
Designing and Implementing a browser RTS

João Pedro Lopes Ferreira
joao.lopes.ferreira@tecnico.ulisboa.pt

Instituto Superior Técnico, Lisboa, Portugal

June 2019

Abstract

The video game genre that is recognized as RTS, had many stages of evolution since the beginning
of it’s creation. As the technology evolved this type of game can nowadays be played in different types of
devices. There is still few RTS games that can be played with more than one different device.

This document presents the solution to design and create a RTS Game, that is playable on both
personal computers and mobile devices. The game conceived on this project uses HTML5 and JavaScript
as programming languages ND is playable in multiplayer mode that multiple players can compete between
themselves (1 versus 1). This game also contains the 4X elements present in the traditional RTS games
(”eXplore, eXpand, eXploit and eXterminate”).
Keywords: RTS, Multiplayer game, Phaser.io, Client-Server networking, Cross-platform.

1. Introduction

This is a war universe. War all the time. That is it’s
nature. There may be other universes based on
all sorts of other principles, but ours seems to be
based on war and games. - William Burrows[4]

The term RTS was introduced in BYTE maga-
zine in 1982 [9, pg 3, 124], however it’s Brett Speny
that is credited with the creation of this term with
his game Dune II[8].

Strategy games challenge the player to achieve
victory, by planning and using different strategies
that are used against one or more opponents[2,
pg 419]. This genre distinguishes strategy games
from puzzle games that call for planning without
the existence of conflict, and from construction and
management simulations that doesn’t have influ-
ence against opponents. Strategy games usually
has as a key goal defeating all enemy forces, so the
majority of strategy games are military games with
some differences between each other. Victory is
obtained by superior planning and taking the best
possible actions, where the elements of chance or
luck are not determinant. Other challenges such as
tactical, logistical, economic, and exploration chal-
lenges can also be present.

This type of games falls in two main sub-genres:
Turn-Based Strategy and Real-Time Strategy. In
a Turn-Based Strategy, players can consider what
type of actions they want to do in the game, con-
sidering the benefits between each available ac-
tions and choosing the most optimal ones during
it’s turn. The player doesn’t have to worry about
the time that is passing during the consideration of

it’s actions. Real-Time Strategy Games who were
developed after the Turn-based genre, add time to
the game for pressuring the players to choose the
optimal actions at a fast pace[2, pg 420].

The RTS Video Game genre can be played in
both personal computers and mobile platforms. In
2015 ESA released a study about the state of in-
dustry and video game industry in the USA[1] dur-
ing the 2014 year. In this study is reported that
62% of the population plays video games on per-
sonal computers, 35% on their smartphones and
31% on wireless devices. Also 37.7% of the com-
puter games played were of the Strategy genre.
Moreover 54% of the gamers played at least a mul-
tiplayer game once per week.

According to the Independent there is at least
one mobile device for each living person on
planet[3]. These devices have powerful graphi-
cal capabilities that enables to run video games.
Those games can be installed and downloaded
in this devices by application stores (App Store,
Google Play), or be played in a mobile browser.

The main Objectives present in this thesis is
the creation of a RTS game using HTML5 and
JavaScript languages, working in personal com-
puters and mobile devices (cross-platform), con-
taining the traditional 4X elements present in this
game genre (”eXplore, eXpand, eXploit and eX-
terminate”) and being able to be playable in mul-
tiplayer mode.

To be able to accomplish the main goal of this
thesis, User Tests were made with a chosen Fo-
cus Group made of people with heterogeneous

1



characteristics. These tests were performed to ob-
serve the game experience that is being propor-
tionate for the participants of these type of tests,
with the goal to improve that experience and check
if the desired objectives purposed at the start of
this project were accomplished. For gathering the
results made by those tests, there were used three
types methods. Those methods were Observation,
Questionnaire and Server Text Logs. Those meth-
ods would be applied on two sets of test experi-
ments, corresponding to the Alpha and Beta proto-
type made for this thesis project.

2. Related Work

Regarding the elements that are part of a RTS: The
theme of a strategy game usually is derived from
the primary activity that takes place in the game.
While there can be differences among RTS games,
most of them fall into different categories of games
of conquest, trade, or exploration.

