
Designing and Implementing a browser RTS

João Pedro Lopes Ferreira

Thesis to obtain the Master of Science Degree in

Information Systems and Computer Engineering

Supervisor: Prof. Pedro Alexandre Simões dos Santos

Examination Committee

Chairperson: Nuno João Neves Mamede
Supervisor: Prof. Pedro Alexandre Simões dos Santos

Member of the Committee: João Miguel De Sousa de Assis Dias

June 2019

Acknowledgments

I would like to thank my parents and my sister for every support and care they gave since I was born,

my thesis coordinator for having an immeasurable patience with the development of this project and

supporting me until it’s conclusion, my closest colleagues who gave me the support to reach this point

of my academic studies, and my friends who are part of my life which shared some of the good and bad

moments of it. To all of them a big Thank You.

Abstract

The video game genre that is recognized as Real-Time Strategy (RTS) had many stages of evolution

since the beginning of it’s creation. As the technology evolved, this type of game can nowadays be

played in different types of devices. There is still few RTS games that can be played with more than one

different device.

This document presents the solution to design and create a RTS Game that is playable on both per-

sonal computers and mobile devices. The game conceived on this project uses HTML5 and JavaScript

as programming languages and is playable in multiplayer mode. Multiple players compete between

themselves in 1 versus 1 game matches. This game also contains the 4X elements present in the

traditional RTS games (”eXplore, eXpand, eXploit and eXterminate”).

Keywords

RTS, Multiplayer game, Phaser.io, Client-Server networking, Cross-platform.

iii

Resumo

O género de video jogos que é conhecido como Estratégia em tempo real (RTS) teve vários estados

de evolução desde o inı́cio da sua criação. À media que a tecnologia foi evoluindo este tipo de jogo

pode hoje em dia ser jogado em diferentes tipos de dispositivos. Existem ainda poucos jogos RTS que

podem ser jogados em mais que um dispositivo.

Este documento apresenta a solução em desenhar e criar um jogo RTS que é jogável tanto em

computadores pessoais como em dispositivos móveis. Este jogo usa as linguagens de programação

HTML5 e Javascript e é jogável em modo multi-jogador. Múltiplos jogadores competem entre si em

jogos de modo 1 contra 1. Posteriormente este jogo contém os elementos 4X presentes nos jogos RTS

tradicionais (”eXplore, eXpand, eXploit and eXterminate”).

Palavras Chave

RTS, Jogo multijogador, Comunicação cliente-servidor, Phaser.io, Multiplataforma.

v

Contents

1 Introduction 1

1.1 Motivation . 2

1.2 Objectives . 3

1.3 Contributions . 3

1.4 Structure of this document . 3

2 Related Work 5

2.1 RTS game elements . 6

2.1.1 Theme . 6

2.1.2 Units . 6

2.1.3 Structures . 7

2.1.4 Resources . 8

2.1.5 Fog of War . 8

2.1.6 Player Actions . 9

2.1.7 Interface . 9

2.1.8 4X . 10

2.1.9 Player archetypes . 11

2.2 RTS History and Examples . 12

2.2.1 Stonkers . 12

2.2.2 Dune II . 12

2.2.3 Warcraft: Orcs & Humans . 13

2.2.4 Command & Conquer . 13

2.3 Technologies used . 14

2.3.1 Mobile platforms . 14

2.3.2 HTML . 16

2.3.3 JavaScript . 17

2.3.4 Advantages of using HTML5 to make games . 17

2.3.5 HTML5 Game Framework . 18

vii

2.4 Discussion . 19

3 Game Design and Architecture 21

3.1 Game Design . 22

3.1.1 Races and Objectives . 22

3.1.2 Perspective . 22

3.1.3 Features . 23

3.1.4 Economy . 24

3.1.5 Units . 25

3.1.6 Structures . 26

3.1.7 Monsters . 27

3.1.8 Upgrades . 28

3.1.9 Super Power . 28

3.1.10 4X . 29

3.1.11 Progression . 29

3.1.12 Planetary Conquest Concept Map . 30

3.1.13 Interface . 31

3.2 Architecture Design . 32

3.2.1 Technical Limitations . 32

3.2.2 Client-Server Networking . 33

3.2.3 Phaser.io . 39

3.2.4 File Structure . 40

3.3 Discussion . 42

4 Implementation 45

4.1 Development Process . 46

4.1.1 Starting Tutorials . 46

4.1.2 Spritesheets . 47

4.1.3 Game Map . 49

4.1.4 Isometric plugin . 50

4.1.5 A-Star movement . 51

4.1.6 Spatial Hashing . 56

4.1.7 Device orientation . 58

4.1.8 Server authoritative . 59

4.1.9 Performance optimization . 61

4.2 What went wrong . 63

4.3 Discussion . 65

viii

5 User Tests 67

5.1 Conditions . 68

5.1.1 Focus Group . 68

5.1.2 Where it was tested . 68

5.1.3 How it was tested . 69

5.2 Alpha Prototype . 70

5.3 Beta Prototype . 73

5.4 Discussion . 76

6 Conclusion 77

6.1 Conclusions . 78

6.2 Future Work . 79

A Annexes 87

A.1 RPS . 87

A.2 Unit Combat Formula . 88

A.3 Combat Value Tables . 89

A.3.1 Orghz Units and Tower . 90

A.3.2 Human Units and Tower . 90

A.3.3 Monster Units . 90

A.3.4 Orghz Strucutres . 91

A.3.5 Human Structures . 92

A.3.6 Orghz Weapons and Armor Upgrade . 92

A.3.7 Human Weapons and Armor Upgrade . 93

A.3.8 Orghz Unique Upgrades and Super Power . 93

A.3.9 Human Unique Upgrades and Super Power . 93

A.3.10 Unique Upgrades Resource Costs and Combat Value Increases 94

A.4 Technical Design . 95

ix

x

List of Figures

2.1 Starcraft 2 game interface . 10

2.2 Generic RTS diagram . 11

3.1 Planetary Conquest Concept Map . 30

3.2 Planetary Conquest Interface for Computer platforms . 32

3.3 Simplified Game Networking . 35

3.4 Client-Server game communication . 38

3.5 State diagram of Planetary Conquest . 40

3.6 Planetary Conquest file structure . 41

3.7 Diagram of Phaser Game state logic . 42

4.1 Dijkstra shortest path calculation - IST AIG Class . 52

4.2 A-Star distance heuristics - - IST AIG Class . 53

4.3 Differences between smooth path application - IST AIG Class 54

4.4 Differences between straight-line smooth path application - IST AIG Class 55

4.5 Example of Hash spacing application . 58

4.6 Different starting screen texts . 59

5.1 Number of game objects produced (Alpha) . 72

5.2 Monster options chosen and resources gathered (Alpha) 72

5.3 Number of game objects produced (Beta) . 75

5.4 Monster options chosen and resources spent (Beta) . 75

xi

xii

List of Tables

2.1 HTML Game Frameworks comparison . 19

A.1 Orghz Units and Tower attributes . 90

A.2 Human Units and Tower attributes . 90

A.3 Monster attributes . 91

A.4 Orghz Structures attributes . 91

A.5 Human Structures attributes . 92

A.6 Orghz Weapons and Armor Upgrades attributes . 92

A.7 Human Weapons and Armor Upgrades attributes . 93

A.8 Orghz unique upgrades attributes . 94

A.9 Human unique upgrades attributes . 95

xiii

xiv

Listings

3.1 Server Initiation code . 35

3.2 Directories to be used . 36

4.1 Physics elapsed calculation . 56

4.2 Spatial Hash instantiated . 57

xv

xvi

Acronyms

APIs Application Program Interfaces

CSS Cascading Style Sheets

CPU Central Processing Unit

DHTML Dynamic HyperText Markup Language

DOM Document Object Model

ESA Entertainment Software Association

FPS Frames Per Second

GIMP GNU Image Manipulation Program

HTML HyperText Markup Language

RPS Rock-Paper-Scissors

RTS Real-Time Strategy

TCP Transport Control Protocol

UDP User Datagram Protocol

W3C World Wide Web Consortium

WHATWG Web Hypertext Application Technology Working Group

XTML eXtensible Hypertext Markup Language

xvii

xviii

1
Introduction

Contents

1.1 Motivation . 2

1.2 Objectives . 3

1.3 Contributions . 3

1.4 Structure of this document . 3

1

This is a war universe. War all the time. That is its nature. There may be other universes based on all

sorts of other principles, but ours seems to be based on war and games. - William Burrows [1]

The term Real-Time Strategy (RTS) was introduced by BYTE magazine in 1982 [2, pg 3, 124],

however it’s Brett Speny that is credited with the creation of this term with his game Dune II [3].

Strategy games challenge the player to achieve victory, by planning and using different strategies

that are used against one or more opponents [4, pg 419]. This genre distinguishes strategy games

from puzzle games that call for planning without the existence of conflict, and from construction and

management simulations that doesn’t have influence against opponents. Strategy games usually have

as a key goal defeating all enemy forces, so the majority of strategy games are military games with some

differences between each other. The fiction of these type of games can be of medieval, futuristic times

or even the present day. Victory is obtained by superior planning and taking the best possible actions,

where the elements of chance or luck are not determinant. Other challenges such as tactical, logistical,

economic and exploration challenges can also be present.

This type of games falls in two main sub-genres: Turn-Based Strategy and Real-Time Strategy. In a

Turn-Based Strategy players can consider what type of actions they want to do in the game, considering

the benefits between each available actions and choosing the most optimal ones during their turns.

The player doesn’t have to worry about the time that is passing during the consideration of it’s actions.

Real-Time Strategy Games who were developed after the Turn-based genre, add time to the game for

pressuring the players to choose the optimal actions at a fast pace [4, pg 420]. Also since both players

actions are happening at the same time, players must be aware of the what their opponents are doing

and think of strategies that can counter the opponents actions. For this reason the players must always

be aware of what is happening during the game.

1.1 Motivation

The RTS Video Game genre can be played in both personal computers and mobile platforms. In 2015

Entertainment Software Association (ESA) released a study about the state of industry and video game

industry in the USA [5], during the 2014 year. This study reports that 62% of the population plays video

games on personal computers, 35% on their smartphones and 31% on wireless devices. Also 37.7% of

the computer games played were of the Strategy genre. Moreover 54% of the gamers played at least a

multiplayer game once per week.

According to the Independent there is at least one mobile device for each living person on planet [6].

These devices have powerful graphical capabilities, that permit these types of devices to run video

games. Those games can be installed and downloaded on these devices, by application stores (App

Store, Google Play) or be played in a mobile browser.

2

The market of the mobile devices games were initially dominated by casual games (games that aren’t

very challenging in difficulty). However with the hardware evolution of these devices and the increase in

complexity and graphics of the games developed in them, the players that were playing these games on

mobile devices became more experiencing in gaming. As result they wanted to play other type of games

that were more challenging and competitive, and if possible play those games with their friends or other

people.

1.2 Objectives

The main goal present in this thesis is the creation of a RTS game, using HTML5 and JavaScript lan-

guages, that is capable of being cross-platform (working in personal computers and mobile devices).

The game must contain the traditional 4X elements present in this game genre (”eXplore, eXpand, eX-

ploit and eXterminate”) and being able to be playable in multiplayer mode.

1.3 Contributions

To be able to accomplish the main goal of this thesis User Tests were effectuated, with a chosen Focus

Group made of people with heterogeneous characteristics. These tests were performed to observe the

game experience that is being proportionate for the participants of these type of tests, with the goal to

improve it and check if the desired objectives purposed at the start of this project were accomplished.

Three methods were used to gather the results made by those tests such as Observation, Ques-

tionnaire and Server Text Logs. Those methods would be applied in two sets of test experiments,

corresponding to the Alpha and Beta prototype made for this thesis project.

1.4 Structure of this document

This document is divided in three main parts: The first one describes the Related Work of this project,

being divided on three sections: RTS game elements, RTS History and Examples Technologies

Used. Those are referent to chapter 2 of this document.

The RTS game elements section describes the main elements present in the majority of RTS games

such as Theme, Units, Structures, Resources, Fog of War, Player Actions, Interface, Concept Map, 4X

elements and Player archetype. The RTS History and Examples section refers some games that are

part of the history of the RTS games, describing the characteristics of each one.

The Technologies used section informs the technologies that were researched and used in this game

such as HTML5 and JavaScript languages. There is also a presentation of the chosen HTML5 game

3

framework for the development of this project called Phaser.io, being referred the main features of it

and how it will benefit the development of this project. Then a comparison between this framework and

other game frameworks is shown, to observe the advantages and disadvantages between them and

why Phaser.io was the preferred choice.

The second part of this document is about the Solution of this project on creating and designing a

RTS game. This part is composed on 4 sections: the Game Design and Game Architecture sections

of chapter 3, the Implementation section on chapter 4 and the User Tests written on chapter 5.

The first section of chapter 3 consists on the Game Design applied to this project, explaining the

elements that are part of it such as the objectives and features of this game. There is also a discussion

about the elements that are found in-game such as: Units, Structures, Monsters and others.

The second section of chapter 3 consists on the Game Architecture that is part of this project, de-

scribing the technical limitations that this project has. Then there is a reference on the functionality of

the Game Server and the game framework used, explaining how they contributed to the development

of this project. A File Structure is also presented, being referent to the project’s organization. There is

also an explanation of the role that each file on that structure has, and how it contributes to the project

functionality.

The chapter 4 of this document presents some of the Implementation tasks that were part of this

project. This chapter starts indicating the development process that was enfolded in this project, by

listing some of the most important tasks that were part of it. Then there is the indication of some

tutorials that were completed, and how they helped to being more familiarized with the chosen game’s

framework and with making a RTS game. Following that indication there is a description on some of the

most complex implementations of game events that were made during the project’s development. The

chapter ends with a list of some problems that occurred during the game development, discussing the

causes and consequences that they had for this project.

The chapter 5 presents the Project results made by the User Tests effectuated. This chapter refers

the experiments made to observe if the project attained the initial objectives purposed. The results of

those experiments helped to determine which design decisions and game functions could be improved.

The last chapter corresponds to the Conclusion of the work effectuated since the beginning of the

project, with a reflection of the tasks performed on the project’s development that were elaborated on

the other chapters written in this document. There is also a discussion on what could be the tasks that

could be applied in the future for this project.

4

2
Related Work

Contents

2.1 RTS game elements . 6

2.2 RTS History and Examples . 12

2.3 Technologies used . 14

2.4 Discussion . 19

5

This chapter starts to refer the game elements that are present in the majority of the RTS games.

2.1 RTS game elements

2.1.1 Theme

The theme of a strategy game is usually derived from the primary activity that takes place on it. While

there can be differences among RTS games, most of them fall into different categories of games of

conquest, trade or exploration. Although in most cases all those three categories are mixed together in

a certain quantity.

The majority of RTS games are usually games of military conquest. The main objective of those

games is to generate a military force to defeat the opponent, often by eliminating their troops and destroy

their structures. Exploration and trade are also relevant to this goal. Exploration is conducted to gain

information about the surroundings, in order to plan how to attack or defend against the opponent forces

or to search for available resources. Trade is often the conversion of resources into units, research

technology or conversion on other resources.

2.1.2 Units

Since the player acts as a military commander of a faction or nation in RTS games, he must deliver

orders to his troops for being able to build an organized army to defeat his opponent. Those troops are

called units. There are various types of units in a RTS game, and some of them are not specialized in

combat. The basic archetypes of units present in a typical RTS game are [7]:

• Worker unit: A basic and economical unit that is dedicated to gather resources and construct new

structures.

• Melee unit: The most basic military type of unit available that possesses a melee weapon and

some armour. This type of unit is very common in medieval settings, but not much in present day

or futuristic settings.

• Ranged unit: Another basic military unit that is capable of fighting enemies from afar, by using a

ranged weapon such as a bow, a gun or a plasma weapon depending on the setting the game is

insert.

• Siege unit: Most seen in present/futuristic settings, this unit has slow movement across the map

and has expensive production costs. However it possesses high firepower and defence.

6

• Mounted unit: Most seen in medieval settings, this unit has high movement speed on the map.

One example of a type of this unit is a cavalier in a horse. These types of units have better attack

and defence than the basic military units.

• Artillery unit: Long-range equivalent to the siege unit, the artillery unit can’t hit anything that is

close to it and is usually slow and poor armoured. To compensate those drawbacks this unit can

inflict damage in an area, instead of being limited to damage one enemy. They have long range

and high attack power and are effective in destroying enemy structures.

• Naval unit: A type of unit that usually can only travel by the sea. There are various subtypes of

this unit: it can be a boat who fishes resources only available in certain areas on the map or a

Galley who can fire cannon balls.

• Air unit: A type of unit that usually can only travel in the air. There are various subtypes of this

unit: it can be a helicopter whose only function is to transport a set of limited ground moving units,

to another location on the map. Another possible type is a fighter plane, who is very proficient at

attacking enemy air units.

2.1.3 Structures

A crucial part of all RTS games are structures. They are needed for the player being able to grow in

military power. Those structures are capable to produce units, store collectible resources or research

new technology. The set of structures that a player has in one location is usually defined as his military

base. The basic archetypes for this base are [7]:

• Command/Construction Center: Either constructs structures by itself or produces worker units

for it. Sometimes this structure offers upgrades and researches to other structures or abilities.

• Resource Structure: This structure stores resources collected by the worker units. The Command

Center can also act as this kind of structure.

• House: There are various names for this structure in the different RTS games, but the purpose that

it offers is generally the same. The House structure increases the number of overall units (Arbitrary

Headcount Limit) or generally called population limit, that can be on the map. Some units have

different population costs to stay on a map. For instance a worker unit generally increments the

population count to one unity, while a siege unity may increase to two or more population units.

• Barracks: A structure that is responsible to produce basic infantry units and sometimes re-

searches infantry unit-specific upgrades.

7

• Tech-structure: A structure whose main concern is to advance the Tech Tree and upgrade the

weapons and armor units.

• The Stable/Vehicle Factory: A structure that can produce siege and artillery units and sometimes

upgrades those units.

• Naval structure: A structure that can produce naval units and repair them. Sometimes it can also

research naval unit-specific upgrades.

• Aircraft Factory: A structure that builds, upgrades and sometimes rearms air units.

• Defence Turrets: A small structure with a mounted weapon. The type of that weapon can be part

of an anti-infantry, anti-armor or anti-air structure.

2.1.4 Resources

To be able to construct structures or produce units the player has to spent the currency of the RTS

games, which is obtained by harvesting resources around the map. The type of resources that can be

obtained depends of the setting that the game is inserted in. If the game takes part on medieval times

the resources can be gold, wood, stone or iron while if takes part on a futuristic time it can be minerals or

gas. Also the quantity of the type of resources that exists in the game is a design choice by the game’s

developers.

