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Abstract

Many emotion recognition schemes have been proposed in the state-of-the-art. They generally
differ in terms of the emotion elicitation methods, target emotional states to recognize, data sources
or modalities, and classification techniques. In this work several biosignals are explored for emotion
assessment during immersive video visualization, collecting multimodal data from Electrocardiography
(ECG), Electrodermal Activity (EDA), Blood Volume Pulse (BVP) and Respiration sensors. Partici-
pants reported their emotional state of the day (baseline), and provided self-assessment of the emotion
experienced in each video through the Self-Assessment Manikin (SAM), in the valence-arousal space.
Multiple physiological and statistical features extracted from the biosignals were used as input to an
emotion recognition workflow, targeting both user-dependent and user-independent classifications with
three and two classes per dimension, respectively. Support vector machines (SVM) were used, as it is
considered one of the most promising classifiers in the field. The proposed approach led to accuracies
of 51.07% for arousal and 67.68% for valence in the user-dependent approach, and 69.13% for arousal
and 67.75% for valence in the user-independent approach, which are encouraging for further research
with a larger training dataset and population.
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1. Introduction
Emotions represent a valuable source of information
in the daily interaction within the Human civiliza-
tion. Communication widely relies on the interpre-
tation of affective states [1], since the expression of
emotions of individuals can considerably change the
sense of their messages [2].

The modelling of emotion presents two major
challenges, these being the vague definitions and
boundaries of emotion, and the methodology fol-
lowed [3]. Emotions can be referred as a mental
state or feeling that occurs spontaneously rather
than a conscious effort [4], having two main types of
manifestation: a mental response of emotion, com-
bining subjective feeling and cognitive processes;
and a bodily expression, which includes motor and
physiological responses [3].

Emotion manifestation through physiological sig-
nals, or biosignals, is determined by the autonomic
nervous system (ANS), which can hardly be con-
sciously controlled by the intention of the individ-
ual, thus enabling more objective and reliable re-
sults [4, 5] than comparing to external responses,
such as facial expression, speech or gestures. More-
over, biosignals can be assessed with wearable and
non-intrusive sensing techniques [5, 6] supported by
the continuous miniaturization of their sensors [7].

Over the past decade, automatic emotion recog-
nition systems have seen significant developments
within academia and industry alike. Applications
include psychology, healthcare, education, market-
ing, gaming or service robots [2].

Various emotion recognition schemes have been
proposed in the literature. They generally differ
in terms of the emotion elicitation methods, tar-
get emotional states to recognize, data sources or
modalities, and classification techniques. Given the
importance of research towards user-independent
emotion assessment, both user-dependent and user-
independent scenarios will be explored in this study.
This work will thus explore a multimodal approach
for emotion recognition, based on a virtual reality
(VR) emotion elicitation protocol and on the us-
age of SVM towards that purpose. The emotion
recognition system will be tested to classify emo-
tional states in terms of the emotion dimensions of
valence and arousal, for both user-dependent and
user-independent scenarios, considering three and
two classes per dimension, respectively.

2. Theoretical Background
2.1. Emotion Theory

Various theoretical models of emotion have been
proposed over the years. The discrete model con-
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Figure 1: Two-dimensional model.

siders several basic emotions and claims their uni-
versality amongst cultures [8], existing consider-
able agreement in six emotions: happiness, sadness,
surprise, anger, disgust, and fear [4]. The two-
dimensional model introduced by Lang [9] is the
most popular, characterizing emotions according to
their valence and arousal [4], as illustrated in Fig-
ure 1. Valence represents pleasantness and ranges
from negative to positive, while arousal indicates
the activation level and ranges from low to high [9].

The definition of emotion is fairly subjective, in-
fluenced by cultural context, life experiences, and
personality traits of each subject. However, accord-
ing to the meta-analysis in [10], certain core compo-
nents of emotions are universal and likely biological.

2.2. Data Sources

Emotion manifestations can occur both on an in-
ternal or external basis, being reflected by physi-
ological activity or by physical responses. Several
studies have thus explored various modalities, such
as facial images and gestures [11, 2], speech [11, 2],
or physiological signals [12, 13, 14, 15, 16, 17].

