
Using the Order Book and Machine Learning for Cryptocurrency
Trading

João Guilherme Esteves de Andrade
j.guilherme.andrade@tecnico.ulisboa.pt

Instituto Superior Técnico, Lisboa, Portugal

May 2019

Abstract

This thesis presents a new computational approach for profit optimization on cryptocurrency trading, using
trade and order book data from a major digital asset trading platform of four digital currencies (Bitcoin, Ethereum,
Litecoin and Bitcoin Cash) in the United States Dollar (USD) and Euro (EUR) markets. An end-to-end solution
was designed, starting with the database generation, information extraction, trading algorithm, simulation and
ending with a dynamic report of the results. All the parts of the system are designed in a microservice architecture
to ensure that they are scalable, strongly encapsulated and tightly scoped components. Three use cases where
considered for the trading system where the first two use order book volume variation to assess suitable trading
periods whilst the last one uses an ARIMA model to forecast price fluctuation and consequently serve as a
verification mechanism to the first two test cases during a simulation. Furthermore, a new type of trailing
stop called Percentage Stop Order is introduced, allowing profit improvement. Monthly test periods were used
alongside different types of trading positions to all test scenarios to find the most performing strategy according
to the market’s situation. The results obtained managed to surpass the gains from the Buy & Hold strategy up to
22,72% and reducing losses up to 33,24%.
Keywords: Cryptocurrency, Order Book, ARIMA, Microservices.

1. Introduction
The cryptocurrency trading realm is progressively at-
tracting attention from communities linked to several do-
mains of finance and computational intelligence. One of
the main reasons associated with this phenomenon is the
high volatility associated with the market of digital cur-
rencies. This means that finding the optimal timings to
enter and leave the market is the main objective of re-
searchers since it leads to higher profits on a short period
of time. However, this task is really challenging since the
cryptocurrency market is non-linear, non-stationary and
heavily influenced by speculation.

In recent years, cryptocurrencies are becoming increas-
ingly popular, getting a significant amount of media at-
tention worldwide. Despite only being on the spotlight
for a short time, the concept of cryptocurrencies and
blockchain technology was introduced in 2009 with the
introduction of Bitcoin [1]. The main idea was to create a
decentralized shared public ledger (blockchain) that val-
idates and saves immutably all financial transactions by
using a computer network as a timestamp server, main-
taining the correct order of negotiations.

There were 1474 types of digital coins at end-January
2018 and their total market capitalization was 830 bil-
lion USD [2], a consequence of an increasing public ac-
ceptance of cryptocurrencies. Nevertheless, volatility is
a crucial aspect of digital markets and, as a measure
of price fluctuations, has an important impact on trade
planning and investment decisions. This component can

be partially handled since exchange offices store “buy”
and “sell” orders on an order book, providing insights
into the liquidity and trading purposes [3]. Thus, the
first step is to define how will this information be used
and which temporal model must be chosen to adaptively
learn volatility using the gathered data.

In this thesis a new approach for profit optimization
on cryptocurrency trading is presented, using trade and
order book data from a major digital asset trading plat-
form (Coinbase Pro, formerly known as GDAX) of the
four main digital currencies, Bitcoin (BTC), Ethereum
(ETH), Litecoin (LTC) and Bitcoin Cash (BCH), in USD
and EUR, to create a trading system that uses order book
volume variation and machine learning to forecast price
fluctuation and consequently present trading advice.

The main contributions of the proposed system are:
(1) A database containing order books and trading infor-
mation of the four major digital currencies built entirely
from scratch (more than 70 Gigabytes of data obtained
since March 2018); (2) An algorithm that pre-processes
and aggregates information from order books, correlat-
ing it with confirmed trades on a monthly basis, to define
the optimal start positions for long and short trading;
(3) Machine Learning forecasting applied to the previous
algorithm, using Autoregressive Integrated Moving Av-
erage (ARIMA); (4) An innovative type of trailing stop
to optimize profits.

1



2. Related Work
Using Machine Learning and statistics to create algo-
rithms for financial gains has proven to be effective in a
large application scope. Despite being a relatively new
area of study, we can already find several scientific ar-
ticles about this subject where those that contributed
the most for this assignment will be considered in this
section. Before handling those papers, we will clarify
the fundamental components behind the idea of Machine
Learning.

2.1. Machine Learning
Data mining is described as the extraction of previously
unidentified and implicit information from data, which
can result in advantageous input. Machine learning spec-
ifies the technical base for data mining [4]. The collec-
tion of observations that contain one or more variables,
known as attributes, is defined as a dataset. We can
divide machine into two categories, supervised learning
and unsupervised learning. Supervised learning includes
the modelling of datasets with labelled instances that
can be represented as x and y, x being a set of predic-
tor attributes and y the dependent target attribute. A
machine learning problem follows one of two method-
ologies: regression, when the target attribute is continu-
ous; classification, when the target variable is discrete [5].
There are some hybrid methodologies which allow for a
classification and regression at the same time, e.g. neu-
ral networks. Unsupervised learning includes modeling
datasets with no established outcome or result. Since
this project has a task with a known objective, predict-
ing cryptocurrencies price fluctuation, it is a supervised
machine learning task.