The resources are usually gathered by worker units and as the military units evolve in their strength,

the quantity of resources to produce them will be more expensive than the previous units. Another use

for the resources for a RTS game is a tech-tree. The tech-tree or technology tree is a tool developers use

to control the pace of the game, by limiting and rationalizing the spread of technology [4, pg 438]. The

tech-tree enables players to obtain more powerful units or technologies that can increase their offensive

and defensive power.

2.1.5 Fog of War

In a RTS game the game scenario is presented in a map that reflects the world of the game. At the

start of a RTS game the majority of the map is covered in black clouds, and the only terrain visible to the

player is where the units and structures are standing. These black clouds are called Fog of War. This

element limits the vision that the player has in the map. As the player moves units or builds structures

into the hidden areas of the map, those areas become revealed. If the player’s units or structures are

eliminated in a portion of the map that area will be covered in fog of war. If an area of the game map is

covered by those black clouds, the player will not be able to see any kind of actions into it, but the layout

of the terrain remains visible.

8

It’s useful for the player at the beginning of the game to send an unit to travel trough the map.

The purpose of this action is for searching the military base location of the enemy, and locations with

additional resources so the player can expand it’s economy.

2.1.6 Player Actions

As referred before, the role of the player in a RTS game is commanding his units to lead his nation to

victory over other nations. To do so the player has to give orders to his units and structures, which can

be called Player Actions. An order is typically delivered by two-step process: First the player selects an

unit or a structure that will receive the order; Then the player issues the order, by clicking somewhere in

the landscape, enemy unit or a button with a possible action that the unit or a structure can do.

There are numerous actions that are different from unit to unit or structure to structure. For example a

worker unit is the only type of unit who can harvest resources, but it doesn’t possess abilities that special

military units have. However there are a group of actions that almost any unit has, such as moving from

one location to another, attack an enemy, stop moving or patrol an area. The actions for structures are

usually producing units or developing new technologies.

2.1.7 Interface

The interface for a RTS game is how the information from the game is presented to the player, in a way

to make them understand and react for what is happening in it. Often in RTS games the user needs

to keep track of various types of information at the same time. The easiest approach of breaking that

information is with the use of windows and buttons. Each window keeps track of different information

and allows the user to take different actions, by clicking on the corresponding buttons for them. Most

RTS games have three basic windows to display the game general information:

1. The game window is where all the terrain units and structures are displayed. This window allows

the player to view the events of the game and give orders to their units and structures. This

window usually shows just a portion of the game world. The player resources are presented in the

top border of this window.

2. The status window that allows the player to view additional information and actions that an unit

or a structure have. Also information such as health points, offensive and defensive power of units

or structures are represented in this window.

3. The mini-map is a small representation of the entire playing field or map. Usually the mini-map is

a direct top-down of the entire game world that reminiscences the two-dimensional maps. In this

map the units and structures are represented in small dots and squares. The player can click on a

9

location of that map, for the game window to quickly display the playing field that on the location it

was clicked.

Bellow is an image of a game interface that is part of a well known RTS game, which is called

Starcraft 21. The Square 1 represents the game window. The Square 2 has the player resources which

are minerals, vespene gas and unit population by order. On the Square 3 is located the mini-map. On

the Square 4 there is the information about a selected unit or structure which can include health points,

attack and defence points. Finally on the Square 5 there are the possible actions available for the unit

or structure selected. The end part of the right side of the image is covered by a Fog of War, since it was

not explored yet by the player.

Figure 2.1: Starcraft 2 game interface

2.1.8 4X

4X is a genre of strategy-based video and board games, which players control an army and ”eXplore,

eXpand, eXploit, and eXterminate” with it. The term was first used by Alan Emrich in September 1993

with his preview of Master of Orion for Computer Gaming World. [8, pg 92-93]

4X computer games are noted for their complex gameplay. The player starts with poor resources

and structures, with the goal to establish an empire that can fight against other nations. Elements such

as economy or technology development also place a great deal to achieve victory. These games can

take a long time to finish since the amount of micromanagement needed to develop a military army

increases as the game flows. The phases of this game usually overlap with each other in different ways

and weights, depending on how the game is designed.
1https://starcraft2.com/en-us/

10

https://starcraft2.com/en-us/

The meaning of the 4x elements of this genre are: Explore means that players send units across a

map to reveal surrounding territories and enemies. Expand means that players conquer new territory

by creating new structures on it or sometimes by extending the influence of existing structures. Exploit

means that players extract and use resources to improve their nation. Exterminate means attacking and

eliminating other players, mostly trough military battles.

RTS generic diagram

Bellow is a generic RTS diagram that can be used to see how the majority of the RTS games are

composed, with the information that was referred above.

Figure 2.2: Generic RTS diagram

2.1.9 Player archetypes

Since the video game players have different necessities, preferences and expectations towards games,

it’s important to define the archetypes of players that are more interested in the RTS game style. To

refer whose player archetypes are more common in this type of games, one model that can be used

is BRAINHEX model [9, pg 102]. This model defines seven types of players associated with different

styles of playing that stimulates the brain, and consequently generates different types of pleasure. The

BRAINHEX player types associated to the RTS genre are:

1. Conquerer: A player of this type enjoys winning and defeating very difficult enemies. The harder

the challenges he faces, the more the player enjoys obtaining victory. The dominant activity is

defeating enemies. This player type is related to the RTS genre because players compete against

each other to achieve victory, by destroying the opponent’s army. Also there are players who are

11

more difficult to defeat than others, based on their game experience in this genre. When these

type of players are defeated the victor feels more satisfied about it, than defeating a player with

less game experience.

2. Mentor: A player of this type enjoys finding solutions to problematic situations. The player enjoys

even further the more complex the situation is and the possibility of defining and experimenting

different strategies. The dominant activity of this type of player is to solve problems. This type

of player is related to the RTS genre, because the players have to plan and execute different

strategies to defeat different types of players, such as aggressive or defensive players. They also

have to perform those strategies faster and better than their opponents.

2.2 RTS History and Examples

This section descibes some of the most influential RTS that exist, with some of them being taken as a

influence to the development of this project.

2.2.1 Stonkers

Stonkers is one of the first RTS games to be released. This game is playable on the ZX Spectrum

48K platform and the publisher was Imagine Software that released it in 1983. The game designer and

programmer was John Gibson, and the graphics designer was Paul Lindale2.

Stonkers is a single-player game that can be played using keyboard or joystick. The role of the

game is to control sixteen military units, against the same quantity of units from the computer enemy

side. There are four types of army types at the player disposal: infantry, artillery, tank, and supply-truck

units [10]. These units are chosen to be part of the sixteen player’s army. Combat units consume

supplies over time, so the player has to use supply-units to replenish them. Information about the events

in the game is displayed in a ticker tape on the bottom of the screen. The game had serious bugs that

made the game crash. Even so it was awarded the title ”Best Wargame” by CRASH in 1984 [11], with

one of the reviewers saying: ‘The game appealed to me much more than most of the other wargames

due to its higher quality of graphics, large scale and simple controls’.

2.2.2 Dune II

Dune II was released in December 1992, being developed by Westwood Studios and released by Virgin

Interactive. This game was produced by Brett Sperry, being on the science fiction novel by Frank Herbert

that also has the same name.
2http://www.worldofspectrum.org/infoseekid.cgi?id=0004913

12

http://www.worldofspectrum.org/infoseekid.cgi?id=0004913

In this game players would choose one of the three races available and each of them had their ad-

vantages and disadvantages. The players would construct a base that allow them to deploy a harvester.

This unit can gather spice, being the only resource that was present in the game [12, pg 141]. By gath-

ering this resource, players could construct other structures that would allow the production of military

units. These units would be used to attack and defeat the opponent by destroying all of their structures

and military forces, or to defend one’s own structures from destruction to avoid defeat.

Though not every feature was unique and not being the first real-time strategy game to be released,

the combination of a Fog of War in the map, managing a military force through mouse clicking, an

economic model of resource-gathering and base-building would be used as a template in many RTS

successors [13].

2.2.3 Warcraft: Orcs & Humans

Blizzard Entertainment released Warcraft: Orcs and Humans3, produced by Bill Roper and Patrick Wy-

att. This game is inserted into a fantasy setting, having 2 available races to be played: Humans and

Orcs. Warcraft had various features comparing to the RTS predecessor games, such as two available

resources to collect (gold and wood) instead of one and the map has wild monsters that can be encoun-

tered that may harm the player troops [14]. However some of those monsters can be used as part of the

player’s troops, by summoning them with certain units spells [15, pg 31]. The design of the military units

was also different from other games, containing melee and ranged infantry units, and spellcasters with

consumable magical abilities.

This game also had a campaign mode where the objectives to complete a mission, were not restricted

to destroying the enemy troops and base. Those objectives could be rescuing friendly units from a

enemy camp, rescuing and rebuilding besieged towns or kill the Orc’s chief daughter. Warcraft: Orcs and

Humans also allowed for two players to compete in multiplayer contests, by modem or local networks.

2.2.4 Command & Conquer

Westwood Studios released Command & Conquer in 1995, properly known has Tiberian Dawn [16]. It

was created by Joseph Bostic and Brett W. Sperry. Set in an alternate history of modern day, the game

tells the story of a World War between two factions: The Global Defence Initiative of the United Nations,

and Brotherhood of Nod which is a cult-like militant organization.

The factions of this game have differences in their strengths and weaknesses. The Global Defence

Initiative had stronger units but they were expensive to produce. While the Brotherhood of Nod had

cheaper and faster units but they were weaker comparing to the other race. These differences leads the

3http://us.blizzard.com/en-us/games/legacy/

13

http://us.blizzard.com/en-us/games/legacy/

player to adapt different strategies when playing with each nation [17, pg 352–354]. The differences in

the playability between the two factions added to the appeal of Command & Conquer.

It was the first RTS game that introduced certain features that were followed in the next games of

this series. The features included full motion video cutscenes with a notable ensemble cast to progress

the story, as opposed to digitally in-game rendered cutscenes [18]. Another feature is the inclusion of a

side bar at the right side of the screen, where the player could build structures and produce units without

clicking in any unit or structure to build them. The majority of the RTS games didn’t had this feature,

where those orders could only be make clicking on the units or structures, and selecting them at the

bottom-right of the screen.

2.3 Technologies used

As it was seen in chapter one, the majority of RTS games were released only to the computer platform.

This can be explained due to a couple of reasons, such as the computer mouse being a vital element in

a RTS game, because the actions that the player can do. Some of those actions such as moving a unit

to a specified location or a structure being constructed, are done by clicking and moving the computer

mouse. These actions with the use of the mouse hardware are very efficient time-wise, which benefits

the speed of the actions that a player can do in a RTS game.

Another important reason is the presence of a keyboard, which can further increase the speed of

the actions that a player can order to it’s nation during the game. One example is using the selecting

key shortcuts that are designated to specific keys on that hardware to apply those actions (for instance

using the ’C’ button to order a selected worker unit to build a command center). The RTS games are

less played in other game devices, because their game controllers or touch inputs cannot perform game

actions with the speed and precision of having a mouse and keyboard. Nowadays RTS games can also

be played in other gaming platforms such as mobile devices. This section starts by referring those type

of devices.

2.3.1 Mobile platforms

In the past few years mobile devices such as smartphones and tablets have become more popular,

and users could use some of the features in those devices that they were capable of doing them in

personal computers. Some of those features include seeing videos, playing games or search content

in the Internet. Mobile browsers can access the Internet via a cellular telephone service provider or via

wireless network.

To access to the Internet mobile devices use mobile browsers. A mobile browser is similar to other

web browsers, that work on personal computers. The main difference is that they are designed for use

14

on a mobile device such as a mobile phone, tablet or PDA. Mobile browsers are optimized to display web

content more effectively to small screens and to enable touch events. Mobile browser software must be

small and efficient, to accommodate the low memory capacity and low-bandwidth of wireless handheld

devices [19].

For this thesis since the main goal present in it was to create a RTS game that is cross-platform,

working for both personal computers and mobile devices, it is important to explain this concept and

know what are the advantages and disadvantages of it. Cross-platform (or sometimes called multi-

platform) when related to the field of computer software, refers to the interoperability between different

computing platforms (or operating systems). For the advantages and disadvantages, there are [20] [21]:

Advantages:

• Single unified codebase: By having a single and unified codebase it reduces code maintenance

tasks, such as version and branching strategy and the number of source repositories that are

needed to administer. The time taken to debug, fix, test and deploy defects is also reduced.

• Greater Reach: The greater the number of platforms it can target, the greater the potential au-

dience and therefore the number of potential customers. Also players can play a cross-platform

game together with different devices.

• Cost Effectiveness: Since the game works on multiple devices, it is not needed to develop each

game application to each device, saving time and money.

• Development tools: There are a great deal of cross-platform game development devices, and

engines which are easy to learn and to use. A cross-platform game development engine also

assists to render good efficiency and high quality animation and graphics, thus developing an

effective gaming environment.

Disadvantages:

• Performance: The game performance must be optimal in both devices which may be difficult to

approach it, because the hardware on both devices is not the same.

• Device resolution: Personal computers and mobile devices have different screen resolution de-

vices. Even mobile devices have it different on their own.

• In-game Commands: Each device has different approaches to input commands in a game. Per-

sonal computers use the mouse and keyboard, while mobile devices uses touch inputs.

• Connection Speed: The speed of the web service in mobile devices is slower than the personal

computers, meaning that web content may be slower to get in the mobile devices.

15

2.3.2 HTML

HyperText Markup Language (HTML) is a computer language that allows the creation of websites. It

was developed by World Wide Web Consortium (W3C)4 and Web Hypertext Application Technology

Working Group (WHATWG)5, with the first version being released in 1993. Along with Cascading Style

Sheets (CSS) and JavaScript, HTML is part of a triad of technologies that web developers use to create

web content [22]. A markup language is a type of language that annotates text that can be manipulated

by a computer, and is written in a way to distinguish it from other text [23]. The meaning of ”marking

up” is from paper manuscripts, that were traditionally written with a blue pencil on authors manuscripts.

HTML has pre-defined presentation semantics, that specifies how HTML language is represented in a

way that can be readable and understandable by humans.

HTML documents are made with HTML elements. These elements are composed with a start tag

and end tag, that are written with angle brackets and the context between them. With the use of these

tags it’s possible to manipulate various elements that can be part of a web page, such as a title, a

header, a paragraph, an image, a video and many others [24]. Each tag has an appropriate name to it’s

definition. For instance the tag <button>defines a button where the user can click on it.

HTML can embed scripts written in languages, one of them being JavaScript, that performs func-

tions on web pages that HTML alone can’t do, such as adding a mouse over event or adding dynamic

behaviours on a script [25]. HTML markup can also refer the browser to describe the look and layout of

text and other material that is rendered on the screen, such as the color, font and the size of a text [26].

The latest HTML version was the fifth major version of the hypertext markup language specification

called HTML5, and it was released on 28 October 2014 by W3C [27]. The core aims of HTML5 were

to improve the language with support for the latest multimedia, keeping it easily readable by humans

and understood by computers and devices. HTML5 also defines a HTML syntax that is compatible with

HTML4 and eXtensible Hypertext Markup Language (XTML) version 1 documents that are published on

the web [28].

HTML5 contains many differences from his predecessor, one of them was the inclusion of new HTML

elements such as video and audio for multimedia content. It also introduced Application Program Inter-

faces (APIs) that are useful in creating web pages, and can be used together with the new elements in

this version. There are APIs that prompt the user such as alert(), confirm() and protomp(); for printing

the document with print() and many others. Many features of HTML5 had in consideration at being

able to run in mobile platforms such as smartphones or tablets, which makes a potential candidate for

cross-platform mobile applications.

4https://www.w3.org/
5https://whatwg.org/

16

https://www.w3.org/
https://whatwg.org/

2.3.3 JavaScript

JavaScript is a dynamic and interpreted programming language, that is commonly used to make web

pages interactive [22, pg 1]. It first appeared in May 23 1995 developed by Brendam Eich, and it has

been standardized in the ECMAScript language specification [22, pg 2].

This language is commonly used with HTML to add client-side behavior to web pages a.k.a Dynamic

HyperText Markup Language (DHTML). With the help of the Document Object Model (DOM) [29] it’s

possible to add interactive events to a web page, linking scripts to a HTML page in the <script>tag.

Web browsers usually create ”host objects” to represent this kind of model, that can be manipulated to

dynamically generate web pages. Some of the features that JavaScript offers to web pages are [30] [25]:

Different types of mouse effects that can be triggered, like a mouse click or hovering a picture. Javascript

is able to play audio or video content. This language can work on web pages, even when they are offline;

This language can load content in a web page, without reloading the entire page.Finally JavaScript can

change HTML styles (CSS).

Since JavaScript code can run locally in a user’s browser, the browser can respond to user actions

quickly, making an application more responsive. Also as it’s one of the few languages that most pop-

ular browsers share support for [31], JavaScript has become a target language for many frameworks

available for those browsers [32].

2.3.4 Advantages of using HTML5 to make games

One of the main advantages of making games in HTML5, is that the player doesn’t have to install any

kind of additional software or applications to play them. There is only the need of a web browser that

support this language and all the modern ones already do [33]. Also it’s possible to create games that

can be playable in more that one device, meaning that they are cross-platform games. The graphics,

sounds and animations of those games work in the same way for any compatible platform.

Another advantage of using HTML5 is that there are many JavaScript game engines that can be

used with HTML, which game developers can use. These engines makes developing 2D games easier

and allows developers to use advance multimedia elements of HTML5 in their games.

Other advantage is that it’s not needed to separate the code for a different platform. It’s possible to

calculate the size of the game window in HTML5, by calculating the screen dimensions of the device

that is accessing the browsers that contains the game. Also HTML5 can make any update in a program

and those modifications are automatically configured in all the particular configurations online. This is

useful because when the player wants to access the game another time, it doesn’t have to install or

download any kind of plug-in. This behaviour leads to not decrease his motivation for playing the game

and not needing to have adding extensions or downloading plug-ins. This was the main reason of the

17

downfall of the Flash Player based games, because when the player attempted to play games using this

technology, the player needed to have plug-ins installed. Otherwise he would have to install them to play

Flash based games.

Another feature in HTML5, is that it can be operational offline. With this feature some HTML games

can be played offline, without web connection. This can be done trough the cache manifest.

2.3.5 HTML5 Game Framework

A HTML5 game framework is the solution that was approached, to be able to develop a cross-platform

game in this language. The framework can make a game support cross-platform issues, solving the

screen resolution, provide multiplayer options, load sprites, sounds, animations and many other useful

features to build a game in HTML5. For solving the problems that making a cross-platform RTS game

had, various HTML5 game engines were researched to see which one would be best of use in this

project. After seeing the features of each framework and testing some available demos of them, the

framework that was considered to be more useful for this project was Phaser.io or simply called Phaser6.