The group of methods that use facial images, ges-
tures and speech can lack recognition accuracy, as
they are not universal and depend on culture, gen-
der and age [4]. Furthermore, when compared to
physiological signals, those modalities are more sus-
ceptible to social masking, which can lead to wrong
recognition of an emotional state. Regarding ex-
perimental settings, these modalities require special
attention to lighting conditions and ambient noise
for instance, which makes them challenging to be
implemented in real time [4]. Their major advan-
tages concern their feature extraction, believed to
be easier compared to other modalities [4].

Alternatively, physiological signals can also be
used, as they present patterns that are reflective of
emotional expressions. In fact, the focus has shifted
towards the usage of biosignals, from both the pe-
ripheral and central nervous systems, since they can
provide continuous measurements and appear to be
more efficient and reliable [11]. Furthermore, as
those result from the activity of the Autonomous

Nervous System (ANS), they cannot be easily trig-
gered by any conscious or intentional control [4],
which allows the researchers to overcome the social
masking problem described for the previous group
of modalities. When compared to visual data collec-
tion, e.g. facial expression, it is expected that the
recording of biosignals is less disturbing than be-
ing ”watched” by a camera [7]. Similarly, emotion
recognition from speech has also been associated
with critical difficulties in applications where users
are listening to music or watching movies [7], as
they are not expected to talk during these activities.
Another advantage of using biosignals concerns the
miniaturization of their sensors [7], happening to
an extent that will soon enable their incorporation
into everyday objects, accessories or clothes.

Challenges in the physiological signals process-
ing are related to their subjective and complex na-
ture, sensitivity to movement artifacts and inabil-
ity to visually perceive emotions from the data [13].
Moreover, artifacts are a common problem in phys-
iological signals, which can be corrupted by power
line interference, motion artifacts or electrode con-
tact noise [12]. These artifacts can be encountered
in laboratory experiments and might become even
more significant when in real-life applications.

The fusion of multimodal physiological signals are
sought to enhance the efficacy of the process of emo-
tion recognition. Comparing to emotion recognition
based on a single biosignal, the fusion of multimodal
emotion-related biosignals provides robustness, by
eliminating anomalous changes not caused by emo-
tional elicitation that occasionally may appear in
a specific biosignal [18]. Furthermore, this fusion
can boost the emotion recognition accuracy, since
each individual modality can provide complemen-
tary information [19]. Recognition reliability can
also be enhanced when taking into account the com-
plementarity between several classifiers [1]. Hence
multimodality has been increasingly and widely im-
plemented for emotion recognition [19].

Considering that emotion is mostly expressed by
means of internal bodily manifestations, namely,
that ECG, EDA, BVP, and respiration are some
of the most commonly found modalities in emotion
assessment, these were selected for this study.

2.3. Support Vector Machines

SVM correspond to a set of supervised learning
methods and its applications can range within sev-
eral learning tasks such as classification, regression
and outlier detection [20]. SVM are based on sta-
tistical learning theory and intend to determine the
location of decision boundaries that produce the op-
timal separation of classes, being firstly proposed by
Vapnik and Chervonenkis [21]. A detailed formula-
tion of the algorithm can be found in [22, 23].
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3. State of the Art

3.1. Emotion Elicitation

The study of emotion has been consistently associ-
ated to the ANS activity [6, 1]. The ANS activity
is the result of two interconnected components, the
psychological and the physiological. Regarding the
emotion elicitation process, most researchers agree
upon the point that emotions usually occur as a
response to internal or external stimuli or events
that are significant to the organism. As the emo-
tion processes are correlated with the activity of
ANS, whose manifestation is translated into the
physiological signals of the subject, any experimen-
tal setup for the elicitation of emotions must be as
natural and as close as possible to a real-life sce-
nario, in order to obtain reliable data [1, 7].

As stated, the elicitation of emotions can be per-
formed as an external stimulus [17], for which sev-
eral kinds of techniques have been tested, from vi-
sual [24, 7], audiovisual [16, 12], audio [25], person-
alized imagery [26], recall paradigm [4], to a multi-
modal approach [13] elicitation. Concrete methods
include images, sounds, music, video-clips and im-
mersive videos.

Many studies have already confirmed the emo-
tion elicitation ability of films, TV programs and
imagery techniques [27]. Moreover, a new approach
for emotion elicitation has emerged in the last two
decades, through the usage of VR [27, 16, 28], which
can be understood as an extension of the audio-
visual film clips, able to add key benefits. Consid-
ering its promising features, VR will be the emotion
elicitation method used in this work.

