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Abstract

The fourth industrial revolution, Industrie 4.0, motivates research to adapt concepts from Internet of

Things and Services and Cyber-Physical Systems to automation. Focus is placed on integrating all data

sources from sensors and actuators to management software, to achieve interoperability of heteroge-

neous systems.

To assure data integration, one should decide on a data acquisition architecture that guarantees data

access from all systems, including legacy devices, allowing companies to gradually evolve to Industrie

4.0 deployments. A middleware-based architecture is a valid answer to the presented challenges.

There is a substantial number of communication technologies implemented in middleware systems,

with different specifications and advantages. A technology-independent implementation ensures that

migration between communication protocols is eased and makes the architecture more robust and ade-

quate for numerous use-cases.

Two hypotheses are proven in this thesis: a middleware-based data acquisition architecture can be

conceptualised and implemented independently of the communication technology; and such implemen-

tation ensures a reduction in complexity and effort, when compared with a peer-to-peer legacy approach.

With this thesis, five main contributions are presented. First, a new communication technology, one

that abstracts other protocols to ensure technology independence, is created. Following, the concept of

a technology-independent data acquisition architecture was created, with its successful implementation

being the third contribution. A complexity and effort comparison was done, proving that the developed

architecture as lower concept complexity and requires less deployment and migration effort than a legacy

approach. The last contribution is a comparison of relevant communication technologies in the field of

automation.

Keywords:
Industrie 4.0, Automated Production Systems, Industrial Internet of Things, Middleware Technologies,

Data Acquisition Architecture, Communication Technologies
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Resumo

A quarta revolução industrial, Industrie 4.0, assenta na adaptação, à área da automação, de conceitos

das áreas de Internet das Coisas e Serviços e de Sistemas Ciber-Fı́sicos. A integração de fontes

de dados, desde sensores e actuadores, até programas de gestão, revela-se prioritária para obter

interoperabilidade.

Para optimizar a integração de informação e permitir que as empresas evoluam gradualmente para

a Industrie 4.0, uma arquitectura de aquisição de dados deve garantir acesso a todos os sistemas,

incluindo antigos, o que pode alcançar-se baseando-a em middleware.

Existem diversas tecnologias de comunicação implementadas em sistemas de middleware com

diferentes caracterı́sticas. Uma implementação independente da tecnologia facilita a migração entre

essas tecnologias, tornando a arquitectura mais robusta e flexı́vel.

No estudo efectuado comprovaram-se duas hipóteses: que pode ser conceptualizada e implemen-

tada uma arquitectura de aquisição de dados independente da tecnologia de comunicação e que tal

implementação permite uma efectiva redução em complexidade e esforço, comparada com uma abor-

dagem clássica ponto-a-ponto.

Concluı́do o estudo, extraem-se cinco contribuições. Em primeiro lugar, a criação de uma nova

tecnologia de comunicação que permite abstrair diferentes protocolos e garante a independência da

tecnologia. A conceptualização de uma nova arquitectura de aquisição de dados independente da tec-

nologia e a sua implementação, com sucesso, representam as duas contribuições seguintes. A quarta

é a demonstração de que a arquitectura é conceptualmente menos complexa e requer menor esforço

de implementação e migração, comparando-a com uma implementação clássica. A última contribuição

consiste numa comparação entre tecnologias de comunicação relevantes para a automação.

Palavras-chave:
Indústria 4.0, Sistemas de Produção Automatizados, Internet das Coisas Industrial, Tecnologias de

Middleware, Arquitectura de Aquisição de Dados, Tecnologias de Comunicação
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Chapter 1

Introduction

Advancements in different technological areas, such as Internet of Things and Services and Cyber-

Physical Systems (CPS), are on the origin of the next industrial revolution: Industrie 4.0 [1]. With the

vision of improving production while ensuring consumer customized goods, this revolution relies on the

achievement of important goals.

One of the important objectives in Industrie 4.0, and the one in focus in the present work, is data

integration. This can be achieved by the use of communication architectures, defined by Trunzer et

al. as ”the description of the overall system layout based on principles and rules in order to describe

its construction, enhancement and usage” [2]. Much of these architectures are based in a Message-

Oriented Middleware (MOM), a system that works as a middle layer between the different components

of the distributed system, abstracting communications while making interoperability possible [3].

A MOM for Automated Production Systems (aPSs) must respect some requirements, discussed in

different scientific publications. Focus is given on one: middleware implementation independent of the

communication technology (CT) [4–6]. A technology-independent implementation allows companies to

take the best advantages of different communication protocols in distinct deployments, while ensuring

that improvements are not delayed due to dependence on a specific technology.

This thesis aims to fulfill the aforementioned requirement by proposing a Technology-independent

Architecture for Data Acquisition. This architecture is based on a MOM and abstracts the CT specific

operation behind a common interface. A comparison with a legacy peer-to-peer (P2P) approach is also

carried out, in order to identify the improvements that Industrie 4.0 based architectures can bring to the

engineering process.

The central ideas of this thesis were developed jointly with Mr. Emanuel Trunzer.

In the next sections a more detailed contextualization of the mentioned topics is provided.

1.1 Industrie 4.0 – Historical Background

In the last 250 years, the world has witnessed the rising of industry over the classical manufacturing of

goods, dominantly by hand. These revolutions were marked by the increasing importance and complex-

1



ity of some technologies, resulting in great improvements in production capacity.

The first industrial revolution took place around the end of the 18th century, and it is marked by the

introduction of steam power to drive mechanical engines. This was a period that assisted not only to the

mentioned increase in productivity, but it was also a turning point in human history, traduced by a rise in

income and population.

In the end of the 19th century, with the emergence of electrical power, the second industrial revolution

began. This revolution was marked by the introduction of conveyor belts and division of work, creating

mass production assembly lines. One well known example is the case of Henry Ford’s assembly line,

where production improvements of 10,000% were achieved in less than 5 years [7].

The third industrial revolution began in the 1960’s, and was triggered by the use of electronics and

information technologies implemented in automation. Technologies like Ethernet, Wireless Networks

or Web Technologies facilitate information exchange, allowing for increasing complexity in automation

systems [8]. The architectures used are mostly hierarchical, as is the case of ISA-95 [9], also called

the Automation Pyramid, present in Figure 1.1. Most enterprises are still on this stage, even though

transition to Industrie 4.0 is already taking place.

Figure 1.1: The five levels of the Automation Pyramid.

The term Industrie 4.0 was first used in 2011 in Germany, and has been of great interest for the

industrial and scientific fields ever since. There is no single definition, but it can be explained as: ”the

technical integration of CPSs into manufacturing and logistics and the use of the Internet of Things and

Services in industrial processes” [1]. The vision is to create smart factories, capable of profitably deliver

products in accordance to the personalization manufacturing paradigm, where consumers customize

products according to their needs [7].

The main goal is to improve Overall Equipment Effectiveness (OEE) by optimizing the manufacturing

process with algorithms and data [10]. Large amounts of data are analysed with emergent tools based

on, for instance, machine learning, to extract important knowledge and achieve the OEE’s improvement.

An important aspect in the path to Industrie 4.0 is the capacity to deal with aforementioned quantities

of data, made possible with the advancements in the field of Big Data. In the context of Industrie 4.0, and

respecting the Internet of Things (IoT) principle of making all data available to all the participants in the

2



system, data integration is a goal to achieve. This a task that is not compatible with the classical ISA-95

hierarchical structure, where communication is made solely between adjacent levels [11]. Accordingly,

focus must be given in ensuring data integration between all levels of the automation pyramid.

1.2 Data Integration in Automation

Data Integration in automation can be described by three aspects [12], further discussed in Chapter 2:

• horizontal integration, in the same level of automation;

• vertical integration, between the different levels;

• and temporal integration, along the system’s life cycle.

The traditional automation pyramid (Figure 1.1) is not coherent with the data integration viewpoint

for Industrie 4.0. In ISA-95, data is shared hierarchically, making the Manufacturing Execution System

(MES) never aware of data present in the Programmable Logic Controllers (PLCs) or the upper level of

the hierarchy, Enterprise Resource Planning (ERP), unaware of data in the Supervisory Control and Data

Acquisition (SCADA) system. In other words, vertical integration is limited only to the adjacent levels.

While this was common practice in the beginning of the third industrial revolution, soon this hierarchical

structure began to appear inadequate, as suggested in [13], where a heterarchical architecture, very

similar to a MOM-based architecture, was suggested. More recently, this problem was also emphasize

in [11], as a result of an increasing necessity for data transparency in all levels of the automation pyramid,

due to the appearance of smart devices and agents capable of making decisions in lowest levels of the

hierarchy, for instance. It is interesting to note that, in both cases, this deficiency was identified before

the term Industrie 4.0 was first used, which emphasises the need for a new communication paradigm.

As mentioned before, in Industrie 4.0 the integration viewpoint is fairly simple: everything must be

connected and data must be available. In a greenfield deployment, where every system is added con-

sidering the requirements of Industrie 4.0, the implementation of a communication architecture can be

made in a P2P way, without increasing complexity. In a brownfield environment, where legacy devices

are present, the specific technologies of each device must be considered, in order to achieve the inte-

gration goal.

Considering this second type of deployments, that accounts for the big percentage of enterprises

who use technologies that still have a long lifetime, is one of the gaps in the literature identified by Cimini

et al. [14]. This gap, if not addressed, can slow down the progression of already existing enterprises.

One solution for this problem is the use of a MOM.

1.3 Message-Oriented Middleware: Solution for Industrie 4.0

MOM is a software component that serves as a middle layer between the communications of a distributed

system, ensuring interoperability between heterogeneous devices. It is characterized by Sauter as a ”key

3



enabler for integration” [12]. When a MOM is used in a system, messages are sent directly to this layer

and redirected to the expected receiver. This software relies on a communication protocol, or CT, that

should be used by all the participants of the system.

It makes sense to consider a MOM as a solution for legacy automation systems that want to achieve

Industrie 4.0. Legacy devices present should implement common functions uniformly, by using data

adapters, to ensure homogeneous interaction through the middleware. The use of these adapters

ensure a reduction in application-specific software, increasing transparency, flexibility and extensibility

while ensuring easier maintainability [5].

By using a MOM, when a new legacy device is added to the system, only one data adapter needs to

be deployed: adapting the legacy CT to the middleware’s CT.

A middleware-based architecture can also be seen has a temporary solution that takes into account

the current state of automation systems, the automation pyramid, and provides a way of integrating data,

as illustrated in Figure 1.2. With this solution, companies can fulfil data integration while ensuring gradual

migration to a Industrie 4.0 deployment, without the additional cost of replacing all the legacy devices,

allowing them to keep their productivity competitive and leave the legacy ISA-95 structure functioning in

parallel.

Figure 1.2: Legacy communications integrated with a middleware.

In greenfield deployments, the use of a MOM-based architecture can also be recommended, since

it accounts for a reduction in system complexity. Distributed automation systems can consist of a large

number of clients, so it can be advantageous to have all systems connecting only to one component.

This kind of MOM-based architecture can already be found in communication architectures present

in the literature, as is the case of the UDaTA [2] or the PERFoRM project [15].

As mentioned before, the MOM works by standardizing the communication protocol used in a dis-

tributed system to the specific CT it uses, making all systems (including the middleware) dependent on

the protocol. This dependence on technology slows down innovations and the change induced by Indus-

trie 4.0, since an architecture that abstracts specific technologies can adapt more smoothly to changes

and innovation [16].
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1.4 Objectives and Contributions

The present work aims at developing a Data Acquisition Architecture based on a Message-Oriented

Middleware (MOM), filling a gap in the scientific research related to the implementation of Industrie 4.0

deployments in environments with legacy devices. Two main hypothesis must be realised:

• Data acquisition architecture can be independent of the technology used in the middleware’s com-

munication;

• Data acquisition architecture, when compared with a legacy peer-to-peer (P2P) approach, will

present best results in terms of complexity of the concept, effort in the solution’s deployment and

effort in migrating between different communication technologies.

Considering the first hypothesis, technology independence (or platform independence) is defined by

Almeida et al. [17] as ”a quality of a model that relates to the extent to which the model abstracts from the

characteristics of particular technology platforms.” It is important to understand the relevance of creating

an architecture independent of the communication’s protocol used. By going through an analysis in the

literature, one can find requirements for MOM stated in publications from two different fields that come

together in Industrie 4.0, Industry and Internet of Things (IoT), and one from Industrie 4.0.

Regarding IoT, Razzaque et al. made a survey where a set of requirements for middleware were

outlined [4]. The second Architectural Requirement discussed is related to interoperability, where it is

stated that the ”[middleware] should work with heterogeneous devices/technologies/applications, without

additional effort from the application or service developer.”

Regarding Industry, guidelines from the Association of German Engineers have put some emphasis

on MOM for Industrial Automation [5]. The first requirement to be stated is the abstraction of communi-

cation, where it can be read that one of the key tasks of a middleware is ”the provision of middleware-

specific services (...) irrespective of the realisation offered by the technology.”

Regarding Industrie 4.0, Theorin et al. [6] developed a data integration architecture, and state that

”[service-oriented architecture] applications should be self-describing, discoverable, and platform- and

language-independent.”

Besides being stated as a requirement in the literature, there are clear advantages in a technology-

independent middleware-based architecture. Different protocols have different features, representing a

trade-off between advantages and disadvantages. A company might be interested in this architecture if

they have distinct deployments where it is beneficial to change the communication technology in use.

Another scenario is when a company wants to change the communication protocol of its systems.

During the migration process, being able to easily switch between technologies in order to keep the

current deployment running and being able to test the new one is very valuable, since effort in migration

might represent a considerable cost.

Considering the second hypothesis, it is clear that obtaining positive results in a comparison with a

legacy approach proves the relevance of the solution.
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Complexity of implementation is evaluated and discussed, proving that this solution should be taken

into account by enterprises seeking to implement Industrie 4.0.

The effort comparison defines which architecture requires more work for the developer (in terms

of time). The effort (time) to migrate the architecture to a different CT is also compared. This proves

that enterprises might benefit from this architecture, since a reduction in working hours translates in a

reduction in costs.

The main contributions of this work are the development of a technological independent data acqui-

sition architecture concept and its implementation with different technologies in a prototypical use-case

applied to Industrie 4.0.