Since the player acts as a military commander of
a faction or nation in RTS games, he must deliver
orders to it’s troops so the player can build an army
to defeat it’s opponent. Those troops are treated
Units existing various types of them, with some
of them not being specialized in combat but con-
tributing to the growth of the player’s army. There
are also Structures who permit the construction
of units, development of new technology or de-
fending against enemy troops. To be able to pro-
duce these two entities, the player must use the
currency of the RTS games which is Resources
by harvesting them. The resources are spread
across the Game Map which reflects the world of
the game. At a start of a RTS game, the game
map is shrouded by black clouds being called Fog
of War, limiting the vision of the player and having
to move units or construct structures on those ar-
eas to become revealed. One aspect that is char-
acteristic of this type of game is the 4X elements,
being mentioned for the first time by Alan Emrich
in September 1993[6, pg 92-93]. The meaning for
those for elements are: Explore means that play-
ers send units across a map, to reveal surrounding
territories and enemies; Expand means that play-
ers conquer new territory by creating new struc-
tures on it, or extending the influence of existing
structures; Exploit means players extract and use
resources to improve their nation; and Extermi-
nate means attacking and eliminating other play-
ers, mostly trough military battles.

The majority of RTS game were released to the
computer platform, since the mouse and keyboard
of it would help the players to deliver orders to it’s
army, with more speed and precision than the in-
put events made on mobile devices. Also the mo-
bile devices did not had the computational power

available for the computer platforms, not being
the appropriate game device to play RTS games
which are very compute-intensive. Nowadays mo-
bile platforms are severely more developed, being
able to use the internet on mobile browsers. With
this it is possible to have the game of this thesis be-
ing Cross-platform, being played on both devices
types referred above.

To do so there would be needed to use two pro-
gramming languages. The first one being HTML,
or called HyperText Markup Language. HTML al-
lows the creation of websites. HTML documents
are made with HTML elements, that have a start
tag and end tag that are written with angle brack-
ets and the context between them. With the use
of these tags it’s possible to manipulate various el-
ements that can be part of a web page, such as
a title, a header, a paragraph, an image, a video
and many others. This language can also em-
bed scripts written in other languages, for perform-
ing functions on web pages that HTML alone can’t
do. The second programming language used on
this project, is one of the languages that can be
used by HTML, which is Javascript. This lan-
guage first appeared in May 23 1995 developed
by Brendam Eich, and it has been standardized
in the ECMAScript language specification[7, pg 2].
Javascript is commonly used with HTML to add
client-side behaviour to web pages. With the help
of the Domain Object Model it’s possible to add in-
teractive events to a web page, linking scripts to a
HTML page in the <script>tag.

For helping to create a RTS multiplayer game
using these two languages, a HTML framework
that could help to implement a game to be played
on multiple platforms was used. The frame-
work is called Phaser.io, or simply called Phaser.
This framework could solve many issues that are
present with the development of cross-platforming
games, such as solving the screen resolution, pro-
vide multiplayer options, load sprites, sounds and
animations and others. The main reasons that
Phaser was the chosen framework for this project,
was the numerous online examples available for it
and the active and helpful community present in
it, that were greater than any other framework that
was researched.

3. Game Design
In this section there is a description on some ele-
ments that were part of the Game Design of this
project thesis, the game being called Planetary
Conquest .

There are two available Races to be played on
this game: the Humans and the Orghz who are
vile green creatures. The main objective of this
game is to destroy every unit and structure that the
enemy race disposes. The game window of Plane-

2



tary Conquest is in a top down view with 2,5D per-
spective or called isometric projection. With this
type of projection it’s possible to represent shapes
close to a three-dimensions group. However only a
side of a game object is shown per time frame. This
type of perspective is referred as 2,5 perspective,
since it is an illusion of three dimensions depth.

There are 4 types of Units that exist in this game,
with each race having one unit for each type. The
military units of each race have different combat
attributes, in order to differentiate them. The types
of units are the following: Peon which is weaker in
combat capabilities, but it is vital to the growth of
the player’s army. It is the only unit that can gather
resources, construct and repair structures. The
Melee Infantry Units are the cheapest units that
the player can produce, being able to attack units
and structures from a short distance. Ranged In-
fantry Units are the other type of infantry present
in this game, being slightly weaker than the former
military unit presented, but it is capable of attacking
from afar. The Mounted Units are slightly stronger
than the infantry units, but they are mounted by
horses, having a greater movement speed. The
last type of unit Flying Units is capable of flying
over the terrain of the game map, ignoring the col-
lision with any unmovable game object. Only units
that have ranged attack type or who are flying units
as well can attack this type of unit.