3.2. Virtual Reality

VR environments have been defined as those that,
including synthetic sensory information, lead to
perception of environments and their contents as if
they were not synthetic [29]. VR has stepped into
the field of emotion recognition as a more reliable
emotion elicitation agent, and to investigate human
behavior in well controlled designs [27, 16, 28].

Besides the immersion ability [27], VR can bene-
fit emotion elicitation procedures in several method-
ological aspects. The use of VR is prone to in-
crease the engagement of the participants within
well-controlled experimental situations, while pro-
viding more realist scenarios, and by facilitating
the replication of the same methods and procedures
amongst the researchers [29, 28, 16].

Li et al. [16] made available a database to help
establish standardized content and allow public ac-
cess to a set of immersive VR videos, constituting
an emotion elicitation tool for new studies, with re-
liable valence and arousal ratings [16].

3.3. Emotion Assessment
3.3.1 Self-Assessment

An important part of the emotion modelling process
is the collection of the self-reported emotional states
of the user (labeled data). This self-assessment
might be seen as a ground truth, providing the re-
searchers with relevant objective information, since
the emotion actually felt by an individual can
strongly differ from the expected one (i.e. from the
target emotion elicited) [30].

The Self-Assessment Manikin (SAM) [31], is an
acknowledged technique and the most widely used
scale for the measurement of the emotional states
[24], for instance in terms of valence and arousal.

3.3.2 Computerized Assessment

Machine Learning Algorithms

A wide range of machine learning methods has
been used to infer emotional states [26], and both
supervised and unsupervised techniques have been
explored. The reason behind such a wide range of
machine learning algorithms is that the best predic-
tor will not be the same for all the datasets, thus
various studies [24, 32, 33] have been conducted to
test classifiers from several families, in different con-
texts and types of datasets.

Rigas et al. [24] designed an emotion classifica-
tion system for three emotions (happiness, disgust,
and fear) using four biosignals (facial EMG, ECG,
respiration and EDA), comparing the accuracy of
two types of classifiers: the Random Forests and
K-Nearest Neighbors (K-NN). Their results showed
statistically similar performance, concluding that
K-NN performed slightly better, with an accuracy
of 62.70%, largely inferior to what is reported in the
other studies hereafter explored.

In their work, using physiological signals (EDA,
ECG, BVP, and temperature) for emotion recogni-
tion, Jang et al. [32] conducted an analysis on the
performance of four machine learning algorithms:
LDA (linear discriminant analysis), CART (classi-
fication and regression tree), SOM (self-organizing
maps), and SVM, all well-known approaches used
in emotion recognition. Aiming at identifying three
single emotions (boredom, pain, and surprise), their
results showed that SVM was the algorithm leading
to the best performance. In another study, the same
group [17] reinforced the previous result, this time,
seven emotional states (happiness, sadness, anger,
fear, disgust, surprise, and stress) were under clas-
sification, yielding to an accuracy of 99.04% in the
emotion classification by SVM, the highest amongst
the five algorithms tested. The authors thus claim
that these results should help new studies and lead
to better chance of recognizing various human emo-
tions by physiological signals [32], pointing SVM as
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the optimal algorithm for the data used [17].
Changchun et al. [33] have reached to the

same conclusion. Their empirical study compar-
ing four machine learning techniques (K-NN, Re-
gression Tree, Bayesian Network and SVM) using
physiological features (from ECG and facial EMG)
found an advantage for SVM over the others [33],
reaching a classification accuracy of 85.81%.

Most of the works only performed user-dependent
emotion recognition [1, 7], even though a user-
independent system would be more significant and
with wider application [16]. Haag et.al [7] used
a Neural Network to classify user-dependent emo-
tions, split into arousal and valence, using ECG,
EDA, respiration, BVP, EMG and temperature.
Their results showed that the estimation of the
valence was a harder task than the estimation of
arousal, despite the overall results were considered
good for both, accomplishing 89.7% of correct clas-
sification for arousal and 63.8% for valence. A sim-
ilar result was found by Wagner et al. [14], whom
also accomplished better results for arousal than for
valence classification.

