
Using the Order Book and Machine Learning for
Cryptocurrency Trading

João Guilherme Esteves de Andrade

Thesis to obtain the Master of Science Degree in

Telecommunications and Informatics Engineering

Supervisor: Prof. Dr. Rui Fuentecilla Maia Ferreira Neves

Examination Committee

Chairperson: Prof. Dr. Ricardo Jorge Fernandes Chaves
Supervisor: Prof. Dr. Rui Fuentecilla Maia Ferreira Neves
Member of the Committee: Prof. Dr. Pável Pereira Calado

May 2019

ii

Abstract

This thesis presents a new computational approach for profit optimization on cryptocurrency trading,

using trade and order book data from a major digital asset trading platform of four digital currencies (Bit-

coin, Ethereum, Litecoin and Bitcoin Cash) in the United States Dollar (USD) and Euro (EUR) markets.

An end-to-end solution was designed, starting with the database generation, information extraction, trad-

ing algorithm, simulation and ending with a dynamic report of the results. All the parts of the system

are designed in a microservice architecture to ensure that they are scalable, strongly encapsulated and

tightly scoped components. Three use cases where considered for the trading system where the first two

use order book volume variation to assess suitable trading periods whilst the last one uses an ARIMA

model to forecast price fluctuation and consequently serve as a verification mechanism to the first two

test cases during a simulation. Furthermore, a new type of trailing stop called Percentage Stop Order

is introduced, allowing profit improvement. Monthly test periods were used alongside different types of

trading positions to all test scenarios to find the most performing strategy according to the market’s sit-

uation. The results obtained managed to surpass the gains from the Buy & Hold strategy up to 22,72%

and reducing losses up to 33,24%.

Keywords: Cryptocurrency, Order Book, ARIMA, Microservices.

iii

iv

Resumo

Esta tese apresenta uma nova abordagem computacional para otimização de lucro em transações com

criptomoedas, utilizando dados de negociação e de ordens de uma grande plataforma de negociação

de ativos digitais de quatro moedas digitais (Bitcoin, Ethereum, Litecoin e Bitcoin Cash). Uma solução

completa foi projetada, começando com a geração da base de dados, extração de informações, al-

goritmo de negociação, simulação e terminando com um relatório dinâmico dos resultados. Todas as

partes do sistema estão inseridas numa arquitetura de microsserviços para garantir que sejam compo-

nentes escaláveis, encapsulados e com um âmbito bem definido. Três casos de uso são considerados

para o sistema de negociação onde os dois primeiros usam a variação do volume do livro de ordens

para avaliar perı́odos de negociação adequados, enquanto o último usa um modelo ARIMA para prever

a tendência dos preços e, consequentemente, servir como um mecanismo de verificação para os dois

primeiros casos de teste durante uma simulação. Além disso, um novo tipo de controlo de posições

chamado Percentage Stop Order é introduzido, permitindo a melhoria do lucro. Perı́odos de teste men-

sais foram usados juntamente com diferentes tipos de posições de negociação para todos os cenários

de teste, para encontrar a estratégia com melhor desempenho de acordo com a situação do mercado.

Os resultados obtidos conseguiram superar os ganhos da estratégia Buy & Hold até 22,72% e reduzir

as perdas em 33,24%.

Palavras-chave: Criptomoeda, Livro de Ordens, ARIMA, Microsserviços.

v

vi

Contents

Abstract iii

Resumo v

List of Figures x

List of Tables xi

Acronyms xiii

1 Introduction 1

1.1 Background . 1

1.2 Proposed Solution . 1

1.3 Thesis Contribution . 2

1.4 Outline . 2

2 Related Work 3

2.1 Blockchain Background . 3

2.1.1 The Decentralized Ledger . 3

2.1.2 Hashing and Digital Signatures . 4

2.1.3 Proof of Work . 6

2.1.4 Blockchain . 7

2.1.5 Merkle Tree . 8

2.2 Machine Learning . 9

2.2.1 Supervised Learning . 9

2.2.2 Time Series . 11

2.2.3 Methodology Examples . 13

2.3 Trading Orders . 15

2.3.1 Limit Orders . 15

2.3.2 Stop Orders . 15

2.3.3 Stop-Limit Orders . 16

vii

3 Architecture 18

3.1 System’s Architecture . 18

3.2 Implementation Options . 19

3.3 Database . 21

3.4 Trading Data . 23

3.5 Data Flow and Data Processing . 24

3.5.1 Database Communication . 24

3.5.2 Saving Monthly Data . 24

3.5.3 Monthly Data Manipulation . 26

3.6 Trading Algorithm . 27

3.6.1 Extracting Information From Order Book Data . 28

3.6.2 Forecasting With Autoregressive Integrated Moving Average (ARIMA) 30

3.6.3 Percentage Stop Order . 32

3.6.4 Simulation . 33

3.6.5 Output . 35

4 Evaluation 39

4.1 Tests Scenarios and Objectives . 39

4.2 General Configuration . 40

4.3 Test Case 1 - Maximum Monthly Order Book Volume Period 41

4.3.1 Scenario Setup . 41

4.3.2 Performance . 41

4.3.3 Outcome Graphs and Discussion . 42

4.4 Test Case 2 - Monthly Total Order Book Percentage Inversion Of Bids And Asks 43

4.4.1 Scenario Setup . 44

4.4.2 Performance . 45

4.4.3 Outcome Graphs and Discussion . 46

4.5 Test Case 3 - Forecasting with ARIMA . 47

4.5.1 Scenario Setup . 48

4.5.2 Performance . 48

4.5.3 Outcome Graphs and Discussion . 49

4.6 Overall Results . 49

5 Conclusions 52

5.1 Summary and Achievements . 52

5.2 Future Work . 52

A Docker-Compose For Data Scrapping 57

viii

List of Figures

2.1 Digital Signature . 5

2.2 Bitcoin Block . 7

2.3 Blockchain . 8

2.4 Merkle Tree . 8

2.5 Multilayer Perceptron . 10

2.6 Time Series Forecasting . 11

2.7 Stop Orders . 16

2.8 Trailing Stop Order . 16

3.1 System’s Architecture . 19

3.2 Virtual Machines vs Containers . 20

3.3 Database Architecture . 22

3.4 Order Book and Trade Extraction . 23

3.5 SSH Tunnel . 25

3.6 Data Processing . 27

3.7 First Use Case Example . 29

3.8 Second Use Case Example . 29

3.9 PACF plot . 31

3.10 ARIMA Implementation . 32

3.11 Percentage Stop Order . 33

3.12 Simulation Overview . 36

3.13 Profit Variation Plot . 37

3.14 Minimum Buy/Ask Rates Plot . 37

3.15 Action Plots . 38

3.16 Daily Percentage Volume Side Variation . 38

4.1 First Test Case Results on July 2018 . 42

4.2 First Test Case Results on November 2018 . 42

4.3 BTC First Test Results Using Short Positions on July 2018 43

4.4 BCH First Test Results Using Both Position Types on July 2018 44

4.5 ETH First Test Results Using Short Positions on November 2018 44

ix

4.6 Second Test Case Results on July 2018 . 45

4.7 Second Test Case Results on November 2018 . 46

4.8 ETH Second Test Results Using Both Position Types on July 2018 47

4.9 LTC Second Test Results Using Both Position Types on July 2018 47

4.10 BTC Second Test Results Using Short Positions on November 2018 48

4.11 First Test Case Results With ARIMA on July 2018 . 49

4.12 BTC First Test Results Using Short Positions and ARIMA on July 2018 50

4.13 BCH First Test Results Using Both Position Types and ARIMA on July 2018 50

x

List of Tables

3.1 Hardware Specifications . 21

3.2 Database Time Gaps . 22

3.3 Raw Monthly Sell Trades CSV File . 25

3.4 Raw Monthly Order Book CSV File . 26

3.5 Aggregated Monthly Trades CSV File . 26

3.6 Monthly Max Volumes in Order Book . 28

3.7 Example of Order Book Periods Extracted (BTC-USD) . 30

3.8 Last Lines of Results File of a July 2018 Simulation (BTC-USD) 34

4.1 General Setup Parameters . 40

4.2 First Use Case Thresholds For July 2018 Simulations . 41

4.3 First Use Case Thresholds For November 2018 Simulations 41

4.4 Second Use Case Thresholds For July 2018 Simulations 45

4.5 Second Use Case Thresholds For November 2018 Simulations 45

4.6 Directions’ DataFrame . 48

4.7 Best Performing Trading Strategies For July 2018 . 51

4.8 Best Performing Trading Strategies For November 2018 51

xi

xii

List of Acronyms

ACF Autocorrelation Function

ADF Augmented Dicky-Fuller

AR Autoregressive

API Application Programming Interface

ARIMA Autoregressive Integrated Moving Average

ARMA Autoregressive Moving Average

BCH Bitcoin Cash

BTC Bitcoin

CSV Comma-Separated Values

ENET Elastic-Net

ETH Ethereum

EUR Euro

EWMA Exponential Weighted Moving Average

GARCH Generalized Autoregressive Conditional Heteroskedasticity

GP Gaussian Process

GBT Gradient Boosted Tree

HTML Hypertext Markup Language

JSON JavaScript Object Notation

LTC Litecoin

MA Moving Average

MLP Multilayer Perceptron

MSE Mean Squared Error

NARX Nonlinear Autoregressive Exogenous

NoSQL Not Only Structured Query Language

PACF Partial Autocorrelation Function

xiii

PDF Portable Document Format

PSO Percentage Stop Order

RNN Recurrent Neural Network

ROI Return On Investment

SHA Secure Hash Algorithm

SQL Structured Query Language

SSH Secure Shell

USD United States Dollar

xiv

Chapter 1

Introduction

The cryptocurrency trading realm is progressively attracting attention from communities linked to several

domains of finance and computational intelligence. One of the main reasons associated with this phe-

nomenon is the high volatility associated with the market of digital currencies. This means that finding

the optimal timings to enter and leave the market is the main objective of researchers since it leads to

higher profits on a short period of time. However, this task is really challenging since the cryptocurrency

market is non-linear, non-stationary and heavily influenced by speculation.

1.1 Background

In recent years, cryptocurrencies are becoming increasingly popular, getting a significant amount of

media attention worldwide. Despite only being on the spotlight for a short time, the concept of cryptocur-

rencies and blockchain technology was introduced in 2009 with the introduction of Bitcoin [1]. The main

idea was to create a decentralized shared public ledger (blockchain) that validates and saves immutably

all financial transactions by using a computer network as a timestamp server, maintaining the correct

order of negotiations.

There were 1474 types of digital coins at end-January 2018 and their total market capitalization was

830 billion USD [2], a consequence of an increasing public acceptance of cryptocurrencies. Never-

theless, volatility is a crucial aspect of digital markets and, as a measure of price fluctuations, has an

important impact on trade planning and investment decisions [3]. This component can be partially han-

dled since exchange offices store “buy” and “sell” orders on an order book, providing insights into the

liquidity and trading purposes [4]. Thus, the first step is to define how will this information be used and

which temporal model must be chosen to adaptively learn volatility using the gathered data.

1.2 Proposed Solution

In this thesis a new approach for profit optimization on cryptocurrency trading is presented, using trade

and order book data from a major digital asset trading platform (Coinbase Pro, formerly known as GDAX)

1

of the four main digital currencies, Bitcoin (BTC), Ethereum (ETH), Litecoin (LTC) and Bitcoin Cash

(BCH), in USD and EUR, to create a trading system that uses order book volume variation and machine

learning to forecast price fluctuation and consequently present trading advice.

1.3 Thesis Contribution

The main contributions of the system introduced in this report are:

1. A database containing order books and trading information of the four major digital currencies built

entirely from scratch (more than 70 Gigabytes of data obtained since March 2018);

2. An algorithm that pre-processes and aggregates information from order books, correlating it with

confirmed trades on a monthly basis, to define the optimal start positions for long and short trading;

3. Machine Learning forecasting applied to the previous algorithm, using ARIMA;

4. An innovative type of trailing stop to optimize profits.

1.4 Outline

This document describes the research and work developed and it is organized as follows:

• Chapter 1 presents the motivation, background and proposed solution.

• Chapter 2 describes the previous work in the field.

• Chapter 3 describes the system architecture and its implementation.

• Chapter 4 describes the evaluation tests performed and the corresponding results.

• Chapter 5 summarizes the work developed and future work.

2

Chapter 2

Related Work

The main idea of Bitcoin explained in the Introduction only grasps a minuscule part of all the mechanisms

needed to create a cryptocurrency. Despite being a relatively new area of study, we can already find

several scientific articles about this subject where those that contributed the most for this assignment will

be considered in this section. Before handling those papers, we will clarify the fundamental components

behind the creation of a digital currency.