Phaser is a open source HTML5 game framework. It uses a custom build of Pixi.js7 for WebGL

and Canvas rendering across desktop and mobile web browsers. Games can be compiled to iOS,

Android and desktop apps via 3rd party tools like Cocoon, Cordova and Electron [34]. This framework is

compatible with any browser that supports Canvas8 or webGL9. Some of the features that this framework

offers are:

• WebGL & Canvas: Phaser uses both a Canvas and WebGL render internally and can swap

between them based on browser support. This allows for faster rendering across Desktop and

Mobile.

• Sprites: Phaser can use sprites in-game and apply various functions with them, such as position,

rotation, scale, animation, collision, click and drag events or paint them.

• Input: With the call Phaser.Pointer, this function recognizes a mouse click or a screen touch in the

same way. And there are other mouse, keyboard or multi-touch functions available.

• Device Scaling: Phaser has a built-in Scale Manager which allows to scale any game to fit any

size of the screen, being possible to control aspect ratios, minimum and maximum scales.

• Mobile Browser: Phaser was built specifically for Mobile web browsers, while working on desktops

as well.
6http://www.phaser.io
7http://www.pixijs.com/
8https://caniuse.com/#feat=canvas
9https://caniuse.com/#feat=webgl

18

http://www.phaser.io
http://www.pixijs.com/
https://caniuse.com/#feat=canvas
https://caniuse.com/#feat=webgl

The main reasons that Phaser was the chosen framework for this project were the numerous exam-

ples available [35] for it, and the active and helpful community present in it [36], that were greater than

any other framework that was researched. Phaser is also one of the most game frameworks stared in

GitHub [37]. Furthermore the feature of being specially designed for working in mobile devices, was

important for the game of this project being able to run with a good performance in mobile devices. Bel-

low is a comparison table with some of the HTML game frameworks that were researched, with every

framework being available for free and supporting cross-platform gaming:

Table 2.1: HTML Game Frameworks comparison

Engine Rendering Physics Animation models Special Features

Construct2 WebGl or canvas WebGl, Box2D Keyframing
Scene editor, debugger.

A* pathfinding

Impact.js WebGl, canvas or DOM CWebGl, Box2D Keyframing, CSS Level editor, debugger

Phaser.io WebGl or canvas Arcade, Ninja, P2
Keyframing, CS6/CC,

Flash, texture packer
Particle System

Pixi.js WebGl or canvas Physics.JS Keyframing
Blending, bitmaps,

sprite sheet

Quintus DOM or canvas 2D module Keyframing, CSS Component model

Crafty.js DOM or canvas Gravity component Keyframes, tweenings Sprite map

2.4 Discussion

As it was seen in this section RTS have a lot of game elements that are different from other games. Also

those elements can change between games of this genre, such as the Theme, Units, Structures, Inter-

face and others. This was proved by observing the games present on the RTS History and Examples

section. The features present in these games influenced some of the features present in this project,

which will be referred in the Game Design section. It could also be observed, that mobile platforms

are a potential candidate for being used for a cross-platform game with personal computers, and there

are great advantages in developing a cross-platform game. The approach used for this problem was

to develop a game in the web, where both platforms can run it in a web browser. For that HTML and

JavaScript languages were used to develop the project’s game.

To solve the differences that mobile platforms have compared to the computer platforms, such as

the screen resolution of the game or the usage of touch events instead of a mouse and keyboard,

19

an HTML framework is used which is Phaser. This framework was specifically made for developing

games in mobile platforms, while being possible to develop in computer games as well with the same

code. Phaser also has a substantial amount of resources that a web programmer can use to help the

development of the game. The following chapter will relate the Game Design that was conceived in

Planetary Conquest and the Game Architecture of it as well.

20

3
Game Design and Architecture

Contents

3.1 Game Design . 22

3.2 Architecture Design . 32

3.3 Discussion . 42

21

In this chapter there are two main components of this project that are going to be referred. The Game

Design and the Game Architecture that is part of Planetary Conquest.

3.1 Game Design

After researching many RTS games and HTML5 game frameworks, the game designed and imple-

mented for this thesis is named Planetary Conquest. Some of the elements that belong to this game

such as existing Structures and Units detailed attribute data, and an extensive explanation about the

Technical Design which was made for some of the elements discussed in this section are referred in

the Annexes section of this document. Game Design is the process of coordinating the evolution of the

design of a game [38] [39]. The goal of it is to create a gaming experience to the users, working on the

requirements to achieve the game objectives. In this section is written a list of every requirement that is

part of the game design and explained in detail.

This section starts with the explanation of the existing Races and Objectives present in Planetary

Conquest, then refers the visual Perspective of the game elements shown to the Players. The explana-

tion of the Planetary Conquest Features, Units, Structures, Monsters, Upgrades and Super Powers

that are part of the game, is also presented.

Following the explanation of those elements, there is a discussion on how the 4X elements common

to a RTS game, are present in Planetary Conquest. Afterwards, the game Progression that occurs

during a game match of Planetary Conquest is written. Then a figure is presented, being the Concept

Map of Planetary Conquest containing each element of the game referred in the previous subsections

of this chapter, and showing the relations between each element. Finally another figure is presented,

being the Interface that is shown to the players when playing the game, indicating every aspect that is

part of it.

3.1.1 Races and Objectives

There are two available races to be played: the Humans and the Orghz who are vile green creatures.

The main objective of this game is to destroy every unit and structure that the enemy race disposes. By

doing that the winning race conquers the planet.

3.1.2 Perspective

The game window of this RTS game is in a top down view with 2.5D perspective or called isometric pro-

jection. With this type of projection, it is possible to represent shapes close to a three-dimensions group.

22

However since only a side of a game object is shown per time frame it is referred as 2.5 perspective,

since it is an illusion of three dimensions depth [40].

For being able to have isometric projection the shapes to be seen in isometric view, are placed on

a three-dimensional space. The X and Z axis are inclined to the horizontal plane at an angle of 30

degrees, while the Y axis remains stationary and perpendicular to the plane [41].

In the game screen it is shown various game objects, such as Units, Structures, Monsters, mountains,

waters, and others placed on the game map. However only a portion of the entirety of the game objects

is shown on the game window. To access to other sections of the map, the player has to drag the game

cursor to a position it chooses to see it or the player can click on a position of the mini-map, which is a

small representation of the entire game map.

For the game art used in this project, since it was very difficult to find isometric sprites within the

theme of SCI-FI or space, and it was quite demanding for drawing each one of them, it was used for

this project a collection of spritesheets belonging to a game of the Warcraft universe, called Warcraft

II: Tides of Darkness1. That game has 2 races: the Orcs and the Humans, which correspond to the

Orghz and the Human races of this project respectively. The spritesheets were found on the website of

the group The Sprite Resource [42]. The methods used for those assets to be placed and animated in

the game are going to be explained in the Implementation chapter.

3.1.3 Features

While at it’s basis Planetary Conquest works like a typical RTS game, there are some differences com-

paring to the majority of other games of this type such as:

• Monster encampments: Symmetrical spread across the map, there are different types of monster

groups which can be interacted with the players. There are three available options for interacting

with them such as Trade, Recruit or Pillage.

• Unique Upgrades: Each type of military unit has an unique upgrade assigned to it, which can

reflect it’s race behaviour. Also there is an unique upgrade for each race and for it’s Tower structure.

Every single unique upgrade is different from each other.

• Hydroxygen resource: Of the 3 resources present in this game, Hydroxygen has a completely

different usage between each race. Orghz use it for the production and upgrades of units or

structures. Humans use Hydrorxygen to breath, consuming this resource every 6 seconds of

playing time.

• Ancient Resource Deposits: While there are resource deposits where the players can extract

resources from them, that are symmetrical spread across the map, there is one special resource
1http://us.blizzard.com/en-us/games/legacy/

23

http://us.blizzard.com/en-us/games/legacy/

deposit for each resource. Those resource deposits are situated in the middle of the map, and

when extracted they give to the player twice the amount of resources when gathered, as opposed

to the normal quantity of every other resource deposit.

• Power Structure: Each race also has a Power Structure. The function of this structure is to give a

temporary power boost to units which can be reactivated overtime. There are two Super Powers,

one for each race whose effects are different from each other.

Some of the games referred in the section of RTS History and Examples, inspired the features

present in Planetary Conquest.

The Monster encampments feature was inspired by a game of the Warcraft universe called Warcraft

III: Reign of Chaos, which also contained monster encampments where monsters could be killed for

winning gold or for the player’s hero to win experience or items. The Unique Upgrades feature was

inspired by Warcraft: Orcs & Humans. Most of the units present in that game have at least an unique

upgrade available for them, with Planetary Conquest having also one available for each military unit.

The Ancient Resource Deposits feature was inspired by a game of the same developers as Command

& Conquer, which was Command & Conquer: Red Alert 2. That game only has one currency which is

cash and the player had to extract it from small chunks of gold spread in certain locations of the map.

However few zones contained diamonds instead, which each extraction valuing twice the amount of a

gold extraction. Finally the Power Structure feature was also inspired in Command & Conquer: Red

Alert 2. After the construction of certain structures in that game, a repeated timer would start. When

it ended the structure could activate a phenom when the player wished to, such as teleporting units

from one location to another or launching a nuclear missile to a designated location. If the building was

destroyed the phenom could not be activated until the player constructed that structure again, resetting

the timer to it’s initial duration. Furthermore only one type of that structure could be built at the same

time, not being possible to activate multiple phenoms at a short pace of time.

3.1.4 Economy

There are 3 types of resource present in Planetary Conquest. They are Crystals, Nitrogen Liquid and

Hydroxygen Gas. These resources can be extracted from Crystal, Nitrogen and Hydroxygen resource

deposits respectively. There are 6 clusters of 3 different types of resource deposits spread symmetrically

across the map and one special cluster which contains the Ancient Resource Deposits. Each resource

deposit holds 10000 quantity of resources of one type, which can be extracted by 10 quantity each

time a peon unit makes an extraction from a resource gathering. The Ancient Deposit Resources hold

the same quantity of resources, however for each extraction the peon will transport 20 quantity of the

resource extracted instead. Also the consumption of the Hydroxygen Gas is different from the two

24

races. The Orghz spends that resource together with the other two mentioned to produce units and

structures, and research new technology. The humans only use the Crystals and Nitrogen to improve

it’s military power, with the Hydroxygen only being spent on the breathing of the Human units. The latter

resource mentioned is spent for this behaviour over a repeating 6 seconds timer, being more spent with

the more population player accumulates. If the quantity of that resource is not enough for the breathing

of some units, they will take damage equal to a percentage of their maximum health.

3.1.5 Units

The units present in Planetary Conquest are the following:

• Peon unit: The only non-military unit present in Planetary Conquest. While it is the weakest in

combat purposes, it is vital to the growth of the player’s army. This unit can gather resources from

Resource Deposits by extracting them, then they are delivered to the closest Command Center.

It can construct any structure available, such as defensive, unit production or research upgrades

structures. Every structure can also be repaired, recovering the structure’s health points to it’s

maximum value at the cost of Crystal resources. Only one peon unit can construct a structure at

a time, without any sort of help of other peons. However more that one type of this unit can repair

the same structure at the same time.

• Melee infantry unit: The military unit that the Player can afford for the lowest resource costs,

which can attack other units or structures at a short distance. Their names are Orghz Warrior and

Human Soldier.

• Ranged infantry unit: The second type of infantry unit that can be produced. This type of unit

is slightly weaker in combat stats than the melee infantry, but it can attack from distance. Their

names are Orghz Butcher and Human Archer.

• Mounted land units: This type of units are similar to the infantry units, however they are mounted

by horses making them faster than the previous units mentioned. Mounted units also have in-

creased combat stats compared to the previous ones. Their names are Orghz Shadow Knight

which has ranged attack type and Human Cavalier which has melee attack type.

• Flying unit: The last type of military units which can travel on any map terrain, even if it is occupied

by rocks, water, lava or structures. Only units that have ranged attack type or that are also flying

units can attack this type of unit. Their names are Orghz Wyvern which has melee attack type

and Human Eagle Knight which has ranged attack type.

The attributes that are part of an unit are:

25

• Population value: The amount of population points an unit will occupy to the total population a

player can have. When an unit is produced the player’s current population will be incremented by

that value.

• Health Points: The unit’s Health Points represent their life total. When the unit’s live points are

0 or lower, the unit will die and the player’s current population will be decremented by the unit’s

population value.

• Damage: The amount of damage an unit can inflict to an unit, monster or structure.

• Armor: The amount of damage that an unit can reduce from incoming attacks.

• Range: The maximum distance which an unit can attack an enemy. Melee units have 1 range while

ranged units have 2 range. Each unity of range is equivalent to 50 pixels of distance between the

unit and it’s attacking target.

• Speed: The amount of pixels an unit can travel per second.

• Movement Type: If the unit can fly over occupied terrain having flying movement or it walks on

unoccupied map terrain having ground movement.

• Unique, Race, Weapon and Armor Upgrade: If the game object has the type of that upgrade

researched or not.

3.1.6 Structures

The structures present in Planetary Conquest are the following:

• Command Center: This structure is the main center of the player’s economy growth. It produces

peon units and receives resources gathered by them, giving the possibility for the player to improve

it’s army. This structure also offers the research of two unique upgrades, one being a racial upgrade

the other being the Tower structure upgrade.

• Barracks: This structure is responsible for the production of infantry units, both melee and ranged.

The unique upgrades for these units are also researched here.

• House: Structure that increases the total population points a player can have, which is 10 points

increased. The player cannot have more that 50 total population points.

• Tower: Defensive structure that can attack from a distance other enemy units or structures.

• Factory: This structure produces mounted units and offers the research of their unique upgrades.

26

• Research Building: A structure where is only possible the research of upgrades. There are three

types: Melee weapon upgrade, Ranged weapon upgrade and Armor weapon upgrade. The first

two will only affect units with the respective attack type, while the last one will affect all units. There

are three levels for each upgrade that can be researched.

• Flying Nest: The structures Orghz Wyvern Nest and Human Eagle Nest permit the production

of flying units and the research of their unique upgrades.

• Power Structure: The only structure that cannot produce any unit or research any upgrade. How-

ever after a certain period of time, this strcture provides to the selected player’s units a temporary

power boost. The functionality of this structure will be explained in detail in the subsection Super

Power.

Every structure contain as attributes Health Points and Armor Points. The Tower Structure also

contains Damage, Range and Unique Upgrade. Each upgrade has the same behaviour as what was

written on the unit’s attributes section.

3.1.7 Monsters

One of the features of Planetary Conquest is the existence of multiple Monster encampments spread

across the map. There are 6 encampments on the map, grouped with 3 monsters of the same type.

The type of those monsters can be Ogres which are a melee infantry unit, Archers which are a ranged

infantry unit and Gnomish Airplanes which are flying ranged units.

To interact with a monster encampment the player must send at least one unit to the location where

the monsters are. To do so the player with it’s selected units clicks on the monster it wishes to interact,

with the unit moving to it and stopping when it’s close of the monster encampment. There are 3 options

available for the player to choose:

• Trade: The player trades a quantity of a requested resource for another type of resource. The

quantity and the type of resources to trade are already specified. For example an Ogre encamp-

ment requests 200 quantity of Crystals and gives 300 quantity of Hydroxygen. The amount of

resources that the player gives and receives is always the same, regardless the encampment

monster’s type. However the type of each resource for each trade is different from each other.

• Recruit: The player pays a certain amount of specified resources to the monsters, for them to

give to the player 3 monster recruits of their type to the player’s army. The amount of resources

requested varies with the military power of each monster. The monsters received by the player are

treated as units.

27

• Pillage: If the player opts to choose this option the monsters of that encampment will attack the

nearby units of the player. The 3 monsters that are part of that encampment will be enemies of

the player, trying to kill it’s nearby units. However for each monster killed the player will win a

determinate amount of resources that can be seen before choosing this option.

Each singular monster is part of a monster encampment having an hidden monster group ID, referring

which encampment the monster is part of. For each encampment the player can only choose one of the

3 available options. Once selected no more options are available for that specified group. Also unless

the Pillage option is selected, it is impossible to attack these monster units. Although monster units

can be killed it is possible for other players that are not enemies with them, to interact with a monster

encampment if at least one of those 3 monster are still alive. The monster attributes include almost every

attribute an unit has with the same behaviour. The attributes they don’t have are the Race Upgrade,

Unique Upgrade and Weapon and Armor Upgrade. The recruited monsters since they will count as

units have the previous missing attributes referred.

3.1.8 Upgrades

Has seen earlier there are two types of structures responsible for researching the upgrades of the race,

tower structure and units. Those are the structures that produce units and the Research Building. The

structures that produce units are responsible for the research of unique upgrades. There are various dif-

ferent purposes for each researched unique upgrade such as reducing the maximum value of the armor

points of an enemy unit or monster by one, when the player’s unit attacks (Orghz Warrior), increasing

the tower’s armor and health points (Human Tower) or decreasing the time for constructing structures

and researching upgrades (Human race upgrade). The Research Buildings will only upgrade the dam-

age or the armor an unit has. Every upgrade can also affect the monsters recruited by the player. The

type of these monsters is reflected on the player’s army (melee infantry, ranged infantry, flying unit). For

instance if an Orghz player finished the research of the Orghz Warrior (melee infantry) unique upgrade

and has Ogre units previously recruited, those will also benefit from that upgrade and other Ogres to be

recruited will have the same scenario applied.

3.1.9 Super Power

By constructing the Power Building, the player can activate a temporary power boost to their selected

units. When the player decides to construct a Power Building, the other player will be warned that

it’s opponent is constructing that building. When the construction is finished both players will see a

timer representing the time that is remaining, until the player who constructed the Power Building can

activate it’s Super Power. It takes 4 minutes to activate the Super Power after construction. Only one

28

copy of the Power Building can stay constructed for each player. Afterwards when the Super Power is

ready the player can click on the Super Power button, and every unit that is currently being selected will

have a temporary power boost during 30 seconds. After those 30 seconds if the Power Building is still

constructed and active, the preparation timer will refresh again for 4 minutes.

If the Power Building is destroyed before the Super Power is active the timer will be inactive, and the

player cannot activate it again until it reconstructs the Power Building again. However if the Super Power

is active, even if the Power Building is destroyed it is still going to be active until the end of it’s duration.

The 2 different Super Powers for each race are Brute Force for Orghz which increases the affected

units attack by 3 points and Indomitable Spirit for Humans which adds a Shield, to protect those units

from enemy attacks. The shield points are 35. More discussion about those Super Powers is found in

the Technical Design subsection on the annexes of this document.