Nevertheless, the user-independent approach pro-
posed by Li and Chen [16] yielded encouraging re-
sults, using four physiological signals (ECG, EDA,
temperature and respiration) and adopting a canon-
ical correlation analysis, achieving an accuracy of
85.3%. Similarly, Kim et al. [13] developed a user-
independent system using short-term monitoring of
physiological signals (ECG, EDA and temperature),
by classifying the patterns with an SVM, yield-
ing to the correct-classification ratios of 78.4% and
61.% (for 50 subjects), for the recognition of three
(sadness, anger, stress) and four (sadness, anger,
stress, surprise) emotions, respectively. These re-
sults suggest the feasibility and importance of a
user-independent emotion recognition system.

Considering the evidence of classification accu-
racy of the several algorithms, SVM was the one
selected in this work. Moreover, due to the impor-
tance of further research towards user-independent
systems, this work will explore both user-dependent
and user-independent classification scenarios.

3.3.3 Feature Extraction

Several physiologic-based features have been sug-
gested for each biosignal. The most common for
ECG and BVP are the heart rate (HR) and heart
rate variability (HRV) [15, 17, 24, 3, 6]. In the fre-
quency domain, the power in low frequency (LF)
and in high frequency (HF) are commonly extracted
from ECG [34, 35], with the LF/HF ratio and the
sum LF+RF also being found [17]. Concerning
the EDA, a wide range of features has been ex-
plored, although not being completely clear which
of those provide more valuable information. Ex-

amples include the zero crossing rate [15, 36], av-
erage of the absolute derivative [15], Skin Conduc-
tance Response (SCR) [15, 17, 6] and Non-Specic
Skin Conductance Response [15, 17], power spectral
density, rise time (r time), recovery time (rec time)
[36], initial skin conductance level (SCi), final skin
conductance level (SCf) and their difference (SCi-
SCf, a var) [3, 6], and time and amplitude difference
between the onset and peak of the SCR (amp PO)
[6]. For respiration signals, the respiration rate is
the most common physiological feature [15, 6].

According to Martinez et al. [3], the features
most typically extracted from biosignals are com-
mon statistical features, calculated on the time or
frequency domains. Namely, the signal mean am-
plitude [24, 3, 34, 15, 7], the standard deviation
[15, 3, 7], and the median [24] have been widely
used in these biosignals. The root mean square
of differences between RR intervals has been used
for ECG [15], and the mean of absolute values of
first differences has been also proposed for several
biosignals [24]. Higher Order Statistics (HOS), in-
cluding skewness and kurtosis, have been previously
explored in ECG signals [37].

4. Methodology

4.1. Experimental Setup

Our setup, depicted in Figure 2, comprises the sen-
sor modules for multimodal biosignal acquisition, a
computer application that records data from these
modules, and the VR setup for stimuli presentation.
Biosignal data was collected using two devices based
on the BITalino system [38], one placed on the arm
and the other on the chest of the participants. The
participants used the HP Windows Mixed Reality
Headset and headphones, so as to fully immerse on
the VR videos. Only the visual stimulus was in-
cluded in the VR experimental setup.

Figure 2: Experimental setup used in this work.

4



4.2. Experimental Protocol

Elicitation videos were selected with the goal of ob-
taining a representative range of emotions, while
presenting good quality in VR. Content was selected
from the database provided in [16], which has a
mapping of the target emotion for each video, in the
valence-arousal space. However, the database lacks
videos for panic/fear and anger; these (3rd & 5th)
were selected by independent research on YouTube.
Table 1 depicts the complete experimental protocol.

Table 1: Experimental protocol summary, includ-
ing: preparation; calibration; and elicitation period,
with target emotions and corresponding ID in the
VR video database [16]. Duration entries in paren-
thesis highlight the steps in which biosignals were
acquired. A video sequence comprises the visual-
ization of a neutral (black) screen, of the immersive
video, and the SAM annotation.

Target
Emotion

Duration (s) ID in the
Database [16]

Informed consent and
objectives of the study.

- 60 -

Annotation of the
emotional state of the day.

- 30 -

Wearing the acquisition
system and VR setup.

- 120 -

Adaptation time and final
recommendations.