2.1 Blockchain Background

Blockchain is essentially a public ledger of all transactions or digital events that have been executed and

shared among participating parties [5], but where does it all start? To initiate the explanation, we will use

a straightforward scenario, let’s assume a transaction between Alice and Bob, where Alice sends 100

units of currency to Bob. When using a traditional currency like the EUR or the USD, it’s mandatory to

use a third trusted party (such as a bank or PayPal) so it validates both users, guarantees that Alice has

the minimum balance needed to perform the transaction, safeguards the whole process and preserves

an historic record of the operation. Naturally, this process requires the payment of a fee to the company

providing these payment services which results in considerable transaction costs. Blockchain does not

need this third party since it is a shared public ledger, which means that there is no central administrator

or centralized data storage, but how does it all work?

2.1.1 The Decentralized Ledger

Following the example of Alice and Bob, now dealing with digital currency where there is no central

authority, the negotiation still needs to be verified before being recorded in the public ledger. Therefore,

the element of trust changed, cryptographic proof, detailed in depth in section 2.1.3 of this article, is used

instead of relying on a financial institution to execute the transaction. The transaction will be broadcasted

to every node on the cryptocurrencies’ network and, after authentication, is recorded in a public ledger.

Two problems arise immediately, how do we verify if it is really Alice that wants to send 100 units of the

digital coin to Bob and how can we check if she has enough cryptocurrency to fulfill the order? To handle

3

these issues, a simple solution was established, the usage of digital signatures to offer protection and

reliability.

2.1.2 Hashing and Digital Signatures

Digital signatures, like real signatures, are a mechanism to ensure someone’s identity with the differ-

ence that we rely on mathematics or cryptography, turning the signature less prone to forgery. Before

further explaining this notion, we will address the other significant concept that underpins the blockchain

technology: hashing.

Hashing is the approach of selecting a random amount of input data, executing an algorithm to it,

and generating a fixed-size output data called the hash or digest. There is a variety of algorithms to

choose from (Message Digest Algorithm, Secure Hash Algorithm, etc.) but they all take an input of bits,

employ some calculations to them, and output a limited number of bits, for instance Bitcoin uses digests

with 256 bits. We generally use hashes to check if a file wasn’t tampered with, although the blockchain

also uses them to symbolize its current state by taking as input all the transactions that have taken place

so far and generating a digest.

The resulting hash allows all parties in the world to agree on the current state of the blockchain but

how are they calculated? For the first block, also called Genesis block, we simply calculate the digest

using all the transactions inside that block. Afterwards, for every new block, we use the previous block’s

transactions and hash along the new transactions as input. This process forms a chain of blocks, thus

the name blockchain, with each new block hash pointing to the one that came immediately before it.

Therefore, no transaction can be tampered with because any change will modify the hash of the block

it belongs to, and, as a result, all the digests of the following blocks. Comparing hashes to catch any

fraudulent attempt and only needing to agree on 256 bits to represent the blockchain (as of April 2018,

Bitcoin’s blockchain size surpassed 160 000 Mb) are the most relevant advantages of using hashing on

cryptocurrencies.

As explained on the first paragraph of this sub-section, digital signatures are used to authenticate a

specific person, avoiding identity theft. The most transparent way to understand all the steps needed

to create and use a digital signature is by analyzing an example, so let’s assume a user named Bob

wants to sign a document. Initially, Bob must generate two keys, the signing key, a private key and the

verification key, a public key. These two keys will be produced at the same time and they will have a

mathematical relationship between them, but it should be hard to obtain the private key with the public

key to offer security and reliability to the user. To sign the document, all Bob needs to do is to apply

a cryptographic hash function to the document, to simplify the process since we will stop dealing with

an arbitrary length input and sign the resulting digest with his signing key. The corresponding output

is called the signature. Digital signature schemes are typically designed so that only the person who

possesses the private key can generate this type of result.

If Bob sent the document he digitally signed to Alice, how does she check its integrity and authentic-

ity? To be able to verify the document, Alice must receive three different inputs, the message that needs

4

to be authenticated, the corresponding signature and the public key of the sender, in this case Bob’s.

Afterwards, Alice will apply a mathematical transformation to these inputs to ascertain that the signature

she received from Bob corresponding to the document is the only one that would have been generated

by Bob’s signing key. The most important aspect here is that anyone can carry out the verification pro-

cess having just the public key of the sender. Basically, this method will output a simple ‘yes’ or ‘no’,

telling Alice if she should accept or reject the signature. Figure 2.1 portrays the illustrated situation.

Figure 2.1: Digital Signature Generation and Verification

Since the original document is one of the inputs needed to produce the actual digital signature, if a

hacker modifies the contents of the document before it reaches Alice, she’ll obtain a different signature

on the verification phase, which ensures that she will reject the document. This property of digital

signatures guarantees the integrity of the document or message sent by Bob to Alice. Another critical

aspect to digital signatures is that the used hash functions must be collision resistant, which means that

it must be impossible to generate identical hashes to two different messages, because this would lead to

identical signatures on distant messages, allowing falsification. Finally, to avoid replay attacks, where a

hacker re-sends a signed message, we use a unique id or nonce, an arbitrary number used only once in

a cryptographic communication that is time dependent or generated with enough random bits to ensure

statistical protection against a brute force attack.

5

2.1.3 Proof of Work

A proof of work in blockchain is a cryptographic challenge used to guarantee that someone has per-

formed a certain amount of work. It has two main properties, to ensure that the party providing the proof

of work has done a predefined amount of labor to produce the evidence and secondly, that the evidence

is quickly verifiable. Generally, finding an answer to a proof of work puzzle is a probabilistic process

with a success rate that varies with the chosen difficulty. To illustrate this notion let’s assume there are

two users, John and Mary, communicating and let Mary require John to execute a certain amount of

computational work for each message he sends her. Towards achieving this, Mary may ask John to

provide a string whose one-way hash respects a predefined structure. The probability of finding such a

string determines how much work John must put on average to find a valid solution.

In Bitcoin, the hashing algorithm used is double Secure Hash Algorithm (SHA) 256, commonly rep-

resented as SHA2562, and the predefined structure is a digest inferior or equal to a target value T, that

represents the current difficulty. In this algorithm, the success probability of finding a nonce n or a certain

message m, such that the digest, given by

Digest = SHA2562(m||n) (2.1)

is less or equal to the target T is

Probability (Digest ≤ T) = T

2256
(2.2)

Which means that, following the example of John and Mary, John would have to perform, on average,

2256 divided by the target value T computations. Lastly, Mary can easily check that the nonce sent along

with the message is indeed a valid proof of work by simply assessing

Digest ≤ T (2.3)

In cryptocurrencies, this proof of work process is called mining and the parties participating in this

mechanism are called miners. The process in Bitcoin consists on finding a valid block to be linked to the

blockchain and, to do so, miners perform the following actions in an endless loop:

• Save all received transactions and check whether they comply the miner’s policy. Generally, a

transaction incorporates a fee that works as an incentive for the miner to include it in the block.

Nonetheless, if there is no fee involved, the miner chooses whether or not to add it.

• Authenticate all transactions that will be included in the block.

• Select the most recent block on the longest path, the one that required most accumulated com-

putation effort, in the blockchain and include the digest of the chosen block header into the new

block.

• Resolve the proof of work already described and broadcast the solution. If another party solves

the proof of work problem before, then we proceed by verifying the block by checking the proposed

6

solution and all the transactions included in the block. On a successful confirmation, the loop is

repeated. It is important to mention that any transactions that were not included in this new block

are saved and incorporated in the next cycle.

2.1.4 Blockchain

Blockchain is a log of all transactions that have occurred in a cryptocurrency system and is distributed by

every party in it. BTC structures the blockchain to guarantee chronological order of transactions and to

prevent double-spending attacks, where the attacker spends the same Bitcoins repeatedly and only one

vendor actually gets the money [6], although it takes approximately 10 minutes to verify the legitimacy of

a transaction [7]. Every block in the blockchain contains the hash of the previous block, maintaining the

chronological order of the blocks. The components of a generic Bitcoin block are exemplified in Figure

2.2.

Figure 2.2: Bitcoin Block

Additionally, a proof of work obtained by solving a challenge with a certain difficulty must be included

in each block. The data processing power needed to solve the proof of work problem for each block

is utilized as a voting scheme to allow all parties in the network to agree on the current version of the

blockchain. Specifically, nodes choose the blockchain that involved the highest accumulated computa-

tional work to be generated. In this manner, modifying a block in the chain would require an attacker to

recompute evidence of equal or greater data processing power than the ones that are chained up to the

newest block. To accomplish this, the attacker would need to have a better computational performance

than half of the network combined, which is considered absurd.

It is possible that two different blocks are mined simultaneously, which means that two parties solved

7

the proof of work and obtained a reward, resulting in a chain bifurcation. When this situation occurs,

nodes will accept the first received block and continue building the blockchain upon it. If another block is

discovered, then the branch that was used will become the main blockchain, re-adding all correct trans-

actions on the shorter chain to the pool of queued transactions. Figure 2.3 exemplifies the described

blockchain structure.

Figure 2.3: Blockchain

2.1.5 Merkle Tree

Merkle trees, term invented after their creator Ralph Merkle, are binary hash trees used for efficient

verification of data integrity [8] and in the blockchain they are used to swiftly check transactions. In a

Merkle tree, leaves are generated directly by hashing data blocks, like cryptocurrency transactions, while

nodes higher up the tree are computed by chaining and hashing their respective children as shown in

Figure 2.4.

Figure 2.4: Merkle Tree Example

8

One fundamental benefit of using Merkle trees on cryptocurrency blocks is that when one transaction

is altered, there is no need to compute a hash over all transactions, as opposed to naive hashing. Let’s

assume transaction T1 from Figure 2.4 is modified, so n00 must be re-calculated along with all the nodes

further up the branch until the root node. For this reason, the number of required digest computations

scales logarithmically with the number of transactions. This process is efficient since both hashes and

transactions have small sizes. A situation that may happen is to have an odd number of nodes. The

answer to this problem is easy, when forming a row in the tree (except the root), whenever the number of

nodes is not even, just duplicate the last node. Using this solution will ensure that each intermediary row

has an even number of nodes thence each node, excluding the leaves, will precisely have two children.

2.2 Machine Learning

Data mining is described as the extraction of previously unidentified and implicit information from data,

which can result in advantageous input. Machine learning specifies the technical base for data min-

ing [9]. The collection of observations that contain one or more variables, known as attributes, is defined

as a dataset. We can divide machine into two categories, supervised learning and unsupervised learn-

ing. Supervised learning includes the modelling of datasets with labelled instances that can be repre-

sented as x and y, x being a set of predictor attributes and y the dependent target attribute. A machine

learning problem follows one of two methodologies: regression, when the target attribute is continuous;

classification, when the target variable is discrete [10]. There are some hybrid methodologies which

allow for a classification and regression at the same time, e.g. neural networks. Unsupervised learning

includes modeling datasets with no established outcome or result. Since this project has a task with a

known objective, predicting cryptocurrencies price fluctuation, it is a supervised machine learning task.

2.2.1 Supervised Learning

Supervised learning is the most common methodology in machine learning. As previously explained,

supervised learning is achieved when we input variables x and an output variable Y alongside an algo-

rithm to learn the mapping method from the input to the output. This type of learning can be algebraically

exemplified by

Y = f(x) (2.4)

The main goal of supervised learning is to obtain a mapping function so that when we have new input

data, we can predict the output variables for that observation with a defined target. Supervised learning

generates the mapping function based on example input-output pairs. Knowing the current answers, the

algorithm makes forecasts on the training set iteratively and is rectified accordingly. When the algorithm

achieves the desired level of performance, the learning process is finished. We can divide supervised

learning challenges into two categories, classification and regression problems.

Classification algorithms are used when the aimed output is a discrete label, which means that we

9

should choose them to handle problems where the objective falls under a finite set of possible results.

In many use cases, such as defining whether it will rain or a gender, there are only two possible results.

This is called binary classification. Situations where there are more than two classes are handled by

multi-label classification, where each sample is mapped to a set of target labels, for example a book

can be about art, a person and an era simultaneously. In order to build a classification model, we need

to address the following steps: start the classifier (the algorithm that maps the input data to a specific

class), train it, predict the target and evaluate the classifier model. Naı̈ve Bayes [11], Decision Trees [12]

and Support Vector Machines [13] are examples of well-known classification models.