2.2. Supervised Learning
Supervised learning is the most common methodology in
machine learning. As previously explained, supervised
learning is achieved when we input variables x and an
output variable Y alongside an algorithm to learn the
mapping method from the input to the output. This
type of learning can be algebraically exemplified by

Y = f(x) (1)

The main goal of supervised learning is to obtain a
mapping function so that when we have new input data,
we can predict the output variables for that observation
with a defined target. Supervised learning generates the
mapping function based on example input-output pairs.
Knowing the current answers, the algorithm makes fore-
casts on the training set iteratively and is rectified ac-
cordingly. When the algorithm achieves the desired level
of performance, the learning process is finished. We can
divide supervised learning challenges into two categories,
classification and regression problems.

Classification algorithms are used when the aimed out-
put is a discrete label, which means that we should choose
them to handle problems where the objective falls under
a finite set of possible results. In many use cases, such as
defining whether it will rain or a gender, there are only
two possible results. This is called binary classification.

Situations where there are more than two classes are han-
dled by multi-label classification, where each sample is
mapped to a set of target labels, for example a book can
be about art, a person and an era simultaneously.

Regression models generally present reliable results in
forecasting outputs that are continuous. In other words,
regression models are used when the solution to our prob-
lem can be expressed by a quantity that can be deter-
mined based on the inputs of the model instead of be-
ing restricted to a set of possible classes. Regression is-
sues with time-ordered inputs are named time-series fore-
casting problems and will be thoroughly explained with
the next sub-section. Some of the most popular regres-
sion algorithms are Linear Regressions and the ARIMA
model [6].

2.3. Time Series
Time series are collections of data points chronologi-
cally organized. Their purpose is to understand patterns
evolving over time and apply these patterns to forecast
behavior in several fields (stock prices, meteorology and
heart arrhythmias are some examples). Since this field
can be applied in many areas science, studies on time
series have become increasingly popular on the last few
decades.

Most of the scientific studies about time series tackle
time series modelling, which is the process of understand-
ing and defining (mathematically) the inherent structure
of the time series [7]. The usefulness of time series mod-
elling ranges from forecasting the future [8] to describing
the feature responsible for the time series but in this the-
sis, we will focus on the first part since our goal is to sim-
ulate the generation of data to an unforeseen future by
studying the model of a time series information. When
making predictions using time series, we can classify the
time periods into three different categories, short-term,
medium-term and long-term. While long-term refers to
periods significantly distant to the last observed data,
short-term denotes spans that are near the observations.
An important fact to mention is the ambiguity associated
with how the boundaries between each class are chosen
since each application defines them in a distinguishing
way using their data and objectives.

Long-term prediction is a complex challenge to work
out because of the lack of information, error accumula-
tion and the growing uncertainties [8]. These complica-
tions only intensify their negative effect as the forecasting
region grows. Consequently, to elaborate a reliable time
series prediction technique it is mandatory to forecast
the future precisely while avoiding error accumulation as
the forecasting region expands.

To correctly study time series, it is necessary to model
the underlying stochastic process, a time sequence repre-
senting the evolution of a predefined system expressed by
a variable whose change is subject to a random variation,
that creates time series. We can use a joint probability
distribution between observations to obtain a complete
description of a time series, but the required calculations
might be too complex, so a valid alternative would be
to compute the mean and autocovariance. The mean is

2



simply the one measure of the central tendency of ob-
servations while autocovariance calculates the statistical
dependence between two observations in a time series,
computing the covariance between itself at different pe-
riods of time.

A stationary time series has the property that the
mean, variance and autocovariance structure do not
change over time, a very desirable property on a time se-
ries. Consequently, proper estimation of the enumerated
properties should be equal for all points in time, allowing
forecasting for all time points in the future. Regrettably,
there are two commonly found time series components
that obliterate the stationary property, season and trend.

2.4. ARIMA
Autoregressive Integrated Moving Average is one of the
most used time series prediction models, having a more
complicated approach than the simplest model, a linear
regression. ARIMA arises from the Autoregressive Mov-
ing Average (ARMA) model while the latter itself is a
mixture of an Autoregressive (AR) model with a Moving
Average (MA) model. The notion of both MA and AR
is fundamental not only to the ARIMA model but for
several time series models.

The AR model considers that the actual value of a time
series is a linear combination of its prior values while the
MA model defines the current value of a time series as
a linear combination of several past errors. Usually the
number of previous values is symbolized by p and named
as the order of the autoregressive. Each one of the models
uses a constant c and represents white noise as ε.

Combining the two explained models we obtain the
ARMA(p,q) model, given by

yt = c+ εt +

p∑
i=1

φiyt−i +

q∑
j=1

θjεt−j (2)

where p, φ and yt−i represent respectively the order, cur-
rent parameters and previous value of the autoregressive
model while q, θ and εt−j respectively symbolize the or-
der, current parameters and past errors of the moving
average model.