- 60 -

Calibration 1 Sadness (30)
Calibration 2 Anger (30)
Calibration 3 Happiness (30)
Calibration 4 Relaxation (30)

Video sequence 1 Boredom 5 + (43) +30 1
Video sequence 2 Joyfulness 5 + (250) +30 70
Video sequence 3 Panic/Fear 5 + (160) +30 -
Video sequence 4 Interest 5 + (65) +30 42
Video sequence 5 Anger 5 + (75) +30 -
Video sequence 6 Sadness 5 + (120) +30 6
Video sequence 7 Relaxation 5 + (210) +30 32

4.3. Signal Processing and Feature Extraction

This work uses a feature-based approach. Figure
3 illustrates the complete workflow, from the raw
biosignal data to the prediction of the emotional
state, and Table 2 provides an overview of the fea-
tures used, selected building upon the related work.

4.3.1 Filtering

The most common noise sources affecting biosignal
data are motion artifacts and electromagnetic in-
terference [13, 4]. For the pre-processing of ECG
signals, a finite impulse response (FIR) filter was
used, with a passing band of 3-45 Hz [39]. In EDA
signals, we followed the approach in [40], using a for-
ward and reverse Butterworth lowpass filter with 5
Hz cutoff frequency [41]. Even though BVP sensors
are usually highly susceptible to noise and artifacts,

Table 2: Set of features extracted from each of the
biosignals, split into (i) Physiological and (ii) Sta-
tistical features.
Biosignal (i) Physiological

Features
(ii) Statistical

Features
ECG heart rate, HRV, LF,

HF, LF/HF, LF+HF
mean, std, ad,

kurtosis
EDA SCR, r time, ampPO,

rec time, a var
mean, std

BVP IBI, heart rate mean, median,
maxAmp, kurtosis,

skewness
Respiration respiratory rate mean, median

we used a BVP 1 whose plastic clip-on housing for
placement on the finger to house the light emitter
and detector allowed the minimization of interfer-
ences from external light sources. Nevertheless, the
method used in [42] was applied and the signal fil-
tered using a 4th order Butterworth bandpass filter
with 1-8 Hz passing band. Concerning respiration
signals, the approach used in [43] was followed, and
the signals filtered using a 30th order FIR lowpass
filter with cutoff frequency of 0.15 Hz, which re-
vealed to be efficient in reducing the noise of the
signal.

4.3.2 Segmentation and Outlier Removal

Given that several features depend on fiducial
points within the signals, segmentation is an im-
portant part of feature extraction, for which the
BioSPPy2 library were used. Despite the filtering
step, the segmented data may still be influenced by
artifacts, resulting mainly from motion either from
the subjects movement when browsing the immer-
sive video VR space by looking from one side to the
other, or from the accidental contact of their limbs
with the chest mounted device. To mitigate these
issues, outlier removal has also been considered.

Considering the periodicity of ECG, BVP and
respiration signals, segmentation was performed at
the cycle level. In the case of the EDA, there was
detection of skin conductance response events.

Segmentation of ECG signals was performed as
proposed by Hamilton [44]. A final step was
performed towards removing abnormal ECG tem-
plates, by applying an exclusion algorithm based
on the physiology of ECG waves proposed in [39].

For EDA signals, segmentation was performed us-
ing the method found in [13] to isolate SCR events.

In BVP signals, onset detection was based on the
approach proposed in [45]. In this case, an outlier
removal step was performed by computing the av-

1https://store.plux.info/bitalino-sensors/42-
pulsesensor.html

2https://github.com/PIA-Group/BioSPPy
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Figure 3: Overall structure of the emotion recognition system proposed.

erage inter-beat intervals (IBI) across the database
and excluding the templates with IBI differing in
more than 0.1 seconds from that value.

Respiration signals were subjected to an out-
lier removal step before segmentation, at the peaks
level, following the approach proposed in [46]. This
method relies on the use of quartiles for both ef-
fective outlier detection and segmentation, as those
are less sensitive to spikes that may appear in noisy
respiration measurements. The upper quartile was
used as a lower threshold for a point to be consid-
ered a peak, and no more than one peak could be
detected in a window of 1.5 seconds [46].

