Evolving flocking in embodied agents based on local and global application of Reynolds’ rules

Rita Moreira Parada Ramos

Thesis to obtain the Master of Science Degree in Information Systems and Computer Engineering

Supervisors: Prof. Susana Margarida da Silva Vieira
Prof. Sancho Moura Oliveira

Examination Committee

Chairperson: Prof. Francisco João Duarte Cordeiro Correia dos Santos
Supervisor: Prof. Susana Margarida da Silva Vieira
Member of the Committee: Prof. Alexandra Bento Moutinho

June 2019
I would like to thank my advisers, Professor Susana Vieira and Professor Sancho Oliveira, for all the guidance and supervision given. A special thanks to Professor Anders Christensen that also advise and ensure the quality of this dissertation, being always available and with willingness to help. I am very grateful to all for providing me such great learning experience.

I also would like to acknowledge IT- Instituto de Telecomunicações and FCT – Foundation of Science and Technology, which partly supported this study.

To my family, in particular, my mother and father, for all the love and support, and for how much they care about my education. To my grand-mother, which taught me the value of hard work ("when something has to be done, it deserves to be well done"). To my friends, for their encouragement and understanding the various skipped night-outs. And to my love, César Costa. There are no words to thank him enough, for how much he helped during the process, for enduring with me so many weekends at home, for being always there when needed.
Abstract

In large scale systems of embodied agents, such as robot swarms, the ability to flock is essential in many task. However, the conditions necessary to evolve self-organised flocking behaviours remain unknown.

In this dissertation, we study and demonstrate how evolutionary techniques can be used to synthesise flocking behaviours, in particular, how fitness functions should be designed to evolve high-performing controllers. In our study, we consider Reynolds’ seminal work on flocking, the *boids model*. We identify two approaches that can be used to automatically synthesise robot controllers for flocking behaviour, both using a simple, explicit fitness function inspired by Reynolds’ flocking rules.

In the first approach, the components of the fitness function are directly based on Reynolds’ three local rules that enforce respectively separation, cohesion and alignment between neighbouring robots. We found that embedding Reynolds’ rules in the fitness function can lead to the successful evolution of flocking behaviours, but with the condition that the fitness scores the three components in respect to the whole swarm, rather than only considering local interactions. In the second approach, we show that not all Reynolds’ principles are needed to evolve flocking. In particular, the alignment need not be explicitly rewarded to successfully evolve flocking.

Our study thus represents a significant step towards the use of evolutionary techniques to synthesise collective behaviours for tasks in which embodied agents need to move as a single, cohesive group.

Keywords

Flocking, Evolutionary Robotics, Genetic Algorithms, Neural Networks, Robotic Controllers.
Resumo

Em sistemas de grande escala de agentes, tais como grupos de robôs autônomos, a capacidade de flocking é essencial em diversas tarefas. No entanto, continua por explorar as condições necessárias para evoluir o comportamento de flocking.

Nesta dissertação, estudamos e demonstramos como as técnicas de computação evolucionárias podem ser usadas para desenvolver comportamentos de flocking, em particular, como as funções de avaliação devem ser desenhadas para desenvolver controladores de elevado desempenho. Neste estudo, usamos como base o trabalho de Reynolds sobre flocking. Implementamos duas abordagens que permitem sintetizar automaticamente controladores para robôs desempenharem comportamentos de flocking, ambas usando uma função de avaliação simples e explícita, inspirada nas regras de Reynolds.

Na primeira abordagem, os componentes da função de avaliação baseiam-se directamente nas três regras locais de Reynolds que promovem separação, coesão e alinhamento entre robôs vizinhos. Descobrimos que incorporar as regras de Reynolds na função de avaliação pode levar à evolução de comportamentos de flocking, mas apenas quando a sua aplicação é global, abrangendo todo o grupo, em vez de se considerar apenas interacções locais. Na segunda abordagem, mostramos que nem todos os princípios de Reynolds são necessários para evoluir flocking. Em particular, o alinhamento não precisa de ser explicitamente recompensado para evoluir com sucesso flocking.

Este estudo representa, assim, um passo significativo em direcção ao uso de técnicas evolucionárias na sintetização de comportamentos colectivos para tarefas nas quais sistemas de multi-agentes precisam de se mover como um todo.

Palavras Chave

Flocking, Robótica Evolucionária, Algoritmos Genéticos, Redes Neuronais, Controladores Robóticos.
Contents

1 Introduction .. 1
 1.1 Research Questions 3
 1.2 Objectives ... 3
 1.3 Scientific Contribution 3
 1.4 Dissertation outline 4

2 State of the Art ... 5
 2.1 Evolutionary Robotics 8
 2.2 Flocking in Robotics 10
 2.2.1 Hand-coded design 10
 2.2.2 Evolutionary Robotics 11

3 Adapting Reynolds' flocking model with evolutionary techniques 15
 3.1 Robot Model ... 16
 3.2 Simulator ... 18
 3.3 Controller Architecture and Evolutionary Algorithm 19
 3.4 Metrics .. 21
 3.5 Results and Discussion 22
 3.5.1 Experimental setup inspired by Reynolds' local rules - Local setup 22
 3.5.2 Experimental setup scoring global behaviour - Global setup 23

4 From Reynolds’ principles to the evolution of flocking in agents 27
 4.1 Experimental setup without the Cohesion component - No Cohesion setup 28
 4.2 Experimental setup without the Alignment component - No Alignment setup 31

5 Generalisation ... 35
 5.1 Swarm size (N) 36
 5.1.1 Swarm size - 5, 8, 11, 16 robots 36
 5.1.2 Swarm size - 20, 30, 50, 100 robots 38
 5.2 Time-steps (T) .. 41
List of Figures

2.1 Examples of flocking behaviour in nature. Left: European starlings (Sturnus vulgaris); Top right: Minnows (Phoxinus phoxinus); Bottom right: Desert locusts (Schistocerca gregaria). Respective sources: http://www.lovethesepics.com/wp-content/uploads/2012/11/Flock-of-Starlings.jpg; [1]; https://www.preventionweb.net/news/view/48722

2.2 The three simple rules of Reynolds’ boids model. This image was adapted from Reynolds work [2].

3.1 Sensors used by each robot. Up: Illustration of a case in which the Alignment sensor would receive maximum value, 0.5, since all robots within the sensor range have the same orientation. Bottom: The four robot sensors with the respective readings. Note that, although in sensor 2 and sensor 4 more than one robot is within the range, only the closest robot contributes to the reading of the sensor.

3.2 Example of possible configurations in the interface of JBotEvolver.

3.3 Representation of the robot controller architecture: a Continuous Time Recurrent Neural Network (CTRNN) with the corresponding input neurons, hidden layer and output neurons.

3.4 Left: Fitness trajectories of the highest-scoring controllers evolved in each evolutionary run. Right: Distribution of the post-evaluation fitness scores achieved by the highest-scoring controller of the 30 evolutionary runs conducted. The box-plot summarises results from 400 post-evaluation samples.

3.5 The figure summarises results of the average from the 400 post-evaluation samples of the highest-scoring controller in terms of the metrics presented in Section Metrics. Left: The order metric trajectory across the 3000 simulation steps. Centre: box-plot of the distribution of the number of groups metric. Right: The swarm cohesion trajectory across the 3000 simulation steps.

3.6 Example of the behaviour displayed by the highest-performing controller, with 5, 8, 11 and 16 robots, from left to right. The lines represent the trajectory of the robots.
3.7 Left: Fitness trajectories of the controllers in each of the 6000 generations. Right: Distribution of the post-evaluation fitness scores achieved by the highest-scoring controller.

3.8 The metrics scores achieved by the highest-scoring controllers of Global setup and the Local setup. Left: the order metric. Centre: the number of groups metric. Right: the swarm cohesion metric.

3.9 Example of the behaviour displayed by the highest-performing controller evolved in the Global setup, with 5, 8, 11 and 16 robots, from left to right. Observing the beginning of trajectory, we can see the robots evolved the strategy of moving closely around their initial positions, in order to first form an aligned group before moving away.

4.1 Left: Fitness trajectories of the 30 controllers within 6000 generations. Right: The box-plot summarises results from 400 post-evaluation samples achieved by the highest-scoring controller of the No Cohesion setup.

4.2 The metrics scores achieved by the highest-score controller of the No Cohesion setup and the Global setup. Left: The order metric. Centre: the number of groups metric. Right: the swarm cohesion metric.

4.3 Example of the behaviour displayed by the highest-performing controller evolved in the No Cohesion setup, with 5, 8, 11 and 16 robots, from left to right. Different colours represent different groups, being the black colour used to represent the main group, i.e, the group with high number of robots.

4.4 The figure shows order metric of the post-evaluation samples with an extended number of time-steps, 6000 time-steps.

4.5 Left: Fitness trajectories of the 30 controllers within 6000 generations. Right: Box-plot of the results of the 400 post-evaluation samples achieved by the highest-scoring controller of the No Alignment setup.

4.6 The metrics scores achieved by the highest-score controller of the No Alignment setup and the Global setup. Left: The order metric. Centre: the number of groups metric. Right: the swarm cohesion metric.

4.7 Example of the behaviour displayed by the highest-performing controller of the No Alignment setup, with 5, 8, 11 and 16 robots, from left to right. The behaviour displayed is similar to one in Fig 3.9.

5.1 The order metric by the highest-score controller of the Global setup (left) and No Alignment setup (right), with 5, 8, 11 and 16 robots.