For the ARMA model to function, it assumes that
the associated time series is stationary. Remembering
that the objective of this project is to handle data from
cryptocurrency markets which are affected by season and
trend so who can we transform a non-stationary time se-
ries into a stationary time series? The mechanism to re-
solve this issue is called differencing and can be applied
to each one of the two components. Differencing calcu-
lates the variance between consecutive observations, if a
lower order differencing doesn’t achieve the intended de-
trending or de-seasonalizing we are obliged to compute a
greater order differencing.

Applying a dth order of differencing to an ARMA
model results in an ARIMA model, often defined as
ARIMA(p,d,q) where p represents the order of the AR, d
is the order of differencing and q is the order of the MA.
This model has numeral software implementations, fact
that strongly contributed to the widespread utilization

of ARIMA. Although the predominance of this model,
its prediction power reduces as the forecasting horizon
augments due to the forecast converging to the mean of
the observations as the predicting region grows [9]. With
this information we should be aware that this model is
only adequate to short-term prediction which is the fore-
casting objective of this thesis.

2.5. Methodology Examples
The idea of extracting features from order book data over
time and use them to create probabilistic models that
simultaneously apply volatility and feature series to pre-
dict Bitcoin price fluctuations was introduced in a recent
study from Tian Guo and Nino Antulov-Fantulin [10].
In each order book snapshot, the price spread, weighted
spread, ask/bid volume, depth and slope and their differ-
ence were gathered. Spread is the variance between the
lowest price that a seller is willing to accept (ask) and the
highest price that a buyer is willing to pay (bid). Depth
is defined by the number of orders on the ask or bid side
while volume is the number of Bitcoins on the ask or bid
side. Weighted spread is the difference between cumula-
tive price over 10% of ask depth and the cumulative price
over 10% of bid depth. Slope is estimated as the volume
until α price offset from the actual traded price, where
α is estimated by the bid price at the order that has at
least 10% of orders with the greater price.

The authors of the referred scientific paper created a
generative temporal mixture model of the volatility and
trade order book data, which is able to outperform the
current state-of-the-art machine learning and time se-
ries statistical models by using a gate weighting function
that detects regimes when the features of buy and sell
orders significantly affects the future high volatility pe-
riods [10]. The only problem with this approach was to
only consider one cryptocurrency, Bitcoin, which limits
the application scope. Since Bitcoin is the cryptocur-
rency with most volume traded daily, most of the pub-
lished work in the digital currencies field applies their
findings to this coin. Although being limited to one form
of digital currency, these studies provide a solid knowl-
edge base than can be applied to a larger spectrum of
cryptocurrencies. Price fluctuations were studied from
several perspectives such as using order book data and
found that a lack of buyers generated panic amongst sell-
ers [11], which culminated in the price crash of Bitcoin
on the 10th of April 2013, or using cryptocurrency web
communities data to obtain sentiment and forecast value
fluctuations [12]. Price prediction studies apply some
techniques used in traditional financial market like au-
toregression, as used by Garcia et. al. who identified
word of mouth and new Bitcoin adopters as feedback
loops that drive to price bubbles [13] or simply employ
historical time series price information to develop an ac-
curate trading strategy with price prediction [14].

3. Architecture
This system was designed according to a multi-layered
micro-services architecture built on three layers: the data
layer, the application layer and the presentation layer.

3



Separating the project in different layers provides the
ability to modify each one of them without crashing the
others, reducing maintenance and enabling flexibility for
application expansion. The flow of the system described
can be explained through the following steps: (1) Mar-
ket order books and market trades are extracted from
a digital asset exchange, order books every five seconds
and trades as they happen; (2) Two components, one for
trades, another for order books, are in charge of Pre-
Processing the information provided by the cryptocur-
rency exchange. They gather all the obtained informa-
tion, filter it into the standard representations of the
system and populate the database accordingly; (3) The
Data Aggregation element will read all the data stored
on the database, aggregate it into a monthly time frame
so several features (for example, the maximum monthly
volume on each side of the order book) can be extracted;
(4) The Trading Algorithm component will receive a pe-
riod of time as an argument and all the data regarding it,
apply one of the three variants of the algorithm created
for this thesis and generate a report with the execution
results. The first alternative analyzes the best periods
based on the lowest and highest volume values within
the time frame to start short or long positions. On the
other hand, the second relies on inversions (over a defined
threshold) of total percentage in the bid or ask side of
the order book to define start positions. Lastly, the third
variant uses with the ARIMA model to forecast prices
and determine when to invest accordingly. All methods
use the percentage stop order developed for this project
to improve profitability; (5) Finally, the results obtained
from the Trading Algorithm running through the simu-
lation window will be presented to the user for analysis.

3.1. Database
Since the world of cryptocurrency trading is decades
younger than stock trading, we don’t have the same
amount of free information available on the internet.
Therefore, one of the first challenges of this thesis was
to establish how would the trading data be obtained.
After searching for free databases containing the desired
information, one of two problems always emerged. The
database didn’t had order book data or information was
aggregated on a daily basis with maximum and minimum
values. These complications alongside the scarcity of free
databases lead to a different approach regarding the ac-
quisition of trading data: scrapping information from a
digital asset exchange.