4.4. Classification
In this workflow SVMs were adopted using the LIB-
SVM3 implementation, and following the method-
ology guidelines proposed in [47]:

1. Scaling of the data

2. Kernel selection

3. Cross-validation for model selection

4. Training with the optimal parameters

5. Performance evaluation

In the user-dependent approach, the goal is to
classify the emotional state of one individual tak-
ing into account only their data as training, whilst
in the user-independent scenario the goal is to clas-
sify the emotional state of a given individual within
the whole population. The self-assessments col-
lected during the experimental protocol were used
as ground truth. Although the ratings were assessed
through a 9-points scale, due to the reduced size of
the database and variability in the reporting, the 9
classes were mapped into a coarser scale, grouping
the ratings into negative (classes 1-3), intermediate
(classes 4-6) and positive (classes 7-9) in the user-
dependent case; and negative (classes 1-5) and posi-
tive (classes 6-9) (the median of the initial scale, i.e.
5, was included in the negative class to ensure more
balance in the number the samples in each class).

Linear scaling is computed for each feature into
the [−1,+1] range. This step is important to avoid
attributes in greater numeric ranges that could

3https://www.csie.ntu.edu.tw/ cjlin/libsvm

dominate those in smaller numeric ranges [47].
Nested cross-validation (CV) was used for the

tuning of the SVM hyperparameters, aiming a ro-
bust model with strong generalization performance
[23], comprising the inner (model fitting/training)
and outer (model selection) loops. CV was com-
puted using 4-folds, over 30 random trials4. By
finding the highest score index after the nested CV,
the optimal parameters were determined. A range
of kernels and respective hyperparameters were de-
termined selecting the optimal model by testing dif-
ferent combinations over the following set:

• Kernel : [RBF (radial basis function), Linear]

• C (regularization parameter):[1, 5, 10, 50, 100]

• γ parameter (of RBF): [0.01, 0.001, 0.0001]

The model selection was computed and further
implemented for the testing step, by defining the
model hyperparameters accordingly.

The multimodal fusion of the independent modal-
ities is performed by weighing each individual deci-
sion, with the weights selected based on the accu-
racy obtained in the nested CV process, leading to
a final multimodal classification.

5. Results and Discussion
5.1. Sample Characteristics
A total of 23 participants were enrolled in this study
(43.5% female). Due to previous evidence of differ-
entiated emotional processing in old age, the age
was limited to 18-40 years old (23±3.7 years old)
to minimize the difference in the perceiving of emo-
tion. Only subjects with no history of psychological
or neurological conditions were admitted, and none
of the participants were reportedly taking any med-
ication that would affect the cardiovascular, respi-
ratory, or central nervous system.

Subjects participated as volunteers in the experi-
ment, and consented to the use of the collected data
for the scientific purpose of this work.

Preliminary assessment of the data revealed the
presence of artifacts in EDA recordings, caused by
physical motion, environmental factors, and electri-
cal noise [12, 41]. Only artifact-free signals, from 18
participants were considered into the analysis.

4https://scikit-learn.org/
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5.2. Expected vs. Self-assessed Emotions
The average ratings given by the participants for
each video, and respective standard deviation, are
plotted in Figure 4. The grey dots represent the ex-
pected ratings, based on those determined by [16],
except for videos 3 and 5, that are with respect to
the conceptual expected values [48].

Figure 4: Average of the SAM ratings for valence
and arousal per video, along with the respective
standard deviation.

Due to the subjective nature of emotions, the re-
ported ratings were compared with those found in
previous studies. The target emotions of the videos
were assessed with respect to their conceptual la-
bellings as set forth in [48] (100 participants (50%
female), with 37±3.14 years-old). Furthermore, we
compared the VR video ratings of our population
with those of the original study that created the
database, by Li et al. [16] (95 participants (56%
female), with age within 18-24 years-old). These
comparisons are summarized in Table 3.

Average ratings obtained in our work were simi-
lar to those found in the VR videos database [16],
with less than 1-point (out of 9) difference, except
for video 1 that presented both higher valence and
arousal than expected. Comparing the ratings with
those conceptually expected [48], one can observe
larger average differences.

The videos that deviated the most from their con-
ceptual target emotions were 3, 5 and 6, all expected
to elicitate lower valence than what was verified.
Video 6 elicitated a more melancholic state rather

than sadness, while videos 3 and 6, even though
with some suspense and violent events, respectively,
were not successful in elicitating fear and anger.