Regression models generally present reliable results in forecasting outputs that are continuous. In

other words, regression models are used when the solution to our problem can be expressed by a

quantity that can be determined based on the inputs of the model instead of being restricted to a set of

possible classes. Regression issues with time-ordered inputs are named time-series forecasting prob-

lems and will be thoroughly explained with the next sub-section. Some of the most popular regression

algorithms are Linear Regressions and the ARIMA model [14].

Supervised learning algorithms also explored several types of neural networks including the Multilayer

Perceptron (MLP), the basis for other neural network models [15]. A general example of an MLP model

is presented in Figure 2.5.

Figure 2.5: Multilayer Perceptron

A Multilayer Perceptron model contains an input and output layer with hidden layers in between.

Every single one of the outputs of any of these layers is a component which can be compared to a

neuron in the human brain. The connections between these units are known as a weight which is

analogous to a brain synapse. When training a model, these weights determine the model’s function as

they are periodically adjusted. Another important limitation of the MLP is that its signals always move

forward in the network in a static nature. This model does not recognize the chronological element of a

time series problem efficiently as its memory is considered stopped in time but a simple approach would

10

be to transform the challenge into a time independent one. A simpler explanation would be to think that

MLP treats all input as an unordered bag of objects. The Recurrent Neural Network (RNN), introduced

by Elman [16] is organized similarly to the MLP but allows signals to flow forward and backwards in an

iterative manner by adding a new layer called context layer.

2.2.2 Time Series

Time series are collections of data points chronologically organized. Their purpose is to understand

patterns evolving over time and apply these patterns to forecast behavior in several fields (stock prices,

meteorology and heart arrhythmias are some examples). Since this field can be applied in many areas

science, studies on time series have become increasingly popular on the last few decades.

Most of the scientific studies about time series tackle time series modelling, which is the process of

understanding and defining (mathematically) the inherent structure of the time series [17]. The useful-

ness of time series modelling ranges from forecasting the future [18] to describing the feature responsible

for the time series but in this thesis, we will focus on the first part since our goal is to simulate the gener-

ation of data to an unforeseen future by studying the model of a time series information. When making

predictions using time series, we can classify the time periods into three different categories, short-term,

medium-term and long-term. While long-term refers to periods significantly distant to the last observed

data, short-term denotes spans that are near the observations. An important fact to mention is the

ambiguity associated with how the boundaries between each class are chosen since each application

defines them in a distinguishing way using their data and objectives.

Figure 2.6: Time Series Forecasting

Long-term prediction is a complex challenge to work out because of the lack of information, error

accumulation and the growing uncertainties [18]. These complications only intensify their negative effect

as the forecasting region grows. Consequently, to elaborate a reliable time series prediction technique it

is mandatory to forecast the future precisely while avoiding error accumulation as the forecasting region

11

expands. A general example of a time series forecasting is shown in Figure 2.6 where the shaded region

represents the forecasting horizon, the zone containing points in the future that we want to predict.

To correctly study time series, it is necessary to model the underlying stochastic process, a time

sequence representing the evolution of a predefined system expressed by a variable whose change is

subject to a random variation, that creates time series. We can use a joint probability distribution between

observations to obtain a complete description of a time series, but the required calculations might be

too complex, so a valid alternative would be to compute the mean and autocovariance. The mean is

simply the one measure of the central tendency of observations while autocovariance calculates the

statistical dependence between two observations in a time series, computing the covariance between

itself at different periods of time.

A stationary time series has the property that the mean, variance and autocovariance structure do

not change over time, a very desirable property on a time series. Consequently, proper estimation of the

enumerated properties should be equal for all points in time, allowing forecasting for all time points in the

future. Regrettably, there are two commonly found time series components that obliterate the stationary

property, season and trend. Cryptocurrencies are affected by both elements [19, 20, 21].

ARIMA

Autoregressive Integrated Moving Average is one of the most used time series prediction models, having

a more complicated approach than the simplest model, a linear regression. ARIMA arises from the

Autoregressive Moving Average (ARMA) model while the latter itself is a mixture of an Autoregressive

(AR) model with a Moving Average (MA) model. The notion of both MA and AR is fundamental not only

to the ARIMA model but for several time series models.

The AR model considers that the actual value of a time series is a linear combination of its prior

values while the MA model defines the current value of a time series as a linear combination of several

past errors. Usually the number of previous values is symbolized by p and named as the order of the

autoregressive. Each one of the models uses a constant c and represents white noise as ε.

Combining the two explained models we obtain the ARMA(p,q) model, given by

yt = c+ εt +

p∑
i=1

φiyt−i +

q∑
j=1

θjεt−j (2.5)

where p, φ and yt−i represent respectively the order, current parameters and previous value of the

autoregressive model while q, θ and εt−j respectively symbolize the order, current parameters and past

errors of the moving average model.

For the ARMA model to function, it assumes that the associated time series is stationary. Remem-

bering that the objective of this project is to handle data from cryptocurrency markets which are affected

by season and trend so who can we transform a non-stationary time series into a stationary time series?

The mechanism to resolve this issue is called differencing and can be applied to each one of the two

components. Differencing calculates the variance between consecutive observations, if a lower order

differencing doesn’t achieve the intended de-trending or de-seasonalizing we are obliged to compute a

12

greater order differencing.

Applying a d th order of differencing to an ARMA model results in an ARIMA model, often defined as

ARIMA(p,d,q) where p represents the order of the AR, d is the order of differencing and q is the order

of the MA. Despite being studied and used for a considerable amount of time, the ARIMA technique

still supports several applications that feature forecasting, ranging from medicine [22] to network engi-

neering [23]. This model has numeral software implementations, fact that strongly contributed to the

widespread utilization of ARIMA. Although the predominance of this model, its prediction power reduces

as the forecasting horizon augments due to the forecast converging to the mean of the observations

as the predicting region grows [24]. With this information we should be aware that this model is only

adequate to short-term prediction which is the forecasting objective of this thesis.

NARX

Despite remaining at the forefront of academic and applied research, simple linear time series models

generally ignore certain aspects of financial data since these systems suffer both behavioral and struc-

tural modifications. This section introduces Nonlinear Autoregressive Exogenous (NARX) models, the

answer for modeling nonlinear behavior in economic time series information. Being exogenous means

this model uses external inputs generated by an externally defined series that affects the main series of

the model. A NARX model correlates the present value of a time series to the current and past values

of the exogenous series and the previous values of the same series, taking into consideration an error

term since knowledge of the other variables won’t be sufficient to make an exact forecast of the current

value of the time series. Such a model can be algebraically exemplified as

yt = F (yt−1, yt−2, ..., ut−1, ut−2, ...) + εt (2.6)

where y is the variable of interest and u represents the external variable while represents the error term.

The F function is any nonlinear function such as a neural network or a polynomial. This type of models

was used in various fields such as predicting daily direct solar radiation for a solar boat [25] or forecasting

financial time series [26].

2.2.3 Methodology Examples

The idea of extracting features from order book data over time and use them to create probabilistic

models that simultaneously apply volatility and feature series to predict Bitcoin price fluctuations was

introduced in a recent study from Tian Guo and Nino Antulov-Fantulin [27]. In each order book snapshot,

the price spread, weighted spread, ask/bid volume, depth and slope and their difference were gathered.

Spread is the variance between the lowest price that a seller is willing to accept (ask) and the highest

price that a buyer is willing to pay (bid). Depth is defined by the number of orders on the ask or bid

side while volume is the number of Bitcoins on the ask or bid side. Weighted spread is the difference

between cumulative price over 10% of ask depth and the cumulative price over 10% of bid depth. Slope

is estimated as the volume until α price offset from the actual traded price, where α is estimated by the

13

bid price at the order that has at least 10% of orders with the greater price. After getting this data, we

need to choose a methodology from one of two categories, statistics or machine learning.

Statistics Examples

This category of baseline is only trained with order book data or volatility, not both.

• Exponential Weighted Moving Average (EWMA) models predict volatility by executing moving av-

erage over historical values [28].

• Generalized Autoregressive Conditional Heteroskedasticity (GARCH) model is a widely used method

to forecast volatility of returns and prices [29]. A simple explanation of these methods is to model

the variance of the error term of a time series as a function of the preceding error terms.

• ARIMA models [14], as explained previously, can be used to include non-stationary time series

data either to better understand the underlined data or to forecast future points in the series.

Machine Learning Examples

This second category learns with volatility and order book simultaneously.

• Gradient Boosted Tree (GBT) is the application of boosting methods to regression trees [30], train-

ing a sequence of simple regression trees and then summing the prediction of singular trees to

deliver a final estimate.

• Elastic-Net (ENET) is a regularized regression method linearly combining the L1 and L2 penalties

of the lasso and ridge methods [31].

• Gaussian Process (GP) based regression [32] is a supervised learning technique that provides a

Bayesian non parametric method to smoothing and interpolation.

The authors of the referred scientific paper created a generative temporal mixture model of the volatil-

ity and trade order book data, which is able to outperform the current state-of-the-art machine learning

and time series statistical models by using a gate weighting function that detects regimes when the fea-

tures of buy and sell orders significantly affects the future high volatility periods [27]. The only problem

with this approach was to only consider one cryptocurrency, Bitcoin, which limits the application scope.

Since Bitcoin is the cryptocurrency with most volume traded daily, most of the published work in the

digital currencies field applies their findings to this coin. Although being limited to one form of digital

currency, these studies provide a solid knowledge base than can be applied to a larger spectrum of

cryptocurrencies. Price fluctuations were studied from several perspectives such as using order book

data and found that a lack of buyers generated panic amongst sellers [33], which culminated in the

price crash of Bitcoin on the 10th of April 2013, or using cryptocurrency web communities data to obtain

sentiment and forecast value fluctuations [34]. Price prediction studies apply some techniques used in

traditional financial market like autoregression, as used by Garcia et. al. who identified word of mouth

14

and new Bitcoin adopters as feedback loops that drive to price bubbles [35] or simply employ historical

time series price information to develop an accurate trading strategy with price prediction [36].

2.3 Trading Orders

While investing in the financial market, may it be cryptocurrencies or regular stocks, we have several

categories of orders that enable us to be more precise about how our trades are filled. The market order

is straightforward since it is defined as an order made at the current price of sell or buy. Contrarily, limit

and stop orders, two of the main types of instructions, enable investors to reject the current price of

the asset, allowing them to place an order that will be carried out when the price moves in a particular

direction. In this section, we will consider these type of orders alongside stop-limit orders, where we

combine both categories to mitigate risk.

2.3.1 Limit Orders

A limit order defines that we want to trade only with a certain price. As a simple example, let us consider

a trader named Bob who intends to buy BTC that is selling at $1000. Bob thinks that the current value

is overpriced and only wants to purchase at $950 so he places a limit order that won’t be executed until

the price of BTC meets his stipulated value. On the other hand, if Bob made a mistake while setting his

limit order and set a plain limit superior to the current price, the broker would reject his action because

a better valuation is already applicable. Likewise, if Bob instead wants to sell 1 BTC at $1050 he may

put a limit order at that price that will only be filled at that rate or better. As explained previously for a

purchasing case, it is also not possible to place a sell limit order inferior to the current market price.

Traders might want to bypass limit orders rules since they can’t establish an order to buy or sell once

a future value has been matched. A common case is wanting to sell before the value of their digital

currency plummets. To handle this sort of issues, a stop order can be employed.

2.3.2 Stop Orders

There are several variations of a stop order, but they all have one or more specified requirements de-

pending on a future price that is different from the current one when the order is placed. This stop order

to sell or buy will become active only if the defined future value is reached. Stop orders operate in the

inverse direction as limit orders since a buy stop order is placed higher than the market value, and a

sell stop order is put below the current value. When the stop price is attained, the order is immediately

transformed into a market or limit order, depending on the designated style of order. Figure 2.7 illustrates

a generic order book with the potential positions of buy and sell stop orders.

Stop orders are commonly used to define a risk limit for a transaction, this type of order is called a

stop-loss. Stop-loss orders are applied to establish a price inferior to the trade entry value which the

investor is not willing to risk any more money, providing insurance.

15

Figure 2.7: Stop Orders Placement Example

The trailing stop is another function of a stop order which is dynamic, following price variations so

that we can achieve higher profits. An investor can define the degree of the trailing stop as either an

amount of currency or a percentage, deciding the range between the trailing stop level and current price.

A broad trailing stop ensures more flexibility whereas a tighter one is more sensible to volatility. Figure

2.8 exemplifies a situation where an investor uses a 10% trailing stop.