5.2 The number of group metric achieved by the highest-score controller of the Global setup (left) and No Alignment setup (right), with 5, 8, 11 and 16 robots.
5.3 The swarm cohesion metric achieved by the highest-score controller of the Global setup (left) and No Alignment setup (right), with 5, 8, 11 and 16 robots. ... 37
5.4 The order metric achieved by the highest-score controller of the Global setup (left) and No Alignment setup (right), with 20, 30, 50 and 100 robots. 39
5.5 The number of groups metric achieved by the highest-score controller of the Global setup (left) and No Alignment setup (right), with 20, 30, 50 and 100 robots. 40
5.6 The swarm cohesion metric achieved by the highest-score controller of the Global setup (left) and No Alignment setup (right), with 20, 30, 50 and 100 robots. 40
5.7 The metrics scores achieved by the highest-scoring controllers of Global setup and the No Alignment setup with 9000 time-steps. Left: the order metric. Centre: the number of groups metric. Right: the swarm cohesion metric. .. 42
Acronyms

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ER</td>
<td>Evolutionary Robotics</td>
</tr>
<tr>
<td>ANNs</td>
<td>Artificial Neural Networks</td>
</tr>
<tr>
<td>EA</td>
<td>Evolutionary algorithms</td>
</tr>
<tr>
<td>RL</td>
<td>Reinforcement Learning</td>
</tr>
<tr>
<td>CTRNN</td>
<td>Continuous Time Recurrent Neural Network</td>
</tr>
</tbody>
</table>
1

Introduction

Contents

1.1 Research Questions .. 3
1.2 Objectives ... 3
1.3 Scientific Contribution .. 3
1.4 Dissertation outline .. 4
There has been a growing interest in using robots in tasks, such as navigation, search and rescue, and environmental monitoring that require high degrees of autonomy, mobility, flexibility and robustness [3]. Such tasks can be addressed by the promising approach of swarm robotics [4], that aims to produce robust, scalable and flexible systems that exhibit self-organised collective behaviour. The general idea in swarm robotics is to use large groups of autonomous collaborating robots with relatively simple hardware and decentralised control, rather than a single or a few complex robots.

Flocking is one of the collective behaviours that are exhibited in nature. Flocking became widely studied after the seminal work of Reynolds [5], in which he defined three simple, behavioural rules (cohesion, separation and alignment) that were able to generate realistic flocking behaviour in computer animation. Flocking has since become an area of study in several fields beyond biology and computer animation, such as robotics, statistical physics, and control theory [6–9].

In swarm robotics, collective behaviours such as flocking can be achieved with automatic design methods. Evolutionary Robotics (ER) is the field that aims to synthesise controllers for autonomous robots, in which the evaluation and optimisation of controllers are holistic in a self-organisation process [10], therefore, not requiring manual and detailed specifications of the desired behaviour by the experimenter [11]. The underlying idea is inspired in Darwin’s theory of evolution, which through an artificial selection process, the fittest individuals are the ones chosen to populate the next generation [12].

Throughout ER research, numerous behaviours have successfully been evolved, such as aggregation, dispersion, foraging, and so forth [13–17]. However, it is still unclear how high-performance flocking behaviours can be automatically synthesised by means of artificial evolution. To date, flocking has primarily be achieved with hand-programmed control [6, 18, 19]. However, manual specification of the behaviours can prevent non-obvious solutions from being discovered [10]. In addition, such an approach is often limited when it comes to tasks and environments that are not entirely characterised prior to robots’ deployment. It might not be easy for the designer to find the individual behaviours and the necessary interactions that lead to flocking in an unspecified environment or situation, which can help to explain why flocking studies have been mostly conducted in simulation or in controlled laboratory conditions. Automatic design methods are an alternative approach to design agents through a self-organised process without the need to specify or understand all the necessary interactions among the robots and the environment. Thus, an automatic design method, such as ER, has the potential to synthesise flocking behaviours for different environments and task scenarios.

In this thesis, we study how to automatically synthesise robot controllers for self-organised flocking behaviour based on artificial evolution. In particular, we consider Reynolds’ seminal work on flocking, adapting Reynolds’ flocking model with evolutionary techniques.
1.1 Research Questions

The questions that we aim to answer in the end of this thesis are the following:

- Which fitness functions and experimental setups are necessary for the successful evolutionary design of flocking behaviour?
- Can flocking behaviour emerge by adapting Reynolds’ flocking model with evolutionary techniques? If so, are all Reynolds’ principles necessary to evolve flocking?

1.2 Objectives

The goal of this thesis is to find which fitness function components and elements of experimental setups are necessary to evolve flocking, in order to enable the synthesis of robot controllers to carrying out tasks that require flocking. We aim to formulate fitness functions that explicitly and effectively reward flocking behaviours, namely by adapting Reynolds’ manually specified rules (separation, cohesion and alignment) as components in the evaluation function.

Flocking has the potential to be integrated in the evolution of other collective behaviours that benefit from the same principles of flocking, indeed, aggregation and coordinated motion can play an important role in patrolling tasks, environment monitoring, foraging and similar real-world tasks that can be undertaken by swarms of autonomous robots. Thus, the study of synthesize flocking behaviours can be of help to synthesize other collective behaviours for tasks in which embodied agents need to move as a single, cohesive group.

In summary, the objectives are:

- to study how fitness functions and experimental setups should be design to evolve high-performing controllers.
- compare the evolved behaviours with Reynolds’ preprogrammed behaviours, such as studying if the evolved solution requires all Reynolds’ principles to emerge flocking.
- contribute to the use of evolutionary techniques to synthesize collective behaviours for tasks in which embodied agents need to move as a single, cohesive group.

1.3 Scientific Contribution

The work conducted in this dissertation has resulted in one journal submission to PlosOne:

1.4 Dissertation outline

This dissertation is organised into 5 chapters. We started by giving a brief introduction and description of our study in Chapter 1, and go on to present the related work in Chapter 2. We provide an overview of flocking behaviour, followed by the field of evolutionary robotics, and, finally, we discuss work related to flocking in robotics, particularly focusing on the ER field. Then, in Chapter 3, we demonstrate our approach to automatically synthesise robot controllers for flocking behaviour by adapting Reynolds’ flocking rules. We present the methods and materials used and discuss the experimental results. In the following chapter, Chapter 4, we compare the evolved behaviours with Reynolds’ preprogrammed behaviours, providing a description of the conducted experiments and analysing the obtained results. Chapter 6 summarises our dissertation, along with future directions in which our work can be further studied.
2 State of the Art

Contents

2.1 Evolutionary Robotics ... 8
2.2 Flocking in Robotics .. 10
Flocking is a collective behaviour of coordination motion that can be observed in numerous species, such as birds, fishes and locusts. For example, European starlings (Sturnus vulgaris) are one of the most popular bird species known to exhibit highly synchronised and coherent flocks [20,21]. Minnows (Phoxinus phoxinus) are known to form polarised swimming groups with variant shapes, being commonly used in studies of schooling [1]. Other example is the Desert Locusts (Schistocerca gregaria) that exhibits flocking when above a given density: as the number of locust increase, a disordered movement of individuals changes to a cohesive movement from dense clusters [22,23] (see Figure 2.1).

Figure 2.1: Examples of flocking behaviour in nature. Left: European starlings (Sturnus vulgaris); Top right: Minnows (Phoxinus phoxinus); Bottom right: Desert locusts (Schistocerca gregaria). Respective sources: http://www.lovethesepics.com/wp-content/uploads/2012/11/Flock-of-Starlings.jpg; [1]; https://www.preventionweb.net/news/view/48722

In biology, there are several evolutionary hypotheses that explain the emergence of flocking behaviour in nature. This include safety from predators, which itself can be attributed to different reasons [24]: flocking can confuse predators accuracy of vision [25]; provide increased vigilance [26, 27]; decrease the individual chance of being caught (it is mostly the ones at the periphery that are at risk) [28], and so on. Another advantage of flocking is foraging efficiency: many studies have shown that individuals find food faster in a foraging group than on its own [24, 29–31]. Other hypotheses for flocking behaviour in animals include mating success [32,33] and energy efficiency [34,35].

Apart from biology, flocking was not a subject of particular interest for most fields. Flocking became a more popular field of study after Reynolds proposed the first computational model of flocking, the boids model [5]. In his work, Reynolds formally defined flocking behaviour as "polarised, non-colliding, aggregate motion", and showed that only three simple rules are necessary to obtain flocking: (i) flock centering, (ii) collision avoidance, (iii) velocity matching (see Figure 2.2. With these rules, each individual should attempt to be at close distance from each other (i), without colliding with one another (ii), while trying to match its velocity with their neighbours (iii). Although for Reynolds, both the speed and the orientation are taken into account in the velocity rule, several studies only consider relevant the orienta-
tion to obtain flocking [6, 36], including Reynolds himself that later on described the third rules as "steer towards the average heading of local flockmates" [2]. Therefore, the third rule can also be described simply as each individual trying to align with the average orientation of its neighbours. In literature, these rules are also respectively known as cohesion, separation and alignment.

![Cohesion, Separation, Alignment](Image)

Figure 2.2: The three simple rules of Reynolds' boids model. This image was adapted from Reynolds work [2].

Although Reynolds was particular interested in generating a realistic behaviour of flocking in computer animation, ever since flocking has been a subject of interest in several fields apart from biology, and computer animation, including robotics. In robotics, studying flocking or any other collective behaviour is usually tackled in Swarm Robotics [37–39]. This new approach makes use of large groups of simple autonomous robots that are capable of performing local communications, as opposed to centralised control. Inspired in social insects, the main properties of swarm robotics systems are the following [37]:

- **Robustness:** the swarm continues to operate properly in the event of faults, even if some robots stop working.
- **Flexibility:** the robots are capable to adapt to different tasks, environments, and unforeseen situations.
- **Scalability:** the swarm is capable of operating independent of the group size, with either few or thousand individuals.