5.3. User-Dependent Emotion Classification
The model selection performed in this scenario
yielded to several different combinations of the var-
ious kernels and model parameters tested for each
participant. Considering the performance obtained
(cf. Table 4), data fusion was done by weighting
each modality accordingly.

Overall performance was quantified as the per-
centage of correctly classified emotional states per
participant, summarized in Figure 5.

Figure 5: Accuracy obtained in the user-dependent
approach, for each participant.

Taking into account the small amount of data
available within each participant, it was decided to
calculate the recognition performances accepting a
penalty for some misclassified emotions. Thus, it
was given half of the punctuation if the classes ob-
tained were ”neighbors” of the expected ones (e.g.
if the class 1 was expected for a given emotion/video
but it would be classified with class 2, it would score
half of the punctuation). Under these assumptions,
the average recognition performance was 67,68% for
valence and 51,07% for arousal.

5.4. User-Independent Emotion Classification
In this approach, the RBF kernel and γ = 0.01 were
optimal for all the cases. The regularization param-
eter C was either 1 or 100, the former having a softer
margin and less error penalty on the training data.

As stated, data fusion was done by weighting each
modality according to the performance, in Table 5.

Overall performance was quantified as the per-
centage of correctly classified emotional states per
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Table 3: Summary of the ratings obtained for the stimuli used in our work, and comparison (differences
of mean ratings) with the ratings reported in two previous studies [16, 48].

Results from this Work Reported in Previous Studies Differences of the mean Ratings
Target Valence Arousal Valence Arousal Valence Arousal Study by [16] Study by [48]
Emotion Mean SD Mean SD Mean Mean [16] Mean Mean [48] Valence Arousal Valence Arousal

Video 1 Boredom 5.61 1.08 5.91 1.68 3.69 3.94 4.17 4.04 1.92 1.97 1.44 1.87
Video 2 Joy 7.74 0.24 5.78 3.41 7.10 4.80 8 4.55 0.64 0.98 -0.26 1.23
Video 3 Fear 5.57 0.99 6.83 1.08 2.33 8.26 3.24 -1.43
Video 4 Interest 7.00 0.96 3.35 1.21 7.07 4.13 7.46 3.96 -0.07 -0.78 -0.46 -0.61
Video 5 Anger 4.74 1.33 6.30 1.20 2.5 8.06 2.24 -1.76
Video 6 Sadness 5.35 1.44 2.91 1.04 5.36 2.64 3.4 5.91 -0.01 0.27 1.95 -3.00
Video 7 Relaxation 6.70 1.29 2.09 1.09 6.19 1.57 7.63 1.72 0.51 0.52 -0.93 0.37

Table 4: Average accuracy scores of the models se-
lected in the user-dependent approach, and result-
ing weighting assigned to each biosignal.

ECG EDA BVP Respiration
Valence Arousal Valence Arousal Valence Arousal Valence Arousal

Accuracy 0,769 0,735 0,695 0,678 0,726 0,665 0,692 0,626
Weighting 0,27 0,27 0,24 0,25 0,25 0,25 0,24 0,23

Table 5: Average accuracy scores of the models se-
lected in the user-independent approach, and result-
ing weighting assigned to each biosignal.

ECG EDA BVP Respiration
Valence Arousal Valence Arousal Valence Arousal Valence Arousal

Accuracy 0.700 0.656 0.721 0.572 0.695 0.660 0.629 0.585
Weighting 0.26 0.27 0.26 0.23 0.25 0.27 0.23 0.24
Model C=100 C=100 C=100 C=100 C=1 C=100 C=1 C=1
Selected RBF RBF RBF RBF RBF RBF RBF RBF

γ=0.01 γ=0.01 γ=0.01 γ=0.01 γ=0.01 γ=0.01 γ=0.01 γ=0.01

video, depicted in Figure 6; the performance was
slightly better for arousal than valence, in accor-
dance with the reported in related work [7, 14].