Figure 2.8: Trailing Stop Order Example

The secret for optimizing a trailing stop successfully lies on finding a balance. If we set it too tight,

the trade getting might close before it has a chance to work. Conversely, setting it too wide may result in

losing an important part of unrealized profit.

2.3.3 Stop-Limit Orders

Both types of orders introduced have their own strengths and weaknesses so one might question if there

is a way to combine them. The answer is called a stop-limit order, a conditional transaction that fuses a

stop and a limit order in order to reduce risk. But how can we use it?

To be able to utilize a stop-limit order, an investor must establish two price positions. The first one,

the stop, will dictate the beginning of the action while the second, the limit, serves as the ceiling target

price. This implies that we will only buy below the limit value and sell over it. Another important aspect

16

of this order category is time frame definition since the investor must set the interval while the stop-limit

order is deemed executable.

For example, assume that ETH is trading at $100 and an investor named John wants to buy this

digital currency when it starts going upwards. To handle this intention, John sets a stop-limit to buy ETH

with the stop price at $110 and the limit value at $115. The limit order will only be triggered if the price

of ETH moves above the stop value. If that happens, the trade will be filled as long as it can be under

$115. Otherwise, the trade will not occur.

17

Chapter 3

Architecture

The objective of this thesis is to produce a trading system that uses temporal models and machine

learning, taking into consideration several features such as order book volume or current value, to fore-

cast price fluctuation and consequently invest and improve profits for the end user. To achieve this,

a decision to use micro-services was made since this project will rely on several constituents and a

micro-service can be defined as a scalable, strongly encapsulated, tightly scoped and independently

deployable application component. This chapter will describe all the elements developed and how they

were combined.

3.1 System’s Architecture

Before going into further detail about the application components, an overall overview of the system’s

architecture is presented in Figure 3.1.

This system was designed according to a multi-layered micro-services architecture built on three

layers: the data layer, the application layer and the presentation layer. Separating the project in different

layers provides the ability to modify each one of them without crashing the others, reducing maintenance

and enabling flexibility for application expansion. The flow of the system described can be explained

through the following steps:

1. Market order books and market trades are extracted from a digital asset exchange, order books

every five seconds and trades as they happen;

2. Two components, one for trades, another for order books, are in charge of Pre-Processing the

information provided by the cryptocurrency exchange. They gather all the obtained information,

filter it into the standard representations of the system and populate the database accordingly;

3. The Data Aggregation element will read all the data stored on the database, aggregate it into a

monthly time frame so several features (for example, the maximum monthly volume on each side

of the order book) can be extracted.

18

Figure 3.1: System’s Architecture

4. The Trading Algorithm component will receive a period of time as an argument and all the data

regarding it, apply one of the three variants of the algorithm created for this thesis and generate

a report with the execution results. The first alternative analyzes the best periods based on the

lowest and highest volume values within the time frame to start short or long positions. On the

other hand, the second relies on inversions (over a defined threshold) of total percentage in the

bid or ask side of the order book to define start positions. Lastly, the third variant uses with the

ARIMA model to forecast prices and determine when to invest accordingly. All methods use the

percentage stop order developed for this project to improve profitability.

5. Finally, the results obtained from the Trading Algorithm running through the simulation window will

be presented to the user for analysis.

The following subsections will thoroughly detail the mentioned architectural components, starting

with the implementation options that were taken for each one of them.

3.2 Implementation Options

After choosing to use micro-services we had to select a platform that would ensure the features we

pretended: flexibility, safety and encapsulation. Docker [37], an open platform for programming, shipping

19

and running applications, was chosen to create the micro-services since it is the world’s leading software

containerization platform. The Docker platform grants the ability to package and run an application in

an almost isolated environment called a container. Since the security and isolation are guaranteed by

Docker, it is possible to run several containers simultaneously on a given host. Containers are lightweight

because they don’t need the extra load of a virtual machine monitor despite running directly in the host

machine’s kernel, as illustrated on Figure 3.2.

Figure 3.2: Virtual Machines vs Containers

All in all, Docker provides a platform and tools to allow developers to have a fast and consistent

delivery of their applications, responsive deployment and scaling (they can run in any machine, requiring

just the installation of Docker’s software) and the ability to run more workloads on the same hardware.

The project’s structure represents the micro-services that were implemented to generate the database

(Node.js, Python and MongoDB containers) alongside the code that was developed in the following

months referring to the Trading Algorithm and User Interface components. One important aspect worth

mentioning is Docker’s ability to create a network that connects containers while they don’t even are

aware that they are deployed on Docker or even to peers that are not Docker containers. In this project,

the default network driver named bridge is used, providing a network for the applications that run in

standalone containers. This allows every component to easily communicate if desired. Initially, the main

goal was to create a database containing information about order books and transactions of the four

cryptocurrencies with the most significant daily volume (BTC, ETH, LTC, BCH). This was the first pri-

ority of the practical aspect of the thesis since this type of data wasn’t available for free online. Docker

20

offers containers with a database software but a decision between using the current market leaders

of Not Only Structured Query Language (NoSQL), MongoDB, and Structured Query Language (SQL),

MySQL, solutions had to be made. Since the scalability and efficiency of the chosen database software

are the most important aspects for this project, MongoDB was selected since it delivers better results in

both basic and complex queries [38]. The developed database will be thoroughly explained in the next

subsection.

Python was the selected programming language to develop this thesis since it is easy to use, pow-

erful, and versatile due to a vast range of libraries. The most important Python tool used in this thesis’

development was Pandas, a data analysis library that receives data (for example a Comma-Separated

Values (CSV) file or a SQL database) and creates an object with rows and columns called DataFrame

that is akin to a table in statistical software such as Microsoft’s Excel or Apache’s OpenOffice Calc. Ad-

ditionally, it can be used alongside Jupyter Notebook to produce instant outputs and to have markdown

documentation. The Jupyter Notebook is an open-source web application that allows a user to cre-

ate and share documents that contain live code, mathematical equations, visualizations and narrative

text. Some of the main uses include data cleaning and transformation, numerical simulation, statistical

modeling, data visualization and machine learning.

All programming was made in a Linux operative system (Ubuntu) but Docker and Jupyter Notebook

allow to easily use any part of the work in any other operative system. Two computers were used

to develop this project, one provided by my supervisor that is permanently on and is responsible for

hosting and populating the database and my personal one where all the code was written and tested.

Table 3.1 shows the hardware specifications of both computers.

Table 3.1: Hardware Specifications
Provided Computer Personal Computer

Motherboard Z170-P MS-7A69
Processor 3.40GHz (4 CPUs) 3.20GHz (4 CPUs)

RAM 8 GB 8 GB
Display Memory 2 GB 2 GB

3.3 Database

Since the world of cryptocurrency trading is decades younger than stock trading, we don’t have the

same amount of free information available on the internet. Therefore, one of the first challenges of this

thesis was to establish how would the trading data be obtained. After searching for free databases

containing the desired information, one of two problems always emerged. The database didn’t had

order book data or information was aggregated on a daily basis with maximum and minimum values.

These complications alongside the scarcity of free databases lead to a different approach regarding the

acquisition of trading data: scrapping information from a digital asset exchange.

There are several ways to scrape data from web trading platforms but exchanges try to simplify that

process by providing free and well documented Application Programming Interface (API)s which enable

21

their clients to easily gather knowledge. Additionally, those APIs are available in various programming

languages, although their features may vary slightly between them. Two information categories were

needed for this project, the buys and sells and the state of the order book within a determined time

period. Evidently, we didn’t gather information about all the available digital currencies because it was not

in the scope of this work so we decided to pick the top four cryptocurrencies according to daily volume:

BTC, ETH, LTC and BCH. We also thought that it would be interesting to compare the differences

between USD and EUR digital markets so each cryptocurrency trading information was extracted on both

currencies. Because of the quantity of data we defined separate documents (the SQL table equivalent

in MongoDB) for each digital currency’s order books. For confirmed trades, a single document was used

and the digital currency associated with it was one of the fields. To make a distinction between the USD

and EUR digital markets, each document has two collections, one of each mentioned currency. Likewise,

in the trades document there is a ’Buy’ collection and a ’Sell’ collection. The database architecture used

is depicted in Figure 3.3.

Figure 3.3: Database Architecture

Unfortunately, since the database was populated and stored on a remote computer, some problems

emerged. First of all, there were several time periods where the machine was powered off so all the

trading information that took place between that period of time was lost. While occasional restarts

or shutdowns that took less than five minutes didn’t have a noticeable impact on data usability, there

was one major period that had to be discarded from this work, from the forth of August 2018 to the

sixth of September 2018. This period is related to the end of the academic year since the machine is

placed at our university Lisbon campus. Table 3.2 illustrates the top three most significant time gaps

due to complications regarding the remote computer. Another dilemma was how to access the stored

information and create backups, issues that will be addressed on the following subsections.

Table 3.2: Most Significant Database Time Gaps
Last Entry Date Next Entry Date Time Difference

2018-03-15 02:26:56.266 2018-03-16 20:23:08.260 1 Day, 17 hours, 56 minutes and 12 seconds
2018-06-15 16:46:51.345 2018-06-18 16:55:57.125 3 Days, 9 minutes and 6 seconds
2018-08-04 12:41:34.811 2018-09-06 10:01:28.556 32 Days, 21 hours, 19 minutes and 54 seconds

22

3.4 Trading Data

After a thorough study of digital asset platforms with APIs, Coinbase Pro, formerly known as GDAX, was

chosen for this master’s thesis. Coinbase Pro provided a API that was easy to use and accomplished the

information goals defined previously. Nonetheless, we wanted to save every confirmed traded and the

best option was to use the API’s web socket client but it was not available with Python so we developed

a Node.js scrapper to extract trades and a Python one to gather order books. In this subsection, both

programs and the information contained in every trade and order book will be clarified.

Firstly, what kind of information was retrieved from a single trade and an order book? For trades,

we used the API’s web socket client, starting by establishing a connection to the MongoDB database.

Afterwards, the web socket is actively listening for all messages sent by Coinbase Pro and filters them

for confirmed trades. These trades are documented on a message containing the ’match’ type. Every

time a ’match’ message is caught, we will save the trade in the database according to its side (buy or

sell) with the following fields: currency, trade identifier, amount, date, rate and total. On the other hand,

order books were requested every five seconds since high frequency trading is not in the scope of this

thesis. After configuring the connection to the MongoDB database, every five seconds the order books

of the four digital currencies on both USD and EUR were saved as a pair [date,dictionary], where date

refers to the time of extraction and dictionary contains all the ask and bid amounts and prices. Figure

3.4 illustrates how order books and trades were saved for each digital currency in both USD and EUR.

Figure 3.4: Order Book and Trade Extraction

Relevant to mention that the three components used to extract trading information (trades scrapper,

order book scrapper and database) are individual Docker containers. The start-up configuration file

to define aspects such as the links between them or automatic restarts on failures is called docker-

compose. The configuration file used for composing the mentioned containers is displayed on Appendix

A.

23

3.5 Data Flow and Data Processing

This section will describe the data flow and processing, after extracting trade and order book information,

until sending the treated data as input to the trading algorithm. We can break down this procedure in

three main steps:

1. Database Communication, that clarifies how does our solution handles the connection to a remote

database and retrieves necessary information;

2. Saving Monthly Data, where we define how to gather, by parts, monthly raw data of buy or sell

trades or order books;

3. Monthly Data Manipulation, composed by receiving all files generated from the previous step and

using aggregation and, in some cases, resampling to create DataFrames that will be used as input

to the trading algorithm.

All the aforementioned stages will be utterly explained in the following subsections.

3.5.1 Database Communication

Since we were using a remote computer to store the database containing all the information obtained

from the digital asset exchange, how would we access that data? There are several solutions available,

since manually creating backups of the database to an external hard drive (restoring it afterwards in

the machine where the trading algorithm will be executed) to establishing a permanent connection be-

tween computers that would periodically send new data from the remote database to the local one. Our

decision relied on manually defining when to gather monthly data, via an Secure Shell (SSH) tunnel,

by parts, to avoid memory shortage and the overhead associated with maintaining a permanent SSH

connection. But what is an SSH tunnel?

Firstly, the SSH protocol is a mechanism for secure remote login from one computer to another,

providing various alternative options for strong authentication while protecting the integrity and security

of communications with strong encryption. SSH tunneling is a method of transporting any kind of net-

working data over an encrypted SSH connection. There are several Python libraries that enable us to

efficiently implement an SSH tunnel which was one of the main reasons to use this approach. Figure

3.5 depicts the project’s usage of an SSH tunnel.