There are several ways to scrape data from web trad-
ing platforms but exchanges try to simplify that process
by providing free and well documented Application Pro-
gramming Interface (API)s which enable their clients to
easily gather knowledge. Additionally, those APIs are
available in various programming languages, although
their features may vary slightly between them. Two in-
formation categories were needed for this project, the
buys and sells and the state of the order book within
a determined time period. Evidently, we didn’t gather
information about all the available digital currencies be-
cause it was not in the scope of this work so we decided to

pick the top four cryptocurrencies according to daily vol-
ume: BTC, ETH, LTC and BCH. We also thought that
it would be interesting to compare the differences be-
tween USD and EUR digital markets so each cryptocur-
rency trading information was extracted on both curren-
cies. Because of the quantity of data we defined separate
documents (the Structured Query Language (SQL) table
equivalent in MongoDB) for each digital currency’s order
books. For confirmed trades, a single document was used
and the digital currency associated with it was one of the
fields. To make a distinction between the USD and EUR
digital markets, each document has two collections, one
of each mentioned currency. Likewise, in the trades doc-
ument there is a ’Buy’ collection and a ’Sell’ collection.
The database architecture used is depicted in Figure 1.

Figure 1: Database Architecture

3.2. Trading Data
After a thorough study of digital asset platforms with
APIs, Coinbase Pro, formerly known as GDAX, was cho-
sen for this master’s thesis. Coinbase Pro provided a API
that was easy to use and accomplished the information
goals defined previously. Nonetheless, we wanted to save
every confirmed traded and the best option was to use
the API’s web socket client but it was not available with
Python so we developed a Node.js scrapper to extract
trades and a Python one to gather order books. In this
subsection, both programs and the information contained
in every trade and order book will be clarified.

Firstly, what kind of information was retrieved from
a single trade and an order book? For trades, we used
the API’s web socket client, starting by establishing a
connection to the MongoDB database. Afterwards, the
web socket is actively listening for all messages sent
by Coinbase Pro and filters them for confirmed trades.
These trades are documented on a message containing
the ’match’ type. Every time a ’match’ message is
caught, we will save the trade in the database according
to its side (buy or sell) with the following fields: cur-
rency, trade identifier, amount, date, rate and total. On
the other hand, order books were requested every five
seconds since high frequency trading is not in the scope
of this thesis. After configuring the connection to the
MongoDB database, every five seconds the order books
of the four digital currencies on both USD and EUR were
saved as a pair [date,dictionary ], where date refers to the
time of extraction and dictionary contains all the ask and
bid amounts and prices.

4



3.3. Data Flow and Data Processing
This subsection will describe the data flow and process-
ing, after extracting trade and order book information,
until sending the treated data as input to the trading
algorithm. We can break down this procedure in three
main steps:

1. Database Communication, that clarifies how does
our solution handles the connection to a remote
database and retrieves necessary information;

2. Saving Monthly Data, where we define how to
gather, by parts, monthly raw data of buy or sell
trades or order books;

3. Monthly Data Manipulation, composed by receiving
all files generated from the previous step and using
aggregation and, in some cases, resampling to create
DataFrames that will be used as input to the trading
algorithm.

Since we were using a remote computer to store the
database containing all the information obtained from
the digital asset exchange, how would we access that
data? There are several solutions available, since man-
ually creating backups of the database to an external
hard drive (restoring it afterwards in the machine where
the trading algorithm will be executed) to establishing
a permanent connection between computers that would
periodically send new data from the remote database to
the local one. Our decision relied on manually defining
when to gather monthly data, via an Secure Shell (SSH)
tunnel, by parts, to avoid memory shortage and the over-
head associated with maintaining a permanent SSH con-
nection. But what is an SSH tunnel?

Firstly, the SSH protocol is a mechanism for secure re-
mote login from one computer to another, providing var-
ious alternative options for strong authentication while
protecting the integrity and security of communications
with strong encryption. SSH tunneling is a method of
transporting any kind of networking data over an en-
crypted SSH connection. There are several Python li-
braries that enable us to efficiently implement an SSH
tunnel which was one of the main reasons to use this
approach

Prior to establishing a communication with the remote
computer, we need to obtain data about digital currency
trades and order books. To assist the progress of this the-
sis, we defined that we should obtain monthly informa-
tion because it would only be gathered once and we could
easily divide it into parts (by week for example) to avoid
memory shortage problems. The only obvious downside
of this approach is that we can only extract months prior
to the current one. Since trade and order book informa-
tion is provided with different specifications, despite both
being in the lightweight data-interchange format called
JavaScript Object Notation (JSON), we addressed each
case separately.

After gathering monthly data about trades and order
books, we must aggregate it since we are dealing with

millions of records and the useful information can be ex-
tracted (or even created) with this method. But what
does aggregation mean? In this particular case we are
referencing data aggregation, that can be defined as a
process in which information is obtained and expressed
in a summary form. The main intent for this summary
in this work is statistical analysis.

An overview of all the components responsible for data
processing is illustrated in Figure 2.