Regarding the Strcutres there are 8 types,
which contribute to the production and strengthen-
ing of a military army. Starting with the Command
Center who is vital for the growth of the player’s
race, is responsible to the production of peon units
and to receive the resources gathered by them.
Then there is the Barracks which is responsible
to the production of infantry units, Factory for the
production of mounted units and Flying Nest for
the production of flying units. There is also a de-
fensive structure which is the Tower who attacks
enemy forces, and the House who permits for the
player to increase it’s maximum population in order
to be able to produce more units. For strengthening
the player’s army there is the Research Building
which permits to increase the units damage cor-
responding to their attack type and improve their
armor points. Also there is another structure that
permits to strength the units selected by a player
temporarily, which is the Power Building. This
structure permits the use of the player’s race Su-
per Power which is a feature of Planetary Con-
quest. After this structure is produced, by wait-
ing for a specified time it is possible to temporary
strength the player’s selected units, at a magnitude
greater than the other upgrades that the player can
choose. The Super power for both races have dif-
ferent applications, for the Orghz is increasing the

damage inflicted and for the Humans is reducing
the damage received. There is another feature re-
garding the available upgrades, which is the exis-
tence of Unique Upgrades for each military unit
that can be researched on it’s corresponding mil-
itary structure, and the race and tower upgrade
which can be researched on the Command Cen-
ter.

The Economy of this game is composed of three
resources: Crystals, Nitrogen Liquid and Hy-
droxygen Gas. Those resources are spent by the
player in order to improve it’s military power. Those
resources are gathered on Resource Deposits,
one for each resource that are spread across the
map. There is a special set of those deposits which
is called Ancient Resource Deposits, that dou-
bles the amount of the quantity of resource that is
extracted each time by a peon unit, which is 20;
compared to the other deposits which is 10. The
Hydroxygen resource has different uses for each
race. On the Orghz it is spent to produce Units and
Structures, and to develop new technology. For
the Humans it is used for their units breathing, be-
ing spent over time during a 6 seconds timer, with
the consumption increasing regarding the amount
of the population an Human has. If it is not possi-
ble to consume Hydroxygen for this behaviour, the
Human units will take some damage to their health
points.

Another feature present on this game is the ex-
istence of Monsters, that are present in small
groups spread across the map. There are 3 types
of monsters: The Ogres being a Melee Infantry
type, the Archers being a Ranged Infantry type
and Gnomish Airplane being a Flying ranged
type. Each monster can be interactive with the
players units, providing the use of 3 Monster Op-
tions: The Trade option which enables the trading
of a specified quantity, of one type of resource a
slightly bigger quantity of another resource. The
Recruit option for receiving 3 copies of the type of
monster that was being negotiated as units. The
Pillage option which enables to try to kill those
monsters receiving some resources in return.

Planetary Conquest has the 4X elements
present on it. The player can Expand by construct-
ing new structures, it can Exploit by extracting re-
source locations, or interacting with monsters and
it can Exterminate by killing enemy troops or mon-
sters. The player can also Explore the game map,
to gather resources in other Resource Deposits or
to interact with monsters encampments.

The figure bellow represent the interface of this
game found on mobile devices with the elements
discussed in the Game Design section.

3



Figure 1: Planetary Conquest Mobile Interface

4. Game Architecture

This section describes the Game Architecture
that is part of this project. Starting with the
Technical Limitations of Planetary Conquest, a
Game Server is needed in order for players with
their game devices to access it as clients, to be
able to play this game. Also it has an impor-
tant role in maintaining the clients synchronized
and being authoritative over events that unfold in
the game matches. The server uses the library
Socket.io to enable real-time, bidirectional and
event-based communication between the browser
and the server; and Express which is a mini-
mal and flexible Node.js web application frame-
work that provides a robust set of features for web
and mobile applications. The game framework
Phaser.io is needed to run this game on personal
computers and mobile devices, using an Internet
Browser.

The users of Planetary Conquest are expected
to know how to access to the Game Server domain
using their game device for it and they must be able
to input commands to the game in order to do the
game actions they desire. Also they want the game
inputs to have a fast response time, with the use of
an interface that is easy to navigate with.

As stated before a Game Server is needed to
connect the players to Planetary Conquest. The
server will have all the information about the game
match, simulate some events belonging to it and
have complete authority about what it is enfolded
between the players actions. In short the server is
in charge of providing data and services to one or
more clients. In the context of game development
the most common scenario is when two or more
clients connect to the same server, the server will
keep track of the game match as well as the dis-

tributed players.