3.5.2 Saving Monthly Data

After establishing a communication with the remote computer, we need to obtain data about digital

currency trades and order books. To assist the progress of this thesis, we defined that we should obtain

monthly information because it would only be gathered once and we could easily divide it into parts (by

week for example) to avoid memory shortage problems. The only obvious downside of this approach

is that we can only extract months prior to the current one. Since trade and order book information

24

Figure 3.5: SSH Tunnel

is provided with different specifications, despite both being in the lightweight data-interchange format

called JavaScript Object Notation (JSON), we will address each case separately.

Trades

To get a month’s worth of trades, the specifications of which cryptocurrency is desired, the time intervals

for each data part, to avoid memory shortage, and the type of trades (buy or sell) must be provided.

The extraction algorithm will return a number of DataFrames equivalent to the number of time intervals

defined by the user. Finally, the concatenation of those DataFrames will be saved to a CSV file, thus

generating a record with all the buy or sell trades of that month. An example of the first five lines of one

sell trades file is illustrated in Table 3.3.

Table 3.3: First Five Lines of Monthly Sell Trades CSV File
trade date amount currency rate total

2018-11-07T00:00:00.223000Z 0.185479 BTC-USD 6448.50 1196.059719
2018-11-07T00:00:01.256000Z 0.258158 BTC-USD 6448.50 1664.730702
2018-11-07T00:00:01.256000Z 0.037040 BTC-USD 6448.50 238.852440
2018-11-07T00:00:07.024000Z 0.001000 BTC-USD 6448.73 6.448730
2018-11-07T00:00:07.025000Z 0.006871 BTC-USD 6448.78 44.309632

Obviously we always pick up both types of trades and concatenate them, but that manipulation will

be explained in the next subsection.

Order Books

For order books, there is the demand of defining from which currency market we want the order books

but there is no need for time intervals since we can gather the whole month without facing memory

issues. The algorithm creates a new temporary output folder with the name ”orderbooks [Month][Year]”

where each order book has the top fifty entries and will be saved to a CSV file having as title the date of

the order book. An example of the first five lines of one order book file is represented in Table 3.4.

For memory management reasons, after aggregating the information present in all the order book

files, the temporary folder will be deleted.

25

Table 3.4: First Five Lines of Monthly Order Book CSV File (BTC-USD)
price bid amount bid price ask amount ask
6449.95 0.057044 6450.05 0.123041
6449.90 0.023020 6450.10 0.055580
6449.85 0.153013 6450.15 0.243619
6449.80 0.201010 6450.20 0.470035
6449.75 0.061298 6450.25 0.619753

3.5.3 Monthly Data Manipulation

After gathering monthly data about trades and order books, we must aggregate it since we are dealing

with millions of records and the useful information can be extracted (or even created) with this method.

But what does aggregation mean? In this particular case we are referencing data aggregation, that can

be defined as a process in which information is obtained and expressed in a summary form. The main

intent for this summary in this work is statistical analysis.

Like in the previous subsection, since trades and order books must be handled in distinct ways, we

will detail those mechanisms independently.

Trades

The manipulation of raw monthly trade data can be broke down into three steps, aggregation, resampling

and concatenation. Our aggregation function gets as input the period (using thirty seconds as default)

that we intend to summarize and the path to the CSV file containing the buy or sell trades of the month

we are handling. The generated output will be a DataFrame with the date corresponding to the start of

the period, the number of trades, the total volume of money (USD,EUR) and amount of digital currency

associated with trades. Additionally, the maximum, mean and minimum rates are also presented. Table

3.5 shows the first five lines of an example DataFrame output of the aggregation.

Table 3.5: First Five Lines of Aggregated Monthly Trades CSV File (BTC-USD)
date end num trades total amount rate max rate min rate mean

2018-11-01 00:00:41.275 8 7975.47 1.27 6304.17 6304.17 6304.17
2018-11-01 00:01:11.275 4 1454.42 0.23 6304.17 6304.17 6304.17
2018-11-01 00:01:41.275 1 14.56 0.00 6304.17 6304.17 6304.17
2018-11-01 00:02:11.275 2 704.40 0.11 6304.17 6304.17 6304.17

Afterwards, we use resampling to reduce the quantity of information to be processed by the trading

algorithm. The default resampling time is five minutes but, as the period in the aggregation function,

this value is passed as an argument to the method so it can be easily modified. Finally, after doing this

process to both buy and sell trades, we concatenate the resulting DataFrames.

Order Books

The manipulation of raw monthly trade data can be broke down into two steps, aggregation and informa-

tion extraction. In this subsection, we will only address the former because the latter is closely related

to the trading algorithm, which will be presented in the next section. Our aggregation function starts

26

by receiving the path to the folder containing all the CSV’s with the monthly order book data. Before

iterating through each file, our method creates a DataFrame where each row will have aggregated infor-

mation obtained from one order book. There are three types of data summarized from each order book,

total volume (in USD), total asks and bids percentage and four levels of each type of order volume’s

percentage. Each level takes into account approximately twelve entries of the order book, where the

associated percentage represents the portion of the total order type percentage (bids or asks). Level

one is the closest to the market value. Table 3.6 depicts an example (April 2018) of the first five lines of

an aggregated monthly CSV.

An overview of all the components responsible for data processing is illustrated in Figure 3.6.

Figure 3.6: Data Processing

3.6 Trading Algorithm

The trading algorithm is one of the main elements of this thesis, since it allows to test several use cases

and techniques and evaluate if they improve profitability. This section will describe all the parts related

to the trading algorithm, cut down into four subsections:

1. Extracting Information From Order Book Data, where we detail the type of analysis made to raw

data and how we infer usable information from this examination;

2. Forecasting With The ARIMA API, subsection explaining how forecasting is used and how do we

determine the parameters of the ARIMA model;

3. Percentage Stop Order, subsection detailing the stop order type created to improve trade profitabil-

ity;

4. Output, where the methodology and tools used for the simulation report will be explained.

27

3.6.1 Extracting Information From Order Book Data

After aggregating the monthly order book information, we had the challenge of defining what kind of data

we would want to gather from the four levels of total asks and bids percentage and total volume. Firstly

we defined that our trading algorithm should take advantage of the digital currency market volatility. With

this aspect in mind, we established the first two use cases for our algorithm, using a percentage of the

preeminent monthly volume of the order book to find periods with high demand for sales or buys and

identify total volume inversions. The second use case can be defined by a shift of the total volume

percentage (over a defined threshold) from the asks side to the bids side or vice versa.

To be able to test the mentioned use cases, first we had to extract the monthly maximum volume

values from all the levels of the ask and bid side of the order book. An example of these values is

depicted in table 3.6.

Table 3.6: Example of Monthly Max Volumes in the Order Book(BTC-USD)
side lvl1 Max lvl2 Max lvl3 Max lvl4 Max total max
bids 2103445.32 2412686.87 1134828.17 1265354.70 3104766.46
asks 2289236.78 2452814.35 1507181.41 1589485.41 2665952.61

After defining our first use case and gathering the maximum monthly volumes, we had to specify the

threshold that retrieved at least fifteen periods, number delineated with my supervisor’s guidance. The

equation used for this situation was

V olume ≥ (MaxMonthlyV olume ∗ Threshold) (3.1)

where our objective was to find order books whose volume, from the ask or bid side, is higher or equal

to the maximum monthly volume from the same order book part multiplied by the chosen threshold. The

difference between the two mentioned use cases is that the first one is represented by the maximum

monthly volume amount in the four levels whilst the second one only considers the top monthly volume

in the front level.

To provide a better understanding of both test cases, Figures 3.7 and 3.8 illustrate simple examples of

how their mechanism is used to find suitable investment periods. The first plot depicts a typical situation

where the conditions for selection are met. Let us start by considering the yellow line as the total order

book volume in the bids side, the blue line as the total bids orders maximum volume in the testing month

and the red line as the value from where we should start a position. Point A represents the first period

that would be retrieved since it follows the condition presented by the 3.1 equation. From this point until

point C, every stage will be seen as a possible investment situation. Two additional points are worth

being mentioned, the first being the fact that all volumes below the red line will not be selected and that

the periods must have a distance between them of five minutes, to avoid redundancy. This will also be

done for the volume on the first level of the order book, on both asks and bids side.

On the other hand, Figure 3.8 exemplifies the second use case. Now we are considering the total

order book percentage on both sides, the red line represents the percentage of asks while the green

line represents the percentage of bids. Furthermore let us consider a threshold of 20 %. Point A shows

28

Figure 3.7: First Use Case Example

the moment where the inversion takes place since total bids percentage will be more significant than the

percentage of asks orders. When the next period (B) is reached, we achieved an inversion that is equal

to our threshold, so this period will be returned from the use case as a possible moment for starting a

long position (since the inversion was from the asks to the bids side). The following periods in the figure

will not be considered since no inversion occured.

Figure 3.8: Second Use Case Example

Finally we needed to save this information to be able to use it in our simulation while avoiding repeat-

ing this information extraction. Nonetheless, while checking the resulting periods, we verified that the

majority were consecutive which did not give us useful information so we established that we would only

save periods with at least five minutes of interval between them. An example of the successive periods

29

is presented in table 3.7. Afterwards, we saved the DataFrames containing the order books with the

respective timestamps, that respected our temporal condition, in CSV files.

Table 3.7: Example of Order Book Periods Extracted (BTC-USD)
Timestamp Time Difference Previous Entry Period

2018-07-06 18:56:22.832 0 days 00:08:30.204000 1
2018-07-06 18:56:28.817 0 days 00:00:05.985000 0
2018-07-06 18:56:31.470 0 days 00:00:02.653000 0
2018-07-06 18:56:37.516 0 days 00:00:06.046000 0
2018-07-06 18:56:41.499 0 days 00:00:03.983000 0
2018-07-06 18:56:47.205 0 days 00:00:05.706000 0
2018-07-06 18:56:52.500 0 days 00:00:05.295000 0
2018-07-06 18:57:02.266 0 days 00:00:09.766000 0
2018-07-06 18:59:32.380 0 days 00:02:30.114000 0
2018-07-06 19:09:13.651 0 days 00:09:41.271000 1

3.6.2 Forecasting With ARIMA

Our third and last use case forecasts prices using ARIMA and invests accordingly, establishing long

positions when the value is predicted to rise or short positions if we anticipate a price descent. As ex-

plained previously, the ARIMA model handles stationary time series and needs three arguments (p,d,q)

where p represents the order of the AR, d is the order of differencing and q is the order of the MA.

Therefore, it is mandatory to check if our input series is stationary which means that the mean, variance

and autocovariance structure are constant. To verify this, we can use the Augmented Dicky-Fuller (ADF)

test [39]. This test receives a time series as input and verifies the null hypothesis, general statement that

there is no relationship between two measured phenomena [40], that a unit root is present in the series.

The existence of an unit root refers to a stochastic trend in time series, meaning that it can change in

each run due to the random component of the process so this procedure will be hard to predict and

control.

In the ADF test case, the null hypothesis is that the time series is non-stationary. Specifically, if the

probability value of the test is less than the significance level (0.05) then we reject the null hypothesis

and deduce that the time series is stationary. Otherwise, we will need to apply differencing to the series

so it becomes stationary, buy how do we find the required order of differencing? The appropriate order

is the minimum differencing necessary so the Autocorrelation Function (ACF) plot reaches zero quickly

and the mean has residual variations with time.

The next step is to analyze if AR terms are needed. To do so, we inspect the Partial Autocorrelation

Function (PACF) plot. Partial autocorrelation gives the degree of association between two random vari-

ables, with the impact of a set of ruling random variables discarded. In the analysis of time series, the

PACF presents the partial correlation of a stationary series with its own lagged amounts. An example

using two lags is given by the following equation

Yt = α0 + α1Yt−1 + α2Yt−2 (3.2)

30

where Yt is the current series and Yt−1 is the first lag of Y , then the partial autocorrelation of the

second lag is the coefficient α2 of in the above equation. To discover the order we should use, we plot

the PACF and find the first lag well above the significance line. Figure 3.7 illustrates a case where we

should choose p as 1.

Figure 3.9: PACF Plot Example

As we examined the PACF plot to find the number of AR terms, we can do the same procedure

with the ACF plot to find the MA order. Each MA element may be described as the error of the lagged

prevision. They will be used to eliminate any autocorrelation in the now stationary time series.