Figure 2: Data Processing

3.4. Trading Algorithm
After aggregating the monthly order book information,
we had the challenge of defining what kind of data we
would want to gather from the four levels of total asks
and bids percentage and total volume. Firstly we defined
that our trading algorithm should take advantage of the
digital currency market volatility. With this aspect in
mind, we established the first two use cases for our al-
gorithm, using a percentage of the preeminent monthly
volume of the order book to find periods with high de-
mand for sales or buys and identify total volume inver-
sions. The second use case can be defined by a shift of
the total volume percentage (over a defined threshold)
from the asks side to the bids side or vice versa.

We had to specify the threshold that retrieved at least
fifteen periods, number delineated with my supervisor’s
guidance. Our objective was to find order books whose
volume, from the ask or bid side, is higher or equal to
the maximum monthly volume from the same order book
part multiplied by the chosen threshold. The difference
between the two mentioned use cases is that the first one
is represented by the maximum monthly volume amount
in the four levels whilst the second one only considers the
top monthly volume in the front level.

To provide a better understanding of both test cases,
Figures 3 and 4 illustrate simple examples of how their
mechanism is used to find suitable investment periods.
The first plot depicts a typical situation where the con-
ditions for selection are met. Let us start by considering
the yellow line as the total order book volume in the bids
side, the blue line as the total bids orders maximum vol-
ume in the testing month and the red line as the value
from where we should start a position. Point A repre-
sents the first period that would be retrieved since it fol-
lows the condition presented by the ?? equation. From
this point until point C, every stage will be seen as a
possible investment situation. Two additional points are
worth being mentioned, the first being the fact that all

5



volumes below the red line will not be selected and that
the periods must have a distance between them of five
minutes, to avoid redundancy. This will also be done for
the volume on the first level of the order book, on both
asks and bids side.

Figure 3: First Use Case Example

On the other hand, Figure 4 exemplifies the second
use case. Now we are considering the total order book
percentage on both sides, the red line represents the per-
centage of asks while the green line represents the per-
centage of bids. Furthermore let us consider a threshold
of 20 %. Point A shows the moment where the inversion
takes place since total bids percentage will be more sig-
nificant than the percentage of asks orders. When the
next period (B) is reached, we achieved an inversion that
is equal to our threshold, so this period will be returned
from the use case as a possible moment for starting a
long position (since the inversion was from the asks to
the bids side). The following periods in the figure will
not be considered since no inversion occurred.

Figure 4: Second Use Case Example

Finally we needed to save this information to be able
to use it in our simulation while avoiding repeating this
information extraction. Nonetheless, while checking the
resulting periods, we verified that the majority were con-
secutive which did not give us useful information so we
established that we would only save periods with at least
five minutes of interval between them. Afterwards, we

saved the DataFrames containing the order books with
the respective timestamps, that respected our temporal
condition, in Comma-Separated Values (CSV) files.

3.5. Percentage Stop Order
After studying the standard types of limit and stop or-
ders used, we thought that a trailing stop order was the
fittest for our intentions of optimizing profits. Neverthe-
less, due to the volatility of the digital currency market,
we needed more control over potential stop losses and
be conservative to improve mean profit. The addition of
dynamic limits presented itself like a solid idea, but how
could we implement this concept? To solve this prob-
lem, we introduced a new variety of stop order called
Percentage Stop Order (PSO).

Defining the adoption of percentages to the detriment
of flat currency amounts allowed the PSO to have more
flexibility and to sustain the considerable rate fluctua-
tions of cryptocurrencies. Our stop order has conserva-
tive default percentages, using 0.5 percent as the stop
gain percentage and a 2 percent stop loss. Also, the
chosen threshold that provided the desired dynamic be-
haviour was 0.25 percent. To select this values, we tested
several combinations and these produced the best results.
Now we have the starting values, how does our stop order
work during a trading simulation?

There are four courses of action that may be taken by
the PSO algorithm. To clarify each one of them we will
consider a simulation where we are placing long positions,
which means that we bought currency and are expecting
a growth in value. Figure 5 depicts the example where
we start with 1 BTC bought at an original rate of 1000
USD. Point A illustrates a situation where the stop gain
and stop loss orders were not reached nor the maximum
sell rate went over the threshold to dynamically change
both stop orders. When assessing the max rate sell at
the B event, the PSO threshold was passed so both the
upper and lower limits are updated. It is important to
single out how to check if we need to update the stop
order limits, given by the equation

rate_sell_max ≥ (orig_rate ∗ (1+ thresh_rate)) (3)

Afterwards, the rate increases until reaching our cur-
rent stop order limit in point C, at this point we sell our
BTC having a profit of 0.75 percent. Finally, we decide
to buy 1 BTC again in point D. The original limits are
established and as we progress in time, the value of the
digital currency held declines sharply so when the stop
loss order is reached, at point E, we sell our position to
minimize our loss.