When considering all the videos, the system
yielded recognition rates of 58.11% for arousal and
57.12% for valence. Results have shown a notewor-
thy variability, leading us to further analyse the per-
formance when certain videos were excluded, since
some yielded to considerably worse accuracy (e.g.
videos 2 & 5 for arousal, and 1 & 5 for valence).
The complex and subjective nature of self-assessing
emotion may explain this variability. Also, the elic-
itation capabilities of some videos may lead to am-
biguity in the emotion felt.For example, as shown
in Figure 4, the variability in the arousal ratings
of video 2 may be indicative of an ambiguous per-
ception of the content across participants. There-
fore, the emotions classified by the system are not
necessarily wrong, but instead discrepant from the
self-assessed ones. Considering the results obtained
for the other three videos mentioned, one can ob-
serve that they did not present such large variabil-
ity, but all presented a considerable difference be-
tween the average self-reported and the expected
ratings (larger than the standard deviation).

Although not fully conclusive, one might suggest
that the performance assessment may be negatively
biased by the difficulty of the participants to rate
their real emotions, cultural factors, desensitizing or
other variability sources that make the content per-

ception differ from what was expected. The best
recognition rate was accomplished for the valence
classification of video 2, which was the one with the
smallest standard deviation from all, somehow cor-
roborating this analysis. As such, we computed the
recognition rate excluding videos 2 & 5 in arousal,
and 1 & 5 in valence, leading to 69.13% recognition
rate for arousal and 67.75% for valence ((*) in Fig-
ure 6). It was also assessed excluding all the videos
in which the absolute difference between the aver-
age and expected ratings was larger than the stan-
dard deviation, yielding performances of 61.98% for
arousal and 65.74% for valence ((**) in Figure 6).

Figure 6: Accuracy obtained for each video. Solid
line: considering all videos; (*) excluding videos 2 &
5 in arousal, and 1 & 5 in valence; (**) considering
only the videos whose absolute difference between
the average and expected ratings was smaller than
the standard deviation.

5.4.1 General Considerations

The ambiguous and subjective nature of emotion
self-assessment, as well as of the scaling process,

8



are a general concern one must take into account in
the scope of emotion recognition and in the analysis
of the results of the present work.

Dissociations between subjective and objective
measures are referred as very often, being caused
by various sources. For instance, context effects
have been widely recognized as a common source of
bias in subjective judgement [49], e.g. the emotional
state of the user in the day of the experiment. In
fact, the appropriate scaling structure in psycholog-
ical attributes is unclear. This way, although emo-
tion can be assigned values on a numerical scale,
it lacks an identifiable, completely objective, unit
of measurement [50]. Furthermore, Alvarado [50]
claims that despite there is evidence that justifies
the assumption of an ordinal scale type during data
analysis of the emotional response of an individ-
ual, there is no evidence that the subjective dis-
tances between adjacent numbers on every portion
of the scale are equal. Thus comparisons amongst
the ratings of individuals are problematic because
it is unclear how individual differences in emotional
response are related to individual differences in the
use of rating scales, and the distances between num-
bers have not been shown to correspond to the same
subjective differences in response for each individ-
ual in a study [50].

One should also address the downscaling process
that was performed in this work to convert the 1-
9 ratings into 1-3 and 1-2 ratings, for the respec-
tive scenarios. On one hand, it is legitimate to
identify the drawbacks of this approach; consider-
ing the above-mentioned problems concerning self-
assessment through scales, the computing of this
linear scaling might have yielded some conceptual
errors with respect to the subjective interpretation
of those numbers by the participant. On the other
hand, the usage of the 9-points scale was advan-
tageous in terms of conformity and comparability
with the ratings in another studies, as it is the most
commonly used scale. Future work should perhaps
collect, besides the 9-points self-assessments, rat-
ings in scales with the number of points of classes
one aims to classify, in order to avoid that subjec-
tive scaling and consecutive generalization issues.

Regarding the usage of VR for elicitation stimuli,
future studies should assess possible bias induced by
this tool, in the sense that its novelty can arguably
tend to positively influence the emotions reported.

6. Conclusions

Overall, the user-dependent results have shown an
underperformance with respect to related work,
which is explained by the fewer training data used
in this study, whilst the user-independent approach
results are in conformity with the state-of-the-art
[13, 14], being considered promising.

As argued in [49, 50], the appropriate scaling
structure in psychological and emotional attributes
is not fully understood, being unclear how individ-
ual differences in emotional response are related to
individual differences in the use of rating scales.

Future work will focus on increasing the database
size and take into account the subjective factors in-
volved in emotion interpretation.
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