Another contribution of this work is the definition of a new communication protocol. This was devel-

oped for the architecture and it abstracts different technologies to ensure technological independence

for the concept.

This work also contributes with a comparison of the concept and implementation with a legacy P2P

architecture.

A fifth contribution is a theoretical comparison of communication protocols. This comparison not

only focus on the most relevant aspects for the field of automation, but also on the most important

technologies used in automated production, filling a gap in the literature for comparisons of the kind.

Further, the output of this work was submitted as a conference paper.

1.5 Thesis Outline

The remainder of the thesis starts with a theoretical introduction of important concepts, some of them

already discussed, in Chapter 2. It continues, in Chapter 3, where the requirements for a technology-

independent data acquisition architecture are derived, based on the two hypothesis stated in Section

1.4. The statement of the requirements is followed, in Chapter 4, by an evaluation of relevant solutions

in literature. These solutions are set side by side with the requirements present in this work, to identify

the main research gaps that need to be filled. In Chapter 5, the concept of the architecture is developed,

along with a comparison of relevant CTs and the definition of the metrics that will be used to evaluate

the solution. Chapter 6 describes the implementation, both of the architecture developed and of the

classical legacy approach, followed by the evaluation, comparison and discussion of both approaches,

in Chapter 7. The work is concluded in Chapter 8, where the most important achievements are stated

and future work is outlined.
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Chapter 2

Theoretical Background

The purpose of this chapter is to give context to the concepts used throughout the rest of the work. It is

not intended to get into the specifics of every topic mentioned. Instead, it serves as an introduction to

the relevant details.

2.1 Industrie 4.0 Drivers

As presented in Chapter 1, Industrie 4.0 is based on two recent technological fields: Internet of Things

and Services and Cyber-Physical Systems (CPS).

To start, a side-note should be made. Throughout this work, the term used to define the fourth

industrial revolution is Industrie 4.0, a German expression that translates to Industry 4.0. This name is

used since it was in Germany that this concept was introduced, and it is used this way in publications

written in English [1].

2.1.1 Internet of Things and Services

Internet of Things and Services, can be understood as the consideration and combination of two paradigms:

Internet of Things (IoT) and Internet of Services (IoS).

The paradigm of IoT is based on a network of objects, or things, that interoperate to achieve a

common goal, envisioning ”anytime, anywhere, anymedia, anything” communications [18]. These things

can go from simple home appliances to complex industrial PLCs, and must be capable of communicating

with each other. New communication protocols are required to achieve the envisioned network of highly

heterogeneous things [19].

IoS is a paradigm where everything in the internet is presented as a service [20]. It is not as widely

used as IoT, nevertheless, it represents an important addition to the functionality of the things, since a

service must also incorporate important knowledge about the business area and possible applications.

Thus, as presented in [1], effort must be done in connecting this two paradigms, creating the Internet of

Things and Services.
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2.1.2 Cyber-Physical Systems

As pointed out by Gunes et al. [21], a CPS is defined from different perspectives by the research

community, so there is no single definition. The most essential is the integration of a physical component

with a computational representation (cyber). The cyber part of the CPS should be capable of monitoring

and controlling its physical counter-part.

Nowadays, and in the context of Industrie 4.0, focus is given on creating Cyber-Physical Production

Systems (CPPSs), a production system that integrates at least one CPS. For instance, Lee et al. [22]

propose an architecture that serves as a guideline for implementing CPSs in the manufacturing industry,

allowing the improvement of product quality and reliability.

In conclusion, Industrie 4.0 is based on creating a computational representation of all systems in-

volved in automation. The referred systems communicate interchangeably and interoperate as services

that seek to achieve a common objective and improve the OEE. This creates smart factories that can

make autonomous decisions and, at the same time, give constant inputs to human workers, allowing

monitoring and controlling.

2.2 The Automation Pyramid

The Automation Pyramid, represented in Figure 1.1, was presented in Chapter 1 as the classical archi-

tecture used after the third industrial revolution. An overview of some important aspects of this architec-

tural style is given in this section.

This concept is defined in the standard IEC 62264 [9], commonly known as ISA-95, to describe

automated interfaces between the manufacturing control and enterprise functions. It focuses on reducing

the risk, cost and errors, that usually occur in the interfaces’ implementation.

Five levels of automation are defined. The lower one, considered the Level 0, is the Field Level. It is

where the sensors, actuators and other field-devices are present, with different input and output signals

used for the physical work in the production floor. Following, there is the Control Level, where the PLCs

are present, to control the devices from the lower level, taking information from the sensors and making

decisions on the outputs to send. Next, Level 2 is the Supervisory Level, with SCADA systems that

receive data from different PLCs and decide on the processes being used by those systems to control

the industrial process. Finally, the model ends with the Planning Level and the Management Level,

defined by software systems like MES and ERP respectively.

As stated in the Chapter 1, data in the Automation Pyramid is shared hierarchically, only between

adjacent levels. This benefits suppliers from automation devices, that can limit its development to focus

on meeting requirements for sending and receiving data only from nearby levels [11].

The shape of a pyramid is due mostly to the size and frequency of data exchange between levels.

For instance, the field level sends data in small packages but in real time, while the MES sends large

batches but with frequencies that can go from day-to-day to monthly. Thus, in total, both the total data

8



size and the frequency of exchange are reduced by going up in the hierarchy’s levels.

2.3 Enterprise Integration

Data integration in an enterprise, as explained in Chapter 1, is described by three aspects [12]: horizontal

integration, vertical integration and temporal integration. This section’s purpose is to explain the different

aspects of data integration in the automation hierarchy.

Horizontal integration, refers to the exchange of data and interoperability of devices and software

systems used in different stages of the manufacturing process. Each level of the automation pyramid is

horizontally integrated, so communication happens between PLCs, for instance. Information exchange

between different companies is also possible in horizontal integration.

Vertical integration is similar to horizontal, but it considers systems from different hierarchical lev-

els. When an enterprise has the control level exchanging data directly with the management level, for

instance, it is considered to be vertically integrated between those levels. Ideally, all levels can commu-

nicate and cooperate with each other.

In temporal, or end-to-end [1], integration, the entire value chain of a system or product is taken into

account, from product development to production and services.

An enterprise should work to achieve integration in the three levels previously mentioned. When

the systems are integrated vertically and horizontally, temporal integration is also facilitated and the

deployment becomes similar to the desired Industrie 4.0 scenario, where interoperability and flexibility

of all systems involved is a requirement.

2.4 Data Integration Levels

The previous section described the three aspects for enterprise integration, according to the automation

hierarchy. This constitutes one of the possible dimensions that can be analysed when defining integra-

tion [23]. Another relevant dimension is the four integration levels: Hardware, Platform, Syntactical and

Semantic Level.

According to Izza [23], integration in the hardware level is related to compatible hardware and net-

works, while the platform level encompasses the operating system or the database platform, for instance.

In the syntactical level, the way the data is represented should be coherent.

Two systems integrated in a syntactical level must share data in the same format or being able to

read data sent by the other device. For example, if one machine A sends a string to machine B, and B

is able to receive it, they are considered syntactically integrated.

In the semantic level, the intended meaning of the data is commonly understood by the systems

present. Considering the previous example, A and B are considered integrated at the semantic level if

B is able to extract knowledge from the string sent by A. One way of achieving this is with a common

information model.
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Each of these levels is built on the previous one. For example, A and B can never be integrated at

a syntactical level if they are not integrated at the hardware level. When dealing with communications,

one must guarantee hardware integration before escalating to the subsequent levels.

With the theoretical concepts presented in this section and in Section 2.3, it is possible to give

a clearer definition of integration. For example, in the same enterprise, it is possible to have data

vertically integrated in terms of platform and semantically integrated in a horizontal viewpoint. As shown

in [24], the concept of integration can take several forms, thus the importance of clarifying how it is used

throughout this work.

2.5 Message-Oriented Middleware in Industry

The use of a MOM in production systems, with its principal requirements, is going to be briefly dis-

cussed in this section. Focus is given on the Enterprise Service Bus (ESB), an architecture proposed by

Chappell [25] that can be seen as a classical middleware implementation widely used in the industrial

field.

MOM is defined by Izza [23] as ”one of the key technologies for building asynchronous large-scale

enterprise systems”. Publishers and consumers are decoupled, since the middleware is the software

responsible for the communication, allowing clients to stay autonomous of each other. Three different

types of MOM are defined, according to the way messages are handled: message passing, where

messages are sent in a unidirectional way; message queuing, that provides reliability by adding message

persistence; and publish/subscribe messaging, that allows ”one to many”, ”many to one” and ”many to

many” messaging.

The broker is the software entity that takes care of the communication in a MOM-based architecture.

In most cases, the terms broker and middleware can be used interchangeably.

Requirements for middleware systems can be found in a variety of different sources. Two examples

are analysed.

Razzaque et al. [4] groups middleware requirements in two sets: services that middleware should

provide and architectural requirements. The services can be functional, such as resource discovery,

data management or event management, or non-functional, such as scalability, real-time, reliability or

security. In terms of architectural requirements, the MOM should provide programming abstraction and

interoperability, while being context-aware and autonomous, for instance.

Guidelines from the Association of German Engineers [5] define requirements such as abstraction

of communication, information security, interoperability and flexibility. It can be seen that there are

similarities between the requirements from both publications.

As presented in Chapter 1, both sources mention that a MOM should be technology-independent.

The ESB [25], a solution widely used in industry for integration, is an architecture that uses a com-

munication bus to decouple systems while managing the communications between them. This bus can

be considered a MOM and was created to avoid P2P architectures and reduce integration complexity in

an enterprise.
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This system is used for enabling a service-oriented architecture, an architecture where participants

provide their functionality as services, by providing the connectivity layer between those services. The

use of an ESB is traduced in an increased flexibility, since it can discover, use and modify the meta-data,

conditions and constraints used in connections between service requester and provider [26].

In Chapter 4, state of the art architectures for industry are analysed, and different types of MOM are

presented.

2.6 Peer-to-peer Network for Industrie 4.0

A Peer-to-peer (P2P), or point-to-point, network is a system where connection between clients is made

directly, without intermediaries. It is common in small networks, for instance in home environments, but

it is also considered a classical approach for industrial communications.

In Figure 2.1, a comparison between two scenarios, one with a MOM and the other with a P2P, is

presented. The number of communication lines in the MOM scenario (Figure 2.1(a)) corresponds to n,

being n the number of clients present in the system. For a fully connected P2P scenario (Figure 2.1(b)),

the number of communication lines is n(n − 1)/2. Thus, with respect to communication lines, the order

of the system is n in the MOM architecture and n2 in the P2P. This relation is represented in Figure 2.2.

(a) Middleware Architecture (b) Peer-to-peer Architecture

Figure 2.1: Comparison between the number of communication lines in a fully connected architecture
with five clients: from System 1 (S1) to System 5 (S5).

The number of communication lines is seen as a way to measure complexity, since a system with a

high number of connections is harder to maintain. Plus, a P2P scenario presents a challenge in terms

of scalability, since adding a new client means creating n− 1 new connections, while in the MOM-based

system of systems it is only necessary to create one connection.

Considering that, in Industrie 4.0, all systems should be connected, it becomes impractical to use

a P2P architecture [27]. In a case where every system uses a different CT, a substantial amount of

effort would be needed to create a P2P scenario with more than three or four clients, since the quantity
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Figure 2.2: Graphical comparison of a peer-to-peer and a middleware architectures.

of connections would quickly scale. Thus, MOM-based architectures present a clear advantage for

Industrie 4.0 applications.

2.7 Reference Architectures

In the present section, three reference architectures for Industrie 4.0 are going to be briefly presented.

These are architectures that encompass important principles accounted in the fourth industrial revolu-

tion, and that are presented in a high level of abstraction, providing guidance for the development of

specific architectures. Full-range implementations are non-existent.

The Reference Architecture Model for Industrie 4.0 (RAMI 4.0) [28] is focused on manufacturing and

proposes a three dimensional model to represent the Industrie 4.0 space. In the vertical axis, layers

are used to represented different perspectives, such as business, communication and integration. The

left-horizontal axis represent the product life cycle with its value streams. The last axis contains the

location of functionalities and responsibilities, from the product to the connected world, passing through

the levels present in the automation pyramid. This model defines components by combining life cycle

and value stream (horizontal axes) with a hierarchical approach (layers of the vertical axis).

The Industrial Internet Reference Architecture (IIRA) [29] is an open-architecture for Industrie 4.0,

focused on interoperability, mapping applicable technologies and driving technology development. The

IIRA describes four viewpoints, defined by analysing different use-cases, identifying relevant stakehold-

ers and considering Industrie 4.0 concerns. The four viewpoints are: business, usage, functional and

implementation.

The Internet of Things Reference Architecture (IoT RA) [30] describes a top-down approach that uses

industry best practices. To start, the most important IoT characteristics were collected and abstracted

into a conceptual model, that was used to derive a system based reference model. This final model is
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then broken down in five architecture views: functional, system, user, information and communication

view.

A deeper analysis of each reference architecture is not considered important, serving this section as

a high level introduction. Nonetheless, it is possible to identify similarities between them, such as the

division of the Industrie 4.0 space in different layers/viewpoints/views.

2.8 Relevant Communication Principles

Since this work is focused on communication architectures in the industrial environment, some important

communication principles should be introduced.

First, this work will focus on two messaging patterns: Request-Response (RR) and the Publish-

Subscribe (PS). This refers to the way producers and consumers of messages communicate. In the

RR messaging pattern, the consumer requests the message to the producer, who then responds with

the requested message. In PS, the consumer subscribes to receive messages from a certain producer,

which then publishes its messages to all the current subscribers. In this last pattern, producers and

consumers are decoupled. Each pattern is convenient in some scenarios, for instance, when the con-

sumer wants messages in a frequency significantly lower than the frequency of the producer, then a RR

pattern is more advantageous. Another example is the case of a producer broadcasting to more than

one consumers. In this last case, it is beneficial to use a PS messaging pattern.

Another important principle is the centralisation or decentralisation of the broker in a MOM-based

architecture. In a decentralised architecture, the broker is divided in different locations, and it is capable

of making decisions independently of the other parts. If the broker is centralised, the message handling

is made in a single location. The exception is the case where the broker is distributed, but it can be

considered centralised if different brokers make decisions dependently of each other. In a decentralised

middleware the control can be harder, but it has the advantage of avoiding a single point of failure,

something that can happen in a centralised architecture.