Swarm Robotics System can either be achieved by hand-coded design methods or via automatic design methods. The most common method is the first one, consisting in manually programming the robot controllers [38]. In a trial and error process, the experimenter designs by hand the individual behaviours of the each robot in order to achieve the desired collective behaviour. Hand-coded design methods can be further divided into two main categories [36, 38]: (i) the finite state machine design, usually with state transitions governed by probabilities, similar to some behaviour models of social insects [40]; (ii) the virtual physics-based design, a method inspired by physics, where every single robot is considered as a virtual particle conditioned to the virtual forces exerted by the other individuals and/or by the environment.
Attempting to achieve the collective behaviour by manually programming the individual behaviours might be too complex and challenging for the designer, since it is not easy to foresee all the behaviour rules of the individual robots and the interactions (among them and the environment) that are necessary to emerge the global behaviour [10, 41]. Even if the collective behaviour can be designed by hand-coded methods, the solutions are limited to the designer’s knowledge, preventing non-obvious and more efficient solutions to be find. Also, being a trial and error process, hand-coded design methods have a bottleneck in terms of development time and effort needed [42]. In addition, this approach is often limited when it comes to unforeseen situations, namely when tasks or terrains are not entirely characterised prior to robots’ deployment.

To overcome some of the limitations inherent to hand-coded design methods, swarm robotics systems might be alternatively design via automatic means. In swarm robots, two main paradigms of automatic designed methods are used [36, 38]: (i) Reinforcement Learning (RL) [43]; (ii) Evolutionary Robotics (ER) [10]. In Reinforcement Learning, an agent receives feedback from its actions, allowing them to learn by a trial-and-error process. Although RL has been successfully applied to single robots [44–46], this approach is not much suitable to swarm robotics, because it proves difficult to decompose the global reward into individual rewards [38]. Thus, only few works about swarm robotics have used RL [47, 48]. A more promising automatic method is Evolutionary Robotics (see the following subsection).

In the remaining of this section, we introduce evolutionary robotics, the design method that we use in this research to the synthesis of swarm robotic controllers. Afterwards, we review literature in the field of robotics related with flocking. We present some of the seminal works that used hand-coded design and then give a more detailed description of the works in ER.

2.1 Evolutionary Robotics

Evolutionary robotics is the field of research that applies evolutionary computation techniques to synthesise controllers for autonomous robots [49]. Through a process analogous to natural evolution, an evolutionary algorithm evaluates and optimises the robots controllers in a holistic manner [50]. The underlying idea is inspired in Darwin’s theory of evolution, it consists of optimising a population of genomes in genotype space with blind variations and survival of the fittest, as embodied in the neo-Darwinian synthesis [12].

In ER, Artificial Neural Networks (ANNs) are typically used as robotic controllers [41], processing the values of the robot sensors and outputting the corresponding actuators values. An ANN is computational model based on the neural structure of the human brain [51]. A neural network is composed by an input and output layer of neurons, and can also have one or more hidden layers in order to cope with problems
that are not linearly separable [52]. When using ANNs as robot controllers, the neurons in the input layer correspond to the robot’s sensors and the neurons in the output layer correspond to the robot’s actuators. To evolve the controllers, the parameters of the neural networks (such as the the connection weights) are then optimised by an evolutionary algorithm.

Evolutionary algorithms (EA), such as genetic algorithms, are optimisation methods that attempt to find solutions for a given problem inspired by Darwinian evolution [53]. The evolutionary process starts with an initial population of candidate solutions, usually generated randomly. In each iteration, the performance of each candidate solution is evaluated according to a fitness function provided by the experimenter [41]. The candidates with highest fitness score are then selected to become part of next iteration and to populate it (by means of mutation and/or crossover). This process continues iteratively until a given stopping criteria, such as a fixed number of iterations. It should be highlighted the important role of the fitness function in the evolutionary process, since achieving the desired solution is intimately dependent on the formulation of a suitable fitness function. A reviewed of fitness functions used in the field of evolutionary robotics can be found in [41].

Using EA as a means to optimise the parameters of ANNs allows for the self-organisation of the controller, eliminating the need for manual and detailed specification of the of behaviour. In ER, ANNs are well-suited and commonly used to control autonomous robots for a number of reasons, including [54]:

- The straightforward mapping between sensors and actuators
- Robustness to noise
- Capability to approximate any continuous function arbitrarily well (having the right network architecture)
- Small changes in weights typically correspond to small changes in behaviour, thereby creating a Smooth fitness landscape

The potential of ER to automate the design of behavioral control was defend by several researchers over inefficient preprogrammed approaches [49,55–57], and throughout approximately two decades of ER research, numerous robots controllers have been successfully evolved [58–60]. Furthermore, ER can be a valuable approach for designing controllers for swarm robotics systems, given that it eliminates the difficult manual task of finding the individual behaviours and the interactions that lead to the emergence of the desired collective behaviour. Examples of studies that have demonstrated evolved controllers for swarm robotics tasks can be found in [13–17], where numerous collective behaviours were successfully evolved, such as aggregation, chain formation, coordinated motion. Besides engineering purposes, ER has also the advantage of answering more biology questions, since the evolved solutions can provide insight about natural selection pressures [50].
Despite the numerous advantages of ER, there are several issues that prevent it from being a widely adopted design method for behavioral control [61]. One of those issues is the Reality gap [62], the non-trivial problem of how to successfully transfer the control evolved in simulation to real robotic hardware. However, the potential to evolve robotic controllers, beyond simulation and controlled laboratory conditions, has already been demonstrated in realist environments [15]. Another issue is the difficulty to evolve suitable controllers for complex tasks, in which the evolution soonly becomes trapped in a local minimum (known as the bootstrapping problem [41]). In fact, it can be claimed that so far most of the behaviours evolved have relative low complexity and may actually be achieved with hand-coded design methods [11, 38]. Also, there are not still standard practices in the field [11], which makes it hard to compare studies, as well as, it does not facilitate the studies to be replicated and extended by other researchers. Another problem of ER, considered by some researchers [36, 38], is the widespread use of neural networks as controllers, given the fact that ANNs are black-boxes and, therefore, difficult to reverse engineer. Further details on the state of the art in evolutionary robotics see [50].

2.2 Flocking in Robotics

2.2.1 Hand-coded design

In robotics, most studies use control rules, similar to the ones used in Reynolds’ study. In general, the cohesion and separation rules (proximal control) are used, but only some works include the alignment rule (alignment control), as described by Ferrante in his doctoral thesis [36].

Giving examples of works that use alignment control, Turgut et al. [6] were the first to achieve flocking without relying on external computation or communication devices. The authors presented a flocking behaviour, using proximal control and alignment, that can lead a swarm to move coherent in a random direction while avoiding obstacles. Çelikkanat and Şahin, [63] extended this behaviour, enabling the swarm to flock toward a desired direction, by externally guiding just some members. Pessoa et al. [64] presented outdoor flocking with aerial robots, relying on local interactions. The decentralised control algorithm was similar to Reynolds’ model: for cohesion, a position constraint was used; to avoid collisions a short-range repulsion was needed; and a velocity alignment term was used.

When alignment control is not used, and instead alignment is achieved implicitly, the orientation of the swarm is usually induced by having multiple informed robots knowing about a goal direction [36]. Using local communication, Nembrini [65] presented a minimalist method for flocking, showing a swarm capable of maintaining cohesive and avoiding obstacles while moving toward a light beacon, that was just perceived by a minority of the robots. Spears [66] achieved flocking by developing a framework of artificial physics based on attraction/repulsion forces. The robots were able to form a regular lattice structure and keeping its formation while moving to a light-source known by most of the robots. Recently,
Toshiyuki et al. [67] proposed a flocking model that uses stochastic learning automaton where each robot can be dynamically selected to be a follower or move as a leader to the known target direction. More examples of works with or without alignment control can be found in Ferrante et al.’s study [18], where the authors successfully achieved flocking without alignment control and neither with goal direction.

Despite the interesting work done so far, in most of these works, the robots have a initially knowledge about the goal direction, but in real-word tasks, such as search and rescue, usually there is no information about the location of the particular goal. Also, if most members are informed about the goal direction, this may result in flocking to the goal just because of this global information, and not because of being a self-organising process, as it often is in nature.

2.2.2 Evolutionary Robotics

In ER, Zaera et al. [68] were among the first to report on attempts to evolve controllers that could exhibit behaviours similar to flocking, schooling or herding, but without success. Zaera et al. intended to develop neural network-based sensorimotor controllers for schooling behaviour in three dimensions, using realistic Newtonian kinematics, such as inertia and drag. The authors tried to evolve behaviour based on the definitions of flocking suggested in the literature (such as Reynolds’ rules [5]), namely by rewarding individuals for moving at the same speed or for maintaining a certain distance to their neighbours, but they only succeeded in evolving simple group behaviours: aggregation and dispersion. The authors expressed the difficulty in formulating an explicit fitness function that is able to measure the degree of schooling exhibited by a group of agents, claiming that schooling behaviours arises from complex interactions of a number of factors, which are hard to capture in a simple fitness function. The authors furthermore claimed that it can be more difficult to evolve schooling than using manual design methods. It should be noted, however, that Zaera et al. neither specified the fitness functions that were tried, nor did they provide a detailed and quantitative analysis of the obtained behaviours. In addition, some assumptions that were taken could explain the lack of success, as referred in [69] subsequent work. First, the neural networks were limited to only 5 hidden nodes. Secondly, the inputs of the neural network were based on 3d simulated vision, and, consequently, the number of input nodes were much higher than the hidden nodes. Also, the experiments had a small number of generations, only 100, which may not be sufficient to evolve a complex behaviour like flocking. Finally, the lack of success might also be a consequence of the amount of complexity involved in simulating in 3d and using realistic Newtonian kinematics.