3.1.10 4X

Planetary Conquest has the 4X elements present on it. The player can Expand by constructing new

structures. The player can Exploit by extracting resource locations or interacting with monsters and it

can Exterminate by killing enemy troops or monsters present on the map. The player can Explore the

game map to gather resources in other Resource Deposits or to interact with monster encampments.

The location for those interests is already revealed to the players, since there is no Fog of War. The

reason for not having Fog of War implemented will be explained in the section What went wrong of the

Implementation chapter.

3.1.11 Progression

In this section of the document it’s going to be discussed the progression which is a ”Process of devel-

oping gradually towards a more advanced state” [43] that takes place on this game. There are two types

of progression which are in the view of the game and in the view of the player.

In the game progression two players will compete against each other. One will be controlling the

Orghz race, the other will be controlling the Human race. A 1 vs 1 game match has a duration about

15 minutes. The game ends when the enemy units and structures are destroyed. In the map there

are resources that the player can harvest to improve it’s race. There are also structures to produce

units, research technology that can increase the strength of those units, defensive structures able to

damage enemy units and structures and a Power structure temporary increasing some units military

power. Monsters encampments are also present on the map that can be interacted by the player’s units,

that may help the player to further increase the strength of it’s race.

In the player progression the players will take some non optimal actions when they are playing

29

for the first time, because of their inexperience in playing the game. As they play further they will gain

more knowledge and they will take optimal actions more often. Another way to improve their game

knowledge is to compete against stronger opponents, learning their strategies for using or adapting to

them in other matches. The main concerns that will be present to the player will be finding monsters to

interact, extracting resources from Resource Deposit locations, producing units, constructing structures,

researching upgrades and fighting against it’s opponent. This actions are done for the player being able

to win the game match. As the game progresses the player will start to feel more powerful, as with

the gather of resources and construction of structures will permit to research new kinds of technology

upgrades and produce new kinds of troops.

3.1.12 Planetary Conquest Concept Map

Bellow there is a concept map of Planetary Conquest, based on the generic RTS diagram presented in

the Related work section.

Figure 3.1: Planetary Conquest Concept Map

30

3.1.13 Interface

Bellow is a figure containing the interface of Planetary Conquest for the mobile devices. Referring what

each rectangle in underlying: In the 1 Rectangle is the types of resources used in this game being

Crystals, Nitrogen and Hydroxygen by order; with the current and max population being the last icon

represented. The 2,3 and 4 Rectangle represent the resource deposits from the same order of re-

sources described earlier. The 5 Rectangle shows the Command Center of the Orghz race. The 6

rectangle shows a Orghz Peon interacting with a group of Ogre monsters represented by the 7 Rect-

angle. The 8 Rectangle shows the amount of peons that are not working or moving for the player’s

race. The 9 Rectangle shows the mini-map, which is a small scaled representation of the main game

map. The 10 Rectangle is the Information Bar containing all the attributes that belong to the game ob-

ject selected, and on the right side it can be seen on the upper bar the monster options (Trade, Recruit

and Pillage) to negotiate with the monsters that are being interacted. Bellow of that bar is the button to

activate the Super Power of the player’s race on all the units selected. The 11 Rectangle represents the

command bar, showing the buttons that permit to order specific commands for the units that are selected

by the player. For what can be ordered on those buttons: on three buttons on the upper bar, the first is

for moving the unit, the second for attacking an enemy target, and the third for stopping the unit’s move-

ment and behaviour. Regarding the second line those buttons are exclusive to peon units. The first is for

repairing a structure and the second one to shows the structures that are available to be constructed.

The 12 Rectangle is where it is presented the timer of the Super Powers for the player’s race which can

be seen by both players, reporting the state of it (timer countdown for activation, ready for activation and

timer countdown to end activation). The Computer Interface is identical to the one presented, except for

the bar that is right up the information bar. This bar is only usable by mobile devices to conduct certain

commands that are difficult to do on these types of devices such as: deselecting game objects selected,

choosing a number as an Hotkey to quickly access a game object selected, moving the game camera

and enable to see the information regarding the action performed on a button. This types of behaviour

can also be done on computer devices, but are more easily to do so with the help of the mouse and the

keyboard.

31

Figure 3.2: Planetary Conquest Interface for Computer platforms

3.2 Architecture Design

The Architecture Design of Planetary Conquest is discussed in this section. The Technical Limitations

and Requirements of this project are analyzed. The role that a Client-Server Networking has, for

being possible to create a multiplayer RTS game is presented. Then there is presented the game

framework used Phaser.io, describing how the game project is organized and what it contributes to the

functionality of the game.

The game architecture of the game Freewee [44] was used as reference, for the documentation

present in this section. That game has many similarities to Planetary Conquest such as being pro-

grammed used HTML5, Node.js, Socket.io and Phaser.io.

3.2.1 Technical Limitations

Starting with the Technical Limitations and Requirements that are present in this project, some of those

are:

• Server: A Game Server is needed for this project with a computer device running it, for other

players in computer platforms or mobile devices to access it. The player will have access to the

server as a client, in order to be able to play the game. Also the server has an important role in

maintaining the clients synchronized and being authoritative to the events that unfold in the game

matches.

32

• Socket.io: This library enables real-time, bidirectional and event-based communication between

the browser and the server2.

• Node.js: A bidirectional RPC library3 using Primus.io4 as a network layer. It is designed to build

scalable network applications.

• Express: Express is a minimal and flexible Node.js web application framework that provides a

robust set of features for web and mobile. applications5.

• Phaser.io: A 2D game framework for making HTML5 games for desktop and mobile web browsers,

supporting Canvas and WebGL rendering.

• Game Device: A personal computer or mobile device is needed to play the game.

• Internet Browser: An Internet browser is needed to be installed on the gaming platform device

chosen by the player, in order to access to the server’s domain to be able to play the game.

User Requirements

This is an analysis of what the target users of Planetary Conquest are expected to do and desire of

this game:

1. Users need to have a playable device that can support the use of a internet browser, such as a

personal computer or mobile device.

2. Users must know how to access to the game’s domain in order to be able to play with other players.

3. Users must be able to issue input commands to the game they are playing, in order to send order

commands to the server and to interact with their opponents.

4. Users want a game that has faster response time to their input commands. Also the interface to

support the execution to those commands must be easy to understand and not difficult to navigate.

This has to be applied on any game device chosen by the player.

3.2.2 Client-Server Networking

To be able to connect the players to the game, a server is needed. The server will have all the information

about the game match, simulate some events belonging to it and have complete authority about what it

is enfolded between the players actions.

2https://socket.io/docs/
3https://nodejs.org/en/
4https://github.com/primus/primus
5https://expressjs.com/

33

https://socket.io/docs/
https://nodejs.org/en/
https://github.com/primus/primus
https://expressjs.com/

The server will check if the players are connected to the game match and broadcast the information

that is being made by the players actions. This is possible to do so because the players are connected

to the server as clients. However each action is supervised by the server game’s simulation, in order to

check if it is valid or not.

The clients will be responsible to take the orders issued by the players from their gaming platform

input commands, then the server will receive those commands. After checking if the actions requested

by the clients are valid, the server will broadcast the results of it’s simulation to every client connected to

the game match.

In short the server is in charge of providing data and services to one or more clients. In the context of

game development, the most common scenario is when two or more clients connect to the same server.

The server will keep track of the game as well as the distributed players. [45].

Some advantages on using the communication method are:

• Authoritative: With the server being completely authoritative over the actions that enfold during

the game, the players do not have to worry about game cheating or having different game scenarios

between the game machines of each player.

• Less calculations for clients: With the server simulating the game events that are made by the

players, plus being exclusive responsible for some heavy computing algorithms, it is possible to

save processing time from the client’s game device.

However there are also disadvantages is this method:

• Communication takes longer to propagate: When a client wants to apply a command issued

by the player, it needs to send the request of that command to the server, then the server needs

to check if the command is valid. If that command is valid, the server will broadcast the response

of that command to all connected clients. It takes some time for the players to see the command

sent being effectuated by the game, comparing to the communication used on the Peer-to-Peer

model, since this model directly relays the commands for client to client without the server being a

mediator over them.

• More code complexity: While it is useful that the server is the entity responsible for running the

game logic code, with the clients being responsible for the animation and rendering parts of the

game, it can be complex to divide the game code efficiently between the Client and the Server

side.

Now it will be presented some of the functionality included in the Game Server implemented and

used in this thesis. There is an explanation on how the server can accept connections and communicate

with Game Clients and how it enfolds it’s authority over the events of a game match between two players.

34

Server

There is one tutorial [46] that helped in the implementation ofPlanetary Conquest game server. That

tutorial explain how to setup a multiplayer game, programming the server and client module, and making

those two interact with Socket.io. The client is written in Javascript using Phaser as a game framework.

The server is also written in Javascript using Node.js and express module. The client and the server

communicate by using Socket.io.

Bellow is a simplified figure, representing the communications between the Server and the clients:

Figure 3.3: Simplified Game Networking

The server will need to use Node.js modules, since they are required to use.

Listing 3.1: Server Initiation code

1 //requiring Express module

2 var express = require('express');

3 //creating an instance of express, to start an Express application

4 var app = express();

5

6 //creating a server, for being able to: communicating with client players,

7 //keeping game information, creating sockets and being authoritative

8 //over client requests

9 var server = require('http').Server(app);

10

11 //requiring socket.io for listening client connections, to the created server

12 var io = require('socket.io').listen(server);

Express is the model used for serving files to clients, making these files accessible to them. app is a

new instance of Express and will combine with HTTP in order to have a HTTP server. With this type of

35

server it is possible to satisfy client requests over HTTP and other protocols. Then the server variable

will combine with socket.io and it will listen to clients connections.

The type of connection will be Transport Control Protocol (TCP), which guarantees the delivery of

the messages data in the correct order. If a package is lost the target application can notify the sender

application, and any missing packets are sent again until the entire message is received. However there

are problems with this connections, as the reply of a message can take some time compared with the

other commonly used protocol User Datagram Protocol (UDP). Still since TCP guarantees that every

message is sent to the clients in it’s entirety, this situation makes this protocol ideal for the communication

of a multiplayer RTS game.

Then there are files that will be accessed to the clients:

Listing 3.2: Directories to be used

1 //load some directories, for clients to use

2 app.use('/css', express.static(dirname + '/css'));

3 app.use('/js', express.static(dirname + '/js'));

4 app.use('/images', express.static(dirname + '/images'));

5

6 //using index.html as the root page

7 app.get('/', function (req, res) {

8 res.sendFile(dirname + '/index.html');

9 });

10

11 //server is listening to the given port

12 server.listen(process.env.PORT | | 80, function () {

13 console.log('Listening on ' + server.address().port);

14 });

The first three lines of code, permit the clients to use files needed to the game functionality that are

not directly accessed. Then the server will listen to the designated port (port 80) where the clients will

access to, with the file index.html serving as the root page.

The clients will communicate with the server, emitting commands made by the players input with the

use of socket.io.js library.

Lock-step method

To guarantee that the clients are synchronized with the server and the messages sent by the server

are received to all the clients at the same time without major latency problems, an architecture known

as lock-step networking model [47, pg 382] was used.

36

In this model both players start with the same game state. When the player issues a command to an

unit or structure it possesses in-game, the client of the player’s gaming platform will send the command

to the server instead of being executed immediately. The server after checking if the command is valid

or not for execution, will then send the same command to the connected players, with arguments to be

executed on the client side functions. Once the players receive the command they will execute it at the

same time, ensuring that the game on both machines stay synchronized.

The server will achieve this behavior by running it’s own game timer at 10 clock ticks per second (100

ms). The player’s client also runs it’s own game timer at the same pace as the server. Those ticks are

also recorded by these two entities.

Each time the client timer ends it will send to the server it’s own game tick, being updated to it’s

corresponding socket on the server side. When a command request is sent by a client, it will be stored

in a command array that the server has.

Each time the server game timer ends it will send the response of the requested commands to the

clients. Those commands have specified the current game tick on them. The clients will execute the

commands response corresponding to the game tick received.

Since the server needs to execute the response to the commands for all the players at the same

time, it will need to wait for the commands sent from all the player clients to arrive before stepping ahead

to the next game tick, which is why it’s called lock-step. If there is a least one client whose game tick is

lower than the server’s game tick, which could be caused by latency issues, the commands stored by

the server will not be send for the connected clients. The server has to wait another timer cycle to check

if the clients who had their game tick lower than the server’s game tick are now valid, in order to send

the commands response to all the connected clients.

Authoritative Server

The Lock-step method demonstrated how it was possible to have the clients synchronized with the

server, and having the server messages be relayed to all the clients at the same time. However there

is still the emergence to guarantee that no types of cheating happens. To do so the server needs to

be authorative over the events of the game match played by the clients. With the server simulating the

game match state, the clients do not have to worry about being cheated or receiving incorrect messages

about the events of the game. One example of a server using it’s authority is in unit vs unit combat. The

order for these units to combat is made by the clients input and the animation of those attacks as well.

However the calculations of damage on that combat are simulated by the server only. The server sends

information to the client about the amount of health an unit has lost by enemy attacks and when it has

to die.

In summary the game state of a game match is managed by the server alone. Clients send their

actions to the server. The server updates the game state periodically and then sends the new game state

37

back to clients who just render it on the screen [48]. There were some measures taken for the server

to be able to be authoritative to the game state such as calculating the damage done by the combats,

simulating the movement of units and monsters or having timers to the construction of structures and

production of units. Those details will be discussed in the next chapter Implementation.

To end this subsection a diagram is presented below, with the relations between the clients and the

server in order to setup a Planetary Conquest game match.

Figure 3.4: Client-Server game communication

38

3.2.3 Phaser.io

In this subsection there is a discussion about the architecture of the game framework Phaser used in

Planetary Conquest. To understand how this project is organized, an explanation of the files which were

loaded in the root file of this project index.html is made bellow.

Starting with the libraries used, this project uses socket.io.js for socket network communication and

phaser.js to be able to use the functions available to the Phaser game framework. There are other

libraries used such as phaser-plugin-isometric.min.js that loads the plugin responsible for isometric pro-

jection of the game assets and the use of isometric operations. phaser-kinetic-scrolling-plugin.js is used

for scrolling the game map on the mobile platform. easystar-0.2.1.min.js is used for the A-Star move-

ment of units and monsters and HealthBar.standalone.js is used for creating bars for representing the

health of an unit or the percentage of a technology research.

Then there are loaded 4 files: MonsterStruct Client.js, UnitStruct Client.js, BuildingStruct Client.js

and UpgradeStruct Client.js. Those files refer to detailed information about each game element which

are Units, Structures, Monsters or Upgrades respectively. The same information for these elements is

used for the Clients and the Server. That information can include a game object health points, develop-

ment time, production resource costs and others.

After those 4 there are loaded the Phaser game states that are part of this project. Phaser supports

this method allowing different parts of the game to be included in these files. When one part of a state

functionality is completed, it will request the start of a following one. There are four states present in this

project:

1. game.js The first state of this project that starts by creating a Phaser game instance with a size,

and render mode specified. Then it adds the other three states to the project game states.

2. boot.js The second state that is responsible for the initialization of the game screen, with the size

depending on the game device used. It is also responsible for other types of initialization such as

the type of physics to be used or enabling input events.

3. load.js The third state responsible for loading to the game various assets used such as images,

spritesheets, text fonts or JSON files containing information about the game map.

4. play.js The last state, which is the game manager of Planetary Conquest. This state has vari-

ous functions such as initializing the interface, respond to client inputs or receive and treat the

command responses sent by the server.

Then there are three classes containing the interactive game elements present in this game: unit.js

structure.js, monsters.js for Units, Structures and Monsters respectively. The first two elements are

programmed as Prefabs, which means game objects created by these classes will be reusable. When

39

one of these game objects reaches 0 or less health points, instead of being destroyed these objects

are put in a state where they are not rendered neither have their behaviour processed. However they

still keep the information initiated by their creation and are still present in the game device memory.

When the player produces another type of these game objects such a new unit or structure, if there are

available prefabs that are inactive one of those will be active again, with the information of the the new

game object produced. With this approach it is possible to save memory and processing time when

creating new units or structures. The reason for monsters not being implemented as prefabs is because

there is no other way to have more monsters than those that are spawned at the beginning of the game,

having no utility for them being counted as prefabs.

Finally there is the client.js file, that is responsible for sending the command inputs of the player to

the server and relay the server messages to the game manager. Bellow is a figure with the order of

Phaser states in Planetary Conquest :

Figure 3.5: State diagram of Planetary Conquest

3.2.4 File Structure

The file structure that is part of Planetary Conquest is the following:

40

Figure 3.6: Planetary Conquest file structure

The css folder contains the style.css. The images folder contains various assets used in this game

such as text fonts, icons and spritesheets of units or monsters. It also contains images of structures and

immovable map objects and projectile animations. The js folder includes three folders: The first is the

libs folder containing some libraries used in this game. The second prefabs contains the scripts for the

prefabs that exist in this game (units, structures), the monsters file and the scripts that have attribute

information about the attributes of the three interactive game objects and upgrades available to them.

The final folder is the states containing the client.js file, and the file for the game states mentioned for

this project. The node modules contains some of the libraries to be loaded on the server for supporting

it’s functionality. The last folder socket.io permits the use of socket functions to be able to setup a

networking multiplayer platform.

The two .txt output files are used as log files, containing various information about the state of the

game matches. The .csv file is used to load information about the game map, such as the immovable

game objects that are part of it and their position on the map. The index.html loads the scripts that will

be used in Planetary Conquest on the client side and server.js which has the server information.

Phaser.io Game Logic

In this subsection it is discussed some of the functions that are usually part of the Phaser game

states. Referring to the game states present in Planetary Conquest those are [49]:

• preload(): This function is called at the beginning of a state file if needed and it’s used to load

game assets to the project. This function is being used on the load.js state.

• create(): This function is called after preload(), being used for the initialization off attributes of a

41

state and enabling some events for the game such as physics or enabling input support. This

function is being used on all the game states present in this project besides game.js.

• update(): After create() this function is called periodically at every game frame. It is useful to

update variables or to change conditions trough the duration of the game. This function is being

used on the game state play.js and in Unit, Monster and Structure classes.

• render(): While it is not being used for game playing since all game objects are automatically

updated, this method is called after game renderer and plugins have rendered the game objects. It

is possible to do final post-processing style effects in this function or apply debug functions to see

information about Phaser elements in-game such as: camera position, game size, game objects

physic containers and others.

It is presented a diagram resuming the use of the Phaser game state logic.