Quality of Services (QoS) are policies that some CT present in the exchanging of data. These might

be related to the way data is delivered, for example at most once or at least once delivery, or to different

parameters related to usage of resources, like reliability and durability.
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Chapter 3

Requirements for the Architecture

The present chapter states the requirements to be fulfilled by the technology-independent architecture

for data acquisition. Chapter 1 offered a motivation and two important hypothesis that should be restated

here:

• 1st Hypothesis – a data acquisition architecture can be independent of the technology used in the

middleware’s communication;

• 2nd Hypothesis – a technology-independent data acquisition architecture, when compared with a

legacy peer-to-peer (P2P) approach in terms of complexity of the concept, effort in deployment and

effort in migrating between different communication technologies, will represent a better option.

These hypothesis were already discussed and should now be scrutinised to obtain the needed require-

ments.

3.1 Application for Industrie 4.0

The production of data is increasing exponentially, originating a recent field of research: Big Data. For in-

stance, it is estimated that the volume of digital data doubles every two years and that, between 2012 and

2020, the investment in information technologies will increase by 40% [31]. Big data was described by

Wu et al. [32] using the HACE theorem: ”Big Data starts with large-volume, heterogeneous, autonomous

sources with distributed and decentralized control, and seeks to explore complex and evolving relation-

ships among data.”

In Industrie 4.0, large amounts of data are generated by the IoT, creating the need for new models

and tools to handle this data [33]. The support of these concepts and technologies by aPS is one of

the main requisites in Industrie 4.0. Therefore, effort must be taken in adapting existing approaches to

the industrial field, considering the specific Industrie 4.0 constraints, most importantly: response time,

network latency and reliability [34].

The aim of this thesis is to create an architecture for data acquisition, as stated in the first hypothesis.

As will be presented in Chapter 4, there is a large number of studies and concepts of architectures for
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Industrie 4.0, and the developed concept should focus on that field. Solutions from different research

fields should not be considered, due to the specific industrial constraints.

The first requirement - R1 - can then be stated: the architecture should be applied in the field of

Industrie 4.0. This means that data acquisition should be implemented in aPSs, integrating different

levels of automation, for example considering a PLC or SCADA sending data to a MES or ERP system.

This requirement is relevant due to the need of taking into account the particularities present in the

Industrial field, that might differ according to the deployment.

While the first requirement could be applied only at a theoretical or simulation level, it is also important

to reach the practical implementation level. For example, reference architectures, as the ones discussed

in Chapter 2, are very important on a conceptual level, however they reach an abstraction level that

makes the implementation unfeasible.

Therefore, a second requirement - R2 - is derived: the architecture should be implemented and vali-

dated in a real environment. This ensures that the aforementioned constraints are not only theoretically

taken into account, but also practically overcome, proving the applicability of the architecture in a real

industrial apparatus. Thus, data must be obtained from industrial plants.

3.2 Interoperability using a Message-Oriented Middleware

Due to long lifespans of industrial systems, legacy devices are present in brown-field industrial deploy-

ments. In most cases, the creation of a greenfield implementation would require a lot of investment for

replacing all legacy systems, making them unfeasible. Therefore, the goal of Industrie 4.0 connectivity

must be to integrate all systems and components, enabling interoperability [27].

Interoperability between data sources and systems simplifies data integration, handling and sharing.

A standard interface is a good way of achieving this goal. Having in mind the life cycle of different

services, support for legacy systems is required in an Industrie 4.0 architecture.

It is now possible to state the third requirement - R3: interoperability of data sources and systems.

The different systems present in the aPS should work together, interconnected by a standard inter-

face. This requirement keeps in mind brownfield implementations with legacy devices, with different CT,

integrating them via a MOM.

To successfully evaluate this requirement, two sub-requirements must be stated. First, the architec-

ture should have a standard interface, a middleware, integrating all devices’ communication. Second,

the presence, and integration, of legacy devices should be taken into account. These systems must

be retrofitted with a data adapter, allowing them to communicate with the other devices present in the

architecture. R3 is considered fulfilled if these sub-requirements are satisfied. A summary is presented

in Table 3.1.
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Table 3.1: Interoperability of data sources and systems – Sub-Requirements.
R3 Description Evaluation

a. Standard Interface All devices must communicate through a single interface.

b. Integration of legacy devices Legacy devices should be integrated, by sending or receiv-
ing data from other components.

3.3 Technology-independent Architecture

As discussed in Section 1.4, the development of a concept independent of the communication protocol

is relevant in the present context. Technology independence is advantageous since it abstracts CTs’

specific logics and allows the architecture implementations in different deployments, taking companies

a step further in Industrie 4.0. This is a need identified in the literature [4, 5], as previously presented.

Along these lines, the fourth requirement - R4 - is stated: technology-independent concept. This

requirement is derived directly from the first hypothesis of this thesis, stated in the beginning of the

present chapter.

In order to fulfil this requirement, two sub-requirements are stated. First, multiple CTs must be con-

sidered, so the same use-case should be implemented at least two times, with different communication

protocols, without losing functionality. Furthermore, the migration between the CTs should be made as

simple as possible, with no changes in the client’s source code. The sub-requirements are summarised

in Table 3.2.

Table 3.2: Technology-independent concept – Sub-Requirements.
R4 Description Evaluation

a. Different technologies implemented Same use-case implemented with at least two
communication technologies.

b. Straightforward migration Transition between technologies should require a
small number of modifications in system’s code.

3.4 Comparison to Legacy Approach

The second hypothesis of this thesis - comparison to a legacy architecture - should also be considered

when establishing the requirements. The scope of the comparison must be clearly defined, since focus

is given on effort and complexity.

It should be taken into account that, in classical architectures, the integration of data is a complex

and sometimes unfeasible task, that requires great effort. Therefore, the last requirement - R5 - is

formulated: lower complexity and effort when compared to a classical approach.

These two terms, complexity and effort, can be considered synonyms. Usually a more complex

deployment implies extra effort, and more effort in a certain task can be a measure of increasing com-

plexity. In respect to this requirement, complexity is applied at a conceptual level, the complexity of the

concept, while effort is related to the necessary time for a certain task, in what concerns to coding, for
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instance.

To ensure the evaluation of this requirement, four sub-requirements must be stated, that can be

divided in three perspectives: the user, the system and the technical perspectives.

From the user perspective, the most important requirement in a data acquisition architecture that

aims at data integration is to have all data available. This is a measure of complexity of the system,

since the transparency of all data allows data analysers to easily extract knowledge from the plant. On

the other hand, if data is not directly available, the user needs to make changes to the system and

ensure that the connection to the desired data sources exist. Hence, the first sub-requirement is to have

transparent data access in the architecture.

According to the system perspective, as discussed in Section 2.6, a way to measure the complexity

of an architecture is by the number of communication lines. Therefore, the second sub-requirement is to

have a reduced number of connections.

For the technical perspective, the final sub-requirements are related to accessing the effort needed

for the implementation and for the migration. Implementation means the initial deployment of the different

data sources and consumers and migration refers to a transition to a different middleware realisation or

communication protocol. In both cases, the use of code metrics can be a method of evaluation, adding

that, in the migration scenario, the relative number of actions needed to succeed in the transition should

also be taken into account.

Summing up, compliance with R5 means that, comparing with a classical P2P approach, the archi-

tecture requires less complexity, by having data transparently accessible and fewer communication lines,

and less effort, due to a reduction in implementation and maintenance effort. The sub-requirements are

presented in Table 3.3.

Table 3.3: Lower effort and complexity compared to legacy approach – Sub-requirements.
R5 Description Evaluation

a. Transparent data access All data is available.

b. Reduced number of interfaces Smaller number of communication lines.

c. Reduced effort for implementation Code analysis metrics.

d. Reduced effort for migration Code analysis metrics. Number of actions necessary.

3.5 Implementation Goals

The derived requirements are summarized in Table 3.4. The implementation goals of this thesis can now

be understood in a more clear way: to design and implement a technology-independent architecture

applied to Industrie 4.0, ensuring interoperability of the connected devices and that, in comparison with

a P2P approach, ensures a decrease in complexity and effort.

In the following chapter, an analysis to state of the art architectures will be undergone, evaluating

how other authors fulfill the derived requirements to find a gap in the literature.
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Table 3.4: Derived requirements for a technology-independent data acquisition architecture.
ID Description

R1 Applied to Industrie 4.0
Data integration should be performed in a automated production system.

R2 Implementation on real environment
Implementation and validation of the architecture in industrial plants.

R3 Interoperability of data sources and systems
Different systems, using different technologies, should work together. All devices must be
interconnected through a standard interface. This requirement keeps in mind brown-field
implementations with legacy devices.

a. Standard Interface
b. Support legacy devices

R4 Technology-independent concept
Implementation and migration between different communication technologies.

a. Different technologies applied
b. Straightforward migration

R5 Lower effort and complexity when compared to a legacy approach
A comparison based on complexity and effort to highlight the improvements accomplished.
Data transparently available and the reduction of the number of interfaces leads to less
complexity. Less effort for deployment and migration is also desirable.

a. Transparent data access
b. Reduced number of interfaces
c. Reduced effort for implementation
d. Reduced effort for migration
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Chapter 4

State of the Art

In the present chapter, state of the art data integration architectures for industry are evaluated in com-

parison with the requirements defined in Chapter 3.

4.1 Existing Architectures for Data Integration

The SOCRADES project introduces an architecture for integration in the shop floor, as presented in

the project’s website [35], where base information, publications and several implementations can be

found (R2). The goal was to develop a design, execution and management platform for automation

systems. A description of the architecture and its requirements is presented in [36], based mostly on

agile manufacturing and smart objects as web-services to develop a service-oriented architecture. This

project ended before the term Industrie 4.0 was coined, but a lot of principles are similar, such as data

integration in different automation levels.

The presence of a middleware (R3-a) in the architecture ensures that all data is available (R5-a) and

the number of communication interfaces is smaller than in a P2P layout (R5-b). Presence of legacy

devices is also accounted (R3-b), as discussed in [37]. The SOCRADES project is focused on platform-

independence, which is guaranteed by using web-services, but technology Independence in the MOM

is not mentioned.

To cope with the dynamic environment in manufacturing, where unexpected changes can occur with-

out warning, Marı́n et al. [38] suggest a conceptual architecture based on intelligent services and a

ESB: the intelligent Enterprise Service Bus (iESB). An intelligent service is defined as a software sys-

tem that produces results by itself or using another intelligent service. Based on this independent piece

of software, the architecture aims at fulfilling five requirements: include human initiative with HMIs, dis-

tributed decision making, coordination of schedules with negotiation-based approaches, legacy systems

connected (R3-b) and ability to update schedule and planning.

Due to its age, this architecture did not contemplate the concept of Industrie 4.0, nonetheless, data

integration in industry is an objective of the iESB, along with smart decision-makers to improve produc-
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tion, so the first requirement can be considered partly fulfilled. The intelligent services are integrated

with a ESB, so a standard interface is present (R3-a). The architecture uses an upper-level P2P net-

work, however, the communication is mostly interfaced by the ESB, so all components can communicate

with each other (R5-a). Since a comparison was not made, it is not possible to know if the number of

interfaces and the effort would be reduced. An execution sample where three instances of the architec-

ture are used is presented, but a prototypical implementation is missing. Technology independence was

also not considered.

The iESB is defined in the scope of the Adaptive Production Management project. Using similar

principles, and in the scope of the same project, Leitão et al. [39] present a multi-agent architecture

for strategic planning in small lots manufacture of complex products (airplanes, for instance). Thus, the

feasibility of applying the iESB architecture in different production contexts is proven, even though a

prototypical implementation is still missing.

The Cloud Collaborative Manufacturing Networks project, C2NET, creates a cloud-based collabora-

tive network for supply chain interactions of ERP data, as presented by Qureshi and Agostinho in [40].

This architecture enables the connection of management systems from different organisations, putting

special emphasis on legacy systems (R3-b). The C2NET data collection framework is composed by two

main components: the company middleware and the cloud component, where virtualisation is attained.

The cloud can be considered as a standard interface (R3-a) between the different companies’ systems.

With this framework, small and medium enterprises in the same supply chain can share resources in a

common ecosystem, allowing them to collaborate and save resources.

Although this architecture applies Industrie 4.0 principles, only data from the ERP is obtained, so the

first requirement of this work can only be considered partly fulfilled. Two use-cases are implemented, that

consider different legacy systems (R2). Technology independence is not considered and a comparison

is not done, although it can be argued that the cloud component allows data transparency (R5-a) and

a lower number of interfaces (R5-b), compared to a deployment where each enterprise would need to

communicate directly with the others.

Perez et al. [41] designed a CPPS-based architecture for Industrie 4.0 that focus on vertical integra-

tion of data in the production process (R1). It aims at making all data accessible (R5-a) and at extracting

knowledge using technologies from big data analysis.

The architecture is prototypically implemented, however, it does not take into account the different

levels of the automation pyramid. It uses an information model containing logical process nodes, each

node related to a certain device. Consequently, a standard interface is not present. A technology-

independent concept is never mentioned.

Ismail and Kastner [42] propose an architecture for a distributed gateway service bus that aims to

achieve vertical integration in Industrie 4.0 (R1). This architecture uses an international standard based

on function blocks to model the control logic, encapsulating logic algorithms and defining events and data
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for other function blocks. The information and information exchange modelling is guaranteed by using

a Machine-to-Machine (M2M) communication protocol. Device interoperability, accounting for legacy

systems (R3-b), is ensured with a hybrid solution of protocol translation and tunnelling .

A decentralised middleware is preferred to avoid a single point of failure. The coordination between

different nodes of the gateway service bus is done using a P2P network, so the number of interfaces is

not reduced if it was to be compared with a legacy approach. Accessibility is simplified with the use of

semantically standardised data, although it is unclear if data is made transparently available. Technology

independence and a prototypical implementation are not discussed.

Fleischmann et al. [43] proposed a RAMI 4.0 based architecture that was developed following pre-

vious works on Socio-CPSs [44, 45]. This kind of systems take into account the human user as an

important factor in the decision-making process, with valuable inputs based on different knowledge or

experience. The proposed architecture is a modular web-based framework for condition monitoring sys-

tems and fault diagnosis, created to support technical maintenance. Integration is achieved by using the

RAMI 4.0 hierarchy levels and layers as the basis of the architecture (R1).