In a subsequent attempt to evolve flocking behaviour, Felt and Koonce [69] modeled their approach closely to Zaera et al.’s work, but with a number of significant differences that made them believe they would have more success. First, their work was not subject to realistic laws of physics and agents moved in two dimensions rather than three. In addition, the agents were provided with complete information
about their closest neighbours, instead of simulating vision. Another difference between the two papers is that a greater amount of generations were run, 1000 generations rather than 100, since the authors implemented a parallelised framework instead of using a sequential one. Finally, the authors claimed they had a more flexible neural network, provided by unbounded weights, more hidden nodes and with different mutation method. Despite these differences, the authors were also unable to evolve controllers that could exhibit flocking behaviour, even with several attempts of different fitness function and training scenarios. They started by giving the individuals a positive score for being at a given distance from their neighbours, and receiving zero fitness if getting to close. This fitness function led to the fragmentation of multiple groups, so the authors them tried to penalise the individuals that got too close to one another. In the beginning, the authors obtained a similar behaviour to flocking, since agents formed a cohesive group that move coherent in a random direction, but after some time, the individuals move farther apart from one another, remaining alone in longer simulations. Other variants of fitness functions were tried, namely giving rewards to alignment, to reach a food patch, and so on, but again without much success. Similar to Zaera et al.'s findings [68], Felt and Koonce [69] concluded that "finding a good fitness function for the genetic algorithm is equally difficult, if not more difficult, than the task of hand–coding a controller that imitates flocking (...)".

Instead of trying to explicitly encode flocking in the fitness function, Ward et al. [70] had more success than Zaera et al. [68], claiming that the obtained results "would have been difficult, if possible at all, to foresee or even implement" with manual design methods. The authors evolved controllers for flocking (or schooling) behaviour, designated as E-BOIDS (evolved boids), as recognition to Reynolds' boids model. In their work, predators and prey coevolve to produce the desired behaviour, inspired by biological hypothesis that flocking emerges in the presence of predators. These artificial agents are placed in a two-dimensional environment with food sources randomly spreaded. Both these agents are composed by a simple feed-forward, fully connected network. The input layer attempts to have realistic fish sensors, consisting of a set of two different types of sensory modalities: vision input nodes for the distance and direction of the closest preys, predators and food sources; and lateral line nodes for detecting local changes in water pressure. And the output layer has two nodes for controlling the motion, to turn left or right, respectively. As to the fitness function, it is based on the energy values of each agent. Each individual starts with a certain amount of energy to spent in a given behaviour, such as moving, eating, and mating; that can either consume or increase the energy of the individual (ex: Eating Food corresponds to +20 or +25, if the individual is a prey or a predator, respectively). Then, at the end of the generation, the selected individuals are the ones that have higher energy values. This simple and implicit fitness function led to some interesting results, where preys learned to get close to one another, as well to the food, and predators learned to pursue preys. The authors conducted more experiments with and without predators, showing that predators helps to promote preys to flock (but without a significant effect).
Despite the interesting results, one might question if flocking really occurs, since there were not metrics to measure the cohesion and alignment among the preys. The authors tried to provide a detailed and quantitative analysis about their work, but they only used the Euclidean distance to measure the distance between the agents and the food, which gives little information about the degree of cohesion and none about alignment. In fact, the images in the paper show multiple fragmenting groups of preys, instead of a single cohesive flock moving in a common direction.

Baldassarre et al. [16] evolved behavioural control that enabled a swarm of four simulated Khepera robots to aggregate and move as a group toward a light source. Although the study is not strictly focused on flocking, it is actually one of the the most frequently cited papers in ER about flocking behaviour, since flocking emerged in one of the experiments. In their work, the robots were placed in a bounded and rectangle-shaped environment, containing two target lights at opposite extremes, one at the west wall and the other at east wall. Only one light at a time is turned on, switching when the swarm gets close to the light that is turned on. To control the robots, the authors evolved neural networks with only two layers: an input layer with 17 input nodes, 16 for each input sensor (infrared, light and sound sensors) and 1 bias node; and an output layer with two output nodes to control the left and right wheels. To force the swarm to pursue the light as a compact group, the authors formulated the fitness function with two components, a compactness component and a speed component. The compactness component leads the robots to form and remain a single cohesive group, and the speed component promotes movement in the direction of the light target. From a set of 10 evolutionary runs, a variety of strategies emerged, including flocking in one out of the 10 runs. The swarm was able to form a cohesive group and move efficiently to the light. Indeed, flocking strategy significantly outperforms the others in respect to reaching faster the target light. By further analysing the flocking strategy, the authors observed that evolved individuals had different behavioural roles, such as leader and followers. The authors concluded by highlighting the potential of artificial evolution for automating the design of the desired behaviours which contradict the findings of Zaera et al. [68].

In a more recent contribution, Witkowski and Ikegami [71] evolved neural networks able to display flocking behaviour in a foraging task via signalling. In this work, simulated agents are place in a three-dimensional environment containing a randomly distributed food patch. The agents behaviour is determined by a fully connected three-layer neural network. The input layer has six input nodes corresponding to signaling sensors so that the agent can detect signals emitted by its neighbours, and the output layer has three output nodes to control the agent's motion and signaling. As in [70], the authors used an implicit fitness function that is based on the virtual energy level of each agent. The agents spent energy when moving or emitting signals, and gained energy when eating. The individuals with highest energy values are then the ones selected. Results obtained show the agents organising into a cluster and progressively moving toward the food source, resembling flocking behaviour. The communication between
agents via signalling promoted the flocking behaviour and helped establish temporary leaders-followers relations.

Similar works can be found in [72–75], in which flocking was not encoding explicit in the fitness function, but rather evolved in the presence of biological hypothesis, mostly scenarios involving prey-predators. Another flocking work, which does not belong to ER but should be referred, is [76], since it one of the most successful works to achieve flocking with automatic design methods, in particular, reinforcement learning. Mataric [76] developed a flocking behaviour based on safe-wandering, aggregation, dispersion, and homing behaviours, in which robots are able to move cohesively toward a goal direction known by them all.

Overall, there are only few studies that report on attempts at evolving flocking behaviour in evolutionary robotics, and the conditions necessary to evolve flocking behaviour for a swarm of autonomous robots are still unclear. In particular, it remains unexplored how to design fitness functions to explicitly and effectively reward flocking behaviours. In this dissertation, we show evolutionary techniques can be used to automatically synthesise robot controllers for flocking behaviour, using a simple, explicit fitness function inspired by Reynolds’ flocking rules.
Adapting Reynolds’ flocking model with evolutionary techniques

Contents

3.1 Robot Model ... 16
3.2 Simulator ... 18
3.3 Controller Architecture and Evolutionary Algorithm 19
3.4 Metrics ... 21
3.5 Results and Discussion .. 22
Several studies have already reported successful in achieving flocking behaviour with hand-programmed control \cite{6, 18, 19}. The work of Reynolds shows that only three simple rules are sufficient to emerge flocking. Having simple preprogrammed rules to design flocking, one might wonder why is relevant, beyond interest, to synthesise such behaviour with artificial intelligence. There are many real-word tasks, such as patrolling, map, foraging, where group of autonomous robots are required to exhibited a specific behaviour while at the same time have the need to flock. Indeed, flocking has great potential in exploratory tasks, since a group of robots moving together provides increasing sensing capabilities. In such scenarios, it might not be trivial to manually program a robot model that can integrate flocking rules with the corresponding behaviour required for the task, and that also takes into account all the possible interactions with the environment. In addition, design method are specially limited when it comes to situations or environments that are not entirely characterised prior to robots’ deployment. Such helps to explain that flocking studies mostly conducted in controlled laboratory conditions, and not generalised yet to real-world scenarios. On the other hand, automatic design methods rely on a self-organised process without the need to specify or understand all the necessary interactions, thereby having the potential to synthesise flocking behaviours for different environments and task scenarios. Motivated by this, in this chapter we study how to automatically synthesise robot controllers for self-organised flocking behaviour based on artificial evolution. In our approach, we started by considered the seminal work of Reynolds on flocking, the boids model, by adapting its manually specified rules with evolutionary techniques.

This chapter is organised as follows. We start by presenting the materials and methods: Section 3.1 introduces the robot model and Section 3.2 presents the simulator, we then describe the controller architecture and evolutionary algorithm in Section 3.3, and defined the metrics in Section 3.4. After the methodology, we present experimental results and discussion in Section 3.5.

3.1 Robot Model

In this study, we use a circular differential drive robot model with a diameter of 10 cm. The two wheels enable the robots to move at speeds up to 10 cm/s. Each robot is further equipped with limited onboard sensors: one alignment sensor to perceive the neighbours' average orientations, and four robot sensors to detect the neighbours' distance, both with a range of 25 cm. It should be noted that both the robot model and the sensors were defined for the purpose of simulation, which could be adapted for a specific real-world task. In real-world scenarios, the alignment sensor could be replaced by a compass sensor, and the robot sensors could be replaced by ultrasonic sensors.

The alignment sensor computes the average relative orientation of the robot to its neighbours within the range of the sensor, shown in Figure 3.1(up). The sensor’s value is $[0, 1]$. If the robot has the same orientation as its neighbours, the reading sensor has a value of 0.5. Otherwise, if the average orientation
is in \([0, \pi]\) or in \([-\pi, 0]\), the reading sensor is between \([0, 0.5]\) and \([0.5, 1]\), respectively.

![Alignment Sensor](image1)

Figure 3.1: Sensors used by each robot. Up: Illustration of a case in which the Alignment sensor would receive maximum value, 0.5, since all robots within the sensor range have the same orientation. Bottom: The four robot sensors with the respective readings. Note that, although in sensor 2 and sensor 4 more than one robot is within the range, only the closest robot contributes to the reading of the sensor.