The type of connection for the communication
between the Server and the Clients is TCP (Trans-
mission Control Protocol). When data is sent
through this protocol, the application running in the
source machine first establishes a connection with
the destination machine. Once a connection has
been established, data is transmitted in packets in
such a way that the receiving application can put
the data back together in the appropriate order[11].
TCP also provides built-in error checking mecha-
nisms so that, if a packet is lost the target appli-
cation can notify the sender application, and any
missing packets are sent again until the entire mes-
sage is received. There are still disadvantages with
the use of this protocol, namely the time elapsed
of the replies sent by the server to the connected
clients is bigger, comparing with other commonly
protocol used named UDP (User Datagram Pro-
tocol). Using TCP is still preferable as the com-
munication protocol between the game Server and
Clients of this project, since this protocol guaran-
tees that every message is sent to the clients in it’s
entirety.

To guarantee that the clients are synchronized
with the server, and the messages sent by the
server are received to all the clients at the same
time without major latency problems, it was used
an architecture known as lock-step networking
model[10, pg 382]. The server will achieve this
behavior by running a game timer at 10 clock ticks
per second (100 ms). The player’s client also runs
a game timer, at the same pace as the server.
Each time the client timer ends he will send to the
server his own game tick, being updated to the
client’s corresponding socket. When a command
request is sent by a client, it will be stored in a

4



command array that the server has. Each time the
server game timer ends he will send the response
of the requested commands to the clients. Those
commands have specified the current game tick on
them. The clients will execute the commands re-
sponse, corresponding to the game tick received.
Since the server needs to execute the response to
the commands for all the players at the same time,
it will need to wait for the commands sent from all
the players to arrive before stepping ahead to the
next game tick, which is why it’s called lock-step.
If there is a least one client whose game tick is
lower than the server’s game tick, which could be
caused by latency issues, the commands stored
by the server will not be send to the clients. The
server has to wait for another timer cycle, to check
if the clients who had their game tick lower than the
server’s game tick are now synchronized with the
server’s game tick, in order to the response of their
commands to all the connected clients.

The Lock-step method demonstrated how it was
possible to have the clients synchronized with the
server, and the server messages be relayed to all
the clients at the same time. However there is
still the emergence to guarantee that no types of
cheating happens. To do so the server needs to be
authoritative over the events of the game match
played by the clients. With the server simulating
the game match state, the clients do not have to
worry about being cheated or receiving incorrect
messages about the events of the game. One ex-
ample of a server using it’s authority is in unit vs
unit combat. The order for these units to combat
is made by the clients input and the animation of
those attacks as well. However the calculations
of damage on that combat are simulated by the
server only. The server sends information to the
client about the amount of health an unit has lost
by enemy attacks, and when it has to die. In sum-
mary the game state of a game match is managed
by the server alone. Clients send their actions to
the server. The server updates the game state pe-
riodically and then sends the new game state back
to clients who just render it on the screen.

After completing the discussion for the archi-
tecture that is part of the Game Server used in
this project, we will discuss the architecture that is
part of the game framework used on this project
Phaser.io. Game states are files that have differ-
ent parts of the Planetary Conquest game included
on them. When one part of a state functional-
ity is completed, it requests the start of a follow-
ing one. The first state of this project is game.js,
responsible for creating a Phaser game instance
with a size and render mode specified. Following
this state is boot.js, which is responsible for the ini-
tialization of the game screen, depending on the

game device used and other types of initialization
such as the type of physics to be used or enabling
input events. The next state is load.js responsi-
ble for loading to the game various assets used
such as images, spritesheets, text fonts or JSON
files containing information about the game map.
The final game state is play.js, which is the game
manager of Planetary Conquest and has various
functions such as initializing the interface, respond
to client inputs or receive and treat the information
sent by the server. The three interactive game ob-
jects (Units, Structures and Monsters) also have a
class that contains their functionality, being unit.js,
building.js and monster.js.

5. Implementation

This section describes what were the mos impor-
tant tasks that were implemented in this project,
in order to fulfill the main objectives purposed for
Planetary Conquest.

The first task implemented was the use of
Spritesheets, which are images that contain sev-
eral other small images that can be part of an an-
imation of a game object. Combining the small
images in one big image improves the game per-
formance, reduces the memory usage and speeds
up the startup time of the game. The spritesheets
used for this project can be found on the website
Sprites Resources, and are part of the RTS game
Warcraft II: Tides of Darkness. Those spritesheets
were not appropriate to be used on Phaser, since
each image did not contain the same dimensions
and were not evenly separated. The first step used
to get an appropriate spritesheet to be used was
using the program ShoeBox to extract each small
image that was part of that spritesheet. Then those
images would be loaded as a pile on GIMP, being
modified to have the same width and height and
being placed on a new spritesheet. Now Phaser
could load the modified spritesheet, by knowing the
size of each frame that would be used on a game
object animation.