The architecture is decentralised and only relevant data is integrated in cloud modules, that com-

municate using a manufacturing service bus. Thus, improvements in terms of complexity and effort in

comparison to a legacy approach can not be asserted. The integration of existing machinery is con-

sidered as a requirement (R3-b). Technology independence is not discussed and the architecture is

implemented in a test cell (R2).

The communication architecture from BaSys 4.0 [46], an open source project focused on enabling

Industrie 4.0 scenarios, is evaluated. Its main focus is on changeability, allowing mass individualisation

while reducing downtime. All relevant systems have an asset administration shell, a digital twin that

enable access to information, including from different automation levels (R1). Different implementations

from different enterprises are also presented (R2).

One of the pillars of BaSys 4.0 is a middleware named virtual automation bus. This serves as a

central point for communication between devices (R3-a), including legacy components (R3-b). This

middleware can be considered technology-independent, since a standard interface can be implemented

with different CTs. Nonetheless, the implementation with different technologies uses two MOMs with

different protocols connected through a gateway [47], so it does not fulfil this work’s fourth requirement.

With the virtual automation bus, end-to-end communication is eased and all systems can access each

others data (R5-a). Compared with a P2P approach, the number of interfaces would be reduced, since

systems can communicate through the middleware (R5-b).

The LISA project [6] is an event-driven service-oriented architecture that relies on an ESB (R3-a) to

avoid point-to-point connections. The events are created with a prototype-based approach and represent

one of the basis to ensure loose coupling of devices. The architecture uses a simple message format

and integrates heterogeneous and legacy devices with communication endpoints (R3-b).
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LISA is an architecture for Industrie 4.0 that focus on integration between all levels (R1). The archi-

tecture has been evaluated in an industrial plant (R2). Focus is not given to technology independence,

even though the authors state that it is a requirement to achieve the full potential of service-oriented

architectures. Once again, the presence of a middleware ensures the fulfilment of the first two sub-

requirements in R5, although a clear comparison was not described.

The PERFoRM [15] project, Production harmonisEd Reconfiguration of Flexible Robots and Machin-

ery, is focused on the seamless reconfiguration of aPS. It aims at aggregating a network of smart and

heterogeneous components and enhancing planning, simulation and operational features. It positions

itself in Industrie 4.0 through the use of Industrial CPSs in the digitalization of the shop floor and by

the integration of all automation levels (R1). Its architectural elements include a MOM (R3-a), standard

interfaces, that ensure transparent interconnection of heterogeneous components (R5-a), technological

adapters, which in turn ensure the presence of legacy systems (R3-b), human integration and advanced

tools.

The concept is not dependent on the CT, nonetheless, effort is not put in abstracting it, has seen

by the data adapters that are strongly dependent on the technology used in the MOM. The authors do

not formally compare the PERFoRM architecture with a legacy P2P approach, although it can also be

argued that a reduced number of interfaces is achieved (R5-b). Implementations of some components

of the PERFoRM project can be found in the literature [48, 49], however a full-range deployment is still

missing.

Trunzer et al. [50] introduce an architecture to unify data transfer in aPS. This architecture relies

on a MOM (R3-a) and a common information model in order to achieve data integration in all levels of

automation (R1), taking into account brownfield deployments and a gradual migration to Industrie 4.0,

supporting legacy devices (R3-b). Focus is also given on processing data from both historic and near

real-time sources, different analysis tools and ensuring data is shared in a secure way. The architecture

was validated with a prototypical implementation (R2), where it was also named UDaTA [2].

Even though the technologies used in UDaTA’s implementation are considered of secondary rel-

evance, only one CT was used and migration between communication protocols was not taken into

account, so the architecture can not be considered technology-independent. Comparing with a legacy

approach, all data is made available (R5-a) and the number of interfaces is reduced by the use of a

MOM. A comparison of implementation and migration was not described.

Schel et al. [51] developed a manufacturing service bus based architecture, that uses an enhanced

ESB for integration, extending a first proposal from Minguez [52]. This is applied to Industrie 4.0 by

ensuring the vertical and horizontal integration in a cloud-based platform (R1). A set of functional and

non-functional requirements are developed for this architecture, with special focus given on security and

on the support for multiple communication protocols, although technology independence is not in focus.

The basis for the implementation of the manufacturing service bus was described, but a prototypical
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use-case is missing. The ESB serves as a standard interface (R3-a), that also integrates legacy systems

(R3-b). An harmonised communication model and the presence of multiple communication standards

ensure data transparency (R5-a). The number of interfaces is certainly reduced with the ESB (R5-b),

but a formal comparison was not performed.

Kirmse et al. [53] propose a lightweight architecture that uses big data analytics and machine learn-

ing to achieve optimised integration and harmonisation of heterogeneous and distributed data sources.

The concept focus on data accessibility, having raw data transparently available (R5-a) in a managed

data pool. This data is used by machine learning analysers to optimise processes, accounting for all

systems in the automation pyramid as data sources, as required in Industrie 4.0 (R1). The focus is on

data analysis, so technical features such as communication speed or presence of real-time data are

not considered. Nonetheless, the architecture is able to reintegrate analysis results in the production

process, providing real-time improvements.

Integration of legacy systems is considered (R3-b) using a modular structure that encapsulates sim-

ilar groups of data sources, without a standard interface. Implementation is mentioned, but only a

description of technologies for the different components is given, being inconclusive if the architecture

was implemented and in which use-case. Technology independence is not mentioned.

The COCOP message bus mediator [54] is a data and event-driven architecture that aims at eas-

ing the development of plant-wide industrial process monitoring and control. With the purpose to avoid

P2P communications, the architecture uses a loosely coupled approach that allows scalability and per-

formance. New control functions and reactive control applications are added to the legacy systems

previously present, using a communication platform as a mediator (R3-a). Existing control systems are

integrated by the use of adapters (R3-b).

Even tough the architecture is applied to aPS and integration between different automation levels is

considered, the architecture is not contextualised for Industrie 4.0, so the first requirement is not consid-

ered fully fulfilled. Technology independence is not contemplated and a comparison is not implemented,

even tough discussion between the advantages of using a middleware over a point-to-point architecture

is present (R5-b). The architecture is implemented in a laboratory use-case, although it is not clear

if it considers different automation levels or legacy devices, since the discussion is more focused on

messaging, message formats and communication patterns.

Longo et al. [55] propose an Industrie 4.0 architecture that implements a service-oriented digital

twin, developed in the same publication. The focus is on data representation and augmented reality,

to allow knowledge acquisition and use. The architecture represents a distributed system of networked

components, using an ESB implemented in a central server (R3-a) and accessed through web-services.

The central component is the CPPS, which is reflected in real-time in the digital twin. Management level

systems are also integrated (R1).

The architecture was implemented in two use-cases, one in a Industrie 4.0-ready company and the
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other in a small enterprise (R2). Both in the concept and in the implementations, the integration of legacy

devices was not described. The architecture relies on one communication protocol in the ESB, so it is not

technology-independent. A comparison was not made, although data is transparently available through

the ESB (R5-a) and the number of interfaces is smaller than in a P2P architecture that would consider

the same components (R5-b).

4.2 Comparison and Research Gaps

The comparison between different state of the art architectures is summarised in Table 4.1.

Table 4.1: Classification table for existing data integration architectures.
Concept R1 R2 R3 R4 R5

SOCRADES [36] ◦ + + - ◦
iESB [38] ◦ - + - ◦
C2NET [40] ◦ + + - ◦
Perez et al. [41] + ◦ ◦ - ◦
Ismail and Kastner [42] + - ◦ - ◦
Fleischmann et al. [43] + + ◦ - -

BaSys 4.0 [46] + + + - ◦
LISA [6] + + + - ◦
PERFoRM [15] + ◦ + - ◦
UDaTA [50] + + + - ◦
Schel et al. [51] + - + - ◦
Kirmse et al. [53] + - ◦ - ◦
COCOP [54] ◦ ◦ + - ◦
Longo et al. [55] + + ◦ - ◦

+ Fully Fulfilled, ◦ Partly Fulfilled, - Not Fulfilled

Regarding the first requirement, almost all architectures consider vertical integration of all automa-

tion levels. This can be seen even in architectures presented prior to the introduction of Industrie 4.0,

showing the importance of this industrial revolution.

Half of the studied architectures still lack a fully prototypical implementation that considers Industrie

4.0 constraints. Although conceptual architectures are relevant, a functioning implementation is impor-

tant to validate the architecture, and is something that should be achieved by new concepts.

All the studied architectures consider interoperability of systems, although some of them do not fulfil

this work’s third requirement. Data is integrated in almost all architectures by the means of a standard

interface, a middleware in most cases. Only two architectures do not consider the inclusion of legacy

devices.

Independence of the communication protocol used the middleware is stated as an important require-

ment in some works, but is only implemented by one architecture. However, this requirement focus on

the implementation of a single use-case with one technology and then migrating without losing func-

tionality, whereas in [47] the use-case implements two technologies at the same time and does not
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consider migration. Thus, the fourth requirement represents a clear gap in the literature, since no archi-

tecture conceptualised the same use-case with different CTs, implemented that concept in an industrial

deployment and migrated between the protocols without losing functionality.

Finally, even tough some middleware implementations discuss its advantages, a formal comparison

with legacy P2P approach is never executed. According to the fifth requirement, the table 4.1 can be

misleading. The requirement is considered partly fulfilled because it is possible to assert a reduction in

complexity when a MOM is used. Nonetheless, no concept pointed this out by comparing with a legacy

P2P use-case with the same functionality, and a effort comparison was never made.

In conclusion, one can assert that two gaps in the literature exist for Industrie 4.0 data integration

architectures: technological independence and a a complexity and effort comparison with legacy ap-

proaches. The main hypothesis of the present work consist on filling these gaps.
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Chapter 5

Concept of a Technology-independent

Architecture

In this chapter, the concept for a technology-independent data acquisition architecture is developed.

The concept considers not only the architecture but also a new communication protocol to ensure CT

independence. Afterwards, the prototypical use-case to be implemented is deployed. A comparison

between different communication protocols is also present.

5.1 Concept Development

The concept of the architecture will be developed according to the requirements defined in Chapter 3. To

start, the fourth requirement is considered: concept independent of the communication technology. To

fulfil this requirement, and before detailing the architecture, a new communication protocol that abstracts

the CTs must be defined (Section 5.1.1). The concept of the architecture that implements this protocol,

achieving the desired technology independence, is defined afterwards (Section 5.1.2).

5.1.1 Technology-independent Abstraction Protocol

As stated before, in order to abstract different CTs, a new communication protocol should be devel-

oped, capable of implementing the different logic behind each technology. Accordingly, the Technology-

independent Abstraction Protocol (TIAP) is introduced.

To understand the concept, a class diagram developed using the Unified Modelling Language (UML)

is presented in Figure 5.1. This diagram represents only the classes and the relationships existing

between them, considered the most relevant features in order to understand the logic behind the new

CT. The fields and methods will be presented in the implementation (Chapter 6).

The most important component of this protocol, where technology independence is achieved, is the

interface ICommTech. This interface defines the communication functions as methods, such as a method

for publishing and another for subscribing. The interface is then implemented by different classes, one
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Figure 5.1: Simplified class diagram representing the Technology-independent Abstraction Protocol.

for each CT, where the specific logic of the protocol is used.

To increase modularity of the solution, configuration files are used. This minimises the amount of

changes needed to the static source code in case of reconfiguration, the technology is selected using

an external component. The configuration file defines not only the CT used, but also relevant information,

such as the broker’s location. The class ConfigDeserializer deserializes the configuration file to an object

of the class Configuration.

The last component is the Controller. This class aims at integrating the previous components, by

encapsulating the configuration and communication logic. By creating an instance of the Controller,

the configuration file is read and the CT selected. The class also defines the same methods as the

ICommTech, using polymorphism to implement them independently of the communication protocol de-

fined in the configuration file. Since the configuration and communication logic are abstracted by this

class, the client remains unchanged independently of the CT used.

The developed protocol takes into account the sub-requirements R4-a and R4-b, respectively, by

using the interface ICommTech to implement different CTs and by using a configuration file to define the

CT used. The presence of the Controller also takes into account sub-requirements R5-c and R5-d. This

will be further discussed in Chapter 7.

5.1.2 Technology-independent Data Acquisition Architecture

The concept of the technology-independent data acquisition architecture must be derived from the re-

quirements and defined in order to be applied in diverse use-cases.

Considering the first requirement, the architecture must be applied to Industrie 4.0, meaning that

data should be obtained not only from industrial plants and machines but also from management-level

clients, in order to ensure integration in all levels of the automation pyramid (Figure 1.1). Data analysis

and presentation should also be taken into account by the inclusion of analysers and Human-Machine

30



Interfaces (HMIs).

The architecture should be MOM-based, to account for the third requirement. The presence of a

middleware guarantees that there is an interface connecting all devices (R3-a) and is also an important

component to achieve sub-requirements R5-a and R5-b. The support of legacy devices (R3-b) is en-

sured with the presence of data adapters, that take the payload from the legacy communication protocol

and translate that information to the middleware’s protocol (and vice-versa). Evidently, the CT used in

the middleware must be the TIAP.

Since the second requirement is a prototypical implementation, it is not necessary to discuss it in

this section. Regarding R5, although this requirement can only be evaluated after the implementation,

decisions like using a MOM in the architecture will directly influence the complexity, and that is the reason

it was considered.

In Figure 5.2, a graphical representation of the developed architecture is presented, based on the

UDaTA architecture [50]. The arrows represent data exchange and it should be noticed that all the clients

communicate through the MOM, except for the dashed arrows in the HMI, that represent data visualisa-

tion by a worker. Components with different functions are aggregated in four sections, represented by

the grey rectangles in the background.

Figure 5.2: Graphical representation of the technology-independent data acquisition architecture (TIAP)
with message-oriented middleware, adapters, and TIAP-compliant clients, as well as legacy systems.
Adapted from [50].