Finally, we have all the elements required to build an ARIMA model. We used Python’s statsmodels

package since it has methods that helps us to rapidly implement an ARIMA model and test it. Figure 3.8

depicts how we the model was created using statsmodels. After all this configuration, we are now able

to test our model. We selected the forecast() function to forecast future time steps since the alternative

predict() method requires several specifications whilst the first performs a one-step forecast using the

model. Additionally, we divided the input dataset (e.g., monthly order book mean buy rate and monthly

order book mean sell rate) into train and test sets.

The train set will be used to fit the model and produce a prediction for each element on the test

collection. For consistency purposes, we determined that always 75 percent of the input data would

be used as the training collection and the remaining 25 percent would be the test set. A decision to

use a rolling forecast was made due to the dependence on past observations for differencing. A simple

method was adopted to implement this rolling forecast by re-creating the ARIMA model after each new

observation is obtained. To keep track of all observations we used a list that initially contains the training

set and to which new observations are added each iteration.

Lastly, we calculate a final Mean Squared Error (MSE) score for the forecasts, producing a point of

comparison for different ARIMA configurations. After finding the best composition for the model, we can

now use this predictions in our simulation algorithm to infer the market’s trend and trade accordingly.

31

Afterwards, we verify if the forecast provided useful information.

Figure 3.10: ARIMA Implementation Example

3.6.3 Percentage Stop Order

After studying the standard types of limit and stop orders used, we thought that a trailing stop order was

the fittest for our intentions of optimizing profits. Nevertheless, due to the volatility of the digital currency

market, we needed more control over potential stop losses and be conservative to improve mean profit.

The addition of dynamic limits presented itself like a solid idea, but how could we implement this concept?

To solve this problem, we introduced a new variety of stop order called Percentage Stop Order (PSO).

Defining the adoption of percentages to the detriment of flat currency amounts allowed the PSO to

have more flexibility and to sustain the considerable rate fluctuations of cryptocurrencies. Our stop order

has conservative default percentages, using 0.5 percent as the stop gain percentage and a 2 percent

stop loss. Also, the chosen threshold that provided the desired dynamic behaviour was 0.25 percent. To

select this values, we tested several combinations and these produced the best results. Now we have

the starting values, how does our stop order work during a trading simulation?

There are four courses of action that may be taken by the PSO algorithm. To clarify each one of them

we will consider a simulation where we are placing long positions, which means that we bought currency

and are expecting a growth in value. Figure 3.9 depicts the example where we start with 1 BTC bought

at an original rate of 1000 USD. Point A illustrates a situation where the stop gain and stop loss orders

were not reached nor the maximum sell rate went over the threshold to dynamically change both stop

orders. When assessing the max rate sell at the B event, the PSO threshold was passed so both the

upper and lower limits are updated. It is important to single out how to check if we need to update the

32

stop order limits, given by the equation

rate sell max ≥ (original rate ∗ (1 + threshold rate)) (3.3)

Afterwards, the rate increases until reaching our current stop order limit in point C, at this point we

sell our BTC having a profit of 0.75 percent. Finally, we decide to buy 1 BTC again in point D. The

original limits are established and as we progress in time, the value of the digital currency held declines

sharply so when the stop loss order is reached, at point E, we sell our position to minimize our loss.

Figure 3.11: Percentage Stop Order Example

3.6.4 Simulation

The simulation component is crucial in this work since it allowed us to test all the mechanisms developed

and verify the results produced by our three use cases. As input, it must receive two DataFrames, one

with the real monthly trading information containing data about buys, sells (we can use minimum, mean

or maximum values) in five minute intervals, and another one regarding the periods where we should

invest according to the analysis performed by the selected use case. Furthermore, we define if we want

to take into account fees that should be paid to the digital asset exchange and what type of positions

we want to put on the market (long, short or both). A DataFrame containing the execution results will be

output where each row referring to a time period will have a date, volume, number of trades, amount,

rate, mock investor’s money, mock investor’s amount of digital currency, an indicator if an action was

taken in that time frame and the profit percentage.

After gathering the initial configuration parameters, we use a method that generates the starting

conditions of the simulation. Holding an amount of cryptocurrency bought at the starting market value of

33

the considered month or with money to invest and the original rate and amount are the variables handled

by this function. These arrangements vary with the kind of position selected. We concluded the setup

process, which allows us to start the simulation.

Let us consider a configuration where we start with money to invest (1000 USD), no amount of

cryptocurrency and only intend to establish long positions with all the mock capital at our disposal. In

this situation, the first course of action will be to find a suitable period to start investing. For each date

in the real monthly DataFrame, we validate if it matches an action period obtained from the use case

examination and if the MA of the last three periods display a tendency compatible with the trade we want

to make (up trend for a long position and down trend for a short position). This is the first of four courses

of action available in our simulation.

The second case occurs when we already have money invested and need to assess the next action.

As described in the previous subsection, the PSO is used to define what is the step to be taken. Three

options are available, keep the amount of digital currency while using the current stop limit orders, hold

cryptocurrency but update stop limit orders and sell what we possessed. A dedicated function to deal

with the last scenario was created to handle the change of position. But what if we sell and need to

know when to invest although the next defined period has already passed in the simulation timeline?

Handling this issue is the goal of the third course of action. By verifying if the set investing date is

older than the current date of simulation, we can select the next period in the DataFrame. We repeat this

process until we find a period or we reach the end of the DataFrame. The fourth and last case just adds

a new row to the results with information of the time period and occurs if none of the previous conditions

were activated.

Finally, after reaching the end of the simulation, we validate if there is no money invested, otherwise

we sell the amount of digital currency we have at the most recent rate to calculate the monthly profit.

The DataFrame containing the results is now finished and saved in a CSV file. Table 3.10 displays an

example of the last lines of the generated CSV file containing simulation results.

Table 3.8: Example of Last Lines of Results File of a July 2018 Simulation (BTC-USD)
date begin total volume trades amount rate money curr held action profit pct
07-31 23:15 125172.12 164 16.31 7678.5 1073.87 0 1 0.074
07-31 23:20 282103.25 255 36.82 7654.04 1073.87 0 0 0.074
07-31 23:25 1685430 560 220.51 7629.48 1073.87 0 0 0.074
07-31 23:30 574214.34 162 74.35 7643.99 0 0.140486 1 0.074
07-31 23:35 642159.89 265 82.73 7730.43 0 0.140486 0 0.086
07-31 23:40 350464.33 355 45.22 7726.48 0 0.140486 0 0.085
07-31 23:45 106898.56 167 13.79 7749.98 0 0.140486 0 0.088
07-31 23:50 387562.07 264 49.97 7740.01 0 0.140486 0 0.087
07-31 23:55 171351.05 174 22.14 7727.28 0 0.140486 0 0.086
08-01 00:00 9115.31 19 1.18 7719.77 0 0.140486 0 0.0845
08-01-00:00 9115.31 19 1.18 7719.77 1084.52 0 1 0.0845

A lot of flexibility is given in the simulation component, since we can easily modify the parameters,

conditions and use case that are employed. After obtaining the results, we had to establish how would

we present the most relevant execution information since we might want to analyze the results with a

34

more user friendly interface than a CSV file. How these issues were addressed and how the presentation

layer was organized will be explained in the next subsection.

3.6.5 Output

After running a simulation we discussed what type of information would be relevant to show and how

would we implement the user interface. We decided to use a Python package called Bokeh. Bokeh

is a visualization library that uses modern browsers for presentation. Its main objective is to provide

exquisite,succinct construction of versatile graphics, and to extend this capability with high-performance

interactivity over extensive datasets. This package allowed us to quickly develop interactive plots and

to organize them so that our output could be compared to a report. An important feature was the pos-

sibility to test Bokeh methods directly in a Jupyter Notebook, which allowed us to reach our objective

rapidly. Nevertheless, we have the possibility to save the generated output in Hypertext Markup Lan-

guage (HTML).

The output designed for a simulation was five plots: profit variation, asks/bids minimum rate variation,

daily actions, actions at each period and percentage variation of volume between the bid and ask sides.

For the profit variation graphic, we use the DataFrame containing the simulation results, also providing

the monthly profit as the plot’s title. An example illustrating this graphic is depicted in Figure 3.11.

We added an hover tool to offer the possibility to study in more detail the data present in the profit

variation plot. This tool shows the date, money invested, amount of digital currency held and the profit

percentage. Additionally, Bokeh supplies three more important features, box zoom, wheel zoom and the

ability to reset our plots.

On the other hand, the original trading information DataFrame is utilized for the second plot. We

might use this graphic to verify periods with high discrepancy between the minimum buy and sell rates.

As the first plot, we are able to use an hover tool, but here it gives information about the minimum rates

at each period. Figure 3.12 shows a sample plot, although it seems that bids and asks always have the

same value, a closer inspection displays subtle differences.

Furthermore, we wanted to see where the trading algorithm decided to make actions during our

simulation. To solve this need, we re-sampled the action column from the DataFrame resulting from the

simulation to check in which days of the month the algorithm operated. This ended up as the first plot

in Figure 3.13. The second graphic in the mentioned figure has all the monthly five minute time periods

and whether an action took place in each one of them. Using the interactive tools provided by Bokeh is

critical in the analysis of these plots since, at first glance, we might assume that there were actions in all

periods present in Figure 3.13 and that is incorrect.

Lastly, a plot of the variation of volume between the bid and ask sides is presented. This plot was

mainly used to verify the periods generated by the second use case method and check if the threshold

applied was efficient. Figure 3.15 illustrates an example of this plot, using the box zoom tool to show

only one day of the simulation. The last feature created regarding the generated output is the ability to

convert the HTML file to Portable Document Format (PDF), but this is completely optional.

35

Figure
3.12:

S
im

ulation
O

verview

36

Figure 3.13: Profit Variation Plot

Figure 3.14: Minimum Buy/Ask Rates Variation Plot

37

Figure 3.15: Action Plots

Figure 3.16: Daily Percentage Volume Side Variation

38

Chapter 4

Evaluation

In this chapter, the outcome of using strategies that extract information from the order book and use

prediction over the digital currencies’ market will be presented and discussed. The following sections

have three use cases, a specific setup for each one of them, their purpose and lastly, an examination of

results.

4.1 Tests Scenarios and Objectives

To validate the efficiency of the considered use cases, we used a method called Backtesting [41]. This

strategy enables us, relying on previous trading data, to simulate our algorithm, assess the results

and verify the mean profitability without using real money. Therefore, this method allows for better

understanding of the risk associated with our approach. Additionally, if the simulation outcome is positive

then our algorithm should be solid and generate profits when applied to the current market. Lastly, by

adopting this procedure we can analyze several test scenarios and discover concept problems, areas

for improvement and potential gains without wasting an extended period of time.

The following three use cases were performed:

1. Using a threshold over the maximum monthly order book volume to identify periods with a potential

high volatility since a greater volume is correlated to a high demand for sales or buys of digital

currency;

2. Discovering periods where a shift of the total volume percentage (over a defined threshold) from

the asks side to the bids side or vice versa took place, which allows us to invest after an aggressive

change of trend;

3. Using ARIMA to forecast prices and use the predictions as an indicator of market trend, subse-

quently applying this obtained information in the first two test scenarios and verify if it improves or

reduces profitability.

These use cases were chosen because they provide a solid base for verifying if we can extract

39

information from order books and trade accordingly in four different digital currencies. Furthermore, we

will validate if forecasting with ARIMA improves profitability.

4.2 General Configuration

Despite the different elements associated with each one of the three use cases, several processes

and configuration parameters are identical throughout the evaluation phase. Table 4.1 displays the

configuration values that remained the same during the whole testing operation.

Table 4.1: General Setup Parameters
Configuration Element Value

Test Period Monthly
Selected Periods July and November 2018
Digital Currencies 4

Resampling Data By 5 Minutes
Starting Money 1000 USD

Rate Mean
Moving Average 200 Days

Considered MA Periods 3 (15 minutes)

The chosen test period is a month although we have more than a year of trading information because

this time window already needs a considerable amount of hours (at least eight) to aggregate all the

data collected from the digital asset exchange. Nevertheless, to improve the quality of our results, we

considered two distinct months for each currency simulation on each one of the use cases. As previously

mentioned, the cryptocurrencies tested were BTC, ETH, LTC and BCH.To compare our results with a

standard trading method, we used the Buy & Hold strategy in the same test periods, this approach

buys digital currency in the first time period and only sells at the last one. Despite using a monthly test

period, we gathered more than half a million order books for each digital currency so we used a 5 minute

resampling. This processed allowed us to significantly reduce the computation time needed to execute

a simulation.