The second task implemented was the Game
Map. It was used the tool Tiled which is a 2D map
editor both for orthogonal and isometric perspec-
tive, to create a game map image. The map is
divided in a grid by tiles, containing 45 rows and
columns of them. Each tile measure is 64x32 pix-
els, which has appropriate dimensions to be used
on an isometric game. The game map would be
loaded on the game load state - load.js as an im-
age, then it would be placed in the game manager
state - play.js. Each tile position would be refer-
enced to a matrix being also 45x45, where there
could be one of two possible numbers: 0 specify-
ing a non-occupied position, and 1 specifying an
occupied position.

5



There was also the use on an isometric plugin
available for the Phaser framework, to use a set of
operations regarding isometric projection. With the
use of this plugin, it was possible to calculate the
position or velocity of a moving game object on a
isometric game world.

For units and monsters being able to have in-
telligent movement, walking from a start to an
end position using the shortest distance possible,
a pathfinding algorithm was used called A-Star
movement. This algorithm calculated the shortest
distance between a starting node and an end node
of a node graph. I used the following equation:

f(n) = g(n) + h(n) (1)

The objective of this function is to have the lowest f
value possible, which will indicate the shortest path
possible for one node to another. The parameter g
means the movement cost to move from the start-
ing node to a given square on the grid, following
the path generated to get there; and the parame-
ter h is the estimated movement cost to move from
that given square on the grid to the final destina-
tion, which is referred as an heuristic. With the use
of an heuristic it would be faster to calculate the
shortest path possible. The heuristic used for this
type of movement that permitted diagonal move-
ment between nodes was the Euclidean heuristic,
that is represented by the following formula:

h(n) =
√
(goal.x–n.x)2 + (goal.y–n.y)2 (2)

At some point of the project’s development it was
needed a data structure that would contain the po-
sition of the game interactive objects. It would be
helpful to search for nearby game objects that were
close of a specified game object, instead of com-
paring the distance between every existing game
object present on the map. The method used for
this data structure is called Spacial Hashing, that
is a process by which a 3D or 2D domain space
is projected into a 1D hash table. For this project
it was used arrays instead. There were two ar-
rays used for this method, one for units and mon-
sters, and one for structures. Each array had 64
positions being referenced as a matrix of 8 lines
and columns respectively. Each position of the ar-
ray or called by this method bucket represented a
portion of the map, in this case a 1 by 64 part of
it. On these buckets it is kept the interactive ob-
ject, whose sprite bounds intersect with the regions
they are specifying. With the interactive game ob-
jects position being referenced and updated on this
method, by checking the adjacent positions of the
buckets that a game objects was part of it, it could
be easily found the other game objects who were
close to it.

Since this game has cross-platform functional-
ity, using mobile devices as one of the compatible
game devices for playing Planetary Conquest, the
Device orientation of this type of device needed
to be fixed on landscape position. Also since there
are various screen sizes for the mobile platforms,
the game size was scaled according to the screen
measures of them.

The game server also employed other types of
authority not discussed yet, such as the validation
to produce units and construct structures, research
of new technology, simulate the movement of units
and monsters; and the behaviour of the Hydroxy-
gen resource for the Human race.

There were some measures adopted to increase
the game’s performance such as the use of pre-
fabs for Units and Monsters, the rendering op-
tion used being Canvas instead of WebGL, use of
Bitmap text instead of normal text and the use ani-
mations when game object are defeated instead of
particle systems.

Some behaviours common to the RTS genre
such as the Fog of War or Collision and Avoid-
ance of game objects, could not be implemented
either by prejudicing the game’s performance or
not being able to be simulated by the Game server
calculations.

6. User Tests
This section presents the User Tests performed
with the Focus Group of this project, and the re-
sults that were obtained with an analysis of them.
These tests were performed to observe the game
experience that is generated by the users playing
the game’s project. They also helped to identify the
components that are contributing more to the game
experience, and to find an equilibrium on parame-
ters that were be analyzed[5, pg 253].