The section Data contains the clients that handle data, producing or consuming. In the Integration, a

MOM is present, to assure data integration between all systems. The Analysis contains systems to take

knowledge from data, while the Dashboard contains systems for data visualisation.
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The architecture is useful in the presence of legacy devices, integrating them by means of data

adapters, but also for new devices that already communicate with the TIAP. In a brownfield deployment,

all legacy devices can be integrated and new greenfield devices can be added with ease. For the

case of Machine/Plant Data, new devices were not considered, since this communication protocol was

developed during the present work, so there are no data sources that communicate with it originally. In

the future, greenfield Machine/Plant Data systems could be added.

It should also be noted that clients present in Figure 5.2 are just a reference for a class of clients

that can be present in a certain implementation. For instance, the block Legacy Management does not

imply that there will be a legacy MES or ERP client present in the use-case, or the block Analyser does

not mean that there is only one analyser per use-case. This should be taken into account in the next

section, where the use-case to be implemented is developed.

5.2 Prototypical Use-Case

As discussed in the State of the Art (Chapter 4), there is still a considerable number of architectures

to be validated in a real industrial implementation. This leaves an open-ended question of whether an

architecture is feasible for Industrie 4.0 or not. It was along these lines that the second requirement, the

implementation of the developed architecture in a real environment, was derived.

To account for this requirement, the prototypical use-case to be implemented is derived. The ar-

chitecture is used in an anomaly detection system, where critical components’ data is acquired from

industrial plants and is analysed to prevent potential failure and to apply predictive maintenance. The

discussion focus on the systems that are used, in conformity with the different sections present in Figure

5.2.

It must be noted that the complexity of the use-case is not a requirement of the present work. This

section describes a simple use-case, with simple components, that was created to prove the feasibility

of an MOM-based architecture for data acquisition independent of the CT used in the middleware. This

use-case could be scaled to different and more complex deployments, further discussed in Chapter 7.

5.2.1 Data

Regarding the data sources and management, three components are used: two prototypical industrial

plants and one MES system. The plants work as legacy devices while the MES is a newly developed

system to be used as a representation of different automation levels.

Industrial Plants

The first plant integrated is the Modular Production System (MPS) [56]. As seen in Figure 5.3(a), this

is an educational plant composed by many different modules, created to teach students technology

fundamentals and to work with different automation processes.
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The module used was the handling station, that uses a pneumatic gripper to move a working piece

between different locations, with eight digital inputs and outputs. The data collected is the instantaneous

value from eight sensors, while the data to be analysed is the time it takes for the gripper to drive the

working piece from the initial to the final position, and also the time it takes to come back to get a different

working piece.

The data is obtained directly from the PLC, using a TCP-direct connection in a RR pattern.

The second prototypical plant is the MyJoghurt [57], as seen in Figure 5.3(b). It is a demonstra-

tor platform for Industrie 4.0 that displays the coupling and interconnection of distributed systems. It

presents a diverse number of systems, such as filling stations and a 6-axis robot, and uses 45 bus

couplers in a tree topology, accounting for several hundred input and output signals.

The critical components that are analysed by the system are four Beckhoff AM8100 synchronous

servomotors [58] that drive four of the conveyor belts. The data acquired is the instantaneous torque

and speed of each motor, although only the first one is analysed. The speed is simply for visualisation

and comparison with the torque.

The CT used to get data from the plant is the Open Platform Communications Unified Architecture

(OPC UA), a communication protocol that is going to be further discussed in Section 5.3. The data is

obtained with a PS messaging pattern and sent from the plant’s PLC.

Both plants are considered legacy devices in the use-case, since they use different CTs, requiring

the implementation of two data adapters. A more thorough description of both plants’ used components

is given in the implementation (Chapter 6).

(a) Modular Production System [59] (b) MyJoghurt [57]

Figure 5.3: Prototypical industrial plants used in the implementation.

Manufacturing Execution System

The MES has two main objectives: store data, so that it can be further visualised by the HMI, and update

the threshold used in the analysers to define if a certain value represents an anomaly. Thus, it receives

data from the two plants and also receives and stores the anomaly reports of the analysers. In reverse,

it sends the updated thresholds to the analysers and the plant values to the HMI.
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This system was developed in the current work, so the communication is made using the TIAP. Thus,

it is not a legacy component and does not require a data adapter.

5.2.2 Analysis and Dashboard

In respect to data analysis and dashboard, four components were developed: three analysers and one

HMI. As with the MES, all systems were designed for the current use-case, so they use the developed

CT to send and receive data.

Analysers

The first analyser, Time Interval, receives data from the MPS plant every time the value of the sensors

of the gripper position changes, computing the time difference between two consecutive occurrences.

The time value used for the computation is sent in the message payload by the MPS, and corresponds

to the time it noticed the change in the sensor’s value. The data is then sent to the second analyser.

The goal of the second analyser is to perform outlier removal with an Hampel filter. In this filter,

the value being analysed is considered an outlier and replaced by the median if the absolute value of

difference to the median is bigger than the Median Absolute Deviation (MAD), multiplied by a constant

[60]. In this case, filtering considers a window of previous values, since it must be done when the value

is received, so future values do not exist. The size of the window and the constant that multiplies with

the MAD must be tuned.

The Hampel Filter receives the time interval values from the first analyser, Time Interval, and also

the torque values directly from the MyJoghurt plant. The filtered value is sent to the last analyser.

The final analyser, Anomaly Detection, was created with the goal of detecting anomalies, from both

the MPS’s gripper movement and the servomotors in the MyJoghurt plant. It receives filtered values

from the Hampel Filter and compares them with thresholds received from the MES. It transfers the data

to the HMI and sends periodical anomaly reports to be stored in the MES.

Human-Machine Interface

The designed HMI is a simple dashboard system that allows the user to visualise data. It is composed

of three main components: the anomaly report, the anomalies visualisation and a display of all plant

values.

The anomaly report consists of a Status box indicating the system where the last anomaly was

detected. The anomalies visualisation consists of a graphical representation of the values checked

for anomalies, which are differentiated from the remaining data. The display of plant values is also a

graphical representation, but of all values stored in the MES.

This component receives the anomaly data from the Anomaly Detection analyser and plant values

from the MES.
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5.2.3 Layout

With the systems and their relationships introduced, a graphical representation of the layout is presented

in Figure 5.4. The most important points must be emphasised.

This use-case is a brownfield deployment, due to the presence of legacy devices that are integrated:

the two industrial plants that use different CT. All communications between the components are per-

formed using the developed TIAP, mediated using a MOM. The data exchange between the plants’

PLCs and the MES ensures that data integration occurs between different automation levels, while the

presence of the middleware guarantees that data is available to all components. Finally, all areas of

the architecture are represented with clients in the use-case, so its implementation also represents an

implementation of the developed architecture.

Despite being representative of all areas of the developed architecture, this use-case represents a

real industrial application, mostly due to the presence of the two plants. Although this is not a a full

enterprise with hundreds of systems integrated, this use-case represents a possible sub-system for fault

detection and predictive maintenance, that is crucial in industrial environments. Thus, the developed

use-case is representative of industrial applications.

In Chapter 6, a legacy P2P approach that respects the functionality of the use-case is discussed, to

carry out the necessary comparison, according to the fifth requirement.

Figure 5.4: Structured, graphical representation of the implemented use-case, using the developed
architecture.

5.3 Communication Technology in the Middleware

For the use-case developed in the previous section, and considering the requirement for technology

independence, it is necessary to use the TIAP with at least two different CTs. Thus, eight communica-

tion protocols for MOM are considered, along with a description of the most important features and a
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comparison between them.

5.3.1 Comparison of Relevant Communication Technologies for Industrie 4.0

As previously mentioned, a comparison between different CTs is relevant to define the specific protocols

that will be abstracted by the TIAP and implemented in the use-case. Although previous comparisons

are available in the literature [3, 61–64], they do not consider all the CTs that were intended to be

evaluated and miss some of the most relevant features for an application in Industrie 4.0. Thus, a new

comparison is relevant also to fill this gap.

Below, the relevant features to be compared are presented, followed by a thorough description of

each CT. All the discussed protocols are suitable for M2M communications, making them suitable for the

deployed use-case.

Relevant Features

The features that are evaluated for each CT are: Message Pattern, Protocol, Architecture,QoS, Security,

Solution Providers, Property and Languages Supported.

The parameter Messaging Pattern respects to patterns like RR and PS, Protocol is the transport

layer protocol and Architecture evaluates the architectural pattern of the broker. The case of QoS is

different, since this is a qualitative parameter that characterises the CT according to the integration of

this mechanisms. For example, a − indicates that the protocol does not consider QoS, while a ++ points

out that QoS is a major concern of the CT.

Security evaluates if the CT has built-in security features. Main focus is given to authentication and

encryption.

In Solution Providers, the existence of open source solutions and the number of available solution

providers are taken into account. The purpose is to qualify the availability of the CT for a deployer. When

there are open source solutions and when the number of solution providers is bigger than 5, the CT is

considered to be very available and is ranked with a ++. If, on the other hand, there are no open source

solutions available, the CT is ranked with a −. The purpose is to identify the availability of the CT for

deployments and the chance of a vendor lock-in.

Languages Supported, reflects the number of programming languages that are supported by the

CT. If the principal programming languages (like Java, C based languages or Phython) are supported,

it is ranked with a +. On the other hand, if there are few clients available, it will be ranked with a −.

This feature is important mostly in an implementation viewpoint, since supporting more programming

languages makes the CT flexible for more users.

The last parameter, Standard Owner, indicates the organisation that standardises the communication

protocol. This parameter is relevant since a standardised protocol is considered more mature, and is

usually a more reliable solution. If it is an organisation, it is presented with the holder of the standard.

If it is non-standardised and open source, it appears Open. It can also appear the standard name and

number, if there is one.
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DDS

Data Distribution Service (DDS) is a CT standardised by the Object Management Group (OMG) to allow

communication and integration of distributed applications [65]. It is described by a PS messaging pattern

and a decentralised architecture, in order to avoid single points of failure. It is a CT that puts a lot of

emphasis on QoS, with policies that focus on, for example, data availability or data delivery [66].

In terms of transport layer protocol, the DDS Interoperability Wire Protocol [67] is defined to exchange

messages over different protocols, although it should always guarantee implementation on top of User

Datagram Protocol (UDP). In respect to security, the OMG defines a security specification [68] that con-

stitutes the security model of DDS applications. It allows for customisation of security related features,

such as authentication and encryption, enabling interoperability between different DDS applications.

DDS has more than one open source solution and there are 10 solution providers [69]. A large

number of programming languages is also supported.

Kafka

Apache Kafka is a middleware software and communication protocol introduced by LinkedIn, a social

network website, in order to process hundreds of gigabytes of new log data that are generated each day

[70]. It was developed with a distributed architecture and uses a PS pattern on top of a high-performance

Transmission Control Protocol (TCP) protocol for building a real time streaming platform [71].

Contrasting with other CT, the consumption information is kept not by the broker but by the con-

sumers. Thus, despite reducing overhead and complexity in the broker, this design principle implies

that QoS are not supported. Regarding security, and although it is disabled by default, connection can

be made over Transport Layer Security / Secure Socket Layers (TLS/SSL), ensuring authentication and

encryption of messages.

Although developed by LinkedIn, it was open sourced and there is only one solution available for

all community, that is constantly being improved. Clients have been created for all of the principal

programming languages [72].

AMQP

Advanced Message Queuing Protocol (AMQP) is a standardised [73] CT that originated from the finan-

cial field [74] but is being used by more than 500 companies in a variety of areas [75]. It works with a

centralised broker and a PS messaging pattern on top of TCP [76].

It supports QoS, with special focus on message acknowledgements, and uses TLS/SSL to ensure

security features, with authentication and encryption included.

There are more than 10 solution providers for AMQP [75], with clients available in the most used

programming languages.
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OPC UA

OPC UA is a standard protocol [77] by OPC Foundation. It is focused on all industrial levels, from

sensors and actuators to ERP systems [78]. The standard version uses a RR communication pattern

and it has recently been complemented with a PS specification [79]. Since the PS specification is not

standardised, this analysis will focus the two specifications of OPC UA in a distinct way.

The standard OPC UA has a decentralised architecture, with clients and servers communicating

with each other over TCP. The support for QoS is not discussed in the specification. Authentication

and encryption are addressed in the security specification [80], where emphasis is put on secured data

exchange between applications.

This CT is a widely used protocol in industry, with a big number of solution providers, including

open source solutions [81]. As seen in the previous list, a set of different programming languages is

supported.

Regarding the PS model, it can be deployed in two different settings: with broker, a centralised

setting, and without broker, where communications are UDP-based [79].

When a broker is used, a standard communication protocol (such as AMQP) is used for the middle-

ware to send messages over TCP. QoS are defined and mapped according to the broker’s implementa-

tion of QoS. In terms of security, it depends on the broker’s implementation as well. A TLS connection

is the mentioned case, with end-to-end security being necessary in the connection to the broker. No

implementations of this specification were found.

The UDP-based can be well suited in environments where small amounts of data are frequently

transmitted. In this case, the security features are built in, with focus on authentication and encryption

of data. Only one solution provider was found, the open source open62541 [82].

MQTT

Message Queuing Telemetry Transport (MQTT) is a standardised [83] communication protocol that is

light weight, open and easy to implement. It runs over TCP and features characteristics such as PS as

messaging pattern, flexible content formats and three QoS: ”at most once”, ”at least once” and ”exactly

once” delivery.

In MQTT, all clients subscribe or publish in topics located in a centralised broker [84]. Authentication

can be passed using a MQTT packet, while encryption is handled by the TLS/SSL [85].

Information regarding solution providers can be found in [86], with a large number of solutions, includ-

ing open source. A list of clients that includes more than 25 programming languages is also included.

REST WS

Representational State Transfer for Web Services (REST WS) is a decentralised architectural style em-

ployed for creating web services. It differs from the other CT, since it is not a application level protocol,

but a framework for communication. REST WS uses Hyper Text Transfer Protocol (HTTP) methods, on
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top of TCP, to provide a simple synchronous RR messaging system [87]. Although it is not a communi-

cation protocol, it is included here since it is widely used in M2M communication [61].

Security can be handled by TLS/SSL, including encryption and authentication. Since the only con-

cern is providing functional interfaces, QoS are ignored by REST WS [88].

Since this is an architectural style, it does not make sense to speak of solution providers or program-

ming languages. Technically, REST WS can be applied with every programming language, as long as

an HTTP library is present.