Figure 3.7: Diagram of Phaser Game state logic

3.3 Discussion

This marks the end of Chapter 3 where there was a discussion the on the Game Design and Game

Architecture used in Planetary Conquest .

The Game Design section presented many in-game elements that are part of it common to other

RTS games, the progression made by the players, the interface and some others.

For the section of Game Architecture, there was a presentation of the Technical Limitations this

project it has, how the implementation of a game Server and a game Client for each player made it

42

possible to have a multiplayer networking game and how the project was organized with the use of the

game framework Phaser.io.

The next chapter is about the Implementation of this project, detailing how some functions that

permitted the functionally of some of the most important game events were implemented on the project

files discussed in this chapter.

43

44

4
Implementation

Contents

4.1 Development Process . 46

4.2 What went wrong . 63

4.3 Discussion . 65

45

The Implementation process that was part of the Planetary Conquest game is written in this section.

This section starts with the Development Process that was enfolded on this project and how some of

the most important tasks were implemented. Then refers What went wrong during the development of

the project, explaining the problems that occurred and what were the causes for those problems.

4.1 Development Process

There were various tasks that had to be implemented on this project in order to develop a RTS multiplayer

game. Some of those were crucial to the creation of it, which were: Spritesheets, Game Map, Phaser

Game states, Interface, Isometric projection, Prefabs, A-Star movement, Spatial Hashing, Client-

Server communication, Server authoritative and Device orientation. Before starting the explanation

of some of these tasks that were implemented, the Starting Tutorials that helped to understand the

game framework that was used are described, and what was their importance in order to know how to

create a HTML RTS multiplayer game.

4.1.1 Starting Tutorials

To know more about the game framework Phaser.io that was chosen to help creating Planetary Con-

quest, there were some tutorials found in the internet that helped to understand how this framework

could benefit in creating a RTS multiplayer game.

The first one used can be found on the Phaser website [50]. The framework version used in this

tutorial was Phaser 2, which also coincides with the version that this project uses. For most of the

development time the revision used was the 2.6.2 - Kore Springs, since it was the last official build

published by the developers of this framework that contained the last update of the Phaser API docs.

Much later during the development cycle it was used the 2.9.2 version made by the Community Edition1

of this framework. This new revision corrected some warnings that were appearing on the console of

the programming tools, that are available for the web browsers used during the project’s development.

This tutorial started to introduce the importance on knowing how to use a web server to implement a

multiplayer game, and then showing a simple Hello World example to being setup on a webpage. Then

it presented a simple game tutorial which explained the basic steps to create a basic game using this

framework [51].

Following that tutorial, it was studied some video tutorials on how to make a HTML5 game using

Phaser. One was TapTapTaxi2. This tutorial was helpful to understand some techniques that are made

in game developing such as: Prefab creation, Animation and Spritesheets use, loading assets and

1https://github.com/photonstorm/phaser-ce/tree/v2.9.2
2https://www.codecaptain.io/courses/html5-game-development-in-phaserjs

46

https://github.com/photonstorm/phaser-ce/tree/v2.9.2
https://www.codecaptain.io/courses/html5-game-development-in-phaserjs

sprite placement. The game made by this tutorial also used isometric sprites and could work on personal

computers and mobile platforms. Another one was the Spaceship Game created by Zenva Course3, that

explained other set of techniques such as creation of particle effects, physics events like collisions or

velocity movement, camera functionality, Phaser states configuration and moving background animation.

With these tutorials it was learned on how to create a HTML game in Phaser and knowing how to

use various techniques that are applied to game developing. However there was still missing some

information about creating a RTS game and being multiplayer as well. Fortunately there was a book that

could satisfy both needs, written by Aditya Ravi Shankar called Pro HTML5 Games [47] [52]. This book

explained how it was possible to program a multiplayer RTS game written in HTML. The book referred

topics such as creating game elements, interface, map creation, producing units and structures, A-Star

movement, unit collision and avoidance, Fog of War and how to setup the game to be played with multiple

players. Also it explained how to implement the Lock-step method referred in the previous chapter. This

book is a very appropriate reference for some of the tasks implemented in Planetary Conquest.

Finally there were two websites who were useful to solve some technical doubts surged during de-

velopment. One was HTML5 Game Devs [36] which had the largest community about the development

of HTML5 games, and has Phaser as the principal game framework used. The other website was the

API documents that were available for the Phaser 2 version 4, where information about the Classes that

Phaser has at is disposal is documented.

With all these tutorials plus the one referred at chapter 3 about creating a multiplayer game in Phaser

[46] it was acquired sufficient knowledge about this game framework. Thus the implementation of this

project could start. Concluding the explanation of tutorials used for this project, there is the explanation

of the most important implementations made in this project and what they contributed to the development

of it.

4.1.2 Spritesheets

After completing the tutorials indicated in the subsection above simple test of loading a game map was

made. The map consisted of a 30x30 rectangle with one color and an image of an unit placed on it. The

initial strategy for completing the tasks needed for this project was implementing every single task that

could be run in just one client such as the game states, game objects, interface and game map. After

that it would be implemented the server and programming the communication that would be made with

the players clients.

One of the first tasks implemented was how to load a spritesheet that could be used on a game sprite

and how it could be animated. A sprite consists of a set of coordinates and a texture that is rendered

3https://www.udemy.com/phaser-game-development/
4https://phaser.io/docs/2.6.2/index

47

https://www.udemy.com/phaser-game-development/
https://phaser.io/docs/2.6.2/index

to the game canvas, that can also have additional properties such as physics motion, input handling,

events, animations and others5.

As said in chapter 3 in the subsection Perspective it was quite difficult to create or find sci-fi image

assets, so the spritesheets that could be found on the group The Sprite Resource [42] were adequate

to use in this project. After deciding the game image assets that would be used, it was needed to turn

them in spritesheets that could be loaded into the Phaser framework and animated by it properly. The

way that the spritesheets on the game website were presented, they could not be recognized as valid

by Phaser. The issue was the existence of different space sizes between each image frame of the

spritesheet, and they needed to be spaced with the same horizontal and vertical space for being able

to be recognized by the Phaser framework. Each frame of a sprite needed to have the same width and

height from each other. The solution to solve those problems was the following:

1. First those images would be downloaded and placed on a separated folder. Then each frame of a

spritesheet would be separated using the program ShoeBox6 from Addobe Air, which is a program

that the user can drag and drop images to apply operations for sprites, bitmaps, animations an

others. One option available is on the Sprites tab which is Extract Sprites, that was used to

remove every image frame that was contained in every spritesheet downloaded. By applying this

method every frame that was present on the spritesheets was separated in one single image.

2. As it can be seen in the example of the Orc Peon spritesheet7 there are frames for the movement,

walking, mining/attacking, return resources and death animations that can be used to animate a

sprite. However only 5 directions were present (North, Northeast, East, Southeast and South)

and a unit or monster sprite would have 8. The 3 remaining directions were Southwest, West

and Northwest. By using the program GNU Image Manipulation Program (GIMP)8, which is as

it’s name implies an image manipulator program, it was possible to invert a spritesheet image

horizontally, then saving to another image and repeat the process done on ShoeBox for this new

image. There were extracted the sprite frames of the 3 directions that were missing.

3. Then those extracted image frames were ordered by number to be used in Phaser, first the 5 di-

rections described for moving and attacking from the original spritesheet. Those would be followed

by the other 3 directions for the same purposes from the inverted spritesheet and finally the dead

animation.

4. After ordering the frames, Gimp would be used again to finally have an appropriate spritesheet

image. To do that a tutorial was used [53]. Afterwards all the spritesheet frame layers are aligned

5https://phaser.io/docs/2.6.2/Phaser.Sprite.html
6https://renderhjs.net/shoebox/
7https://www.spriters-resource.com/pc_computer/warcraft2/sheet/29480/
8https://www.gimp.org/

48

https://phaser.io/docs/2.6.2/Phaser.Sprite.html
https://renderhjs.net/shoebox/
https://www.spriters-resource.com/pc_computer/warcraft2/sheet/29480/
https://www.gimp.org/

to the center, then the layers are resized to have the same height and width without deforming

the frame and finally combining all the layers to a single spritesheet, using the plugin Fuse Lay-

ers. Each line of the spritesheet contained 5 frames. This method would be concluded with the

spritesheet being saved in a single .png file.

5. With the spritesheet image created, it would be loaded in the Phaser game load state - load.js,

giving a key name to the spritesheet and the width and height that was common to each frame.

This was done in order for Phaser to load the frames that are part of an animation with the exact

dimensions that they have.

6. These spritesheets are used to their corresponding prefab unit, specifying the frames that are part

of an animation of a prefab such as moving to a given direction, attacking or dying. There was

also the need to designate the amount of time that an animation would take from start to finish and

looping that animation when it was ordered to play. Flying units and monsters have one particular

detail, which is having their moving animation looping even when they are still in the same position

without moving, to give the impression that they are flying.

This solution was used in every unit and monster spritesheet. There was one more course of action

for the monsters spritesheet, which was having three sets of colours. One for each race Orghz and

Human (red and blue) and one for the Monsters (yellow). To do that one color was already applied to

each monster, the other two would be applied using an image available in the Sprite Resource website9,

that had 8 army colors at disposal. The RGB code of those colors was used to replaced one set of colors

to another.

4.1.3 Game Map

With the creation of spritesheets and the animation of their corresponding prefabs, the next task was to

load the game map to this project.

To be able to create a game map image the program Tiled10 was used, which is a 2D map editor both

for orthogonal and isometric perspective. The first map created was a simple 30x30 tiles map, with the

same ground tile used that was by 64x32 pixels, with this measure giving an isometric aspect view for

the tiles used. Then as the project progressed there were added more tiles, some with different terrain

tiles such as water, magma or flora which led to the final game map. The dimension of that map was 45

by 45 tiles, with each tile still being by 64x32 pixels with isometric orientation. The game map would be

loaded on the game load state - load.js as an image, then it would be placed in the game manager state

- play.js with it’s sprite anchor set to (0.5,0). An anchor of a sprite is the point of reference when placing

9https://www.spriters-resource.com/pc_computer/warcraft2/sheet/60022/
10https://www.mapeditor.org/

49

https://www.spriters-resource.com/pc_computer/warcraft2/sheet/60022/
https://www.mapeditor.org/

it in the game world11 . Each tile position would be referenced to a matrix being also 45x45, where

there could be one of two possible numbers: 0 specifying a non-occupied position, and 1 specifying

an occupied position. This matrix is present in the server and in the client side, with the server being

responsible for changing the matrix positions values on both sides.

Now a game map could be loaded to use and the game objects that would be over it as well. To

be able to place the starting immovable objects that were part of the map such as rocks, mountains or

trees, it was done the following:

1. First in Tiled each special tile that would have a immovable game object over it, had a field called

Personalized Property with a name to reference that object. For example the white trees immov-

able object would have their name being W.

2. Then after those names being designated for every special tile the map would be exported to a .csv

file. That file would have 45 lines and columns, with each element being separated by a comma

containing either the number 0 or the names specified earlier for each special tile.

3. Then using Microsoft Office Excel for loading the .csv file it was created a Pivot Table in order to

have three columns with the positions and names of each special tile. The three new columns

were X, Y and Value; for the line, column and name that each special tile had respectively. The

resulting table would be saved in a .csv to be used on the server side. On the client side it would

be used in .JSON format, using a free converter found on the internet12.

4. Afterwards it was coded in the server’s initialization code a 45x45 matrix (45 arrays each with with

45 positions, into a single array with 45 positions), having their value at 0 for each non-occupied

position and 1 for occupied positions. On the client side was also used the same method and it

was loaded each image corresponding to the game element it represented.

The starting immovable game objects of the game map could be changed in position, type and

quantity, by changing those values on the .csv files.

4.1.4 Isometric plugin

Since one of the main objectives for this project was to have a RTS game with isometric projection,

it was researched how could it be possible to implement it. After some research there was found a

plugin compatible with Phaser [54]. This is a comprehensive axonometric plugin for Phaser, which

provides an API for handling axonometric projection of assets in 3D space to the screen13. With the

use of this plugin it would be possible to use a set of operations that would not be possible using what
11https://phaser.io/examples/v2/sprites/anchor
12https://www.csvjson.com/csv2json
13https://github.com/lewster32/phaser-plugin-isometric/

50

https://phaser.io/examples/v2/sprites/anchor
https://www.csvjson.com/csv2json
https://github.com/lewster32/phaser-plugin-isometric/

Phaser offers, regarding orthogonal projection. Some of those were physics operations such as velocity,

collision or sprite container. There were also options for depth sorting the game objects present on the

game map. The position of the game objects would be using isometric coordinated, with the sprites

having an isometric view on a grid shaped diamond map.

There is a tutorial that setups a small Phaser game example using this plugin [54]. The tutorial

explains how this plugin can be loaded in the game project, how to add objects that are recognized as

isometric (isoSprite) and adding physics, collision and overlap events to them. It was possible to initially

add these operation to Planetary Conquest project as well. One that had to be removed afterwards

was collisions, since it provoked serious problems regarding some actions that enfolded during a game

match. Those problems will be discussed in the section What went wrong of this chapter.

With this plugin each object prefab and the other immovable game object would be instantiated as

a isoSprite, instead of a sprite object for being able to use some of the operations described above.

However there was a problem using this method with a large number of game objects instantiated this

way. It cost several processing power to the game devices, when drawing these objects during each

frame. Even with only applying this plugin to the prefab objects it would still happen. There was no other

solution to revert to the use of normal sprite objects, instead of isoSprite. With the use of this type of

objects there was a change on how the velocity of the units and monsters would be calculated and it is

going to be explained as well on the section What went wrong of this chapter.

4.1.5 A-Star movement

In order to have intelligent movement made by units and monsters by walking from a start to a end

position, using the shortest path possible and without colliding on any immovable object it was needed

a pathfinding method. There are algorithms used for pathfinding search, one of those is Dijkstra’s

Algorithm created by Edsger Dijkstra [55]. This algorithm permitted to find the shortest way possible

from a node to another, by checking every single node and route cost that belonged to a graph. As it

can be seen in the figure bellow, it was determined the shorted distance possible between the two green

nodes, by calculating which path would have the shortest total cost. That cost was the sum of each route

that was part of the shortest path [56].

51

Figure 4.1: Dijkstra shortest path calculation - IST AIG Class

The problem with this algorithm is exactly what was written above, on how is performed the shortest

path search. The algorithm needs to check every single node and route costs in order to calculate

the best path possible. Fortunately there is an optimized version of this algorithm, that was used for

calculating the paths that were part of the movement made by the units and monsters of this project.

That algorithm is denominated A-Star.

This algorithm is faster than the previous one presented, since it will travel the node graph to find the

shortest path possible between two nodes without the necessity of visiting all nodes of the graph. To do

so it can be represented an evaluation function:

f(n) = g(n) + h(n) (4.1)

The objective of this function is to have the lowest f value possible, which will indicate the shortest

path possible for one node to another. The parameter g means the movement cost to move from the

starting node to a given square on the grid, following the path generated to get there. The parameter

h is the estimated movement cost to move from that given square on the grid to the final destination,

which is referred as an heuristic. With the use of an heuristic it would be faster to calculate the shortest

path possible.

There are two commonly used heuristics that can be used with this algorithm in grid maps. One

is the Manhatan which calculates the shortest distance of two nodes, with the restriction of not using

diagonal movement between each node. The formula is given by:

h(n) = |goal.x− n.x|+ |goal.y − n.y| (4.2)

The other one is the Euclidean which also calculates the shortest distance possible, but it can move

diagonally, with the formula being the following:

h(n) =
√

(goal.x–n.x)2 + (goal.y–n.y)2 (4.3)

52

The following figure shows the use of these two heuristics, with the green line being Euclidean distance

(6 nodes). The other 3 are different applications of the Manhathan heuristic, having the same distance

between them (12 nodes).

Figure 4.2: A-Star distance heuristics - - IST AIG Class

The Euclidean distance would be appropriate to be used in this project, since units have intercardinal

movement directions (NW,NE,SW,SE) and with this type of movement it was possible to be found the

shortest distance possible. For using the A-star algorithm a tutorial is available on the internet [57] by

the same company TIZEN, that made the tutorial presented before about the use of the isometric plugin

for Phaser. This tutorial explained how it was possible to give movement to a game object using the

A-star algorithm. It was used a library called easystar.js14, which permits the use of A-star algorithm

already implemented in this library.

There are some set of options offered by this library, such as enabling corner cutting that are part of

occupied nodes for the calculated path, permit the path to move trough diagonal nodes or not, setting

which numbers of a grid matrix are acceptable as walking nodes, and others. With the use of this library

calculating the shortest distance between two nodes, with the options of corner cutting disabled and

the diagonal movement enabled, it was possible to have A-star algorithm used in this project with a

Euclidean distance heuristic.

Looking at the distance heuristic used there is still a situation that could be optimized, being that the

units and monsters have to walk on all the nodes calculated which might not be the shortest distance

possible. The following 2 figures show an example of this possibility. The first one is the path calculated

by A-Star with the Euclidean heuristic from one node to another represented by black nodes, with the

path being the green lines Figure 4.3(a). The second one is the same situation but with a method

called smooth path applied to the calculated path, reducing the distance from one node to another

Figure 4.3(b).

14https://github.com/prettymuchbryce/easystarjs

53

https://github.com/prettymuchbryce/easystarjs

(a) Without smooth path (b) With smooth path

Figure 4.3: Differences between smooth path application - IST AIG Class

To apply this type of behaviour to the A-star path calculated, the smoothing path method had to

be implemented. On the server.js file the function smoothPathServer was responsible to apply the

behaviour of this technique. The idea of this function was retrieved by this reference [58], using the

method Straight-line Smoothing. This method receives a path already calculated by A-star method

and checks in the following order:

Given a path P=[p1, p2, ..., pn]

•i=0

•Repeat until i <n-2

•For every 3 waypoints pi, pi+1, pi+2 in the path

•If walkable(pi, pi+1) and walkable(pi+1, pi+2) then delete pi+1

•Else move to next waypoint

•i= i+1

This means that the function will check if the 3 first waypoints are walkable, determining if the small

paths with (pi, pi+1) and (pi+1, pi+2) nodes do not have any obstacle between them. To do so it was

defined as ”walkable” if the two nodes compared would not have their adjacent nodes with an occupied

or out of map bounds position. If the distance between those two nodes was ”walkable”, then the second

node of those two would be cut from the path calculated previously. This would be repeated until this

method reached the final node. Unfortunately this method still has a problem, the nodes that have

adjacent positions which are occupied will count for the final path calculated. There are cases where

this could be avoided. One example is the two figures bellow: the first Figure 4.4(a) being the current

solution and the other without having the issue mentioned above Figure 4.4(b).