3.6. Simulation
The simulation component is crucial in this work since
it allowed us to test all the mechanisms developed and
verify the results produced by our three use cases. As
input, it must receive two DataFrames, one with the real
monthly trading information containing data about buys,
sells (we can use minimum, mean or maximum values)
in five minute intervals, and another one regarding the

6



Figure 5: Percentage Stop Order Example

periods where we should invest according to the analysis
performed by the selected use case. Furthermore, we
define if we want to take into account fees that should
be paid to the digital asset exchange and what type of
positions we want to put on the market (long, short or
both). A DataFrame containing the execution results
will be output where each row referring to a time period
will have a date, volume, number of trades, amount, rate,
mock investor’s money, mock investor’s amount of digital
currency, an indicator if an action was taken in that time
frame and the profit percentage.

4. Evaluation and Comparison Analysis
To validate the efficiency of the considered use cases, we
used a method called Backtesting. This strategy enables
us, relying on previous trading data, to simulate our algo-
rithm, assess the results and verify the mean profitability
without using real money. Therefore, this method al-
lows for better understanding of the risk associated with
our approach. Additionally, if the simulation outcome is
positive then our algorithm should be solid and generate
profits when applied to the current market. Lastly, by
adopting this procedure we can analyze several test sce-
narios and discover concept problems, areas for improve-
ment and potential gains without wasting an extended
period of time.

The following three use cases were performed:

1. Using a threshold over the maximum monthly or-
der book volume to identify periods with a potential
high volatility since a greater volume is correlated to
a high demand for sales or buys of digital currency;

2. Discovering periods where a shift of the total vol-
ume percentage (over a defined threshold) from the
asks side to the bids side or vice versa took place,
which allows us to invest after an aggressive change
of trend;

3. Using ARIMA to forecast prices and use the predic-
tions as an indicator of market trend, subsequently
applying this obtained information in the first two
test scenarios and verify if it improves or reduces
profitability.

4.1. General Setup
Despite the different elements associated with each one
of the three use cases, several processes and configura-
tion parameters are identical throughout the evaluation
phase. Table 1 displays the configuration values that re-
mained the same during the whole testing operation.

Table 1: General Setup Parameters

The chosen test period is a month although we have
more than a year of trading information because this time
window already needs a considerable amount of hours (at
least eight) to aggregate all the data collected from the
digital asset exchange. Nevertheless, to improve the qual-
ity of our results, we considered two distinct months for
each currency simulation on each one of the use cases. As
previously mentioned, the cryptocurrencies tested were
BTC, ETH, LTC and BCH.To compare our results with
a standard trading method, we used the Buy & Hold
strategy in the same test periods, this approach buys
digital currency in the first time period and only sells at
the last one. Despite using a monthly test period, we
gathered more than half a million order books for each
digital currency so we used a 5 minute resampling. This
processed allowed us to significantly reduce the compu-
tation time needed to execute a simulation.

Regarding simulation parameters, we established that
the algorithm has 1000 USD to invest in every single
run that does not start with a short position (in those
cases, we start with 1 unit of the specific cryptocurrency)
and must always use the full amount of virtual money
available in every trade. Unfortunately, due to time con-
straints, only the USD market was tested. Additionally,
our trading method constantly uses the mean rate of the
trades that took place in the five minutes of the consid-
ered period, alongside a 200 day MA that enables us to
follow the market trend. Before defining a new short or
long trade, our algorithm verifies the directions of the
MAs of the three previous periods and allows the posi-
tion if it respects the market flow. Lastly, all the invest-
ing periods determined by our use cases will be generated
before we execute the simulation and we did not take into
account possible transaction fees.

After running a simulation, the Return On Investment
(ROI) will be calculated. In the event of finishing the test
period with money invested, our algorithm uses the last
saved rate of the considered cryptocurrency to sell the full
amount owned. This step allows the ROI computation.

4.2. Test Case 1 - Maximum Monthly Order Book Vol-
ume Period

This test case initially considers the maximum monthly
volume values at the first level of the order book and the

7



total volume in both bid and ask sides. Afterwards, it
applies a threshold to those maximum values and finds
periods having a volume greater or equal to the calcu-
lated value.

Figure 6 presents the performance achieved by our
trading strategy regarding the monthly ROI for each one
of the four cryptocurrencies in July 2018. We considered
three options for types of trades used in our algorithm:
short, long and both positions. Afterwards, we use the
November 2018 data to simulate the behaviour of our
trading method with the note that BCH was not consid-
ered due to errors in the extracted order book informa-
tion. The results of this simulation are shown in Figure
7.

Figure 6: First Test Case Results on July 2018

Figure 7: First Test Case Results on November 2018

The use of a percentage of the maximum order book
volume to find suitable investing periods had the objec-
tive to provide more profit than the Buy & Hold trading
strategy. Observing the plot illustrated in Figure 6, we
can verify that our use case obtains better results, com-
paring to the mentioned strategy, with LTC and ETH
ending the simulation with profit on July 2018. Nev-
ertheless, the Buy & Hold ended the month with more
significant gains on BTC and BCH. Another interesting
note is the fact that all the test digital currencies pro-
vided solid results when running this scenario using only
short positions.