CoAP

Constrained Application Protocol (CoAP) is an Internet Engineering Task Force (IETF) standard [89] for

M2M communications in constrained (for example, low power) environments. It runs on top of UDP,

a more lightweight protocol, and uses a RR messaging pattern. CoAP was designed according to the

REST WS architecture, making mapping between the two feasible.

QoS is present in four possible message types that ensure reliability. CoAP is secured using Data-

gram Transport Layer Security (DTLS), another IETF standard [90]. This is a protocol based on the TLS

that provides similar security features.

Implementations of CoAP can be found in large number and for a diverse group of programming

languages, with commercial and open source solutions available [91].

MTConnect

MTConnect is a standard by the MTConnect Institute [92] for data acquisition in manufacturing environ-

ments. It uses a decentralised architecture based on entities called MTConnect Agents, responsible for

collecting, rearranging and sending data. This CT support both PS and RR communication pattern and

uses HTTP, on top of TCP, as a lower-level protocol.

QoS, although already tested in [93], are not included in the specification. The same happens with

security, that is not addressed in the specification. The use of security based on, for example, TLS/SSL

is recommended [64].

MTConnect is an open source standard and with a big number of agents and clients available in a

variety of programming languages [94].

Results

The results of the comparison are presented in Table 5.1.

Most design choices are a trade-off between advantages and disadvantages, so it is impossible to

say that one is better than the other. Nonetheless, some tendencies can be identified.

The majority of the CT evaluated use a PS messaging pattern, due to advantages like the simplicity

for one to many communications. There are also protocols that can already implement both patterns,

like MTConnect, and there is the case of OPC UA, where the standard still only implements RR but is

developing solutions that also consider PS.
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Most protocols run over TCP, since it ensures more reliable communications than UDP. Both fully

implemented protocols that use UDP, DDS and CoAP, balance the eventual packet loss by using some

form of QoS.

Some protocols already consider QoS, even though only DDS focus on a wide range of policies.

Contrary, some CTs don’t consider QoS, since they increase complexity and decrease bandwidth.

Security is a common factor among all protocols, with the exception of MTConnect, although it is

something that can be added. When security is considered, authentication and encryption are always

focused.

With exception for the contemporary PS specification of OPC UA, it must be noted that all CTs

present a big number of open source solutions, which facilitate implementation, dissemination and im-

provements. One implementation of PS OPC UA with UDP already exists but it still lacks validation.

Kafka was well rated despite only one implementation, since it is a widely used and validated solution

that is evolving with the input of its users.

All protocols with good results in the Solution Providers parameter also support the most important

programming languages.
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Chapter 6

Implementation

The implementation details of the concepts derived in Chapter 5 are presented in the this chapter. It

starts with the implementation of the Technology-independent Abstraction Protocol (TIAP), considering

the technical details and the technologies implemented. Afterwards, the implementation of the prototyp-

ical use-case is delineated, followed by a description of the deployment.

The end of the chapter is dedicated to the comparison with a legacy approach. First, the use-case

is implemented using a P2P architecture, with the details of the implementation being presented. In the

end, the evaluation metrics used for the comparison are determined.

6.1 Implementation of the Communication Protocol

In this section, the TIAP’s implementation is described, with focus on the development environment, the

definition of the communication protocols to be used and the most important details for the implemen-

tation of the concept defined in Chapter 5. In the end, the most important steps to implement a TIAP’s

client are described.

6.1.1 Development Environment

With the goal of ensuring reusability and a modular structure in the clients, the TIAP was developed as a

Dynamic Link Library (DLL). This proved to be an efficient design choice, since the deployment required

continuous testing and upgrades, that are facilitated by this kind of libraries, and since it allowed clients

to implement the protocol with little effort.

The library was developed using the framework .NET Core 2.2 [95], that has the advantage of being

independent of the operating system, very important for an application to be applied in heterogeneous

scenarios, according to Industrie 4.0 requirements. C# was the programming language used and the

development environment was Visual Studio Community.

After developing TIAP’s concept, presented in Figure 5.1, and after deciding on the development

environment, an important design choice is necessary: defining the CTs to implement.
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6.1.2 Selection of Technologies

The selected technologies are two of the previously mentioned in the comparison: Kafka and AMQP.

The choice was based in the fact that both share some common ground, like a PS messaging pattern,

but also have a lot of differences that make the migration challenging.

One of the most important differences is related to QoS policies. While Kafka focus more on storing

the data in the topic, being the user responsible for correctly consume and publish, AMQP takes into

account QoS, having more control on message handling. On the other hand, by reducing complexity

in the broker, Kafka can present higher throughput. This design choices represent a trade-off between

relevant features.

Another interesting aspect is that both brokers are originally from different fields. Kafka originated

in information technologies and big data, while AMQP came from the financial field. Nonetheless, both

have already been implemented in industrial practices. Furthermore, the aggregation of technology from

different fields is one of the drivers of Industrie 4.0, so using these CTs is interesting in the context of

this work.

It is important to define the implementation of these CTs that will be used as a broker. For AMQP,

RabbitMQ 3.7.10 [96] was used. This software was built based on AMQP 0-9-1, but can support AMQP

1.0 via a plugin. For Kafka, the broker used is the widely used and exclusive solution: Apache Kafka

2.1.0 [97].

To ensure communication with both brokers, the TIAP must implement clients containing AMQP’s

and Kafka’s connection logic. For the RabbitMQ, the package used is the official .NET package: Rab-

bitMQ.Client (v5.1.0) [98]. In the case of Kafka, the client used was developed by Confluent and it is the

most commonly used: Confluent.Kafka (v0.11.6) [99].

6.1.3 Implementation Details

According to the diagram presented in the previous chapter (Figure 5.1), the communication logic of

both protocols must be programmed in two different classes, that should implement the ICommTech

interface. This interface defines the methods that all the technologies should have.

Figure 6.1 presents the implementation of the TIAP that was used in the use-case. The specific

AMQP logic for communicating using the RabbitMQ broker is contained in the class RabbitMQBroker.

Similarly, the Apache Kafka’s logic is programmed in the class KafkaBroker.

The methods contained in the interface ICommTech, that are implemented by both technologies, are

mostly self descriptive. For example: the method SearchBroker returns true if the broker is available; the

method HasMessages returns true if the defined topic has messages; the method ConsumeAll reads

all messages from an array of topics and returns a List containing arrays of strings; and the method

SeeNext returns the next message that will be received, ignoring messages in line. Even though most

methods are self descriptive, some important concepts must be discussed.

First, when a method consumes from more than one topic, if the return type is a List containing

arrays of strings, the first position in each array is the consumed message and the second position is the
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topic of origin. Since the TIAP allows multiple subscription, there must be a way to differentiate between

the origin of the messages, which explain this solution.

To increase flexibility for the data consumers, since it is one of the most important processes in

communication protocols, there is an overload in the method Consume. The first one, that returns void,

is a method for continuous consumption in a different thread, that fires the event MessageReceived

when a message is consumed. The consumption must be stopped by the user with the StopConsume

method.

The second overload is a method for synchronous consumption, that consumes according to a cer-

tain time. The consumption time, in seconds, is one of the inputs of the method.

Another important thing that should be noticed is that all messages consumed or published are

strings. This means that the TIAP only guarantees integration in a syntactical level. The user is respon-

sible for the semantic interoperability.

The most important difference between Figure 5.1 and 6.1 is the definition of the fields and methods

and the specification of the two defined CTs. Nonetheless, the TIAP is a generic concept, which is the

main reason for a distinction between the concept and the implementation. For different use-cases, the

addition of more CTs implementing the ICommTech interface is not only viable but desirable.

The remaining classes were already introduced in the concept. Nonetheless, visualizing the imple-

mentation in Figure 6.1 helps to better understand the functional logic.

The Controller is the object that a user of the TIAP is going to create. The constructor will create a

ConfigDeserializer and use its only method, the GetFile, to obtain an object of the type Configuration.

The method GetFile reads the information of a JavaScript Object Notation (JSON) file with the name

and extension configuration.json that must be present in the working directory. Afterwords, the file is

deserialized to create an object of the class Configuration. The framework used for the deserialization is

the package Newtonsoft.Json (v12.0.1) [100]. This is the framework used every time there is the need

to handle JSON files throughout the implementation.

The obtained object, of the class Configuration, contains the most important information for starting

the communication with the middleware: the name of the CT, field Broker, and, in an object of the

class Location, the broker’s location in the network and authentication settings (if necessary). The class

Configuration can be adapted to meet different CTs specific requirements, with only minor changes

needed in the rest of the implementation.

With this information, the Controller can initialize its field Broker, that is an object of the ICommTech

interface. Using an enumeration named Technology, containing the names of the communication proto-

cols available, and a switch statement, the Broker is initialized with the corresponding class.

The rest of the functioning is straightforward, since the remaining methods are similar to the ones of

ICommTech. Every method uses the field Broker, after it is initialised with the communication protocol,

and simple applies the respective method from the corresponding class.

It can be argued that the Controller should implement the interface ICommTech. Although that would

be logical in a technical perspective, in a conceptual perspective is not desirable, since the Controller is

not a CT, it is the class that allows the user to control the TIAP. Thus, not implementing the interface
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was a design choice, to ensure a logical deployment and avoid implementation mistakes.

TIAP’s development considered the need of adding new CTs in the future, and that this inclusion

should be performed with as little effort as possible. The most time consuming step is the creation of a

new class that implements the ICommTech interface, since implementing a client of a new protocol can

be a complex task. Afterwards, all that there is to do is create a new configuration file, eventually with

some minor changes in the Configuration class, adding the name of the new broker to the enumeration

Technology and adding a new case in the switch statement that the Controller uses to differentiate

between the brokers.

6.1.4 Implementation of the TIAP in a Client

A brief explanation of the most important details for implementing the TIAP in a new client will be de-

scribed. The most important steps are presented with the assumption that the middleware is already

well configured and that communication with it is possible, something that might require some effort to

accomplish in certain occasions.

The first step is to make sure the necessary packages are installed, that the TIAP’s DLL is referenced

and that the configuration file is well structured and in the working directory. Following, an object of type

Controller must be initialised. Then, one must implement the methods using the correct syntax.

Using the developed library is straightforward, since emphasis was put on simplicity. Nevertheless,

some comments must given regarding the two most used methods: Publish and Consume.

Since the Publish method is synchronous, it is advisable to call the method in a different thread.

This applies mostly in CT where some kind of acknowledgement is expected, nonetheless it is a good

practice in a general way, to avoid blocking the client.

As explained before, there are is a method overload in the Consume. One is a timed consumption

while the other consumes indefinitely until the user calls the method StopConsume, firing the event

MessageReceived every time a message is received. It is the second Consume that deserves two

uncomplicated remarks: one must first subscribe the event and in the end of the program, or in an-

other location the user finds relevant, the consumption must be interrupted with the appropriate method.

Failure in this last step will result in blocks and errors that might be critical in a real industrial application.

6.2 Implementation of the Prototypical Use-Case

This section aims at clarifying the most important details of the implementation. First, an analysis on the

development of the use-case clients is done, followed by the description of the deployment in terms of

clients distribution in the network. The basis of the implementation is the prototypical use-case present

in Figure 5.4.

47



6.2.1 Development of the Clients

Before discussing the implementation of the clients, the way data was passed between them must be

explained. As mentioned before, the TIAP ensures only syntactic integration, so semantic interoperability

must be guaranteed by the user.

To ensure integration, communication is based on strings in JSON format. Since focus was not on

a common data format, most clients had their own classes for deserialization, with different fields. This

presents the disadvantage of increasing complexity, but, on the other hand, ensures that only relevant

data is present in every message, decreasing network usage. Nonetheless, applying a common data

format to the developed protocol could be a feature to add in the future.

All clients where developed using the .NET Core 2.2 framework, for the same reason of the TIAP.

The only exception was the HMI, as will be further discussed.

Industrial Plants

Regarding the MPS, the goal was to obtain data from eight digital outputs corresponding to the sensor

values, so a new client was created. The plant is interfaced via USB and a FESTO EasyPort [101]

that provides a virtual COM port for communication with the plant and a proprietary serial protocol. A

software developed in previous projects translates the data between the virtual COM port and a raw

TCP connection with a server.

To obtain the data from the sensors, a TCP client was used, that serves as a legacy adapter to obtain

data from the plant’s TCP server in a RR pattern. After obtaining the sensor values, data was converted

to the right format and sent to other systems using the TIAP. This logic was contained in a new MPS

client, created in the scope of this work for the developed use-case.

Regarding the MyJoghurt, it has an OPC UA server directly on a Beckhoff CX2040 PLC with Twin-

CAT3 TF6100 [102]. The PLC is connected to the plant via EtherCAT realtime Ethernet.

Data was obtained from the Beckhoff AM8111 servo drives, used to move four conveyors. Connec-

tion is made using the following client: OPCFoundation.NetStandard.Opc.Ua (v1.4.354.23) [103], which

is the reference implementation of the OPC Foundation. This software is used as an adapter, in order to

obtain data from the plant’s PLC. Afterwards, the important payload is sent using the TIAP to the other

clients in the architecture. The logic of the OPC UA adapter and of the communication using the TIAP

is contained in a client developed for the prototypical use-case. The developed client can be located in

a separate machine, as long as communication is possible.

In both cases, to take into consideration real-time industrial constraints, data acquisition must be

performed with high frequency. In the motors from the MyJoghurt, anomalies might cause instant torque

increases, that are quickly normalised. In the MPS, the object of analysis is time, so longer data acqui-

sition time intervals represent an increase in measurement error. Thus, data was obtained in periods of

around 100 ms.
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Manufacturing Execution System

The MES receives data from both plants and the Anomaly Detection analyser. The goal is to store this

data, and, in the case of the plants’ data, send it to the HMI. The database for storage was merely

illustrative, and, for simplicity, was implemented using a List from the Collections.Generic namespace.

The MES also had the management function of updating the thresholds for detecting anomalies.

These values could be tuned by the user before starting the client and would then be sent to the Anomaly

Detection analyser.

Analysers

The developed analysers were already explained in the previous chapter, and, regarding the Time In-

terval and the Hampel Filter, the implementation can be considered straightforward. These analysers

consume the values, perform the necessary computation (computing time difference and filtering, re-

spectively) and send the values to the next analyser.