The four robot sensors provide information about the distance to the closest neighbour in four sec-
tions around the robot, shown in Figure 3.1 (bottom). Each sensor has an opening angle of 90° and a range of 25 cm. The reading of a sensor depends linearly on the distance of the closest robot within the sensor’s field of view, according to the following equation:

$$R = 1 - \frac{d_{nn}}{range}$$ \hspace{1cm} (3.1)

where d_{nn} is the distance to the closest neighbour.

We use an unbounded environment. The robots are initially placed at random initial positions and with random orientations within a square. The side length of the square depends on the number of robots according to the following formula: $\frac{1}{5} \sqrt{\frac{2}{5} \text{robots}}$, which means that the robots start relatively close to one another. In our experiments, we used different configurations of swarm sizes, namely 5, 8, 11 and 16 robots, to promote the evolution of general and scalable behaviours.

3.2 Simulator

The experiments were conducted in simulation by using JBotEvolver, a Java-based open-source, multirobot simulation platform and neuroevolution framework [77]. JbotEvolver allows the experimenter to choose or define the robot model, the corresponding sensors and actuators, the environment, the controller architecture and evolutionary algorithm (see Fig 3.2). In JbotEvolver, the experiments can be executed sequentially, in parallel or with distributed computing. To speed-up the experiments, we opt to use Conillon [78], a platform that is connected to JBotEvolver that allows for distributed computing.

The use of open-source software allows the experiments in this paper to be replicated and extended
by other researchers. The code, the configuration files, and the results can be found at [79].

3.3 Controller Architecture and Evolutionary Algorithm

In evolutionary robotics, artificial neural networks (ANNs) are often used as robotic controllers [41]. As input, the ANN takes normalised readings from the robot's sensors and the ANN's output control the robot's actuators. We use a Continuous Time Recurrent Neural Network (CTRNN) [80], with three layers of neurons: a reactive input layer fully connected to a hidden layer, which, in turn, is fully connected to an output layer. The input layer has one neuron for each input sensor and the output layer has one neuron per actuator. Thus, our CTRNN has a total of five input neurons (four robot sensors and one alignment sensor), two output neurons (one for each of the two wheel actuators), and a hidden layer of 10 neurons (see Fig 3.3).

![Figure 3.3: Representation of the robot controller architecture: a CTRNN with the corresponding input neurons, hidden layer and output neurons.](image)

The parameters of the neural network, such as the connection weights, are then optimised by an evolutionary algorithm, to synthesise controllers. We use a simple generational evolutionary algorithm with a population size of 100 genomes. Each genome was evaluated over 24 samples: six samples for...
each of the four variations of swarm sizes (5, 8, 11 and 16 robots). Each sample last 3000 simulation time
steps, which is equivalent to 300 seconds. After all the genomes are evaluated, the individuals’ mean
fitness scores are used for selection. The five genomes with highest mean fitness score are selected to
become part of next generation and to populate it with offsprings. The genotype of an offspring is the
result of applying a Gaussian noise (mean: 0, st. dev: 1) to each gene with a probability of 10%.

The fitness function has to reward the individuals with quantitative measures that favour flocking, for
the evolved solutions to exhibit flocking behaviours. We therefore adopt Reynolds’ seminal work [2],
since he successfully defined three simple rules that can achieve flocking. We transform Reynolds’
three rules respectively for cohesion, separation and alignment to components of the fitness function as
follows:

\[
F = \sum_{t=0}^{time-steps} \frac{(C_t + S_t + A_t)}{T} + M, \tag{3.2}
\]

where the first three components correspond to the Reynolds’ rules: \(C\) — cohesion, \(S\) — separation,
\(A\) — alignment. Although these three components are sufficient to evolve flocking, we considered an
additional and optional component for movement, \(M\). The components, \(C\), \(S\), \(A\), and \(M\), are detailed
below.

Cohesion component \((C)\): rewards each robot for moving to the centre of mass of their neighbours,
as in Reynolds’ rule:

\[
C = \frac{1}{N} \sum_{i=1}^{N} (1 - \frac{d_i}{R}) \tag{3.3}
\]

where \(N\) is the number of robots, \(d_i\) the Euclidean distance a given robot is to its neighbours and \(R\) the
corresponding robot sensor range (25 cm).

Separation component \((S)\): penalises robots for colliding with each other, similar to the Reynolds’
rule of avoiding collisions with nearby flockmates.

\[
S = -numberOfCollisions \tag{3.4}
\]

Alignment component \((A)\): rewards each robot for matching its orientation with the average of their
neighbours, as Reynolds suggests “steer towards the average heading of local flockmates” [2]:

\[
A = \frac{1}{N} \sum_{k=1}^{N} \psi_k \tag{3.5}
\]

\[
\psi_k = \frac{1}{F} \sum_{a=1}^{F} e^{i\theta_a} \tag{3.6}
\]

where \(N\) is the number of robots, \(F\) the number of flockmates of a individual \(k\) (including itself), and \(\theta_a\)
is the orientation of the corresponding flockmate \(a \). This term first computes the average orientation of each robot with its nearby neighbours, similar to the formula of the order metric (see Section Metrics). Each individual can gain a reward between \([0, 1]\), having a value of 1 when the neighbourhood has a common direction, and a value of 0 when there is no alignment (or no neighbours). Then, \(A \) is computed as the mean score of all these individual rewards.

The above components only reward the swarm for cohesion and alignment. Thus, when conducting our initial set of experiments, flocking did emerge, but around the robot’s initial positions, since the fitness has no reward for moving farther away. Therefore, we consider an additional and optional component for movement, \(M \), that promotes the swarm to move away from the initial positions:

\[
M = \begin{cases}
\frac{d}{D} & \text{d} \leq D \\
1 & \text{otherwise}
\end{cases} \tag{3.7}
\]

where \(D \) is a parameterised distance that the swarm should move (5 m) and \(d \) the actual distance the robots moved, in average. When \(d > D \), \(M \) is set to a value of 1, thereby \(M \) is defined in \([0, 1]\). Rather than just promoting the robots to go farther, this term could as well be adapted to enable flocking for a specific task, such as area coverage or foraging.

3.4 Metrics

Flocking behaviour is usually defined as an aggregate and polarised motion [5], where individuals move together in a common direction. Thus, in order to evaluate our work, we used metrics that measure the alignment and cohesion of the swarm, similar to other works in robotics [6,36].

Order: To evaluate the degree of alignment among the individuals, we used the order metric, well known both in robotics and control theory [6,36,81]:

\[
\psi = \frac{1}{N} \sum_{k=1}^{N} e^{i \theta_k} \tag{3.8}
\]

where \(\theta_k \) is the orientation of individual \(k \). This metric averages the orientation of the \(N \) robots, having a value of 1 when the swarm is aligned, and value of 0 when there is no common direction.

Number of Groups: As to evaluate flock cohesion, we adapted the metric number of group suggested by Ferrante in [36]. Ferrante defined this metric as the number of groups at the end of the experiment. To define what constitutes a group, Ferrante used equivalences classes \(\{ x \in N \mid x \sim a \} \), being \(N \) the set of all robots, \(a \) an element of the set, and \(\sim \) is the neighbourhood equivalence relation. More concretely, the distances between all pairs of robots are computed, and then, with a given distance threshold, the subsets of robots that share the same neighbourhood are found, making each different subset a new equivalence class. For instance, robot \(A \) and \(B \) are neighbours if their distance is
smaller than the defined threshold, and if \(B \) is also neighbour of \(C \), this results in an equivalence class constituted by robots \(A, B \) and \(C \). In the end, the total number of of groups is equal to the number of equivalence classes.

Swarm Cohesion: Evaluating flock cohesion just in terms of group splits can be limiting, given that it is also important to consider the number of robots in each subgroup. When the swarm splits, it is preferable that only a few robots leave the main group, than the main group splits into two or more large subgroups. Considering this, we used an additional metric that computes the proportion of robots that remain in the main group:

\[
1 - \frac{N_{rl}}{N}
\]

where \(N_{rl} \) is the number of robots that leave the main group, i.e. the group with the majority of the robots.

3.5 Results and Discussion

A total of 30 evolutionary runs were conducted, each lasting 6000 generations. For the highest-scoring controller evolved in each run, we conducted a post-evaluation with 400 samples, 100 for each of the four combinations of number of robots (5, 8, 11 and 16 robots). In this section, we present the results obtained, and we analyse the performance and behaviours of the evolved solutions according to the metrics presented in Section Metrics.

3.5.1 Experimental setup inspired by Reynolds’ local rules - Local setup

Figure 3.4(left) shows the fitness trajectories of the 30 evolutionary runs. The highest-scoring controller obtained an average fitness of \(2.63 \pm 0.11 \) during post evaluation, as shown by the box-plot in Fig 3.4(right).

We scored the evolved behaviours according to the metrics presented in Section Metrics to evaluate the flocking performance, see Fig 3.5. Figure 3.5(left) summarises the performance of the highest-scoring controller in terms of alignment (the order metric). The results show that the evolved solution scored a mean value of \(0.82 \pm 0.06 \) during the experiment.

Figure 3.5(centre) shows the performance of the highest-scoring controller in respect to the number of groups metric. The evolved solution had a mean number of groups of \(1.92 \pm 0.38 \) at the end of the experiment. Thus, the swarm tends to fragment into two or three groups.

We then evaluated the proportion of robots that tend to leave the swarm with the swarm cohesion metric, shown in Fig3.5(right). The highest-scoring controller achieved a mean value of \(0.80 \pm 0.05 \). Inspecting the results, we observe that, as the evolution progresses, an increasing number of robots tend to leave the group, leading to a swarm cohesion of \(0.75 \pm 0.23 \) in the end of the experiment. This
means that, when the swarm fragmented, by the end of the experiment, around 25% of the robots have left the swarm.