Regarding the November 2018 results depicted in Fig-
ure 7, we may think that the scale is wrong since there
are only negative percentages but this month brought im-
portant price decreases on several cryptocurrencies. The
Buy & Hold strategy lost a major portion of the invest-
ment on all digital currencies. Only using long positions
with this test case allowed us to significantly reduce our
losses (e.g., lost a minimum of 35% less than any other
type of strategy for ETH).

4.3. Test Case 2 - Monthly Total Order Book Percentage
Inversion Of Bids And Asks

This test case considers predefined thresholds to find in-
versions between the total order book percentage of bids
and asks. Afterwards, it saves all time periods where the
inversion matched the threshold.

Figure 8 illustrates the performance achieved by us-
ing in our simulation periods where an total order book
percentage inversion took place in July 2018. We consid-
ered three types of trade configurations in our algorithm:
short, long and both positions. As in the previous use
case, we use also tested this strategy on November 2018
data (except for BCH). The results of this simulation
are shown in Figure 9. Lastly, our results were compared
with the ones generated by the Buy & Hold method.

In this use case, we used total order book percent-
age inversions to extract periods to start positions with
the goal of generating profit whilst comparing the results
with the Buy & Hold method and the first test case. An-
alyzing the graph presented in Figure 8, we can conclude
that while running with the two existing types of trades
and the July 2018 data, this test case obtains profit on
BTC and BCH unlike the Buy & Hold strategy. As the
previous use case, the latter method has more profit with
BCH and BTC. The type of trading strategy that pro-
vided the best outcome was using both position types
since it allowed us to have profit with all four currencies.
Comparing with the first use case, only in ETH while
using both types of trades the results were considerably
superior, a 33,24% increase in profit.

Figure 9 depicts the results obtained after running our
trading simulation with the November 2018 data. As the
first case, we could not get profit in all currencies with
the three types of trade mechanisms. Nonetheless, using
long positions obtained a lower loss compared with the
previous test case with the exception of ETH. Further-
more, for LTC, all results were better than those in the
first use case. For BTC using short positions brought a
more important loss but the other two trade configura-
tions reduced the deficit obtained previously.

4.4. Test Case 3 - Forecasting with ARIMA
To test this use case, we started by taking each series
containing the monthly trades of all the currencies from
both July and November 2018 and applying a back fill to
all missing values. Next, we defined our ARIMA model.
After choosing the parameters for our model, we decided
to check the previsions made using a month of data, us-
ing 75% for training purposes and 25% for testing. We
verified that the previsions were really distant from the

8



Figure 8: Second Test Case Results on July 2018

Figure 9: Second Test Case Results on November 2018

real rates but we could gather and use information from
a different perspective, using the direction of the forecast
instead of the value itself. To check which direction the
market is going, we compare our prediction to the last
predicted value, if it is a positive number, we consider the
rate should increase, other wise we will consider it will
decrease. We will save this information on CSV file and
use this directions as an extra validation method before
starting a new trading position on a simulation.

Figure 10 illustrates the performance achieved by
adding ARIMA previsions to the first use case in July
2018. We still considered three types of trade configura-
tions in our algorithm: short, long and both positions.
Afterwards, we used the November 2018 data to simu-
late the behaviour of our trading method with the note
that BCH was not considered due to the problems al-
ready mentioned. All the other test scenarios for both
use cases generated the same results obtained previously.

This test case only generated different results (for BCH
and BTC) when applied to the first use case on July 2018,
the outcome is illustrated in Figure 10. Using only short
trading positions in BTC generated the highest profit
within all use cases (24,45%). This result is superior to
the 19,28% of profit gained by the Buy & Hold method.
Contrarily, using both types of trades in BCH results
in a 5,74% profit reduction compared to the first use
case without forecasting. Unfortunately, this test did not

generate a different outcome for the majority of the trade
type / cryptocurrency pairs since we used three quarters
of the month to train our ARIMA model so it could only
be tested on the last week of the month. Obviously, if
our trading algorithm does not take any action in the
last week, our direction mechanism is unable to act.

Figure 10: First Test Case Results With ARIMA on July
2018

4.5. Overall Analysis
Despite the lack of results of the last use case, the first
two provided interesting outcomes that gave us a solid
indication that there is value in extracting order book
information and we can use it to improve profits. Before
going through the positive aspects, let us address the ma-
jor problems that occurred during the evaluation phase.
First of all, the time needed to extract data from the
database and aggregate it because it made us consider
monthly test periods which is not suitable for a trading
algorithm. Additionally, we should have preemptively
verified the information integrity to avoid situations like
the inability to execute a simulation with BCH on the
November 2018 data.

Observing the best performing trading methods using
the July 2018 data in Table 2, we can infer that only
establishing short positions with the first use case gen-
erates profit for all four digital currencies. Furthermore,
using ARIMA for forecasting allows to improve our most
profitable situation (short trades on BTC) by 6,47 %.
Nonetheless, the third test scenario slightly reduced the
gains with BCH while compared with the first use case.
Measuring the efficiency of our strategies against the Buy
& Hold method, we can verify that in the first and second
use cases we achieved better results in two cryptocurren-
cies whilst in the last scenario we generated more profit
for LTC, BTC and BCH.