Regarding the Anomaly Detection, the implementation also included a heartbeat report to be pre-

sented on the screen every minute. It is called StatusUpdater, since the goal is to update the user on

the anomalies detected: where those anomalies came from, the part of the plant that presented the

anomaly and the time of the anomaly.

This last analyser sends data to the MES only when there is an anomaly, reporting the anomaly so

that the management level can access all the anomalies that happened in the system. Since the HMI

intends to present a data visualisation of the values with and without anomalies, data is sent to this client

every time a value is analysed, even if it is not an anomaly.

Human-Machine Interface

The HMI was develop using Windows Presentation Foundation (WPF), a graphical subsystem to develop

user interfaces. It is the only client that was not developed with the .NET Core 2.2 framework, since it is

not yet supported. The framework used was .NET Framework 4.6.1.

In Figure 6.2 the layout of the HMI is presented. Two text boxes are used, one to show the status,

where the last anomaly detected is presented, and another present to the user how the data exchange

is being handled. Also, the HMI displays four buttons, divided in two areas and, inside each area, one

for the MPS and one for the MyJoghurt.

In the Check Anomalies, a graphical representation of all the values evaluated by the Anomaly De-

tection analyser is presented, with a clear distinction between anomalies and non-anomalies. This is

useful, since it allows the user not only to check the anomalies and where they are located, but also to

have a clear perception of how the values are evolving.

The other area, Check Plant Values, displays the raw data from the plants, as it is stored in the MES.

Once again, this is important since the operator might want to check a value from a different variable or

just have a perception of how the whole system is evolving, and not only the parts that are in focus for

the anomalies.
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Figure 6.2: Layout for the developed HMI, in a case where the middleware was Apache Kafka and there
were no anomalies detected.

The graphical representations were created using a open-source plotting library named Oxyplot,

specifically the packages OxyPlot.Core (v1.0.0) and OxyPlot.Wpf (v1.0.0) [104].

In the next section, the hardware deployment of the different clients is presented.

6.2.2 Deployment of the Components

Since the focus of the study is Industrie 4.0 and the integration of legacy systems, it is important to

implement the use-case with a perspective on distributed systems. Thus, the setup was developed

using machines in different locations.

For RabbitMQ and Apache Kafka, a machine running on Windows 10 with Hyper-V installed created

two Virtual Machines (VMs) with Ubuntu 18.04.1 LTS. Each VM contained only one broker, either Rab-

bitMQ or Apache Kafka, and no other clients were installed in the VMs. Thus, every client that connected

to a broker was communicating from a different machine.

Besides the machine holding the VMs, two more were added, all within the same ethernet network.

The setup was the following:

• 1st Machine - VM with broker, HMI and MyJoghurt ;

• 2nd Machine - MPS and Hampel Filter ;

• 3rd Machine - MES, Time Interval and Anomaly Detection.

In order to validate technological independence, the setup remains unchanged independently of

the broker being used. The development of the setup also considered the P2P approach, that will be

discussed in the following section.

6.3 Legacy Peer-to-Peer Approach

To perform the comparison defined in the fifth requirement, it is necessary to implement a use-case

that guarantees the same functionality, but where the communication is performed in a legacy P2P
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way. Additionally, using a RR messaging pattern, that better characterises legacy applications, is also

desirable.

Along this line, direct TCP connections with RR pattern were implemented, with clients sharing the

same internal logic as in the TIAP implementation. This is a low-level and simple to apply protocol, that

is a good representation of legacy architectures.

The adapted use-case is represented in Figure 6.3.

Figure 6.3: Structured, graphical representation of the implemented use-case, using direct TCP connec-
tions (the connection with the legacy plants is not represented, for simplicity).

This protocol was implemented using the classes TcpListener and TcpClient from the Net.Sockets

namespace.

The TcpClient is a client that sends data to a defined address and port. It waits for the response

of the server before finishing the task, and requires that a server is always listening. This can lead to

the application blocking for some seconds while the TcpClient is trying to establish a connection. Thus,

using a different thread is advantageous and can prevent critical problems.

The TcpListener is a server that continuously listens in a certain port and that sends a response

to the client when a message is received. It was programmed similarly to the Consume method that

consumes indefinitely from the TIAP. It fires an event when a message is received and there is also

a method used to stop consumption, which should always be done at least in the end of the program

developed for the respective system.

Each client present in the use-case implements a TcpListener, a TcpClient, or both. The implemen-

tation in the different clients was programmed with the original logic and without encapsulation. It can

be argued that it would require less effort to, just like in the TIAP, create a DLL that would be referenced

by each client. This makes sense in a deployer point of view, nonetheless, it is important to take into

account that the comparison is between the usage of the developed protocol and the procedures of the

legacy TCP-based communication, which is the reason why it is implemented in a legacy way, instead

of being abstracted in a library. Besides, most of the times the systems were added in a intermittently,
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so it can be argued that effort was not put in optimising code abstraction but on connecting the singular

clients in the architecture. Thus, the comparison only makes sense when the developed protocol is put

side-by-side with a legacy protocol, implemented in a legacy way.

Further details of the implementation and setup are the same as for the technology-independent

data acquisition architecture’s use-case, thus a more complete description of this use-case would be

redundant.

6.4 Evaluation Metrics

In this section, the metrics used for computation of effort will be introduced. The first three metrics

analysed are included in the Visual Studio environment, and must be presented according to the way

they are used in that software [105]. The last metric is a commercial software from ProjectCodeMeter

[106].

The metrics might be of complexity, of effort or both. Complexity metrics evaluate the complexity of

the source code. Effort metrics evaluate the time it takes to develop it. In Chapter 3 a distinction between

complexity and effort was discussed, when applied to the comparison. It is important to clarify that, when

defining the metrics that will be used to compare the programming effort needed in both approaches,

both complexity and effort metrics can be important. In a general way, a more complex code requires

more time to be developed, thus requiring more effort.

The first metric is the Lines of Code (LoC). It is, originally, a size metric, that can be used to have

a first idea on complexity and effort. There are some variants of this metric, but, in Visual Studio, it

simply counts the number of executable of code. When the number of LoC is high, the source code is

probably too complex and should be divided for simplicity. This is a useful metric, that gives a clear first

impression of the complexity of the code.

Another metric available is the Cyclomatic Complexity (CC). This is a complexity metric based on

the number of decision logic statements in the source code. For example, if a switch statement with

four possibilities is added in the code, the CC would increase by four units. A high value indicates high

complexity. By measuring the number of linearly independent paths in the code, it can compute its

complexity, giving a valid notion of effort.

Maintainability Index (MI) is a metric that is computed from other metrics, but with a divergent mean-

ing. It focus on the simplicity for implementing modifications in the system, something that conjugates

perfectly with Industrie 4.0, which needs smart systems that can easily change according to different

use-cases. Focusing solely on the developed architecture, that is independent of the technology, main-

tainability is also important, mostly in a migration scenario. The result of this metric is a percentage, and

the code is considered easier to maintain, therefore less complex and requiring less effort, if the value

is closer to 100%.

Weighted Micro Function Points (WMFP) is an effort metric that breaks the source code in micro

functions and computes a final effort score from complexity and volume metrics. Comparing to the three

metrics derived by Visual Studio, it offers a different type of comparison, since the result is an estimate
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of number of hours for coding, debugging and testing. Thus, this is an interesting metric that brings a

new perspective to the comparison, and is used for that reason.

Summing up, four metrics are going to be applied: LoC, CC and MI from Visual Studio [105] and

WMFP from ProjectCodeMeter [106].
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Chapter 7

Evaluation and Discussion

The purpose of the present chapter is to evaluate the two main hypothesis of this thesis, introduced in

Chapter 1. It focus on the proof-of-concept and on the comparison between the developed architecture

and a legacy P2P approach, respectively the first and second hypothesis. Finally, the fulfilment of the

requirements introduced in Chapter 3 is summarised.

7.1 Proof-of-Concept Results

The goal of the present section is to evaluate if a data acquisition architecture can be independent of

the technology used in the middleware’s communication, thus verifying the concept of the architecture

defined in Chapter 5.

The evaluation should start by focusing on the conceptual requirements and on the operating results

in terms of communication. This is relevant since a technology-independent architecture where data

acquisition is not correctly achieved is not an important contribution to scientific research and industry.

The first three requirements will be considered.

After validating the concept for data acquisition, the migration between different communication pro-

tocols should be evaluated. in order to discuss technological independence. In this case, the evaluation

will take into account if the migration was successfully accomplished, according to the fourth require-

ment, and if it represented a loss in functionality.

7.1.1 Communication and Data Acquisition

For both scenarios, with Apache Kafka and RabbitMQ, all messages where delivered in real-time and

without message loss, so proof-of-concept in a prototypical implementation (R2) was achieved. Addi-

tionally, the analysers were able to extract knowledge from the data and to display it graphically in a HMI,

which also presented historical data stored in a MES system. Thus, the use-case considered in this con-

tribution reflects a typical, although simplified, Industrie 4.0 environment with numerous heterogeneous

systems in a connected aPSs (R1).

Examples of the graphics obtained with the HMI are shown in Figures 7.1 and 7.2.
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Regarding interoperability, all data was transparently available to all connected systems (R3-a), since

every system was able to consume or produce to topics that were available in the MOM to all the other

systems, without the need to create a new communication line. Legacy systems could also be integrated,

by using data adapters and communicating over the middleware using a common programming interface

(R3-b). This was the case of the two prototypical plants.

It must be emphasised that the important contribution of this paper is not the successful implemen-

tation of the CT’s logic, but the integration of the technologies in a common protocol that abstracts their

functioning and creates a new technology-independent protocol. In fact, the technologies used - Apache

Kafka and AMQP - have been successfully implemented in a diverse set of applications.

Despite this being a simple use-case, an important point can be made regarding scalability. Since

all technologies used were implemented in real and more complex environments, it can be said that a

more complex use-case would also be successfully implemented with the TIAP.

(a) Values evaluated for anomalies (b) Raw plant values

Figure 7.1: Graphical output from the HMI for the MyJoghurt plant.

(a) Values evaluated for anomalies (b) Raw plant values

Figure 7.2: Graphical output from the HMI for the MPS plant.

7.1.2 Migration between Communication Protocols

A technology-independent concept, as explained in the fourth requirement, is validated by having a

use-case successfully implemented with two CTs with a straightforward migration. A straightforward

migration is achieved when the change of CTs is made with as little effort as possible.

In the implementation, the architecture was first deployed with the TIAP abstracting the AMQP
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and communicating over a RabbitMQ broker. Afterwards, the configuration files of each client where

changed, and the scenario was successfully migrated to Apache Kafka. Despite changing the base

communication protocol and making communication over a MOM in a different location, the functionality

of both scenarios remained unchanged (R4-a).

During the migration process, no changes on the source code of the clients were necessary as the

reconfiguration could be handled by changes to the configuration file of each application only, with zero

changes in the source code of each client. Therefore, migration between different technologies using

the TIAP is straightforward as the architecture is developed in a technology-independent way using the

common programming interface (R4-b).

The effortless migration between technologies can be important in many deployments. For example,

a company that uses Apache Kafka but wants to gradually make a change to DDS due to concerns

with QoS, can use this architecture to make improvements in the new deployment while keeping the

previous untouched, easily migrating between both CTs. Moreover, a company can have distinct setups

that benefit from different technologies, so a straightforward migration in the systems that participate in

both use-cases is important. By using the developed architecture, based on the TIAP, these companies

could greatly reduce the effort for migration

To conclude, the implementation was successful in terms of migration between CTs, since it was

possible to change the communication protocol by updating a configuration file, without changing a

single line in the source code and without losing functionality (R4). The first research gap identified in

Chapter 4 is considered filled.

7.2 Comparison with Classical Approach

The comparison with a classical P2P approach, as stated in the fifth requirement, is based on com-

plexity and effort. As previously explained, the comparison evaluates the conceptual complexity and the

implementation effort. Table 3.3 gives a more clear explanation of what should be evaluated.

In this section, the complexity will be evaluated, followed by the effort comparison. It finishes with a

discussion about how the two approaches could be compared in different scenarios.

7.2.1 Complexity of the Concept

The comparison with the classical P2P approach, as stated in R5, is based on the conceptual complexity

and the implementation effort.

According to the sub-requirements, the complexity’s comparison is based on two main factors: trans-

parent data access and a reduced number of interfaces. Figure 7.3 clarifies clarifies that transparent

data access is only achieved in the MOM-based implementation, since every client can subscribe or

publish to another client’s topic (R5-a).

Regarding the number of communication channels, there are seven connections necessary for the

given use-case, while the P2P implementation accounts for nine. For a fully connected system (each
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(a) TIAP’s Implementation (b) TCP-based Implementation

Figure 7.3: Schematic representation of the two scenarios. TIAP middleware approach with 7 point-to-
point connections (left) and the classical peer-to-peer approach with 9 point-to-point connections (right).

system connected to each other), the number of channels is n for the TIAP approach and n(n− 1)/2 for

the P2P approach, as can be seen in Figure 2.2. Hence, the middleware based approach also shows

less complexity regarding the number of interfaces (R5-b).

Despite these two sub-requirements, another disadvantage was found in the P2P approach during

the implementation, that reflects conceptual complexity. If one client changes its address in the MOM-

based architecture, as long as it is not the middleware, only his connection to the middleware must be

updated. In a TCP-direct deployment, every component that communicates with that system must at

least update its address to the new one. In a system with hundreds of clients, this task is not only

impractical but can even be unachievable if the system is too complex and not well documented, as

probably happens in a lot of companies.

7.2.2 Effort for Implementation and Migration

The comparison of effort is based on two factors: reduced effort for implementation and migration. To

evaluate effort, as explained in Chapter 6, code metrics are going to be used.

In Table 7.1, the results of the code metrics analysis for each client are presented.

Table 7.1: Raw values of code metrics for each connected system for both TIAP and P2P scenarios.

TIAP P2P

LoC CC MI (%) WMFP (h) LoC CC MI (%) WMFP (h)

MPS 284 49 87 109 321 49 83 117

MyJoghurt 538 83 87 197 573 83 84 204

MES 151 16 81 62 260 27 79 97

Time Interval 110 20 87 43 219 29 85 75

Hampel Filter 207 29 80 88 317 38 79 119

Anomaly Detection 223 43 86 94 335 54 84 126

HMI 1,124 161 82 631 1,245 173 81 668

58



Table 7.2: Comparison of the relative code metrics for each connected system. Table summarises the
ratios between code metric for TIAP scenario divided by code metric for P2P scenario.

