5833× 10−2

1.1544× 10−4 · PWM2
2 + 7.7509× 10−3 · PWM2 + 9.5961× 10−2

1.2605× 10−4 · PWM2
3 + 9.2952× 10−3 · PWM3 + 7.2140× 10−2

1.3045× 10−4 · PWM2
4 + 7.5567× 10−3 · PWM4 + 8.2877× 10−2

 (A.1)

where PWMi denotes the PWM commands sent to the rotor i. Concerning the yaw moments τψi , since

the experiment is more complicated to be performed and requires extra tools that were unavailable, the

equations presented in [69] were considered. Note that the quadrotor used in this work is also the Parrot

AR. Drone 2.0. Hence, these relations will not differ significantly. The formulas for each rotor that relate

the generated yaw moment with the PWM commands received are the following:


τψ1

τψ2

τψ3

τψ4

 =


3.4103× 10−6 · PWM2

1 + 1.9283× 10−4 · PWM1 + 1.3043× 10−3

2.9756× 10−6 · PWM2
2 + 3.8093× 10−4 · PWM2 + 5.1923× 10−3

4.5795× 10−6 · PWM2
3 + 3.1301× 10−4 · PWM3 + 2.3996× 10−3

7.2886× 10−6 · PWM2
4 + 1.2779× 10−4 · PWM4 + 4.6184× 10−3

 (A.2)

From equation 3.7, one notes the linearity between the yaw moment and the thrust generated by
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Figure A.1: Thrust computed for each PWM command that each rotor was subjected along with the
quadratic fitting. From left to right, top to bottom: (a) Rotor 1; (b) Rotor 2; (c) Rotor 3; (d) Rotor 4.

a rotor. Thus, in order to determine the constants ci, for an interval of PWM commands ranging from

60% to 90%, the referred force and moment were computed using the previous equations. This interval

was considered since during a stable flight the PWM commands are within it. By approximating the set

of points obtained by a linear function that crosses the origin, the constants detailed in Table A.1 were

attained.

c1 c2 c3 c4
0.02915 0.03594 0.04062 0.03892

Table A.1: ci obtained with the linear fitting

Since the control system computes the moments and thrust required to cope with the references

given, the necessity to obtain the PWM commands from these quantities arises. Therefore, by inverting

the matrix present in (3.8), the thrust that each rotor has to provide is calculated. Subsequently, using

the set of experimentally determined equations Ti = āiPWM2
i + b̄iPWM i + c̄i, is possible to extract the

PWM values through the expression:

PWM i =
−b̄i +

√
b̄2i − 4āi (c̄i − Ti)

2āi
(A.3)

With the equations derived is possible to determine the PWM commands necessary for hovering:
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T1

T2

T3

T4

 =


1 1 1 1

L −L −L L

−L −L L L

c1 −c2 c3 −c4



−1 
mg

0

0

0

 =


1.282

0.974

1.282

0.974

 (N) (A.4)


PWM1

PWM2

PWM3

PWM4

 =


63.3175

65.0246

63.3731

63.4722

 (%) (A.5)
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