Regarding simulation parameters, we established that the algorithm has 1000 USD to invest in every

single run that does not start with a short position (in those cases, we start with 1 unit of the specific cryp-

tocurrency) and must always use the full amount of virtual money available in every trade. Unfortunately,

due to time constraints, only the USD market was tested. Additionally, our trading method constantly

uses the mean rate of the trades that took place in the five minutes of the considered period, alongside

a 200 day MA that enables us to follow the market trend. Before defining a new short or long trade,

our algorithm verifies the directions of the MAs of the three previous periods and allows the position if it

respects the market flow. Lastly, all the investing periods determined by our use cases will be generated

before we execute the simulation and we did not take into account possible transaction fees.

After running a simulation, the Return On Investment (ROI) will be calculated. In the event of fin-

ishing the test period with money invested, our algorithm uses the last saved rate of the considered

cryptocurrency to sell the full amount owned. This step allows the ROI computation.

40

Table 4.2: First Use Case Thresholds For July 2018 Simulations

Table 4.3: First Use Case Thresholds For November 2018 Simulations

4.3 Test Case 1 - Maximum Monthly Order Book Volume Period

This test case initially considers the maximum monthly volume values at the first level of the order book

and the total volume in both bid and ask sides. Afterwards, it applies a threshold to those maximum

values and finds periods having a volume greater or equal to the calculated value. Lastly, this process

combines all the generated periods into a single DataFrame that will serve as input to the simulation.

4.3.1 Scenario Setup

For this tests, we selected the months of July and November of 2018. The first step taken was to find the

thresholds for each digital currency. Our principle was to find the highest threshold that retrieved at least

fifteen periods for investing. Table 4.2 illustrates the thresholds used with the corresponding number of

periods. Despite not having any issues regarding the July data, we found a problem with the November

BCH order book information (empty order books) on the database so we did not consider this currency

for the second test month. The thresholds adopted for the November data are displayed on Table 4.3.

After gathering the periods and saving them in CSV files, we are now ready to start the testing phase

using the simulation component.

4.3.2 Performance

Figure 4.1 presents the performance achieved by our trading strategy regarding the monthly ROI for

each one of the four cryptocurrencies in July 2018. We considered three options for types of trades

used in our algorithm: short, long and both positions. Afterwards, we use the November 2018 data to

simulate the behaviour of our trading method with the note that BCH was not considered due to errors

in the extracted order book information. The results of this simulation are shown in Figure 4.2.

41

Figure 4.1: First Test Case Results on July 2018

Figure 4.2: First Test Case Results on November 2018

4.3.3 Outcome Graphs and Discussion

The use of a percentage of the maximum order book volume to find suitable investing periods had the

objective to provide more profit than the Buy & Hold trading strategy. Observing the plot illustrated in

Figure 4.1, we can verify that our use case obtains better results, comparing to the mentioned strategy,

with LTC and ETH ending the simulation with profit on July 2018. Nevertheless, the Buy & Hold ended

the month with more significant gains on BTC and BCH. Another interesting note is the fact that all the

test digital currencies provided solid results when running this scenario using only short positions.

Regarding the November 2018 results depicted in Figure 4.2, we may think that the scale is wrong

since there are only negative percentages but this month brought important price decreases on several

cryptocurrencies. The Buy & Hold strategy lost a major portion of the investment on all digital currencies.

Only using long positions with this test case allowed us to significantly reduce our losses (e.g., lost a

42

minimum of 35% less than any other type of strategy for ETH).

The best test scenario, classified by profitability, is shown in Figure 4.3 and provided a 17,98% ROI.

The plot on the right side of the figure displays the mean rate of asks and bids during our testing period.

We can clearly observe that the most profitable trades happened after the two most important rate

increases on the 18th an on the 24th of July. Another simulation that ended with profit is presented in

Figure 4.4. in spite of having a considerable loss after the first week. In this test we are using both short

and long positions, which might be an indicator on how our algorithm managed to have profit despite

suffering a heavy loss. On the other hand, Figure 4.5 illustrates the use case situation that provided

the worst results, with a staggering loss of 43,99% of our initial investment amount. This test used only

short positions so it could not win money since ETH faced a steady decline in value along the month of

November. Nonetheless, the five minute periods may be increasing our losses since we can’t fully use

the PSO capabilities if we are facing high volatility.

Figure 4.3: BTC First Test Results Using Short Positions on July 2018

4.4 Test Case 2 - Monthly Total Order Book Percentage Inversion

Of Bids And Asks

This test case considers predefined thresholds to find inversions between the total order book percent-

age of bids and asks. Afterwards, it saves all time periods where the inversion matched the threshold.

Lastly, this process combines all the generated periods into a single DataFrame that will serve as input

to the simulation.

43

Figure 4.4: BCH Results Using Both Position Types on July 2018

Figure 4.5: ETH First Test Results Using Short Positions on November 2018

4.4.1 Scenario Setup

For this use case, the same months were considered for the simulation and we also considered short,

long and both types of trades. Our principle remained finding the highest threshold that retrieved at

least fifteen periods containing opportunities for investment. Tables 4.4 and 4.5 present the considered

thresholds for the months used in the simulation. Due to problems with BCH November’s order book

data, we only tested it in the July period. Lastly, after gathering the periods and saving them in CSV

files, we are now able to execute this use case.

44

Table 4.4: Second Use Case Thresholds For July 2018 Simulations

Table 4.5: Second Use Case Thresholds For November 2018 Simulations

4.4.2 Performance

Figure 4.6 illustrates the performance achieved by using in our simulation periods where an total order

book percentage inversion took place in July 2018. We considered three types of trade configurations

in our algorithm: short, long and both positions. As in the previous use case, we use also tested this

strategy on November 2018 data (except for BCH). The results of this simulation are shown in Figure

4.7. Lastly, our results were compared with the ones generated by the Buy & Hold method.

Figure 4.6: Second Test Case Results on July 2018

45

Figure 4.7: Second Test Case Results on November 2018

4.4.3 Outcome Graphs and Discussion

In this use case, we used total order book percentage inversions to extract periods to start positions

with the goal of generating profit whilst comparing the results with the Buy & Hold method and the first

test case. Analyzing the graph presented in Figure 4.6, we can conclude that while running with the

two existing types of trades and the July 2018 data, this test case obtains profit on BTC and BCH unlike

the Buy & Hold strategy. As the previous use case, the latter method has more profit with BCH and

BTC. The type of trading strategy that provided the best outcome was using both position types since it

allowed us to have profit with all four currencies. Comparing with the first use case, only in ETH while

using both types of trades the results were considerably superior, a 33,24% increase in profit as shown

in Figure 4.8.

Figure 4.7 depicts the results obtained after running our trading simulation with the November 2018

data. As the first case, we could not get profit in all currencies with the three types of trade mechanisms.

Nonetheless, using long positions obtained a lower loss compared with the previous test case with the

exception of ETH. Furthermore, for LTC, all results were better than those in the first use case. For BTC

using short positions brought a more important loss but the other two trade configurations reduced the

deficit obtained previously.

The worst test scenario for this use case is illustrated in Figure 4.10. We are in a similar case as the

worst case initially presented as we are using only short positions on a steadily declining market which

results in significant losses. On the other hand, Figure 4.9 shows a LTC simulation using both position

types that managed to end the simulation with profit despite having a 10% loss before the 15th of July.

46

Figure 4.8: ETH Second Test Results Using Both Position Types on July 2018

Figure 4.9: LTC Second Test Results Using Both Position Types on July 2018

4.5 Test Case 3 - Forecasting with ARIMA

The final test case uses ARIMA forecasting as a validation mechanism before opening positions in the

simulations with the first two use cases. The projections will verify if the predicted market direction

matches the type of position that we want to start. Lastly, this process combines all the generated

periods into a single DataFrame that will serve as input to the simulation.

47

Figure 4.10: BTC Second Test Results Using Short Positions on November 2018

4.5.1 Scenario Setup

To test this use case, we started by taking each series containing the monthly trades of all the currencies

from both July and November 2018 and applying a back fill to all missing values. Next, we defined our

ARIMA model following the steps thoroughly explained in Chapter 3. After choosing the parameters

for our mode, we decided to check the previsions made using a month of data, using 75% for training

purposes and 25% for testing. We verified that the previsions were really distant from the real rates

but we could gather and use information from a different perspective, using the direction of the forecast

instead of the value itself. To check which direction the market is going, we compare our prediction to

the last predicted value, if it is a positive number, we consider the rate should increase, other wise we

will consider it will decrease. Table 4.6 presents the first five lines of a DataFrame example containing

the forecasts made by our ARIMA model and the corresponding direction. We will save this information

on CSV file and use this directions as an extra validation method before starting a new trading position

on a simulation.

Table 4.6: First Five Lines of A Directions’ DataFrame
date begin predicted delta direction
2018-11-23 12:00:00 4283.710894 0.000000 long
2018-11-23 12:05:00 4304.651584 20.940690 long
2018-11-23 12:10:00 4293.585618 -11.065966 short
2018-11-23 12:15:00 4273.753277 -19.832341 short
2018-11-23 12:20:00 4261.880173 -11.873104 short

4.5.2 Performance

Figure 4.11 illustrates the performance achieved by adding ARIMA previsions to the first use case in

July 2018. We still considered three types of trade configurations in our algorithm: short, long and both

48

positions. Afterwards, we used the November 2018 data to simulate the behaviour of our trading method

with the note that BCH was not considered due to the problems already mentioned. All the other test

scenarios for both use cases generated the same results obtained previously.

Figure 4.11: First Test Case Results With ARIMA on July 2018

4.5.3 Outcome Graphs and Discussion

This test case only generated different results (for BCH and BTC) when applied to the first use case on

July 2018, the outcome is illustrated in Figure 4.11. Using only short trading positions in BTC generated

the highest profit within all use cases (24,45%) and only two trades were needed, as presented in Figure

4.12. This result is superior to the 19,28% of profit gained by the Buy & Hold method. Contrarily, using

both types of trades in BCH results in a 5,74% profit reduction compared to the first use case without

forecasting. Figure 4.12 depicts the profit variation from this last test scenario. Unfortunately, this test

did not generate a different outcome for the majority of the trade type / cryptocurrency pairs since we

used three quarters of the month to train our ARIMA model so it could only be tested on the last week

of the month. Obviously, if our trading algorithm does not take any action in the last week, our direction

mechanism is unable to act.

4.6 Overall Results

Despite the lack of results of the last use case, the first two provided interesting outcomes that gave us

a solid indication that there is value in extracting order book information and we can use it to improve

49

Figure 4.12: BTC First Test Results Using Short Positions and ARIMA on July 2018

Figure 4.13: BCH First Test Results Using Both Position Types and ARIMA on July 2018

profits. Before going through the positive aspects, let us address the major problems that occurred dur-

ing the evaluation phase. First of all, the time needed to extract data from the database and aggregate it

because it made us consider monthly test periods which is not suitable for a trading algorithm. Addition-

ally, we should have preemptively verified the information integrity to avoid situations like the inability to

execute a simulation with BCH on the November 2018 data.

Observing the best performing trading methods using the July 2018 data in Table 4.7, we can infer

that only establishing short positions with the first use case generates profit for all four digital currencies.

Furthermore, using ARIMA for forecasting allows to improve our most profitable situation (short trades

on BTC) by 6,47 %. Nonetheless, the third test scenario slightly reduced the gains with BCH while com-

pared with the first use case. Measuring the efficiency of our strategies against the Buy & Hold method,

50

we can verify that in the first and second use cases we achieved better results in two cryptocurrencies

whilst in the last scenario we generated more profit for LTC, BTC and BCH.

Table 4.7: Best Performing Trading Strategies For July 2018
Currency 1st Use Case 2nd Use Case 3rd Use Case Buy & Hold

LTC 6,98 % (Short) 1,32 % (Both) 6,98 % (Short) -2,76 %
BTC 17,98 % (Short) 16,35 % (Both) 24,45 % (Short) 19,28 %
ETH 4,92 % (Short) 16,96 % (Both) 16,96 % (Both) -5,76 %
BCH 8,53 % (Short) 3,33 % (Both) 7,71 % (Short) 11,49 %

Table 4.8 presents the outcome of the most performing trading strategies for November’s 2018 data.

Two notes must be addressed initially, the first one is why all the profit percentages are negative whilst

the second is related to not having both third use case and BCH results. The latter remark is justified by

a problem regarding the order book retrieval from the digital asset’s store API since some of them were

empty. We can explain the negative profits by visualizing the market trend on November 2018 because

the majority of cryptocurrencies suffered significant price drops as shown by the right side plot of Figures

4.5 and 4.10. In spite of these problems, our developed use cases managed to drastically reduce losses

if compared to the Buy & Hold strategy results while using only long positions. This fact may feel strange

since we are dealing with a month where the general market tendency was to decrease the rate of digital

currencies but it is a proof that the PSO acts efficiently even in challenging periods.