TIAP/P2P

LoC CC MI WMFP

MPS 88% 100% 105% 93%

MyJoghurt 93% 100% 104% 97%

MES 58% 59% 103% 64%

Time Interval 50% 69% 102% 57%

Hampel Filter 65% 76% 101% 74%

Anomaly Detection 67% 80% 102% 74%

HMI 90% 93% 101% 94%

As explained lines of Code (LoC) is the number of functional lines in the code, so more lines of code

imply more effort. In the case of Cyclomatic Complexity (CC), an higher number also means more effort,

as explained in the previous chapter. The Maintainability Index (MI) is a number between 0 and 100,

where a higher number indicates higher maintainability, so less effort.

The results of WMFP are presented in programming hours. The presented results are not to be taken

into real consideration in terms of raw value, but are important as a comparative reference between the

effort necessary to deploy a solution that uses each CT. The values do not represent reality, mostly due

to the fact that the code was developed in a modular way generic parts could be reused in different

clients.

Table 7.2 summarises the ratios between the code metrics for the TIAP scenario divided by code

metrics for the P2P scenario, and therefore states the relative effort of the TIAP approach compared to

the classical P2P architecture.

All metrics show an increase in effort in the P2P approach compared to TIAP. By abstracting the time-

consuming and complex communication-specific logic inside a DLL, the clients are able to communicate

with easy to use and abstract methods. Thus, less lines of code are used (lower LoC), there are less

linearly independent paths in the code (lower CC) and implementing changes is simpler (higher MI). This

results in less programming hours (lower WMFP) and a decrease in effort that can be as much as 50%

(R5-c). It should be emphasised that the comparison focused on the clients with all their logic, instead

of only comparing the methods for communication, so differences in effort are less evident in complex

clients, like the HMI.

When considering migration, the metrics would all point to zero effort in case of a TIAP implementa-

tion, since no lines of code are changed. It is clear that changing the legacy protocol used in the P2P

scenario to another protocol would always require changes to the code that would be reflected in the

code metrics. Regarding the number of necessary steps, TIAP only requires one: updating the config-

uration file. A migration between the legacy P2P protocol and another protocol keeping all functionality

and requiring only one step to be executed can be considered impossible (R5-d).
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Therefore, it was proved that an architecture based on the TIAP requires less effort for deployment

and migration.

7.2.3 Discussion on Different Use-Cases

The results obtained in the previous sections were very positive for the developed architecture, that

fulfilled all sub-requirements. Nonetheless, one can ask if this would also apply in different use-cases,

like a greenfield deployment.

Considering the complexity comparison, it should be noted that the only way to achieve transparent

data access in a P2P setup is by increasing the number of interfaces to the maximum, by connecting

all clients to each other. Thus, only a P2P deployment with two elements, or another with three would

have less or equal complexity, respectively, when compared to a MOM-based architecture (Figure 2.2). If

there are more than three clients and the legacy architecture aims at having data transparently available,

a implementation with a middleware would always have lower complexity.

Regarding effort, it might be argued that, by using a different CT, rather than TCP, the effort for

deployment could be lower. Even though the results obtained using the TIAP are very positive, it is

indeed possible that some protocols require less effort for implementation. The same does not apply to

the effort for migration, since changes in the source code are always needed in order to migrate between

different CTs.

7.3 Requirements Fulfilment

A comparison with the requirements developed in Chapter 3 must now be accomplished. A summary of

the requirements can be found in Table 3.4.

Regarding R1, Industrie 4.0 was taken into account mainly considering three factors: all devices

present were integrated, the integration was performed between different levels of the automation pyra-

mid (presence of the MES) and data from different plants was also acquired in the same system.

The prototypical implementation of the use-case defined in Section 5.2 ensures that the second

requirement was also fulfilled.

The interoperability of data sources and systems (R3) was also fulfilled, according to the sub-

requirements defined in Table 3.1. The middleware is a single interface that connects all devices and,

by integrating the two plants that used different CTs, the presence of legacy devices was ensured.

The fourth requirement was fulfilled by the use of two different communication protocols in the mid-

dleware. This was made possible without a single line of code changed in the clients, only a change

of the configuration file was necessary. Consequently, the implementation was completely independent

of the technology, so the architecture not only fulfils the fourth requirement but also respects the first

hypothesis of this thesis.

Considering the last requirement, R5, the sub-requirements must be considered (Table 3.3). Data

was made transparently available by using a middleware: each client connected to the broker could sub-
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scribe to any topic, ensuring access to data from every other client. As discussed in previous sections,

the number of interfaces was also smaller in the middleware architecture’s implementation (7) comparing

to the TCP direct deployment (9). While in this implementation the difference might not be substantial, if

a new system that needs to consume data from every other client is considered, the difference would be

much more relevant: in the architecture there would be one more connection and in the P2P deployment

the number of interfaces would double.

The last two sub-requirements, focused more on a technical perspective, were also accomplished.

By using the evaluation metrics, the effort for implementation was shown to be lower comparing to the

legacy TCP-direct. Regarding migration, it can be argued that, in terms of code metrics, the effort for

migration to a different CT is zero. If no line of code is changed, the programmer does not need to

do anything, so there is no effort. The number of actions necessary in the architecture for migration is

one: changing the configuration file. In terms of the P2P deployment, migration was not implemented,

nonetheless, it is clear that the effort could never be inferior than just zero lines of code and only one

action, so the sub-requirement is fulfilled. Therefore, the fifth and last requirement was accomplished:

the developed architecture presented lower effort and complexity compared to a legacy approach.

In summary, the architecture was successfully implemented in terms of data acquisition and in

terms of migration between communication protocols in the middleware in a Industrie 4.0 environment

(R1–R4). Therefore, it was proved that an architecture based on the TIAP requires less effort for de-

ployment and migration (R5). The fulfilment of the requirements R1 to R5 proves the contribution of this

work to fill the identified research gaps.
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Chapter 8

Conclusions and Future Work

The emergent field of Industrie 4.0 requires data integration in all automation levels, something that is

only possible if the right data acquisition architecture is used. One of the most prominent solutions is

the use of architectures based on a Message-Oriented Middleware (MOM), a software entity that acts

like a common interface between all systems, allowing for communication between them. The goal

of this thesis is to conceptualise and evaluate a data acquisition architecture that is independent of

the communication technology (CT) used in the MOM. Two hypothesis were stated and discussed in

Chapter 1.

First, it was intended to prove that a data acquisition architecture can be independent of the CT used

in the middleware. Technology independence is relevant since it ensures flexibility of the architecture by

decoupling concept and implementation, preventing a lock-in to a specific technology. It is also identified

in the literature as a requirement for MOM-based architectures.

Additionally, one must prove that a technology-independent MOM-based architecture for data ac-

quisition, when compared with a legacy P2P approach in terms of complexity of the concept, effort in

deployment and effort in migrating between different communication technologies, will show improve-

ments. This comparison is relevant since it can highlight the advantages of the developed solution when

putting it against the common practice, validating the necessity for such architecture.

To achieve technology independence, the architecture should abstract at least two different CTs

behind a common interface and allow an easy migration between these technologies. Regarding the

comparison, all data should be available and the number of communication lines should be lower, in

order to reduce complexity. To evaluate reduced effort in implementation, code metrics can be used.

In the case of migration, the number of actions needed to migrate should be minimised, along with

the use of code metrics. Furthermore, the developed architecture should be applied to Industrie 4.0,

being implemented in a prototypical use-case and ensure interoperability of legacy and non-legacy data

sources, completing a set of requirements presented in Chapter 3.

The following sections will focus on the contributions based on the two aforementioned hypothesis,

that were successfully proven. Additional contributions are also presented, followed by a few ideas for

future work.
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8.1 Concept of the Technology-independent Architecture

After an analysis on state of the art data acquisition architectures, in Chapter 4, a research gap related to

technology independence was found. No architecture conceptualises the same use-case with different

CTs, implemented that concept in an industrial prototype and migrated between the protocols without

losing functionality. Thus, no architecture can be considered technology-independent.

According to the identified research gap, and considering the diverse set of CTs available, with

different specifications and advantages, a data acquisition architecture is conceptualised independently

of the communication protocol. This architecture, presented in Chapter 5, aims at integrating all systems,

including legacy devices from all levels of automation in a common MOM. This architecture also accounts

for the presence of analysis and dashboard clients.

The developed architecture was implemented in a prototypical use-case, considering two industrial

plants communicating over different legacy protocols, one MES system, three analysers and one HMI.

The use-case was implemented as a network of distributed heterogeneous systems, reflecting a typical

Industrie 4.0 environment. Communication was done over a MOM, capable of migrating between two

scenarios (using different CTs, namely Apache Kafka and AMQP) without losing functionality. The

implementation details are presented in Chapter 6.

For both scenarios, all messages where delivered without message loss and proof-of-concept in the

prototypical implementation was achieved. During the migration process, no changes on the source

code of the clients were necessary, as the reconfiguration could be handled only by changing the con-

figuration file of each application. Thus, the architecture was successfully implemented in terms of data

acquisition and in terms of migration between communication protocols in the middleware in an Industrie

4.0 environment.

The developed architecture allows more flexible deployments, by easing migration between protocols.

It can be used for both greenfield and brownfield deployments, with the added advantage of allowing a

gradual evolution to Industrie 4.0 scenarios, due to the use of a MOM capable of integrating legacy

devices with new systems.

The implementation of the architecture assures its suitability for data integration in an industrial con-

text, being the only technology-independent architecture already validated. Enterprises that require

similar deployments with different CTs would benefit from this architecture, since a straightforward mi-

gration reduces downtime and, consequently, increases the OEE, one of the main goals of Industrie

4.0.

In conclusion, this work contributes with the concept and implementation of a new architecture for

Industrie 4.0, independent of the technology used in the MOM.

8.2 Evaluation of the Technology-independent Architecture

In the state of the art analysis (Chapter 4), it was concluded that a formal comparison with a legacy P2P

approach is not found in the literature. Although it is possible to assert a reduction in complexity when a
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MOM is used, no concept pointed this out with a complexity and effort comparison, so a second gap in

the literature was found.

In order to fill the second research gap and confirm the relevance of the new architecture, the imple-

mentation of the prototypical use-case previously described was compared with a legacy P2P approach.

For this, a new implementation was described (Chapter 6), with the communication based on direct TCP

connections, ensuring the same functionality as in the architecture’s implementation.

The results of the comparison are described in Chapter 7. Regarding complexity, it was verified that

the MOM-based approach allowed for transparent data access and for a reduction in the number of

communication lines. Hence, it was confirmed that implementing the developed architecture ensured a

reduction in complexity.

Regarding effort in implementation, an analysis based on four different code analysis metrics showed

that the effort to deploy the MOM-based use-case is lower than the effort required when implementing

the P2P use-case. In the migration scenario, the metrics would all point to zero effort in the architec-

ture’s implementation, since no lines of code are changed. Additionally, only one step is necessary for

migration: changing the configuration file. For the P2P, it can be said that a migration between the

legacy CT and another protocol, keeping all functionality and requiring only one step to be executed, is

impossible. Thus, the developed architecture also ensures a reduction in effort, both in implementation

and in migration.

This comparison validates the architecture for enterprises wishing to achieve Industrie 4.0, by adding

a reduction in effort and complexity to other advantages of this revolution. Such reduction is positively

reflected in the operating costs, since complex systems are harder to deploy and maintain, while in-

creased effort requires an increase in working hours. Thus, a change to the developed architecture

would be beneficial in most cases.

To conclude, this work contributes with a complexity and effort comparison between the architecture’s

implementation and a P2P use-case that ensures the same functionality.

8.3 Additional Contributions

In order to implement a technology-independent architecture, a new protocol was developed, called

Technology-independent Abstraction Protocol (TIAP). It abstracts the specific CT logic behind a common

interface, allowing clients to be implemented independently of the underlying protocol actually used for

communication.

Although created for the developed architecture, the TIAP can be implemented in a variety of archi-

tectures and use-cases, so it is considered a different contribution.

Another contribution of this work is the qualitative comparison of relevant CTs in the field of automa-

tion. This comparison focused on significant features for the field, like messaging patterns and security.

This comparison is a useful reference for enterprises that need to decide between different CTs to

implement. Additionally, it fulfils a gap in the literature for comparisons of the kind.

Finally, as stated in Chapter 1, a conference paper based on this work was submitted.
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8.4 Future Work

Since the two hypothesis of this work were proven and the requirements were fulfilled, the goal of this

thesis was achieved, opening the possibility for new developments and improvements. Thus, a few ideas

for future work are presented, organised with respect to the main contributions of this work.

First, effort should be made in adding new requirements in the developed architecture, like a common

information model and support for enhanced security features. Furthermore, technological development

creates the necessity of continuously updating the architecture to ensure that it does not become a

legacy solution for Industrie 4.0 deployments.

Following future improvements in the architecture, new implementations in real industrial environ-

ments, with more complex use-cases, would be relevant to verify the advantages of the concept. Further,

migration should consider a different number of CT, so effort should be made in adding new communi-

cation protocols to the TIAP.

Considering the last point, it should be evaluated if all presented industrial communication protocols

can be supported by TIAP or if it first needs to be modified or extended. Moreover, a layered implemen-

tation of TIAP could provide better possibilities for tweaking the internals of the protocol, if needed, and

provide developers with more possibilities (higher abstraction versus easier customisation).

The comparison with a classical P2P approach can be considered a closed topic, since the improve-

ments were clear. Nonetheless, a prototypical comparison between the developed architecture and

other existing architectures for Industrie 4.0, as some of the discussed in the state of the art (Chapter

4), could be important. This comparison would lead to a better distinction between the different architec-

tures, and could potentially generate a new and enhanced concept, that would adopt the best features

of each architecture.

Finally, and accounting for the constant development of the studied CTs, the comparison between

technologies will need to be continuously actualised. Taking a step further in the comparison, for in-

stance with a quantitative approach, would be a good improvement.

Following the submission of the paper for a conference, there is also the intention of applying some

of the ideas presented in this section, to create and submit a journal article.

All suggestions for future work keep in mind the transition to Industrie 4.0, in the same way this thesis

did. The final goal is to keep research going in order to improve human life while creating a new, efficient

and sustainable Industry.
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