54

(a) Current smooth path (b) Proposed smooth path

Figure 4.4: Differences between straight-line smooth path application - IST AIG Class

To solve this problems one solution could be the use of raycasts emitted on the units and monsters

position, to check if those hit an unmovable object during movement. However it couldn’t be used on

the server prediction simulations. Another solution would be adding sample points between each node

(pi+1, pi+2), and check with the units width if it would occur a collision with an unoccupied tile. This was

also not employed since Phaser physics could not be run on the server side. The solution being used in

this project would still return the path of the first figure.

For the server to be able to maintain authority of the movement performed by the units and monsters

of the game match, it would create a simulation of that movement. To do so it was calculated the amount

of time that it would take from a moving game object to reach from a node to the next one of the path

previously calculated. This would continue until the last node would be reached. With this the server

had a simulation that would permit it to calculate the position of a moving game object at a given time.

The movement also had to be synchronous between the clients and the server, to do that there were

two behaviours implemented.

The first one would be the clients sending the position of the units belonging to both clients and

monsters, that were moving on it’s game side to the server. The server would check the current position

of a moving game object resulted by it’s simulation, with the position received by the client. If there would

be a substantial distance between the two of them (it was used 10 pixels at minimum to be checked),

the server would have to change the game object’s position on the client side. To do that the server

calculated the future position where the unit would be, when the client received the server message.

That calculation would take in account the average latency that was calculated for that client before the

beginning of the game.

The second implementation performed would be the arrange of the Phaser physics time, during each

update cycle of the unit and monsters prefab of each client. The alteration of the Phaser physics time

was needed in order to calculate the velocity of a sprite, having in account the time that each update

55

cycle would take. The following operation was added and executed each update cycle, when a game

object was moving:

Listing 4.1: Physics elapsed calculation

1 var deltaTime = (this.game.time.elapsedMS) / (1000 / this.game.time.desiredFps);

2 this.game.time.physicsElapsed = (1 / this.game.time.desiredFps) * deltaTime;

The first line calculated an approximation of the delta time of the current game frame, which would

use the time elapsed of the previous frame (this.game.time.elapsedMS, measured in milliseconds), di-

vided by the amount of milliseconds that was supposed to be equal to the time that each frame would

take (1000/60). Then the physics update delta (which is (1 / this.game.time.desiredFps) at the start of

the game), would be changed by the second line of the formula above. This would mean that if suddenly

a client would be having 30 Frames Per Second (FPS) during some time, the update cycle would move

the unit twice the amount of pixels that what it was expected to be with a 60 FPS update cycle.

4.1.6 Spatial Hashing

At some point of the project’s development it was found a problem for some functions that could be called

by units, monsters or towers. Those functions involved checking which nearby game objects would be

close to the game objects in question. This verification would contribute to look for nearby allies after

receiving an enemy attack, targeting an enemy unit after killing the previous enemy target or determining

if it is possible to build a structure that would not overlap on units or monsters. The type of issue found

on the starting implementation of these functions would be performance, since the starting solution used

would be checking every game object on the map to satisfy what was requested by the game objects

that called those functions.

To tackle this problem it was needed some sort of data structure that would store the location of the

game objects, and that it could be easily accessed to, in order to do some operations such as: Checking

nearby game objects that are close of a game object or updating their position on the data structure.

One option that could solve this problem was the use of Quadtree. A quadtree is a collection of a

trees used to efficiently store data of points on a two-dimensional space. In this tree each node has at

most four children [59]. The methods used to build a tree of this type were the following:

1. Dividing the current two dimensional space into four boxes.

2. If a box contains one or more points in it, a child object is created. On that child object it is stored

the two dimensional space of the box where this child is contained.

3. If a box does not contain any points, a child would not be created on it.

56

4. The previous steps are recursed for each of the children.

This method would be seem to be appropriate to resolve the problem quoted on this task. Quadtree

permitted to store units, monsters or structures that could have their position updated and accessed to.

However this method posed a problem. It was demanding for the Central Processing Unit (CPU) of the

game device to rebuild the tree each time there was a change on a game object position that would

oblige this behaviour.

The other method that came to be the solution to this problem and was used in this project is Spacial

Hashing. This method is a process by which a 3D or 2D domain space is projected into a 1D hash

table. To help solve this problem there is a tutorial available on the internet [60]. In this project instead

of an hash it would be used an array that would be instantiated by the following code:

Listing 4.2: Spatial Hash instantiated

1 //the cell size that is part of each row and column of an hash

2 this.hashCellSize = this.mapSize * this.tileSize / 8;

3

4 //for units

5 this.hashArray = new Array();

6

7 //for structures

8 this.hashBuildingArray = new Array();

9

10 //the number of tile coulmns and rows are the same, 45

11 this.hashColumns = Math.floor((this.mapSize * this.tileSize) / this.hashCellSize);

12 this.hashRows = Math.floor((this.mapSize * this.tileSize) / this.hashCellSize);

13

14 this.hashWidth = Math.floor((this.mapSize * this.tileSize) / this.hashCellSize);

The size of each cell that would be part of an hash would be 1 of a 64th of the map size, which means

that the hashArray would have 64 positions, from 8 hash lines and columns. The values used for this

type of calculations are all according to isometric coordinates. Each position would contain another array

(or usually called buckets by this method) that would contain the game objects inserted on them. There

would be one for units and monsters together (hashArray) and one for structures (hashBuildingArray).

When one of these 3 objects would be created to the game world, it would be calculated which

buckets they would be part of the corresponding hash array. Since these objects are sprites with width

and height dimensions, just inserting them in one bucket to their corresponding position would not be

enough. There was the necessity to see which buckets would be overlaped by the sprite bounds. For

57

that by checking the physics container of a game object sprite, which is a rectangle with the width and

height of it with it’s center on the sprite middle point. Then it is only needed to check the buckets that the

4 vertex of the rectangle are part of. The following figure will show an example of this:

Figure 4.5: Example of Hash spacing application

As it can be seen in this picture it is an example of a bucket list with 9 buckets (from 0 to 8). The red

rectangle is corresponding to a game object sprite. If it would only be accounted the middle position of

it, the game object would only be inserted into the bucket 4. However the sprite also overlaps with the

1, 2 and 5 buckets. Thus those other buckets also have to be accounted for.

The functions responsible to store the game objects mentioned into their respective hash array, would

be called when one of these objects would be created to the game world or when an unit or monster

would move. The update of the sprites position would also cause to change the buckets where they

were inserted. One important factor to be aware of is that a game object container should not be bigger

that the size of a bucket, otherwise the calculations performed would not be valid.

With the Spatial Hashing method it was possible to perform some functions that required to check

nearby game objects, without having to check all the ones that were created to the game world. Instead

it would be checking those who were close to the game object in question.

4.1.7 Device orientation

This task was done for the mobile platforms such as smartphones, iPad or tablets. For these types of

device it would be needed to scale the game size, according to the screen size of the game device and

adjust the game size to the game device landscape (horizontal) position.

There were a set of operations that have to be implemented, in order to have the appropriate game

size for the mobile platforms. Those operations are present on boot.js file and were performed in the

following order:

1. First it would be needed to insert a starting screen after the player’s client loaded this project’s

webpage. It was inserted a starting text, requesting to the player to click on the text to start the

game.

2. The Figure 4.6(b) shows the starting text that is visualized for the computer platforms and mobile

platforms that are in landscape (horizontal) position.

58

3. If a mobile platform would be in portrait (vertical) position, then the text would change as it can

be seen in the Figure 4.6(a), requesting the player to rotate the mobile platform to the landscape

position.

4. When the player would click on the text with the valid orientation requested, it was started an op-

eration to set the game to fullscreen mode. This operation had to be done in order for the browser

border to disappear, and there was the need of an input from the player since this operation can

only be enabled this way by Phaser.

5. Depending on the game device screen size, there were different scales applied to the game size.

The values used were the result of numerous tests applied on bigger and small game devices

screen.

6. When all of these steps were applied, the client would send a message to the server reporting

that it was ready to start the game. When there were two clients with these conditions connected

with the server, the latter would sent a message back to the clients in order to load the necessary

assets, for being able to start the game match.

The implementation of these operations were influenced by these two tutorials [61] [62].

(a) Portrait position (b) Landscape position

Figure 4.6: Different starting screen texts

4.1.8 Server authoritative

It was already discussed a type of authority that the server unfold on the game state on this chapter,

which is the simulation of the units and monsters movement. In this subsection there is a discussion

about some other elements that are part of a game match, on how the server could unfold authority to

them and send the resulting data to the players clients.

59

• The server has some information regarding each client, stored in a property of their sockets. That

information is kept on socket.player which is a struct with various attributes about the result of

player actions. Some of those attributes are the player’s clientID (for differentiation between the

other client), number of population, total resources, state of upgrades, number of structures, super

power being active and others.

• The server is responsible for operating all the results of the monster options and see if some of

them such as Trade or Recruit can be made or not.

• Production of units and structures are also done by the server. To do so after checking if they are

valid to be made or not, the server creates a timer with the duration equivalent to the production

duration. The functions for units and structures are unitTimer and structureTimer respectively.

Those game objects would only be spawn on the client side, when on the server side this timer’s

duration would be completed.

• If there is a production of an unit that cannot be made because it would exceed the maximum

population available, the server is going to store that production order on the array productionsTo-

Process, which is an attribute of socket.player. When an unit dies or a house is produced, it is

going to be checked if it is possible for the unit to be produced now on the function checkPendin-

gResearches.

• There are also timers for the research of upgrades, the duration of preparation and activation of

superPowers and an interval of time to repair structures.

• The combat sequences are all simulated by the client. There are four different types of combat

between game objects: unit vs unit or monster, monster vs unit, unit vs structure and structure vs

game object (the 3 types referred). The functions responsible for these sequences simulate the

entire combat between these game objects. It is taken in account their attributes, the distance be-

tween each of them, their projectile’s speed if they have ranged attack type, the effects of upgrades

or super power that are present on them and some others behaviours.

• The decrement of hydroxygen resource of the Human race is also calculated by the server within

a time interval. It also damages the Human’s units when there is no Hydroxygen available and it

prioritizes dealing damage to non-peon units first and peons secondly, in order to not prejudice the

gathering of resources made by the Human player.

In the list above there were many example of the server’s authority over the game state. Unfor-

tunately there is a situation where the server could not be authoritative which is the start of attacks

between moving objects. The reason for this is since there was no Phaser physics implemented on

the server, because Phaser can only operate on the client side, it would be difficult to put the server

60

with the responsibility of starting attacks even with it’s A-star simulation. When collision avoidance and

collide events between units and monster were tried to be implemented, it was even harder to make this

authority possible. The solution was that the client of the unit would tell the server that when it arrived

close to it’s enemy, the combat could start. For monsters it would be decided by the client of their current

enemy target.

4.1.9 Performance optimization

In order to had better performance for this project for being able to play this game smoothly either in

computer devices and mobile platforms, some types of optimization were done for Planetary Conquest.

There are some examples of optimization already discussed in this document such as the use of prefabs

or the creation of spritesheets. Some other optimization tasks performed were the following:

• Render option In game.js file the Phaser game that was initially instantiated could have two render

modes to be chosen which are Phaser.WEBGL and Phaser.CANVAS. The first would render the

game using WebGL and the second would render using canvas. While WebGL is generally faster

that canvas, which would be the case on the computer platforms, there were two problems with

this approach. The first one is that WebGL performance tends to vary in some devices and mobile

devices performed poorly with this graphic API. The second one would be when there was a

substantial quantity of prefab objects being processed on the gaming platforms, the performance

of the game would be worse on WebGL that on Canvas regardless the device used. Since there

were not any 3D graphics being used on this project, WebGL was discarded for the use of Canvas

on every game platform.

• Other prefabs There were already prefabs used for Units and Structures, since they would be

reused often which increased the game’s performance. Other game objects that were also used in

this game would be used as prefabs as well, such as the projectiles of each unit or tower structure.

The upper health bars (health bars that would be seen when the player would hover the cursor

on a unit, monster or structure sprite), were also used to save performance with only one of those

being created on the game manager. When the player would click on each game object sprite, the

upper health bar would just change it’s shape and position since only one of these objects could

be hovered by the game cursor at a time. Also it was applied not only on the prefabs, but also

on the other game objects present on the map the autoCull property. This operation checked the

sprite bounds against the World Camera bounds every frame, not rendering the sprite if it was not

intersecting the camera bounds. Since there were numerous objects present on the map, specially

the immovable starting objects it was beneficial to the game’s performance.

• Text usage The function that was used in some tutorials that were researched for inputting text

61

on Phaser was game.add.text. This operation would add a string of text to the game world, with

a specified string and letter style (font, fill, alignment) that could be chosen within the styles li-

brary that Phaser disposes. However using this function would be harmful to the game’s per-

formance [63]. The solution would be using Bitmap fonts instead, adding text with the function

game.add.bitmapText. This function needed a bitmap font in order to place the string requested

into the game world, so it was created two bitmap fonts using the website application Littera15.

Those fonts were loaded in the load.js file and placed on the images folder.

• Dead animations Instead of using particle systems to animate the defeat of the game objects, it

was used dead animations that were found on the assets researched. Also those dead animations

would be used as prefabs as well.

• Reduce image assets size To reduce the memory used by the game devices when storing the

assets loaded, it was used the website application TinyPNG16, in order to compress these images

to reduce their file size.

• Phaser.Image Phaser.Sprite is what is often used to display textures rendered to the game world.

These can contain operations such as physics or animations. However Phaser offers a similar

method of displaying a texture, that does not need the use of physics or animations. Those are

Phaser.Image17. The advantage of using this latter method instead of sprites without the conditions

referred, is since it has less properties it ends being lighter on the memory allocated for this object,

increasing the game’s performance as well.

• Normal sprites The use of the isometric plugin on game objects had to be abandoned on Units,

Structures and Monsters creation, since it was prejudicial to the game’s performance. Instead nor-

mal sprites would be used because of this issue. However without the use of isometric plugin on

sprites, it was not possible to use isometric physics for the movement of units and monsters. The

solution for this problem was still using the plugin, not for sprites in general but just for 2 functions.

One was game.iso.unproject(2DPoint, 3DPoint), which would change a set of Cartesian coordi-

nates (2DPoint) to isometric coordinates (3DPoint). The other was game.iso.projectXY(3DPoint,

2DPoint) which would do the opposite explained. With the use of these two functions it was pos-

sible to have isometric map positions for units, monsters and structures; and velocity movement

using isometric coordinates for the first two game objects, without any of these three objects being

a isoSprite.

15http://kvazars.com/littera/
16https://tinypng.com/
17https://phaser.io/docs/2.6.2/Phaser.Image.html

62

http://kvazars.com/littera/
https://tinypng.com/
https://phaser.io/docs/2.6.2/Phaser.Image.html

4.2 What went wrong

This section discusses what went wrong during the development of this project, indicating some tasks

that could not be implemented and what were the approaches made to try to tackle those problems.

1. Collisions and Object avoidance The problem which was given much time to solve, but still

could not be accomplished was Collision and Avoidance with moving game objects. The starting

approach for this problem can be found on this tutorial [64]. To avoid collision with units or monsters

with each other, these game objects had an ahead vector, which is a vector with a given magnitude

that would point to the direction those game objects were heading. If those objects were moving,

on each update frame it would be checked if their ahead vector was colliding with another game

object. The object would change their trajectory for some moment, by rotating their ahead vector

by a given angle. After the change of trajectory would be made the game object would resume it’s

movement, going to it’s path end position.

While this approached had favorable results to some extend, when it was tested with small groups

of units such as 2 units in a formation avoiding colliding with other 2 units; there were some

problems when tested with more units. One of those would be that units could not avoid collisions,

when there were bigger unit formations groups trying to avoid colliding with each other, some of

those would even get stuck with other units, since their velocity vector would have the opposite

direction of the objects they were colliding. Another one would be when those units would be

fighting against each other, sometimes they would push other units to attack their desired enemy

target. In addition collision and avoidance behaviours would be exclusive done on the clients, since

the server could not access to the Phaser physics engine.

Even with either cutting collision events or avoidance movement with these game objects, there

were still problems that would persist and it was prejudicial to the game performance, when there

were a substantial amount of units present on the game map. There was no other choice to refrain

from having collision and avoidance events.

2. Fog of War This was another problem that had substantial time to be solved, however unlike the

first one presented above there were attainable results for this task. Still it was not possible to

add it to this project. It was influenced by the solution that can be found in this website [65]. To

have the Fog of War be placed on the game map, it would be used two bitMapData18 objects that

would cover the entire map. One bitMapData would be all covered in black color representing

the area of the map that was not explored yet by the player. The second one would be painted in

gray with having some transparency (by modifying the alpha value of this bitMapData), and it would

represent the areas already explored by the player, that were not being visible at the moment since
18https://phaser.io/docs/2.6.2/Phaser.BitmapData.html

63

https://phaser.io/docs/2.6.2/Phaser.BitmapData.html

there was no player’s unit or structure nearby those areas. The first bitMapData would be in front

of the second one.

With the bitMapData objects created the Fog of War could be changed. Every time an unit or

structure would spawn or an unit would move, the Fog of War would be dissipated from the map.

The approach used to solve this problem was having during each update frame, check if the Fog

of War had to be changed or not and whose bitMapData would suffer a change.

The first bitMapData would only be changed if the player did not explored that map region yet. What

would be added here was a circle, which center corresponded to the unit or structure position and

that circle would uncover a portion of the map. This was possible by using 2 canvas operations

of the bitMapData for the attribute globalCompositeOperation, which were destination-out and

source-over. The attribute globalCompositeOperation permits the use of composing operation to

canvas, when drawing new shapes on it [66].

The first operation destination-out will permit that when a new shape is drawn on top of the canvas,

it will remove any content that is overlapping with the new shape drawn. In the case of the Fog of

War a circle would be drawn on a center of an unit or structure, removing the part of the bitMapData

that intersected this shape. This operation was used both on the first and second bitmaps when

an unit would walk to a location of the map that was unexplored.

The second operation source-over would be used after the first one, indicating for the canvas

to return to it’s default setting. Each time a shape would be drawn on top of the canvas that

shape would be placed on top of it, without any other alterations. This was used on the second

BitMapData, to allocate a new circle each time a location of the map that was already explored

could not being seen, since player’s units and structures were not occupied that location.

While this method worked on this project, the biggest issue was the impact on the game’s perfor-

mance it was having. There were two major problems with this implementation. One was having to

draw multiple circles over time at least in the second bitMapData, so at some time within the game

match, there would be a lot of memory being allocated for multiple circles created by the player

units. The second one would be, instead of having multiple circles allocated, the second BitMap-

Data would be cleared and redrawn on each frame, however this consumed a lot of processor

power from the game device, resulting in massive frame drops. Even with the second BitMapData

being discarded, with the first the only one remaining it would still be prejudicial to the game’s

performance, especially on mobile devices.