There were 20 people that were part of the Fo-
cus group gathered, having participated in 13 user
tests. Each person had different characteristics
between each other such as age, job, education
and gaming experience with RTS and computer
and mobile games in general. It was important to
have a group of people with heterogeneity char-
acteristics, in order to have more different gam-
ing experiences within the tests performed. There
were two sets of tests performed, corresponding
to the Alpha Prototype and Beta Prototype of
Planetary Conquest. For the first prototype, the
User tests were mostly performed in the develop-
ers house, since the participants were already ac-
customed with it not having any problems or anx-
iety to that place. For the Beta Prototype most
of the tests were performed on the Instituto Su-
perior Técnico - Campus Taguspark during the
MOJO 2019, where Planetary Conquest was one
of the games showcased during this event.

6



Each test was performed by two participants,
one being the Orghz player and the other being
the Human player. Before the players started the
test it was explained why these test were being per-
formed and what they would do in the test: The par-
ticipants would be playing for the maximum of 15 to
20 minutes (Alpha and Beta prototype respectively)
for trying to defeat their opponent. There were also
5 minutes used before the tests that were used
to explain the contents that could found in game,
and explaining some basic actions that the players
could do such as gathering resources with peon
units, constructing a structure, choosing monster
options and attacking an enemy unit.

For analyzing each set of tests 3 methods were
used: Observation, Questionnaires and Server
Log Files. The first one Observation consisted
on looking what the players were doing on each
game device screen, and taking notes about some
events during the experiment; such as their visible
emotions, if a game event was not behaving prop-
erly, if there were problems with the usability of the
interface and others. The second one Question-
naires are set of questions that would be answered
by the participants at the end of the User tests
performed. The questionnaire contains 4 sections:
The first section has questions about the character-
istics of the tester such as age, job, studies and the
experience of playing RTS and computer and mo-
bile games. The second section contains closed
questions about the game elements of this project
such as the race played, the opinion about the us-
age of each resource available, the monster op-
tions, resource costs of units and structures. The
third section is related to the game experience,
having questions on how focused the player was
on the actions he was performing, how quickly the
player could thought about the actions he wished
to perform, his opinion about the game interface
and controls, the feelings he had when it was play-
ing the game and if the game posed some chal-
lenge to his gaming capabilities. The last method
Server Log Files, consisted on the recording of
some events that were part of a the game match
between 2 user testers written in text files. This
method was used to record some game events
such as unit and structure production or combat
results.

The Alpha Prototype of this game was the first
prototype to be tested. At the time this prototype
only enabled the users to construct the first four
structures (Command Center, Barracks, House
and Tower) of Planetary Conquest, the research
of upgrades was not available for any unit or race,
Ancient Resource Deposits were not placed at the
middle of the map, Human Hydroxygen timer was
not functional and the monster Gnomish Airplane

was not present on the map. Also since the game
design was at early stages of development, each
type of units and structures available had identical
resource costs and attribute values regardless the
race chosen. The reason for keeping this project
with few features available was for observing what
would be the most important actions that the users
would do, with limited actions and time available.

By applying the Observation method on the Al-
pha Prototype tests it was noticed that the Users
were a little anxious at the start of the experiments,
with the major cause being the 15 minute time con-
strain for the duration of the tests for defeating their
opponent. However they began to be more re-
laxed after seeing their military power increased by
the actions they were performing during the game
match. There were some help required by the par-
ticipants, in some aspects of the game that were
not understood completely during the pre-testing
phase, but there were few doubts asked by them
being also quickly solved. Other factors observed
included that the players were not much attentive
to what their opponent would be doing, being more
concentrated on their own actions; and some game
control options such as the button used for select-
ing idle peons, and using keyboard shortcuts were
rarely used.

Regarding the Questionnaires applied to these
tests, in the first section it could be seen that
the users differed on the experience in playing
RTS games, but most of them were at least ex-
perienced in playing computer or mobile games.
About the second section, referent to the actions
performed in-game most users found that Crystal
were much more important to use than the other
two resources, the map size was not adequate
to construct numerous structures; and from the 3
available monster options the Recruit option was
quite used and useful to the users, while the other
two not so much. For the third section it was pos-
sible to observe that most players were focused on
the actions they were performed during these ex-
periments, although some of them were distracted
during their actions. Most of the players knew the
actions they wanted to perform and knew how to
operate with the game’s interface for the execution
of those actions. Regarding their feelings the users
liked to play the game and felt that it posed some
challenged to their game capabilities. On the fourth
and final section the players thought that the game
needed to include Fog of War behaviour and the
interaction with the monsters could be differently
made. Some of the elements analyzed using the
server text logs for this experiment are represented
as boxplot graphs on the figure bellow.