Table 2: Best Trading Strategies July 2018

9



Table 3 presents the outcome of the most performing
trading strategies for November’s 2018 data. Two notes
must be addressed initially, the first one is why all the
profit percentages are negative whilst the second is re-
lated to not having both third use case and BCH results.
The latter remark is justified by a problem regarding the
order book retrieval from the digital asset’s store API
since some of them were empty. We can explain the nega-
tive profits by visualizing the market trend on November
2018 because the majority of cryptocurrencies suffered
significant price drops. In spite of these problems, our
developed use cases managed to drastically reduce losses
if compared to the Buy & Hold strategy results while us-
ing only long positions. This fact may feel strange since
we are dealing with a month where the general market
tendency was to decrease the rate of digital currencies
but it is a proof that the PSO acts efficiently even in
challenging periods.

Table 3: Best Trading Strategies November 2018

The results show that the first use case should be used
in months with a bull market, which can be described
as a period of generally rising prices, using only short
positions. Contrarily, the second test scenario using only
long positions should be select for periods with a bear
market, where a general decline in the digital currencies
rate happens over a period of time. An important aspect
of the developed algorithm is the ability to overcome op-
posite market directions. The last test case did not pro-
duce enough data for us to assess if using the ARIMA
model improves or reduces the profitability of the initial
use cases. Nonetheless, the fact that we were only able to
test two periods reinforces that these conclusions should
be further tested to check that the outcome produced is
consistent with our remarks.

Finally, this evaluation phase offered innumerable chal-
lenges and objections but we ended up creating three use
cases that, in spite of needing additional examinations,
substantiate our objective of extracting information from
the order books of digital currencies and use machine
learning to improve profits.

5. Conclusions
The presented work proposes an end to end system de-
signed in a microservice architecture that contains a
database with order books and trading information of the
four major digital currencies (more than 70 Gigabytes of
data), an algorithm that pre-processes and aggregates
information from order books and trades to define trad-
ing positions, a trading simulator, a new type of trailing
stop that optimizes profits and the usage of forecasting
to check the market trend.

Three use cases were developed for our trading algo-
rithm, the first two extract order book data to find suit-
able trading periods whilst the last one uses the ARIMA

model with a 70% training and 30% testing periods to
predict cryptocurrencies’ rates and use that informa-
tion on the initially mentioned test scenarios. We used
monthly test periods and considered three trading config-
urations to find the most performing strategy according
to the market’s situation.

All in all, despite the reduced testing sample and in-
numerable challenges faced, the results were promising,
surpassing the Buy & Hold strategy gains and signifi-
cantly reducing losses on bear markets.

References
[1] S. Nakamoto. Bitcoin: A Peer-to-Peer Electronic

Cash System, 2008.
[2] O. J. Mandeng. Cryptocurrencies, monetary stabil-

ity and regulation: Germany’s Nineteenth Century
Private Banks of Issue. Technical report, LSE Insti-
tute of Global Affairs, 2018.

[3] P. K. Jain, P. Jain and T. H. McInish. The Predic-
tive Power of Limit Order Book for Future Volatility,
Trade Price, and Speed of Trading. SSRN Electronic
Journal, 2011.

[4] I. H. Witten and E. Frank. Data Mining : Practical
Machine Learning Tools and Techniques. Morgan
Kaufmann, 4th edition, 2005.

[5] M. D. Rechentin. Machine-learning classification
techniques for the analysis and prediction of high-
frequency stock direction. PhD thesis, University of
Iowa, 2014.

[6] G. Box and G. Jenkins. Time Series Analysis, Fore-
casting and Control. Wiley, 1970.

[7] R. Frigola. Bayesian Time Series Learning with
Gaussian Processes. PhD thesis, University of Cam-
bridge, 2015.

[8] G. Bontempi, S. Ben Taieb and Y.-A. Le Borgn. Ma-
chine Learning Strategies for Time Series Forecast-
ing. Business Intelligence: Second European Sum-
mer School, pages 62–67, 2013.

[9] R. H. Shumway and D. S. Stoffer. Time Series
Analysis and Its Applications: With R Examples.
Springer, 2011.

[10] T. Guo and N. Antulov-Fantulin. Predicting short-
term Bitcoin price fluctuations from buy and sell
orders, 2018.

[11] J. Donier and J.-P. Bouchaud. Why Do Markets
Crash? Bitcoin Data Offers Unprecedented Insights.
PLOS ONE 10, pages 1–11, 2015.

[12] Y. B. Kim, J. G. Kim, W. Kim, J. H. Im, T. H.
Kim, S. J. Kang and C. H. Kim. Predicting Fluc-
tuations in Cryptocurrency Transactions Based on
User Comments and Replies. PLOS ONE 11, 2016.

[13] D. Garcia, C. Tessone, P. Mavrodiev and N. Per-
ony. The digital traces of bubbles: feedback cycles
between socio-economic signals in the Bitcoin Econ-
omy. Journal of The Royal Society Interface 11,
2014.

[14] M. Amjad and D. Shah. Trading Bitcoin and On-
line Time Series Prediction. IPS 2016 Time Series
Workshop, pages 1–15, 2017.

10