Examples of evolved behaviours for the four different configurations of number of robots (5, 8, 11 and 16) can be seen in Fig 3.6. Similar to the quantitative results, we can observe that overall the swarm is able to align and remain cohesive, but it tends to fragment into local groups. These results can be explained by the fitness function itself promoting only local cohesion and local alignment, since it was adapted from the local rules of Reynolds: robots learn to flock, but only with their immediate neighbours.

Since the fitness function inspired by Reynolds’ rules is based on what each individual can perceive thus emphasises local quantities, we decided to conduct an additional set of experiments in which the fitness function takes into account the global behaviour rather than only local interactions.

3.5.2 Experimental setup scoring global behaviour - Global setup

In the previous experiment, we observed that scoring local behaviour resulted in local flocks rather than global coordinated motion. In this section, we reformulate the fitness function so that it is based on global alignment and global cohesion, changing the alignment and cohesion components as follows:

$$F^g = \sum_{t=0}^{\text{time-steps}} \frac{(C_t^g + S_t + A_t^g)}{T} + M,$$

(3.10)
Figure 3.5: The figure summarises results of the average from the 400 post-evaluation samples of the highest-scoring controller in terms of the metrics presented in Section Metrics. Left: The \textit{order} metric trajectory across the 3000 simulation steps. Centre: box-plot of the distribution of the \textit{number of groups} metric. Right: The \textit{swarm cohesion} trajectory across the 3000 simulation steps.

Figure 3.6: Example of the behaviour displayed by the highest-performing controller, with 5, 8, 11 and 16 robots, from left to right. The lines represent the trajectory of the robots.

Alignment component (A^g): scores the orientation of the swarm, promoting a common direction between all individuals. This term is computed using the same formula of the \textit{order} metric:

$$A^g = \frac{1}{N} \sum_{k=1}^{N} e^{i\theta_k}$$ \hspace{1cm} (3.11)

Cohesion component (C^g): rewards the swarm for keeping together as a group by using the formula:

$$C^g = \frac{1}{\text{Number of Groups}}$$ \hspace{1cm} (3.12)

where the term \textit{Number of Groups} is the same as in Section Metrics. As before, the cohesion component is defined in [0, 1].

For this new experimental setup, we used the same configuration of runs, generations and post-evaluation as in the previous setup. When referring to the two setups, they will hereinafter be referred as
Local setup: the setup in which the fitness function, F, is based on local application of Reynolds’ rules (the previous section); and Global setup: the setup in which the fitness function, F^g, is based on global application of Reynolds’ rules (this section).

The 30 fitness trajectories of the controllers within the 6000 generation can be seen in Fig 3.7(left). The highest scoring controller achieved an average fitness of 2.83 ± 0.21 in post-evaluation, as shown by the box-plot in Fig 3.7(right).

![Fitness Trajectories](image)

Figure 3.7: Left: Fitness trajectories of the controllers in each of the 6000 generations. Right: Distribution of the post-evaluation fitness scores achieved by the highest-scoring controller.

Evaluating the performance of the evolved solution, we can observe that the highest-scoring controller outperformed the best one evolved in the Local setup, in respect to all metrics, see Fig 3.8. Regarding alignment, the results show that the evolved solution achieved aligned motion, scoring a mean value of 0.96 ± 0.08, outperforming the 0.82 ± 0.06 of the Local setup.

In terms of group splitting, the swarm remains cohesive during the experiments, obtaining a mean score of 1.19 ± 0.16 number of groups. In the Local setup, the swarm tends to split into two or three groups, whereas in the Global setup, by scoring global cohesion, the swarm is generally able to remain a single cohesive group.

As for the swarm cohesion metric, the highest-scoring controller achieved a mean value of 0.96 ± 0.03 during the experiment, and scoring a mean value of 0.89 ± 0.17 in the end of the experiment. Thus, when the swarm splits, only a small proportion of the robots tends to leave the main group, with only 11% of the robots leaving the group in the end of the experiment (opposed to the 25% fragmentation displayed by the highest-scoring controller evolved in the Local setup). Given that our experiments were configured
to use 5, 8, 11 and 16 robots, this translates into an average of just 1 to 2 robots leaving the group. Observing the plot in Fig 3.8(right) with respect to the *Global setup*, we can also see an interesting steep increase in the first 500 steps (50 seconds), suggesting that the swarm size somehow increased. This can be explained by the fact that, in the beginning of the experiment, robots are placed close to each other, but at random positions, which does not ensure that every robot is seen by its nearest neighbours. To cope with this, the robots evolved the strategy of moving closely around their initial positions as to find their neighbours, and only then moving farther away as a single flock (observe Fig 3.9). This can also be seen in the plot of the *order* metric, for which the swarm also takes 500 steps to achieve alignment, the time needed to ensure the group is formed by every robot and that they are all aligned before moving away from their initial positions.

![Figure 3.8](image1.png)

Figure 3.8: The metrics scores achieved by the highest-scoring controllers of *Global setup* and the *Local setup*. Left: the *order* metric. Centre: the *number of groups* metric. Right: the *swarm cohesion* metric.

The results show that the evolved solutions successfully achieved flocking. By adapting the rules of Reynolds from local interactions to be global behaviour, robots no longer aligned and move according to their local neighbours, but instead to the all swarm, leading to a synchronised coordinated motion.

![Figure 3.9](image2.png)

Figure 3.9: Example of the behaviour displayed by the highest-performing controller evolved in the *Global setup*, with 5, 8, 11 and 16 robots, from left to right. Observing the beginning of trajectory, we can see the robots evolved the strategy of moving closely around their initial positions, in order to first form an aligned group before moving away.
4

From Reynolds’ principles to the evolution of flocking in agents

Contents

4.1 Experimental setup without the Cohesion component - No Cohesion setup 28
4.2 Experimental setup without the Alignment component - No Alignment setup 31
After finding that adapting the local rules of Reynolds as global components of a fitness function can successfully lead to flocking, we then studied if all Reynolds’ principles are necessary to embed in the fitness function to evolve flocking. We start by formulating the fitness function to no longer contain the Cohesion component. Then, we conduct experiments without the Alignment component. It should be noted that the third component, Separation, was not removed from the fitness function unlike the others, since a penalty for collision is generally required in a fitness function of swarm scenarios. Without a penalty that promotes obstacle avoidance, when transferring from simulation to real robotic hardware, robots will collide with each other, damaging their hardware and becoming inoperable in real world tasks.

The sections in this chapter are the following: Section 4.1 reports the experimental setup and results without the cohesion component; and Section 4.2 without the alignment component.

4.1 Experimental setup without the Cohesion component - No Cohesion setup

To study if the global versions of all of Reynolds’ principles are required to emerge flocking, we formulated the fitness function of the Global setup (F^g) by starting to remove the cohesion component.

$$F^{nc} = \sum_{t=0}^{\text{time-steps}} \left(\frac{A^q_t + S_t}{T} \right) + M,$$

(4.1)

In this experimental setup, No Cohesion setup, we will conduct the experiments in the same conditions of the Global setup, i.e. the same configuration of runs, generations and post-evaluation.

Figure 4.1(left) shows the fitness trajectories of the 30 controllers within the 6000 generations. And the distribution of the post-evaluation fitness scores achieved by the highest-scoring controller can be seen in Fig 4.1(right), showing an average fitness of 1.95 ± 0.08. Note that the fitness no longer rewards cohesion, and therefore has a theoretical maximum value of 2 instead of 3 as in the previous setups.

We then evaluated the performance of the highest-score controller and compared with the best one of the Global setup, as shown in Fig 4.2. Fig 4.2(left) shows that the evolved solution successfully achieved aligned motion with a mean value of 0.97 ± 0.07, achieving in the Global setup a relatively lower score of 0.96 ± 0.08.

Although the solution had a high performance in respect to alignment, it failed to achieve cohesion, as shown by the remain metrics. Regarding the metric Number of Groups, we see in Fig 4.2(centre) that the swarm tends to fragment into two and three groups. The highest-scoring controller scored a mean number of groups of 2.03 ± 0.34 at the end of the experiment, hence not being able to remain cohesive, unlike the best one of the Global setup that achieved a mean value of 1.19 ± 0.16.

As for the swarm cohesion metric, results show that a high number of robots tend to leave the
swarm, as seen in Fig 4.2(right). During the experiment, the evolve solution only achieved a mean value of 0.77 ± 0.12, and scoring a mean value of 0.60 ± 0.23 in the end of the experiment. Thereby, the swarm displays 40% fragmentation by the end of the experiment, whereas, in the Global setup, only a small proportion of 11% robots tended to leave the swarm.

In the No Cohesion setup, the results show that flocking did not emerge, with the evolved solution only achieving alignment. Given that the fitness function does not reward cohesion but alignment, it was expected aligned motion. However, it was not expected to achieve such high degree of alignment.
(0.97 ± 0.07 order) with groups splits of two to three groups. How can the robots keep moving aligned if they are not in the same group? Observing the Fig 4.3, we can see the robots moving in the same direction, but with distinct groups being next/in front to one another, without seeing each other, but still moving in the same trajectory. Thus, even thought most robots do not see each other, they still achieve high degree of alignment since they are all moving in the same way: following a curvilinear trajectory. Having all robots following a curvilinear trajectory makes it easier for a unseen robot to reunite with the swarm, whereas with a linear trajectory, a slightly change on the wheels of the unseen robot would make the robot disperse more and more over time. Observing for instance the figure in the scenario of 11 robots, we see robots that were separate that afterwards become neighbours again only due to following the same trajectory: in the last time-steps the robots belonging to the green group join the swarm again.