The conclusions obtained by analyzing these
files were the following: Regarding the Units pro-

7



Figure 2: Alpha Prototype elements analyzed

duced the average of peons and Melee infantry
units were close from each other being 13.5 and 13
respectively. The number of average ranged units
was 6.8 being lower than the other 2 units, but was
still substantially used. Regarding the Structures
produced, the average number of Command Cen-
ters and Barracks were the same being 1.1, and
the houses was the structure most produced with
1.6 since the Tower average was equivalent to
0.83. For the Monster options only the Recruit
option was chosen 4 times for the Ogres and 1
times for the Archer. Looking at the Resources
Gathered, Crystals were by far the most resource
obtained with an average of 2970.8, with the Ni-
trogen and Hydroxygen falling much shorter being
195.8 and 33.3 respectively. Finally the average
duration of each match was 12 minutes. The fig-
ures above show some boxplot graphs made by
the results of those elements.

There were some conclusions obtained with the
results of these tests. Most of the expected re-
sults were met, the players could effectuate most
of the actions they desired with easiness for trying
to defeat their opponent, and they weren’t many
difficulties presented to apply those actions. How-
ever there were some issues that could be revised
observing the methods used for these tests. The
ones that suffered a change were the monster op-
tions, since the only option chosen was Recruit.
That option had it’s resource cost increased dur-

ing the design process of these options. The other
complain was about the map space available. In-
stead of changing the map dimensions the function
responsible for placing structures on the map was
changed. At the time a 2x2 structure size would
check 4x4 positions on the map, for being able to
be certain that the adjacent tile positions of that
structure would never intersect with occupied po-
sitions. This approach was abandoned and now
each time a 2x2 structure would be produced, it
would check the corresponding 2x2 tile positions
that were tested to be placed upon.

The second set of tests were performed on the
Beta prototype of Planetary Conquest. All the
elements discussed in the Game Design section
such as Units, Structures, Upgrades and Monsters
were implemented on this prototype. The usage
of the Super Power, the placement of Ancient Re-
source Deposits and the existence of the Hydroxy-
gen Timer for the Human race were also functional.
The results expected in these tests would be the
production of some of the new units and structures
added, the use of upgrades, Super Power and
monster options for the Gnomish Airplane. The
conditions were the same as the previous tests
made in the Alpha prototype, however the tests
had a time duration of 20 minutes instead of 15.
There were tests performed in all the proposed
platforms: computer devices and mobile platforms
(Android Smartphone and Tablets). Most of the

8



Figure 3: Beta Prototype elements analyzed

tests performed were on Android Tablet devices.
There were 15 participants for this set of tests, 2
which participated in the Alpha prototype and 13
who participated during the MOJO 2019 event.

Since the majority of the tests was performed
on mobile platforms, it was important to observe
how the users could operate on the mobile inter-
face of Planetary Conquest. While the users had
some doubts at the start of the experiments, they
were able to quickly grasp the functionality of mo-
bile controls. Also most of the users understood
how to make the basic actions of this game quickly,
and was able to form a military army for trying to
defeat their opponent’s army. Most of the features
present in this prototype were used, even if spo-
radically.

Regarding the questionnaire method used on
this experiment, it could be observer on the sec-
ond section that the use of Nitrogen and Hydrox-
ygen resources, had more importance on the de-
velopment of the players army in this tests than in
the previous one. Also players suggested that the
mobile game’s interface could be changed and the
map size could still be bigger.

By observing the data including on the server
text logs, the conclusions were the following: Re-
garding the Units produced per game, the aver-
age of peons produce was of 16.625, being by a
large margin the most produced unit during these
experiments. The average of Melee and Ranged
Infantry was of 4 and 1.87 respectively, much lower
than what was obtained on the Alpha prototype

tests. Regarding the Structures produced the av-
erage of Command Centers produced was of 1.1
and the Barracks structure of 0.68, again shorter
on what was obtained during the Alpha tests. The
House structure was the one being more con-
structed with an average number of 1.75. The
Tower structure had an average of 0.68. Refer-
ring the Monster options the Recruit options was
chosen 8 times, twice the amount of the previous
tests with Ogre and Archer monsters being both
recruited by 3 times, and Gnomish Airplane two
times. The Trade and Pillage options were only
chosen once. Observing the Resources Spent
for each race, Crystals was still the most used
resource with an average quantity of 1229 and
1187.5 for the Orghz and Human race respectively
per game. The Nitrogen had an average of 480
and 268, and the Hydroxygen resource was spent
much less on the Orghz race with an average num-
ber of 318.75, than on the Human race with 924.75
respectively. Most of the Hydroxygen spent for
the Human race was on the Hydroxygen Timer
behaviour, with some of it being used on the Mon-
ster options. Above there are presented boxplot
graphs regarding the results of those elements, on
the Beta prototype tests.