There were also another approach tried which was the use of alpha masks as it can be seen in

this example [67]. However this mask could only be applied to a sprite, removing the content that

was not inside of the shape used as a mask. This would not work for the bitMapData in fog of

64

war. If that method would be applied it would draw black circles on the game objects positions,

revealing the rest of the map and removing the rest of the bitMapData content. There is another

method which is the opposite of this one called inverted masks that could do the desired Fog of

War behaviour. However inverted masks are not implemented on the Phaser framework version

used for this project. Thus for these problems fog of war was not implemented.

3. Quantity of units If there were a substantial quantity of units present on the map, the game

would have some performance problems especially on mobile devices. To solve it the maximum

population that a player could have is 50, for reducing the amount of units a player can have.

4. Starting implementation approach Before the server was implemented in this project, the start-

ing approach used for developing Planetary Conquest was implementing the entire game function-

ality first on the client, then on the server. This was heavily influenced on how it was done on the

HTML RTS Book [47]. The reason this was a big mistake is because it unnecessarily increased the

implementation work of this project, since not only the server behaviour needed to be added but

also some components of the client had to be removed. If those components were not removed,

the client would also have authority over some events of the game, which had to be exclusive to

the server. If the server was implemented first by implementing the functions for the game events

on this side first-hand, then the implementation part on the client side secondly, it would save a lot

of work time.

5. Project module Being influenced by the tutorials before the game development, the modules that

were added after the starting game states were the game manager - play.js and the interactive

game objects that are used on the game - unit.js, monster.js and building.js. The problem with

this approach was that there were so much scripting on these classes that was difficult to organize

them, also taking quite some time to debug some game events when they were not working the

way they should. If some of the information of those scripts would be divided in other files such

as interface, common unit and monster behaviour, combat events and others; it would facilitate

which project’s components had to be on each class and the debug process would be easier to be

solved.

4.3 Discussion

This chapter presented the implementation that was part of Planetary Conquest. It was shown the most

important tasks that were part of the project development, the detailed information of the implementation

of some of them and what were the tasks that could not be implemented reporting the causes of it.

65

The next chapter shows how the Game Design and the Implementation factors contributed to fulfill

the main objectives of this thesis, by observing the User Tests performed.

66

5
User Tests

Contents

5.1 Conditions . 68

5.2 Alpha Prototype . 70

5.3 Beta Prototype . 73

5.4 Discussion . 76

67

This chapter presents the User Tests performed with the Focus Group of this project and the results

that were obtained with an analysis of them.

It was imperative to perform User Tests on Planetary Conquest, for being able to observe the game

experience that is generated by the users playing the game’s project. These tests will help to identify

the components that are contributing more to the game experience and try to find an equilibrium on

parameters that would be analyzed [9, pg 253]. An example of a parameter analyzed is that if a resource

that can be gathered in this game, is being spent way more often by the players than the other two

resources available.

To explain what was done during these tests a discussion is presented about the Conditions that

these test had. These include the types of people that were chosen as a Focus Group, where it was

performed, what it would be tested, how it was tested and how the results were gathered.

Then there is a discussion about the Results of User Tests that were preformed during two proto-

types available during development: The Alpha prototype and the Beta prototype. On each of them

is referred what was the state of the game project when they were tested and what were the elements

that were important to be checked.

This chapter ends with a Discussion of the tests performed, making an overview of what was con-

cluded with the results obtained.

5.1 Conditions

This section starts to describe the Focus Group that participated in the User Tests performed for this

project. It will be discussed what was tested on the sections Alpha Prototype and Beta Prototype.

5.1.1 Focus Group

There were 20 users that were part of the Focus group gathered, having participated in 13 user tests.

Each person had different characteristics between each other such as age, job, education and gaming

experience with RTS and computer and mobile games in general. It was important to have a group of

people with heterogeneity characteristics, in order to increase having different gaming experience within

the tests performed.

5.1.2 Where it was tested

The Alpha User tests were mostly performed in the developers house, since the participants were al-

ready accustomed with it, not having any problems or anxiety to that place. However the Beta User tests

were mostly performed on the Instituto Superior Técnico - Campus Taguspark during the MOJO

68

2019 event organized by the Games Laboratory [68]. This event consists on a showcase of games

developed by students of IST, and the people around the campus could experience those games. Plan-

etary Conquest was on of the games showcased during that event.

5.1.3 How it was tested

Each test was performed by two participants, one being the Orghz player and the other being the Human

player. Before the players started the test, it was explained why these tests were being performed and

what they would do in these tests: The participants would be playing for the maximum of 15 to 20

minutes (Alpha and Beta prototype limit time) for trying to defeat their opponent. The reason for a time

limit is because it could be excessive to play for more than that time, since the concentration of the

players could be decreased resulting in a poorer gaming experience. Also with limiting the time of each

test performed, there would be an observation on the preferred actions that the players were executing

during the game, in order to be able to achieve victory.

Before commencing the tests 5 minutes were used to explain the contents that could be found in

game. There was also an explanation on the basic actions that the players could do such as gathering

resources with peon units, constructing a structure, choosing monster options and attacking an enemy

unit.

Afterwards the tests would start. The participants could ask some doubts about the game function-

ality they could not understand. However they were not allowed to think aloud, since it could be said the

strategy they were thinking which would be recognized by their opponents.

For analyzing each test it were applied 3 methods: Observation, Questionnaires and Server Log

Files. The first test method Observation consisted on looking what the players were doing on each

game device screen and taking notes about some events during the experiment. Those events include

their visible emotions, if a game event was not behaving properly, if there were problems with the usability

of the interface and some others.

The second test method was the application of Questionnaires, which are a set of questions that

would be answered by the participants at the end of the User tests performed. The questionnaire

contains 4 sections: The first one consisted on questions about the characteristics of the tester, such as

age, job, studies and the experience of playing RTS and computer and mobile games. The second one

consisted on closed questions about the game elements of this project, such as the race played, the

opinion about the usage of each resource available, the monster options, resource costs of units and

structures and others. The third one is about the game experience, where there are questions about

how focused the player was during their actions, how quickly the player could thought about the actions it

wished to perform, the player’s opinion about the game interface and controls, the feelings the player felt

when it was playing the game and if the game posed some challenge to their gaming capabilities. The

69

questions present in this section were influenced by these references [69] [70]. The fourth one consisted

on two open questions: asking if any element of the game was not understood completely, with the other

question being if there was any element of the game that should have behaved differently. There were

two questionnaires made, one for the Alpha Prototype and one for the Beta Prototype. The draft for

the Alpha and Beta prototype respectively can be accessed by these links [71] [72].

The last test method used was Server Log Files, that consisted on the recording of some events

that were part of a the game match between 2 user testers, being written in text files. This method was

used to record some game events such as unit and structure production or combat results, that were

difficult to measure just by using the former two test methods. What was recorded on each file will be

discussed on the results of both prototype tests.

5.2 Alpha Prototype

This was the first prototype to be tested. This prototype only enabled the users to construct the first

four structures (Command Center, Barracks, House and Tower). Also this prototype did not contained

any upgrade available for any unit or race, ancient resource deposits were not available at the middle

of the map, Human Hydroxygen timer was not functional and the monster Gnomish Airplane was not

present on the map. Furthermore since the game design was at early stages of development, each

type of units and structures available had identical resource costs and attribute values regardless the

race chosen (for example the Orghz infantry unit had the exact same military power and resource costs

that the Human military infantry). The reason for keeping this project with few features available, was

for observing what would be the most important actions that the users would do with limited actions

available. Since it was the first set of tests being performed, it would be useful for the users to learn how

to play the game in these conditions. Every player would start with a peon unit and Command Center

respective to their race, with 150 quantity for each of the 3 resources. At this experiment the production

of infantry units would need Crystal and Nitrogen resources, while the ranged units would need Crystal

and Hydroxygen.

The expected results for these tests were: The users knowing how to perform some basic game

events that were fundamental to build a military army. Some of those basic events include producing

units and structures, gathering resources across the map, use the monster options to their advantage

and being able to easily and quickly navigate over the game’s interface for effectuating the action they

desired. There were 4 tests effectuated with 7 participants, all of them using computer platforms and

being played on the Google Chrome web browser. The conditions used were exactly the ones stated on

the subsection How it was tested of this chapter. Bellow there is a description on the results obtained

with the three test methods used for the user experiments.

70

Observation

The first emotion that was noticed by some of the participants of this set of tests, was that they

were a little anxious at the start of the experiments, with the major cause being the 15 minute time

constrain for the duration of the tests for defeating their opponent. However they began to be more

relaxed after seeing their military power increased by the actions they were performing during the game

match. There was some help required by the participants, in some aspects of the game that were not

understood completely during the pre-testing phase. Fortunately few doubts were asked by them, which

were also quickly solved. Other factors observed included that the players were not much attentive to

what their opponent would be doing, being much more concentrated on the actions they were doing.

Also some game control options were rarely used, which were: the button used for selecting idle peons

and using keyboard shortcuts to bind a key number to a formation of units.

Questionnaires

The link to the responses resume, effectuated by user participants can be found here [73]. In the

first section of the questionnaire it can be seen that the users differed on the experience in playing RTS

games, but most of them were at least experienced in playing computer or mobile games. About the

second section referent to the actions performed in-game, most users found that the Crystal resource

was much more important to use than the other two resources and the map size was not adequate

to construct numerous structures. Also from the 3 available monster options the Recruit option was

quite used and useful to the users, while the other two options, in particular the Pillage option not so

much. For the third section it could be observed that most players were focused on the actions they

were performed, although some of them were distracted during their actions. Most of the players knew

the actions they wanted to perform during the experiments and knew how to operate with the game’s

interface for the execution of those actions. Regarding their feelings the users liked to play the game and

felt that it posed some challenged to their game capabilities. For the fourth section, there were some

players that did not understand completely the behaviour of some game elements. Also they thought

that the game needed to include Fog of War behaviour and the interaction with the monsters could be

differently made.

Server text logs

By observing the data including on the server text logs, the conclusions were the following: Regarding

the Units produced per game, the average of peons and Meele infantry units produced were close from

each other being 13.5 and 13 respectively, however there were cases where the military infantry were

slightly higher than the peons produced and on others slightly lower. The number of average ranged

units produced was 6.8 being lower than the other 2 units, but it was still substantially used. Regarding

the Structures produced, the average number of Command Centers and Barracks constructed were

the same being 1.1, and the House was the structures with most constructions having an average of 1.6.

71

The average constructed Towers per game was equivalent to 0.83. For the Monster options only the

recruit option was chosen 4 times for the Ogres and 1 times for the Archer. Looking at the Resources

Gathered per game, Crystals were by far the most resource obtained with an average of 2970.8, with

the nitrogen falling much shorter being 195.8 and 33.3 respectively. Finally the average duration of each

game match was 12 minutes. Bellow there are presented boxplot graphs regarding the results of those

elements, on the Beta prototype tests.

(a) Number of units produced (b) Number of structures produced

Figure 5.1: Number of game objects produced (Alpha)

(a) Monster options chosen (b) Resources Gathered

Figure 5.2: Monster options chosen and resources gathered (Alpha)

Discussion of results

There were some conclusions obtained with the results of these tests. For starters most of the ex-

pected results were met. The players could effectuate most of the actions they desired with easiness

for trying to defeat their opponent, and there weren’t many difficulties presented for the players to apply

72

those actions. However there were some issues that were revised by observing the methods used for

these tests. One that suffered alterations were the monster options, since the only option chosen on

these experiment was Recruit. This option had it’s resource cost increased during the design process

of these options. The other issue solved was the map space. Instead of changing the map dimensions

it was redone how the structures were placed: At the time a 2x2 structure size would check 4x4 posi-

tions, for being able to be certain that the adjacent tile positions of that structure would never intersect

with occupied positions. This approach was abandoned and now each time a 2x2 structure would be

produced, it would check the corresponding 2x2 tile positions that were tested to be placed upon.

5.3 Beta Prototype

For the second and final prototype of this project, all the elements discussed in the Game Design section

such as Units, Structures, Upgrades and Monsters were implemented, with the values corresponding to

what it was conceived for the design process. The usage of the Super Power, the placement of Ancient

Resource Deposits and the existence of the Hydroxygen Timer for the Human race were also functional.

The results expected in these tests would be the production of some of the new units and structures

added, and the use of upgrades, Super Power and monster options for the Gnomish Airplane. The

conditions were the same as the previous tests made in the Alpha prototype, with a difference: The

time for the experiments would be a maximum of 20 minutes instead of 15. The time limit was extended

in order for the participants to feel less anxious about this timer. There were tests performed in all the

platforms: computer devices and mobile platforms (Android Smartphone and Tablets). Most of the tests

performed were on Android Tablet devices. The controls of the mobile platforms were explained before

the start of each experiment. There were 15 participants for this set of tests, 2 which participated in the

Alpha prototype and 13 who participated during the MOJO 2019 event.

Observation

Since the majority of the tests was performed on mobile platforms, it was important to observe how

the users could operate on the mobile interface of Planetary Conquest. While the users had some doubts

at the start of the experiments, they were able to quickly grasp the functionality of mobile controls. Also

most of the users understood how to make the basic actions of this game quickly, and was able to form

a military army for trying to defeat their opponent’s army.

Regarding the new elements added to this prototype, most of them were used during the experiment

of these tests. The elements used were: Gnomish Airplane recruitment, Ancient Resource Deposits

extracted, Super Power activation and some unique upgrades such as Race, Tower structure, Melee

and Ranged infantry. However the use of these new elements was not common in every test performed

for this prototype, with the players opting to produce the peon and infantry units and constructing the

73

four structures that were also available on the Alpha prototype. Furthermore the production of air units

by the Orghz and Human structures and the construction of the Research Building structure, were no

performed in any of these tests.

Questionnaires

The link to the responses resume effectuated by user participants can be found here [74]. On the

first section it can be observed that the users seem to be more experienced in playing RTS games,

and other Computer and Mobile games than the previous tests. On the second section it is observed

that the resource Crystal is still the most useful. However the other two resources were also well

received. The map space available to construct structures was more appraised than on the Alpha

structure. The Recruit monster option was still way more useful than the other two options. On the third

section the players were more focused on their action than their opponent’s. Also the users presented

a little more difficulty operating with the mobile interface. Still the players generally enjoyed playing

Planetary Conquest and thought this game challenged their gaming abilities. Finally in the fourth section,

most of the game elements were understood, only with one user reporting that it did not understood the

aspect of some unmovable objects. Regarding the elements of the game that should behave differently

there were some suggestions, such as the increase of the map size, selection of units, map tiles that

could affect the units behaviour and changing some elements regarding the mobile interface.

Server Text Logs

By observing the data including on the server text logs, the conclusions were the following: Regarding

the Units produced per game, the average of peons produce was of 16.625, being by a large margin

the most produced unit during these experiments. The average of Melee and Ranged Infantry was of

4 and 1.87 respectively, much lower than what was obtained on the Alpha prototype tests. Regarding

the Structures produced the average of Command Centers produced was of 1.1 and the Barracks

structure of 0.68, again shorter on what was obtained during the Alpha tests. The House structure was

the one being more constructed with an average number of 1.75. The Tower structure had an average of

0.68. Referring the Monster options the Recruit options was chosen 8 times, twice the amount of the

previous tests with Ogre and Archer monsters being both recruited by 3 times, and Gnomish Airplane

two times. The Trade and Pillage options were only chosen once. Observing the Resources Spent for

each race, Crystals was still the most used resource with an average quantity of 1229 and 1187.5 for

the Orghz and Human race respectively per game. The Nitrogen had an average of 480 and 268, and

the Hydroxygen resource was spent much less on the Orghz race with an average number of 318.75,

than on the Human race with 924.75 respectively. Most of the Hydroxygen spent for the Human race

was on the Hydroxygen timer behaviour, with some of it being used on the Monster options. Bellow

there are presented boxplot graphs regarding the results of those elements, on the Beta prototype tests.

Discussion of results

74

(a) Number of units produced (b) Number of structures produced

Figure 5.3: Number of game objects produced (Beta)

(a) Monster options chosen (b) Resources Spent

Figure 5.4: Monster options chosen and resources spent (Beta)

The results obtained for these tests mostly corresponded to what it was expected. Planetary Con-

quest could be played on both Personal Computers and Mobile Devices. Also the users did not pre-

sented severe difficulties on understanding the mobile interface of this game, and knew how to navigate

with it in order to perform the actions they desired. Some of the features added in this prototype were

not used, such as Orghz and Human Flying Units production or the Upgrades available on the Research

Building Structure. Still most of them could be observed even if sporadically. If there was the possibility

on having the Users that participated on these tests, being available to perform more sets of tests using

this prototype, maybe they would choose the new features present on it more often, than the basic units

and structures available.

75

5.4 Discussion

This chapter presented the User tests performed for Planetary Conquest.There was a description on the

utility that those test would bring for this project. There was a presentation on the Focus Group that was

gathered for this project, describing their characteristics and what were the Conditions that would be

present on these types of test, in order to maximize the utility of them. As for the set of tests performed,

the Alpha prototype tests had satisfactory results since the expected results matched in most part with

the results obtained by the test experiments. With the different types of test methods to analysis the

results obtained, it was possible to correct some of the complains received by the users feedback. On

the second set of tests Beta prototype the results were also satisfactory, since Planetary Conquest

could be played on the Computer platforms and Mobile devices. Also the majority of the features was

used at least once, and they proved they usefulness for helping the users to have a stronger military

army.

Following this chapter is the final chapter of this document Conclusion, that describes a global

reflection of the work that enfolded the entire project’s development, what objectives were accomplished

and what would be the future work to be applied on Planetary Conquest.

76

6
Conclusion

Contents

6.1 Conclusions . 78

6.2 Future Work . 79

77

This chapter discusses the Conclusions about the work performed for this thesis project, then it

refers additional features that could be added on the section Future Work.

6.1 Conclusions

Reviewing the goal of this thesis: Designing and Creating a RTS game, using HTLM5 and Javascript

programming languages, that can be played on both personal computers and mobile devices. Also the

game has the traditional 4X elements present in this game genre and being played in multiplayer mode.

By reading this document it could be seen that the main objective was accomplished.

For attaining the main objectives, the first task to be performed was a research of what is a RTS

game and the elements that were part of it such as Units, Structures, Resources, 4X, interface and

others. There was also a presentation on some of the most important games that are part of the history

of the RTS genre, with some of them inspiring an amount of design decisions that are part of Planetary

Conquest. Then a study was presented, regarding the benefits that could be found using the program-

ming languages purposed and being able to be played on multiple devices. The game framework used

Phaser.io was also shown, referring the main benefits available on it and concluding that it was possible

to create a game with the conditions initially stated at the start of this thesis.