![Figure 4.3: Example of the behaviour displayed by the highest-performing controller evolved in the No Cohesion setup, with 5, 8, 11 and 16 robots, from left to right. Different colours represent different groups, being the black colour used to represent the main group, i.e, the group with high number of robots.](image)

Naturally, extending the experiment to more time-steps, the solution will eventually have a decrease degree of alignment, but actually this strategy to move in curvilinear way as shown to be robust to more time steps, as show in Figure 4.4. The solution remains aligned after twice the 3000 time-steps used in training, obtaining a mean value of 0.97 ± 0.07 at 6000 time-steps, only becoming in a disorder state around the 10000 time-steps.
4.2 Experimental setup without the Alignment component - *No Alignment setup*

In this setup, *No Alignment setup*, the fitness function was formulated to no longer contain the Alignment component, hence the fitness function only rewards the robots for moving as a cohesive group.

\[
F^{na} = \sum_{t=0}^{time-steps} \frac{(C^g_t + S_t)}{T} + M, \tag{4.2}
\]

The fitness trajectories of the *No Alignment setup* can be seen in Fig 4.5(left), with the same number of runs and generations as used in the previous setups. Figure 4.5(right) summarises the post-evaluation fitness scores of the highest-scoring controller, achieving a mean fitness of 1.87 ± 0.15 (note that the fitness no longer rewards alignment, and therefore has a theoretical maximum value of 2 instead of 3).
Even without the alignment being explicitly rewarded in the fitness function, the evolved solution successfully achieve flocking behaviour, as can be observed in Fig 4.6, which shows a similar performance to the Global setup, both in terms of cohesion and alignment.

With respect to alignment, the highest-score controller had a mean value of 0.97 ± 0.07, slightly outperforming the best evolved in the Global setup with 0.96 ± 0.08. As for the number of groups metric, the highest-scoring controller obtained a mean value of 1.21 ± 0.18, slightly worse than the 1.19 ± 0.16 of the Global setup. With respect to the swarm cohesion metric, the evolved solution scored a mean value of 0.95 ± 0.04 during the experiment and 0.87 ± 0.18 in the final simulation step, similar to the Global setup that reached 0.96 ± 0.03 and 0.89 ± 0.17, respectively. An example of the behaviour displayed by the highest-performing controller, see Fig 4.7.

Results show that the principle of alignment need not be explicitly rewarded to evolve flocking. Even without scoring alignment, the swarm achieves aligned motion, with each robot changing its orientation in synchrony with its neighbours. This can be explained by the fact that, by just rewarding the swarm for moving as a cohesive group alignment behaviour is promoted, since collective motion is most easily achieved when motion is aligned. Indeed, when a robot changes its orientation at the same time as its neighbours, it remains in range of the rest of the group, resulting in swarm cohesion.
Figure 4.6: The metrics scores achieved by the highest-score controller of the No Alignment setup and the Global setup. Left: The order metric. Centre: the number of groups metric. Right: the swarm cohesion metric.

Figure 4.7: Example of the behaviour displayed by the highest-performing controller of the No Alignment setup, with 5, 8, 11 and 16 robots, from left to right. The behaviour displayed is similar to one in Fig 3.9.
5 Generalisation

Contents

5.1 Swarm size (N) ... 36
5.2 Time-steps (T) ... 41
In previous chapters, we evolved controllers that effectively demonstrate flocking behaviour. In our experimental setups, we showed that both in Global setup and No Alignment setup the evolved solutions successfully displayed self-organised flocking. In this section, we assess how general the evolved solutions are. To this end, we conduct additional set of post-evaluation experiments using the highest-scoring controller of the Global setup and No Alignment setup.

This chapter is divided into 2 sections. In Section 5.1, we study generalisation with respect to swarm size, and, in section 5.2, regarding the duration of the experiment.

5.1 Swarm size (N)

5.1.1 Swarm size - 5, 8, 11, 16 robots

To study how general the behaviours are in respect to swarm size, we start by evaluating the evolved behaviours with the four variations of swarm sizes used in the experiments: 5, 8, 11 and 16 robots.

In Figs 5.1, 5.2, 5.3, we present the performance of highest-scoring controller of the Global setup on the left and the highest-scoring controller of the No Alignment setup on the right, with respect to the order metric, number of groups and swarm cohesion, respectively. Observing the figures, in both solutions we see a decrease of flocking performance in all metrics as the number of robots increase.

![Figure 5.1](image.png)

Figure 5.1: The order metric by the highest-score controller of the Global setup (left) and No Alignment setup (right), with 5, 8, 11 and 16 robots.
Figure 5.2: The number of group metric achieved by the highest-score controller of the Global setup (left) and No Alignment setup (right), with 5, 8, 11 and 16 robots.

Figure 5.3: The swarm cohesion metric achieved by the highest-score controller of the Global setup (left) and No Alignment setup (right), with 5, 8, 11 and 16 robots.
Analysing the performance of the Global setup regarding alignment, Fig 5.1, the highest-scoring controller scored a mean value of 0.98 ± 0.05, 0.96 ± 0.09, 0.96 ± 0.06 and 0.95 ± 0.09 with 5, 8, 11 and 16 robots, respectively. Results show that the evolved solution obtains similar values for the different variations of swarm sizes, achieving aligned motion in all. As for the metric number of groups, the highest-scoring controller obtained 1.08 ± 1.08, 1.17 ± 0.38, 1.22 ± 0.43, 1.29 ± 0.51 with 5, 8, 11 and 16 robots, respectively. Therefore, for the four different configuration of swarm sizes, the evolved solution was able to remain in one single cohesive group. Regarding swarm cohesion, during the experiment, the highest-scoring controller obtained a mean value of 0.98 ± 0.08, 0.95 ± 0.11, 0.95 ± 0.10 and 0.94 ± 0.11 for each of the four swarm size variations mentioned above. As the evolution progresses, more robots tend to leave the group, leading in the last time-step to a swarm cohesion of 0.91 ± 0.16 with 5 robots (i.e. 9% fragmentation: ≈ 0 robots), 0.91 ± 0.16 with 8 robots (9% fragmentation: ≈ 1 robot), 0.88 ± 0.16 with 11 robots (12% fragmentation: ≈ 1 robot), and 0.85 ± 0.18 with 16 robots (15% fragmentation: ≈ 2 robots). Therefore, just 0 to 2 robots tend to leave the group.

As for the No Alignment setup the highest-scoring controller also achieve alignment motion in the four variations of swarm size, scoring 0.98 ± 0.07, 0.97 ± 0.06, 0.97 ± 0.08 and 0.96 ± 0.05, respectively. Regarding the number of groups metric, the highest-scoring controller achieved 1.11 ± 0.30, 1.18 ± 0.39, 1.23 ± 0.52 and 1.32 ± 0.52 with 5, 8, 11 and 16 robots, respectively. On average, the evolved behaviours are able to remain as a single group, but note that, comparing with the Global setup, the scores have more variance. With respect to the proportion of robots that tend to leave the swarm, the swarm cohesion metric, the solution achieved a mean value of 0.97 ± 0.09, 0.96 ± 0.10, 0.95 ± 0.12 and 0.95 ± 0.10 during the experiment for each of the different swarm size configurations. In the end of the experiment, the highest-scoring controller scored 0.91 ± 0.15 with 5 robots (9% fragmentation: ≈ 0 robots), 0.86 ± 0.20 with 8 robots (14% fragmentation: ≈ 1 robots), 0.89 ± 0.16 with 11 robots (11% fragmentation: ≈ 1 robots), and 0.81 ± 0.19 with 16 robots (19% fragmentation: ≈ 3 robots). The solution had a lower performance of swarm cohesion compared with the best one of the Global setup (particularly for the case of 16 robots), but still only a small percentage of robots tend to leave the group: 0 to 3 robots.

Overall, results show that, even though the performance decreased as the swarm size increased, both the evolved solutions successfully displayed flocking behaviour in any of the four swarm size variations.

5.1.2 Swarm size - 20, 30, 50, 100 robots

In the previous section, we assessed the performance of the evolved behaviours in respect to the four swarm size variations used in the experiments (5, 8, 11 and 16 robots). In this section, we study if the evolved behaviours are able to scale to a higher number of robots. To this end, we conduct post-evaluation experiments in which we test with different configurations of swarm sizes than those used
in the evolutionary process. Having used in our experiments 5, 8, 11 and 16 robots, which translate to an average of 10 robots, we decide to test with twice and three times as many, 20 and 30 robots. Furthermore, to assess if the evolved behaviours could handle extremely large numbers of robots, we also test with 50 and 100 robots. So, the highest-scoring controller of the Global setup and No Alignment setup were tested with 20, 30, 50 and 100, each with 100 post-evaluation samples.

As in the previous section, the figures on this section, Figs 5.4, 5.5, 5.6, show the performance of highest-scoring controller of the Global setup on the left and the highest-scoring controller of the No Alignment setup on the right regarding the order metric, number of groups and swarm cohesion, respectively. Inspecting all figures, we observe that both solutions did not scale to higher number of robots, particularly the highest-scoring controller of the No Alignment setup.

\[\text{Figure 5.4: The order metric achieved by the highest-score controller of the Global setup (left) and No Alignment setup (right), with 20, 30, 50 and 100 robots.} \]

Evaluating the flocking performance with respect to the order metric, the solutions only achieved aligned motion with 20 robots, scoring the highest-scoring controller of the Global setup a mean value of \(0.95 \pm 0.06\) and the best one of No Alignment setup a mean value of \(0.96 \pm 0.05\). When the number of robots is increased to 30, 50 and 100 robots, the solutions have difficulty in reaching aligned motion, as well as on keeping aligned. As seen in Fig 5.4, as the number of robots increase, it takes more time for the order trajectory to increase, and as the time progresses, the order trajectory starts to decrease. The highest-scoring controller of the Global setup scored \(0.91 \pm 0.12\) with 30 robots, \(0.87 \pm 0.13\) with
Figure 5.5: The number of groups metric achieved by the highest-score controller of the Global setup (left) and No Alignment setup (right), with 20, 30, 50 and 100 robots.