The results obtained for these tests mostly corre-
sponded to what it was expected. Planetary Con-
quest could be played on both Personal Comput-
ers and Mobile Devices. Also the users did not
presented severe difficulties on understanding the
mobile interface of this game, and knew how to

9



navigate with it in order to perform the actions they
desired. Some of the features added in this pro-
totype were not used, such as Orghz and Human
Flying Units production or the Upgrades available
on the Research Building Structure. Still most of
them could be observed even if sporadically. If
there was the possibility on having the Users that
participated on these tests, being available to per-
form more sets of tests using this prototype, maybe
they would choose the new features present on
it more often, than the basic units and structures
available.

7. Conclusions
Reviewing the goal of this thesis: Designing
and Creating a RTS game, using HTLM5 and
Javascript programming languages, that can be
played on both personal computers and mobile
devices, containing the traditional 4X elements
present in this game genre and being played in
multiplayer mode. By reading this document it was
proved that this goal was accomplished.

To do so various tasks had to be applied, since
making a RTS involved various academic strands
in order to create an implement a game of this
magnitude. There was the game design that was
conceived for this game, carefully designing each
aspect that is part of it such as Units, Structures,
Economy, Upgrades, 4X, Super Power and oth-
ers. Then it was presented the Architecture that
is part of this game, referring the Technical Lim-
itations present on this game, how it would be
structured the communications between the Game
Server and the Game clients and how the game
project was organized with the use of the Phaser
framework. For the implementation of this project
there were implemented several tasks presented
on this document, who contributed the most to ful-
fill the main objectives present in this thesis.

For being able to observe if the objectives of
this thesis were accomplished, User Tests were
conducted with the Focus Group chosen for this
project. They were done in order to maximize
the game experience of Planetary Conquest ; see
the usage of some elements that were part of this
project’s gameplay such as the balance between
the Units, Structures and Monster attributes; ob-
serve if the interface could be understood by the
participant players and apply the game actions
they desired with the help of the game controls;
and what were their emotions when they were play-
ing the game. From the two sets of tests per-
formed, it was observed on the Alpha prototype
that it was possible to play a multiplayer RTS game
with the main objectives present on this thesis on
computer platforms, with the users understanding
which actions they had to perform in order to defeat
their opponents. From the Beta prototype it was

observed that Planetary Conquest can be played
on computer platforms and mobile devices. Also
most of the features present in this prototype were
experimented by the User Testers.

In spite of some features not being implemented
such as Fog of War and Collision Avoidance be-
tween moving game object, it was possible to cre-
ate a multiplayer RTS game that can be played on
multiple game platforms, with the simple use of a
web browser.

For the future work purposed for this project it
would be good to review some of the errors made
on it, observe what it can be done to the tasks that
could not be implemented, and implement some
other tasks that could enhance the game experi-
ence. Some of those tasks include adding game
sounds to this project, adding the ability to have 2
vs 2 player matches and having the game server
capable of having authority over multiple game
matches being played at the same time.

References
[1] Essencial facts about the computer and video

game industry. Entertainment Software Asso-
ciation, 2015.

[2] E. Adams. In Fundamentals of Game Design.
New Riders, 2010.

[3] Z. D. Boren. There are officially more mobile
devices than people in the world. Indepen-
dent, 2014.

[4] W. Burrows. In Grand Street 37. W W Norton
& Co Inc, 1991.

[5] P. S. Carlos Martinho and R. Prada. Design e
Desenvolvimento de Jogos. FCA, 2014.

[6] A. Emerich. Microprose’s strategic space
opera is rated xxxx. Computer Gaming World
(Issue #110), 1993.

[7] D. Flannagan. JavaScript - The definitive
guide. O’Reilly Media, 6th edition, 2011.

[8] D. Kosak. Top ten real-time games of all the
time, 2004.

[9] A. Sartori-Angus. Cosmic conquest. BYTE,
1982.

[10] A. R. Shankar. lock-step method. Apress, 2th
edition, 2017.

[11] R. Silveira. Multiplayer game programming.
2015.

10