Table 4.8: Best Performing Trading Strategies For November 2018
Currency 1st Use Case 2nd Use Case Buy & Hold

LTC -5,95 % (Long) -2,36 % (Long) -2,76 %
BTC -2,54 % (Long) -1,30 % (Long) -31,10 %
ETH -2,05 % (Long) -6,20 % (Long) -44,59 %

The results show that the first use case should be used in months with a bull market, which can

be described as a period of generally rising prices, using only short positions. Contrarily, the second

test scenario using only long positions should be select for periods with a bear market, where a general

decline in the digital currencies rate happens over a period of time. An important aspect of the developed

algorithm is the ability to overcome opposite market directions as illustrated in the left side plot of Figures

4.4, 4.9 and 4.13. The last test case did not produce enough data for us to assess if using the ARIMA

model improves or reduces the profitability of the initial use cases. Nonetheless, the fact that we were

only able to test two periods reinforces that these conclusions should be further tested to check that the

outcome produced is consistent with our remarks.

Finally, this evaluation phase offered innumerable challenges and objections but we ended up cre-

ating three use cases that, in spite of needing additional examinations, substantiate our objective of

extracting information from the order books of digital currencies and use machine learning to improve

profits.

51

Chapter 5

Conclusions

5.1 Summary and Achievements

The presented work proposes an end to end system designed in a microservice architecture that con-

tains a database with order books and trading information of the four major digital currencies (more than

70 Gigabytes of data), an algorithm that pre-processes and aggregates information from order books

and trades to define trading positions, a trading simulator, a new type of trailing stop that optimizes profits

and the usage of forecasting to check the market trend.

Three use cases were developed for our trading algorithm, the first two extract order book data to

find suitable trading periods whilst the last one uses the ARIMA model with a 70% training and 30%

testing periods to predict cryptocurrencies’ rates and use that information on the initially mentioned test

scenarios. We used monthly test periods and considered three trading configurations to find the most

performing strategy according to the market’s situation.

In addition to the trading algorithm and simulation, the output generated for all test scenarios allows

the end user to easily check what happened in the simulation with an HTML dynamic report.

All in all, despite the reduced testing sample and innumerable challenges faced, the results were

promising, surpassing the Buy & Hold strategy gains and significantly reducing losses on bear markets.

5.2 Future Work

In this section, various limitations of the developed solution are focused with enhancements that should

be implemented to mitigate these restraints and improve the overall system performance.

• The information extracted to define our use cases (maximum monthly volume, total percentage

order book inversions) was gathered from the month that will be used in our simulation so if we

want this algorithm to be used in real time, the first step is to change this to use data from previous

periods;

• Establish data integrity mechanisms when gathering trades and order book information to alert if

52

there are any problems;

• Longer and more test periods to validate if the results produced by our use cases are consistent;

• Test the EUR market data and compare the results with the ones obtained on the USD market;

• Feed more data to the ARIMA model to improve the precision of previsions;

• Compare the generated results with more standard trading strategies;

• The five minute time window chosen must be reduced to allow a better functioning of the PSO;

• Create a NARX model and verify if it improves the forecasts made for the third use case.

53

Bibliography

[1] S. Nakamoto: Bitcoin: A Peer-to-Peer Electronic Cash System (2008)

[2] O. J. Mandeng: Cryptocurrencies, monetary stability and regulation: Germany’s Nineteenth Cen-

tury Private Banks of Issue. Technical report, LSE Institute of Global Affairs (2018)

[3] J. Fleming, C. Kirby and B. Ostdiek: The economic value of volatility timing using ”realized” volatility.

Journal of Financial Economics (2003)

[4] P. K. Jain, P. Jain and T. H. McInish: The Predictive Power of Limit Order Book for Future Volatility,

Trade Price, and Speed of Trading. SSRN Electronic Journal (2011)

[5] M. Crosby, Nachiappan, P. Pattanayak, S. Verma and V. Kalyanaraman: BlockChain Technology -

Beyond Bitcoin. Technical report, University of California Berkeley (2015)

[6] J. P. Podolanko, J. Ming and M. Wright: Countering Double-Spend Attacks on Bitcoin Fast-Pay

Transactions (2017)

[7] G. O. Karame, E. Androulaki and S. Capkun: Double-spending fast payments in Bitcoin. In:

Proceedings of the 2012 ACM conference on Computer and communications security (CCS ’12).

(2012)

[8] K. Okupski: Bitcoin Developer Reference (2016)

[9] I. H. Witten and E. Frank: Data Mining : Practical Machine Learning Tools and Techniques. 4th

edn. Morgan Kaufmann (2005)

[10] M. D. Rechentin: Machine-learning classification techniques for the analysis and prediction of

high-frequency stock direction. PhD thesis, University of Iowa (2014)

[11] J. Fleming, C. Kirby and B. Ostdiek: Naive Bayesian Classification of Structured Data. Machine

Learning 57(3) (2004) 233–269

[12] M. Garofalakis, D. Hyun, R. Rastogi and K. Shim: Building Decision Trees with Constraints. Data

Mining and Knowledge Discovery 7(2) (2003) 187–214

[13] J. Menyhart and R. Szabolcsi: Support Vector Machine and Fuzzy Logic. Acta Polytechnica

Hungarica (2016)

54

[14] G. Box and G. Jenkins: Time Series Analysis, Forecasting and Control. Wiley (1970)

[15] Sean McNally: Predicting the price of Bitcoin using Machine Learning. Technical report, School of

Computing National College of Ireland (2016)

[16] J. L. Elman: Finding Structure in Time. Cognitive science 14(2) (1990) 179–211

[17] R. Frigola: Bayesian Time Series Learning with Gaussian Processes. PhD thesis, University of

Cambridge (2015)

[18] G. Bontempi, S. Ben Taieb and Y.-A. Le Borgn: Machine Learning Strategies for Time Series

Forecasting. Business Intelligence: Second European Summer School (2013) 62–67

[19] M. Haferkorn and J. M. Quintana Diaz: Seasonality and Interconnectivity Within Cryptocurrencies -

An Analysis on the Basis of Bitcoin, Litecoin and Namecoin. Lecture Notes in Business Information

Processing (2015) 106–120

[20] A. Hencic and C. Gouriéroux: Noncausal Autoregressive Model in Application to Bitcoin/USD

Exchange Rates. Econometrics of Risk (2015)

[21] J. Perdiguero: Exploring the determinants of Bitcoin’s price: an application of Bayesian Structural

(2017)

[22] M. Ordon, D. Urbach, M. Mamdani, R. Saskin, H. D’A and K. Pace: The surgical management of

kidney stone disease: A population based time series analysis. Journal of Urology (2014) 1440–

1456

[23] P. Cortez, M. Rio, M. Rocha and P. Sousa: Multi-scale Internet traffic forecasting using neural

networks and time series methods. Expert Systems (2012) 143–155

[24] R. H. Shumway and D. S. Stoffer: Time Series Analysis and Its Applications: With R Examples.

Springer (2011)

[25] Z. Boussaada, O. Curea, A. Remaci, H. Camblong and N. M. Bellaaj: A Nonlinear Autoregressive

Exogenous (NARX) Neural Network Model for the Prediction of the Daily Direct Solar Radiation

(2018)

[26] A. Lasfer: Performance Analysis of Artificial Neural Networks in Forecasting Financial Time Series

(2013)

[27] T. Guo and N. Antulov-Fantulin: Predicting short-term Bitcoin price fluctuations from buy and sell

orders (2018)

[28] R. J. Hyndman and G. Athanasopoulos: Forecasting: principles and practice. OTexts (2014)

[29] P. R. Hansen and A. Lunde: A forecast comparison of volatility models: does anything beat a

Garch(1-1)? Jornal of Applied Econometrics (2005) 873–889

55

[30] J. H. Friedmann: Greedy function approximation: a gradient boosting machine. Annals of Statistics

(2001) 1189–1232

[31] Y. Liu, A. Niculescu-Mizil, A. C. Lozano and Y. Lu: Learning temporal cause graphs for relational

time-series analysis. ICML (2010) 687–694

[32] Y. Wu, J. M. Hernandez-Lobato and Z. Ghahramani: Gaussian process volatility model. NIPS

(2014) 1044–1052

[33] J. Donier and J.-P. Bouchaud: Why Do Markets Crash? Bitcoin Data Offers Unprecedented In-

sights. PLOS ONE 10 (2015) 1–11

[34] Y. B. Kim, J. G. Kim, W. Kim, J. H. Im, T. H. Kim, S. J. Kang and C. H. Kim: Predicting Fluctuations

in Cryptocurrency Transactions Based on User Comments and Replies. PLOS ONE 11 (2016)

[35] D. Garcia, C. Tessone, P. Mavrodiev and N. Perony: The digital traces of bubbles: feedback cycles

between socio-economic signals in the Bitcoin Economy. Journal of The Royal Society Interface

11 (2014)

[36] M. Amjad and D. Shah: Trading Bitcoin and Online Time Series Prediction. IPS 2016 Time Series

Workshop (2017) 1–15

[37] D. Jaramillo, D. V. Nguyen and R. Smart: Leveraging microservices architecture by using Docker

technology. SoutheastCon (2016)

[38] L. Kumar, S. Rajawat and K. Joshi: Comparative analysis of NoSQL (MongoDB) with MySQL

Database”. International Journal of Modern Trends in Engineering and Research (2015) 120–127

[39] Y. W. Cheung and K. S. Lai: Lag Order and Critical Values of the Augmented Dickey-Fuller Test”.

Journal of Business & Economic Statistics (1995) 277–280

[40] B. Everitt: The Cambridge Dictionary of Statistics. UK New York: Cambridge University Press

(1998)

[41] Jiarui Ni and Chengqi Zhang: An Efficient Implementation of the Backtesting of Trading Strategies.

ISPA 2005: Parallel and Distributed Processing and Applications (2005) 126–131

56

Appendix A

Docker-Compose For Data Scrapping

version: "2"

services:

mongo:

container_name: mongo_db

restart: always

image: mongo

volumes:

- ./data:/data/db

ports:

- "27017:27017"

python:

container_name: python_app

restart: always

build: ./orders_scrapper

depends_on:

- "mongo"

links:

- mongo:mongo

node:

container_name: node_app

restart: always

build: ./trades_scrapper

depends_on:

- "mongo"

links:

- mongo:mongo

57

	Abstract
	Resumo
	List of Figures
	List of Tables
	Acronyms
	1 Introduction
	1.1 Background
	1.2 Proposed Solution
	1.3 Thesis Contribution
	1.4 Outline

	2 Related Work
	2.1 Blockchain Background
	2.1.1 The Decentralized Ledger
	2.1.2 Hashing and Digital Signatures
	2.1.3 Proof of Work
	2.1.4 Blockchain
	2.1.5 Merkle Tree

	2.2 Machine Learning
	2.2.1 Supervised Learning
	2.2.2 Time Series
	2.2.3 Methodology Examples

	2.3 Trading Orders
	2.3.1 Limit Orders
	2.3.2 Stop Orders
	2.3.3 Stop-Limit Orders

	3 Architecture
	3.1 System's Architecture
	3.2 Implementation Options
	3.3 Database
	3.4 Trading Data
	3.5 Data Flow and Data Processing
	3.5.1 Database Communication
	3.5.2 Saving Monthly Data
	3.5.3 Monthly Data Manipulation

	3.6 Trading Algorithm
	3.6.1 Extracting Information From Order Book Data
	3.6.2 Forecasting With ARIMA
	3.6.3 Percentage Stop Order
	3.6.4 Simulation
	3.6.5 Output

	4 Evaluation
	4.1 Tests Scenarios and Objectives
	4.2 General Configuration
	4.3 Test Case 1 - Maximum Monthly Order Book Volume Period
	4.3.1 Scenario Setup
	4.3.2 Performance
	4.3.3 Outcome Graphs and Discussion

	4.4 Test Case 2 - Monthly Total Order Book Percentage Inversion Of Bids And Asks
	4.4.1 Scenario Setup
	4.4.2 Performance
	4.4.3 Outcome Graphs and Discussion

	4.5 Test Case 3 - Forecasting with ARIMA
	4.5.1 Scenario Setup
	4.5.2 Performance
	4.5.3 Outcome Graphs and Discussion

	4.6 Overall Results

	5 Conclusions
	5.1 Summary and Achievements
	5.2 Future Work

	A Docker-Compose For Data Scrapping