Figure 5.6: The swarm cohesion metric achieved by the highest-score controller of the Global setup (left) and No Alignment setup (right), with 20, 30, 50 and 100 robots.
50 robots, and 0.79 ± 0.17 with 100 robots and the highest-scoring controller of the No Alignment setup scored a mean value of 0.94 ± 0.08, 0.84 ± 0.15, 0.68 ± 0.18, respectively.

As for the number of groups metric, for each test of 20, 30, 50, 100 robots, the highest-score controller of the Global setup achieved 1.42 ± 0.61, 1.74 ± 0.89, 2.08 ± 1.02, 3.48 ± 1.73, and the best controller of the No Alignment setup scored 1.38 ± 0.63, 1.71 ± 0.88, 2.91 ± 1.50, 4.16 ± 1.82, respectively. As before, the evolved solutions were only able to scale up to 20 robots.

Finally, regarding the swarm cohesion metric, the highest-scoring controller of the Global scored a mean value of 0.93 ± 0.11, 0.90 ± 0.13, 0.87 ± 0.13, 0.81 ± 0.14, and the best one of the No Alignment setup scored 0.94 ± 0.11, 0.91 ± 0.12, 0.82 ± 0.13, 0.83 ± 0.12 with 20, 30, 50 and 100 robots, respectively. In the end of the experiment, both highest-scoring controllers, the Global and No Alignment setup scored each: 0.80 ± 0.18 vs. 0.76 ± 0.24 with 20 robots (20% vs. 24% fragmentation: ≈ 4 robots vs. 5 robots), 0.74 ± 0.18 vs. 0.67 ± 0.22 with 30 robots (26% vs. 33% fragmentation: ≈ 8 robots vs. 10 robots), 0.67 ± 0.19 vs. 0.45 ± 0.18 with 50 robots (33% vs. 55% fragmentation: ≈ 17 robots vs. 28 robots), and 0.57 ± 0.19 vs. 0.51 ± 0.21 with 100 robots (43% vs. 49% fragmentation: ≈ 43 robots vs. 49 robots). With the exception of 20 robots, a high proportion of robots tend to leave the group in both solutions.

Results show that the higher the number of robots, the harder is for the evolved solutions to move as a single, cohesive flock. The solutions were only able to scale to 20 robots, failing to scale to higher numbers of robots. As future work, we will attempt to promote general and scalable behaviours. For instance, by conducting experiments that use a (i) higher variability of swarm sizes and (ii) higher numbers of robots. At the time, when designing our experiments, we thought we were promoting general and scalable behaviours by using 5, 8, 11 and 16 swarm size variations, instead of just using one fix number of robots. But, on the retrospective, our four variations have small differences of 3 to 5 robots between each, and we used small swarm sizes. This explains why it was harder for evolved solutions to display the same behaviour for a bigger numbers of robots.

5.2 Time-steps (T)

In this section, we study if the evolved behaviours can generalise to experiments of longer duration by conducting post-evaluation experiments with higher number of time-steps. We test the highest-scoring controller of the Global setup and the highest-scoring controller of the No Alignment setup with 9000 time-steps, which is three times more than the time-steps used in the experiments (3000 time-steps).

Figure 5.7 shows the performance of the evolved solutions in respect to all metrics. Inspecting the results, we observe that both solutions failed to generalise to higher number of time-steps, having the highest-scoring controller of the Global setup more difficulty in adapting to more time-steps.

Regarding the order metric, the highest-scoring controller of the Global setup scored 0.90 ± 0.09,
and the best one of the No Alignment setup achieved 0.93 ± 0.06. Observing Fig 5.7(left), the evolved behaviours start to misalign after the 3000 time-steps, scoring the highest-scoring controller of the Global setup and No Alignment setup a mean value of 0.72 ± 0.23 and 0.85 ± 0.18, respectively, in the last time-step. As for the number of groups metric, Fig 5.7(centre), the evolved solution of the Global setup obtained a mean value of 2.13 ± 0.94 and the best one evolved in the No Alignment setup scored 2.11 ± 0.76. Thus, both solutions failed to remain as one single flock, instead splitting into two to four groups. Regarding swarm cohesion, the evolved solution of the Global setup achieved a mean value of 0.79 ± 0.15, and the highest-scoring controller of the No Alignment scored 0.80 ± 0.12. As seen in Fig 5.7(right), as the time increases the evolved solutions tend to fragment more and more: the best solution of Global setup scored, in the end of the experiment, a mean value of 0.53 ± 0.20 (47% fragmentation), and the best solution of the No Alignment setup scored a mean value of 0.63 ± 0.23 (37% fragmentation).

We conclude that the evolved behaviours were not able to adapt to longer experiments duration. After the 3000 time-steps, the performance of evolved behaviours start to decrease and continue to decrease as the time increases. This shows that both solution specialised to the 3000 time-steps of the evolutionary process. As future work, it would be important to run the experiments with more time-steps for them to become more robust and general to different duration experiments.
6

Conclusion

Contents

6.1 Conclusions ... 44
In this chapter, we summarise and discuss the main contributions of our study. Also, we highlight future work that can follow the study of this dissertation.

6.1 Conclusions

In this dissertation, we demonstrated how controllers can be synthesised to allow for the evolution of flocking behaviour. Inspired by Reynolds’ flocking rules, we explored simple, explicit fitness functions to evolve controllers that effectively demonstrate self-organised flocking. We started by adapting Reynolds’ three local behavioural rules to components of the fitness function, which scored separation, cohesion and alignment in respect to robots’ neighbours. Having the fitness scores based on the individuals’ conformity to Reynolds’ rules only resulted in local, fragmented flocking behaviours. We therefore modify the components of the fitness function so that they consider the entire group of agents simultaneously, and find that scoring global behaviour lead to global coordinated motion: the evolved solutions successfully displayed self-organised flocking. Our results showed that flocking can be evolved by embedding the rules of Reynolds in a fitness function, with the condition that Reynolds’ local rules become global instead.

We then conducted additional experiments (i) without scoring cohesion in the fitness function, followed by (ii) no longer scoring alignment. The purpose of these experiments was to study if all of Reynolds’ rules are necessary to evolve flocking. We found that flocking can be achieved without explicitly rewarding alignment. Without scoring alignment, the swarm still achieves aligned motion with each robot moving in synchrony with its neighbours. Although the fitness function only rewards the robots for moving as a cohesive group, the fitness is itself inherently promoting alignment behaviour, since cohesive motion can be easily achieved when motion is aligned. A robot has less chances to lose sight of the group if it changes the orientation at the time time as their neighbours.

Furthermore, we assess how general the evolved behaviours were in terms of swarm size and the duration of the experiment. Results show that the evolved solutions specialised to the time-steps and swarm sizes used in the evolutionary process. Thus, future work includes designing and configuring experiments as to consider sufficient number of time-steps, as well as, a higher variability of swarm sizes and higher numbers of robots.

In this dissertation, we have shown that controllers can be evolved to display flocking, a complex behaviour, with a simple explicit fitness function, contrary to what was claimed in previous work [68]. Our study represented a significant step toward the use of evolutionary techniques to self-organised flocking. We further believe that represents a step in the evolution of other collective behaviours that benefit from the same principles of flocking. In our ongoing work, we are studying how to integrate flocking in the evolution of such behaviours. Having a large number of autonomous robots that can
cooperate to move as a single, cohesive group provides great sensing capabilities, which is beneficial for several real-world-tasks, specially exploratory tasks, such as search and rescue, foraging, patrolling and environment monitoring. A possible experiment here would involve a scenario of cooperation between a preprogrammed robot and evolved robots in a navigation task, with the goal of all robots having to go to a target location. The preprogrammed robot would have the capacity to travel to a specify endpoint, and the remain robots would need to follow the preprogrammed robot. We could evolve such controllers by simply using the flocking fitness function presented in this dissertation. Since the fitness rewards moving as a single cohesive flock, the solutions that do not follow the preprogrammed robot will be penalised, and, hence, surviving the ones that follow the preprogrammed robot to the target location. With this, it would not be need to conceive a fitness function that explicitly score the robots to follow the preprogrammed robots, neither to evolve behaviour that attempts to find the target location.

Another direction that can be taken is the study of evolving flocking for robots with disruptive motion, such as the jumping locomotion. When the robot motion is disruptive, it is harder to obtain flocking, since individuals are no longer able to continuously perceive the orientation of their neighbours. Usually, such challenges are not taking into account in the literature, because it is assumed that robots are equipped with holonomic motion and large sensor ranges [82]. Using a discrete motion can also be of increasing complexity in the Evolutionary Robotics field, since discrete actions can make the evolutionary process harder. Indeed, continuous parameters are usually prefered to discrete ones, due to the fact that smooth parameters of sensors and actuators tend to lead to small changes in behaviour, thereby creating a smooth fitness landscape [54, 83, 84]. To the date, and to the best of our knowledge, we have been the only authors that successfully demonstrated how controllers can be evolved for a robot capable of jumping [59]. In that study, we only conduct simulation-based experiments using only one robot capable of jumping, without actually studying large-scale systems of autonomous jumping robots. Thus, the study of evolving flocking behaviour for robots with jumping locomotion could not only present novel contributions in the evolution of flocking behaviour, but also could further contribute to the study of evolving controllers that can take advantage of jumping locomotion.
Bibliography