To create and design a RTS game various tasks had to be applied, since making a RTS involved

various academic strands in order to create and implement a game of this magnitude. There was

the game design that was conceived for this game, carefully designing each aspect that is part of it

such as Units, Structures, Economy, Upgrades, 4X, Super Power and others. Then a presentation was

made regarding the Architecture that is part of Planetary Conquest, referring the Technical Limitations

present on it and how it is structured the communications between the Game Server and the Game

clients. There was also a representation on how this project was organized with the use of the Phaser

framework. For the implementation of this project there were implemented several tasks on it, discussing

in this document those who contributed the most to fulfill the main objectives present in this thesis. There

was also a reference on the tasks what could not be implemented, giving the reasons for it.

For being able to observe if the objectives of this thesis were accomplished, User Tests were con-

ducted with the Focus Group chosen for this project. They were done in order to maximize the game

experience of Planetary Conquest, see the usage of some elements that were part of this project’s

gameplay such as the balance between the Units, Structures and Monster attributes. Also to observe

if the interface could be understood by the participant players and apply the game actions they desired

with the help of the game controls and what were their emotions when they were playing the game.

From the two sets of tests performed, it was observed on the Alpha prototype that it was possible to

play a multiplayer RTS game with the main objectives present on this thesis on computer platforms, with

78

the users understanding which actions they had to perform in order to defeat their opponents. From

the Beta prototype it could be observed that Planetary Conquest can be played using both proposed

devices for this project, and the majority of the introduced features on this prototype was used at some

degree.

In spite of some features not being implemented such as Fog of War and Collision Avoidance be-

tween moving game objects, it was possible to create a multiplayer RTS game that can be played on

multiple game platforms, with the simple use of a web browser.

6.2 Future Work

For the future work purposed for this project it would be appropriate to review some of the errors made

on it, observe what it can be done to the tasks that could not be implemented and implement some other

tasks that could enhance the game experience. Some of those tasks include adding game sounds,

adding the ability to have 2 vs 2 player matches and having the game server capable of having authority

over multiple game matches being played at the same time.

79

80

Bibliography

[1] W. Burrows, In Grand Street 37. W W Norton & Co Inc, 1991.

[2] A. Sartori-Angus, “Cosmic conquest,” BYTE, 1982.

[3] D. Kosak, “Top ten real-time games of all the time,” 2004, http://web.archive.org/web/

20100616031405/http://archive.gamespy.com/top10/february04/rts.

[4] E. Adams, In Fundamentals of Game Design. New Riders, 2010.

[5] “Essencial facts about the computer and video game industry,” 2015, http://www.theesa.com/

wp-content/uploads/2015/04/ESA-Essential-Facts-2015.pdf.

[6] Z. D. Boren, “There are officially more mobile devices than people in

the world,” 2014, http://www.independent.co.uk/life-style/gadgets-and-tech/news/

there-are-officially-more-mobile-devices-than-people-in-the-world-9780518.html.

[7] “Real-time strategy,” http://tvtropes.org/pmwiki/pmwiki.php/Main/RealTimeStrategy.

[8] A. Emerich, “Microprose’s strategic space opera is rated xxxx,” 1993, http://www.cgwmuseum.org/

galleries/issues/cgw 110.pdf.

[9] P. S. Carlos Martinho and R. Prada, Design e Desenvolvimento de Jogos. FCA, 2014.

[10] C. Driver, “Stonkers review,” 2008, https://www.retrogamer.net/retro games80/stonkers/.

[11] “Best wargame,” 1984, http://www.crashonline.org.uk/12/awards.htm.

[12] “Dune 2 - the building of a dynasty,” https://archive.org/details/msdos Dune 2 - The Building of a

Dynasty 1992.

[13] B. Bates, Game Developer’s Market Guide. Thomson Course Technology, 2003.

[14] “Warcraft review,” http://www.csoon.com/issue2/WARCRAFT.HTM.

[15] Warcraft: Orcs & Humans game manual. Blizzard Entertainment, 1994.

81

http://web.archive.org/web/20100616031405/http://archive.gamespy.com/top10/february04/rts
http://web.archive.org/web/20100616031405/http://archive.gamespy.com/top10/february04/rts
http://www.theesa.com/wp-content/uploads/2015/04/ESA-Essential-Facts-2015.pdf
http://www.theesa.com/wp-content/uploads/2015/04/ESA-Essential-Facts-2015.pdf
http://www.independent.co.uk/life-style/gadgets-and-tech/news/there-are-officially-more-mobile-devices-than-people-in-the-world-9780518.html
http://www.independent.co.uk/life-style/gadgets-and-tech/news/there-are-officially-more-mobile-devices-than-people-in-the-world-9780518.html
http://tvtropes.org/pmwiki/pmwiki.php/Main/RealTimeStrategy
http://www.cgwmuseum.org/galleries/issues/cgw_110.pdf
http://www.cgwmuseum.org/galleries/issues/cgw_110.pdf
https://www.retrogamer.net/retro_games80/stonkers/
http://www.crashonline.org.uk/12/awards.htm
https://archive.org/details/msdos_Dune_2_-_The_Building_of_a_Dynasty_1992
https://archive.org/details/msdos_Dune_2_-_The_Building_of_a_Dynasty_1992
http://www.csoon.com/issue2/WARCRAFT.HTM

[16] “Command & conquer,” http://www.giantbomb.com/command-conquer/3025-98/.

[17] M. E. Circulus, “Command & conquer review,” 1995, http://www.cgwmuseum.org/galleries/issues/

cgw 137.pdf.

[18] R. Whitman, “Command & conquer remake,” 2018, https://www.extremetech.com/gaming/

280629-original-command-conquer-developers-remastering-the-classic-90s-games.

[19] C. M. Jo Rabin, “Mobile web best practices 1.0,” W3C, 2008, https://www.w3.org/TR/mobile-bp/

#requirements.

[20] D. Burford, “Cross-platform mobile development vs native development,” 2014, http://www.

codeproject.com/Tips/816977/Cross-platform-Mobile-Development-vs-Native-Develo.

[21] P. N, “Cross platform mobile application development - advantages and disadvantages,” 2015, http://

ezinearticles.com/?Cross-Platform-Mobile-Application-Development---Advantages-and-Disadvantages&

id=9036883.

[22] D. Flannagan, JavaScript - The definitive guide, 6th ed. O’Reilly Media, 2011.

[23] J. Kyrnin, “What are markup languages,” http://webdesign.about.com/od/htmlxhtmltutorials/p/

what-are-markup-languages.htm.

[24] “Html element reference,” http://www.w3schools.com/tags/.

[25] “Javascript in html,” http://www.simplehtmlguide.com/javascript.php.

[26] “Css definition,” http://www.simplehtmlguide.com/whatiscss.php.

[27] P. Bright, “Html5 specification finalized, squabbling over specs con-

tinues,” 2014, http://arstechnica.com/information-technology/2014/10/

html5-specification-finalized-squabbling-over-who-writes-the-specs-continues/.

[28] S. P. Anne van Kesteren, “Html5 differences from html4,” 2011, http://www.w3.org/TR/2011/

WD-html5-diff-20110405/.

[29] “Javascript html domain object model,” http://www.w3schools.com/js/js htmldom.asp.

[30] “What javascript can do for you,” https://www.w3.org/community/webed/wiki/What can you do with

JavaScript.

[31] “Javascript compability table,” http://kangax.github.io/compat-table/es5/.

[32] N. Hamilton, “The a-z of programming languages: Javascript,” 2008, http://www.computerworld.

com.au/article/255293/a-z programming languages javascript/.

82

http://www.giantbomb.com/command-conquer/3025-98/
http://www.cgwmuseum.org/galleries/issues/cgw_137.pdf
http://www.cgwmuseum.org/galleries/issues/cgw_137.pdf
https://www.extremetech.com/gaming/280629-original-command-conquer-developers-remastering-the-classic-90s-games
https://www.extremetech.com/gaming/280629-original-command-conquer-developers-remastering-the-classic-90s-games
https://www.w3.org/TR/mobile-bp/#requirements
https://www.w3.org/TR/mobile-bp/#requirements
http://www.codeproject.com/Tips/816977/Cross-platform-Mobile-Development-vs- Native-Develo
http://www.codeproject.com/Tips/816977/Cross-platform-Mobile-Development-vs- Native-Develo
http://ezinearticles.com/?Cross-Platform-Mobile-Application-Development---Advantages-and-Disadvantages&id=9036883
http://ezinearticles.com/?Cross-Platform-Mobile-Application-Development---Advantages-and-Disadvantages&id=9036883
http://ezinearticles.com/?Cross-Platform-Mobile-Application-Development---Advantages-and-Disadvantages&id=9036883
http://webdesign.about.com/od/htmlxhtmltutorials/p/what-are-markup-languages.htm
http://webdesign.about.com/od/htmlxhtmltutorials/p/what-are-markup-languages.htm
http://www.w3schools.com/tags/
http://www.simplehtmlguide.com/javascript.php
http://www.simplehtmlguide.com/whatiscss.php
http://arstechnica.com/information-technology/2014/10/html5-specification-finalized-squabbling-over-who-writes-the-specs-continues/
http://arstechnica.com/information-technology/2014/10/html5-specification-finalized-squabbling-over-who-writes-the-specs-continues/
http://www.w3.org/TR/2011/WD-html5-diff-20110405/
http://www.w3.org/TR/2011/WD-html5-diff-20110405/
http://www.w3schools.com/js/js_htmldom.asp
https://www.w3.org/community/webed/wiki/What_can_you_do_with_JavaScript
https://www.w3.org/community/webed/wiki/What_can_you_do_with_JavaScript
http://kangax.github.io/compat-table/es5/
http://www.computerworld.com.au/article/255293/a-z_programming_languages_javascript/
http://www.computerworld.com.au/article/255293/a-z_programming_languages_javascript/

[33] K. Nasir, “Developing a 2d game? here’s why html5 is the best choice,” https://www.htmlgoodies.

com/html5/other/developing-a-2d-game-heres-why-html5-is-the-best-choice.html.

[34] “Phaser.io github,” https://github.com/photonstorm/phaser/tree/v2.6.2.

[35] “Phaser examples site,” http://www.phaser.io/examples/v2/input/follow-mousex.

[36] “Html5 game devs,” http://www.html5gamedevs.com/.

[37] “Javascript game engines,” 2014, https://github.com/showcases/javascript-game-engines.

[38] Bateman and Boon, “Game design definition,” 2006.

[39] P. Santos, “Game design and development,” 2015, https://fenix.tecnico.ulisboa.pt/downloadFile/

563568428717813/intro game development2015 handouts.pdf.

[40] T. editors of of Encyclopaedia Britannica, “Isometric drawing,” https://www.britannica.com/topic/

isometric-drawing.

[41] A. Kovalenko, “Isometric projection,” 2017, https://medium.com/gravitdesigner/

designers-guide-to-isometric-projection-6bfd66934fc7.

[42] “Sprite sheets assets,” https://www.spriters-resource.com/pc computer/warcraft2/.

[43] R. Prada, “Progression in games,” 2016, https://fenix.tecnico.ulisboa.pt/downloadFile/

845043405448407/Progression.pdf.

[44] “Freewee game architecture,” https://github.com/christabella/freewee#system-design.

[45] R. Silveira, “Multiplayer game programming,” 2015, https://hub.packtpub.com/

getting-started-multiplayer-game-programming/.

[46] J. Renaux, “Phaser multiplayer tutorial,” 2017, https://www.dynetisgames.com/2017/03/06/

how-to-make-a-multiplayer-online-game-with-phaser-socket-io-and-node-js/.

[47] A. R. Shankar, lock-step method, 2nd ed. Apress, 2017.

[48] G. Gambetta, “Authoritative server,” https://www.gabrielgambetta.com/

client-server-game-architecture.html.

[49] “Phaser state class documentation,” https://phaser.io/docs/2.6.2/Phaser.State.html#render.

[50] “Phaser 2 tutorial,” https://phaser.io/tutorials/getting-started-phaser2.

[51] “Phaser tutorial,” http://phaser.io/tutorials/making-your-first-phaser-2-game.

83

https://www.htmlgoodies.com/html5/other/developing-a-2d-game-heres-why-html5-is-the-best-choice.html
https://www.htmlgoodies.com/html5/other/developing-a-2d-game-heres-why-html5-is-the-best-choice.html
https://github.com/photonstorm/phaser/tree/v2.6.2
http://www.phaser.io/examples/v2/input/follow-mousex
http://www.html5gamedevs.com/
https://github.com/showcases/javascript-game-engines
https://fenix.tecnico.ulisboa.pt/downloadFile/563568428717813/intro_game_development2015_handouts.pdf
https://fenix.tecnico.ulisboa.pt/downloadFile/563568428717813/intro_game_development2015_handouts.pdf
https://www.britannica.com/topic/isometric-drawing
https://www.britannica.com/topic/isometric-drawing
https://medium.com/gravitdesigner/designers-guide-to-isometric-projection-6bfd66934fc7
https://medium.com/gravitdesigner/designers-guide-to-isometric-projection-6bfd66934fc7
https://www.spriters-resource.com/pc_computer/warcraft2/
https://fenix.tecnico.ulisboa.pt/downloadFile/845043405448407/Progression.pdf
https://fenix.tecnico.ulisboa.pt/downloadFile/845043405448407/Progression.pdf
https://github.com/christabella/freewee#system-design
https://hub.packtpub.com/getting-started-multiplayer-game-programming/
https://hub.packtpub.com/getting-started-multiplayer-game-programming/
https://www.dynetisgames.com/2017/03/06/how-to-make-a-multiplayer-online-game-with-phaser-socket-io-and-node-js/
https://www.dynetisgames.com/2017/03/06/how-to-make-a-multiplayer-online-game-with-phaser-socket-io-and-node-js/
https://www.gabrielgambetta.com/client-server-game-architecture.html
https://www.gabrielgambetta.com/client-server-game-architecture.html
https://phaser.io/docs/2.6.2/Phaser.State.html#render
https://phaser.io/tutorials/getting-started-phaser2
http://phaser.io/tutorials/making-your-first-phaser-2-game

[52] A. R. Shankar, “Pro html5 games - book,” 2015, https://www.adityaravishankar.com/

pro-html5-games-first-edition/.

[53] M. W. Johnson, “Spritesheet creation using gimp,” 2012, http://imagine.kicbak.com/blog/?p=114.

[54] “Phaser isometric plugin,” http://rotates.org/phaser/iso/.

[55] C. Kaitila, “A-star pathfinding for html5,” 2013, http://buildnewgames.com/astar/.

[56] J. M. Dias, “Pathfinding part 1,” 2015, https://fenix.tecnico.ulisboa.pt/downloadFile/

1970943312265443/Pathfinding%20Part%201.pdf.

[57] “A-star phaser example,” https://developer.tizen.org/community/tip-tech/using-easystar.

js-implement-pathfinding-tizen-game-projects.

[58] J. M. Dias, “Pathfinding part 2,” 2015, https://fenix.tecnico.ulisboa.pt/downloadFile/

563568428715746/Pathfinding%20Part%202.pdf.

[59] A. Kamath, “Quadtree explanation,” https://www.geeksforgeeks.org/quad-tree/.

[60] “Spatial hashing tutorial,” 2009, https://conkerjo.wordpress.com/2009/06/13/

spatial-hashing-implementation-for-fast-2d-collisions/.

[61] E. Feronato, “Lock orientation in your html5 game,” 2015, https://www.emanueleferonato.com/2015/

04/23/how-to-lock-orientation-in-your-html5-responsive-game-using-phaser/.

[62] ——, “Scale game screen on mobile devices,” 2015, https://www.emanueleferonato.com/2015/03/

25/quick-tip-how-to-scale-your-html5-endless-runner-game-to-play-it-on-mobile-devices/.

[63] “Difference between text and bitmaptext,” 2018, http://www.html5gamedevs.com/topic/

38100-text-vs-bitmaptext-performance-the-conclusion.

[64] F. Bevilacqua, “Collision avoidance between game objects,” 2013, https://gamedevelopment.

tutsplus.com/tutorials/understanding-steering-behaviors-collision-avoidance--gamedev-7777.

[65] M. Kahn, “Fog of war approach,” https://codepen.io/zyklus/pen/prvnb.

[66] “Canvas composition operations,” https://developer.mozilla.org/en-US/docs/Web/API/

CanvasRenderingContext2D/globalCompositeOperation.

[67] “Alpha mask,” https://phaser.io/examples/v2/bitmapdata/alpha-mask.

[68] “Mojo 2019 event,” https://tecnico.ulisboa.pt/pt/eventos/mojo-2019-montra-de-jogos-do-tecnico-12a-edicao/.

[69] d. K. Y. . P. K. IJsselsteijn, W.A., “The game experience questionnaire,” 2013, https://pure.tue.nl/ws/

files/21666907/Game Experience Questionnaire English.pdf.

84

https://www.adityaravishankar.com/pro-html5-games-first-edition/
https://www.adityaravishankar.com/pro-html5-games-first-edition/
http://imagine.kicbak.com/blog/?p=114
http://rotates.org/phaser/iso/
http://buildnewgames.com/astar/
https://fenix.tecnico.ulisboa.pt/downloadFile/1970943312265443/Pathfinding%20Part%201.pdf
https://fenix.tecnico.ulisboa.pt/downloadFile/1970943312265443/Pathfinding%20Part%201.pdf
https://developer.tizen.org/community/tip-tech/using-easystar.js-implement-pathfinding-tizen-game-projects
https://developer.tizen.org/community/tip-tech/using-easystar.js-implement-pathfinding-tizen-game-projects
https://fenix.tecnico.ulisboa.pt/downloadFile/563568428715746/Pathfinding%20Part%202.pdf
https://fenix.tecnico.ulisboa.pt/downloadFile/563568428715746/Pathfinding%20Part%202.pdf
https://www.geeksforgeeks.org/quad-tree/
https://conkerjo.wordpress.com/2009/06/13/spatial-hashing-implementation-for-fast-2d-collisions/
https://conkerjo.wordpress.com/2009/06/13/spatial-hashing-implementation-for-fast-2d-collisions/
https://www.emanueleferonato.com/2015/04/23/how-to-lock-orientation-in-your-html5-responsive-game-using-phaser/
https://www.emanueleferonato.com/2015/04/23/how-to-lock-orientation-in-your-html5-responsive-game-using-phaser/
https://www.emanueleferonato.com/2015/03/25/quick-tip-how-to-scale-your-html5-endless-runner-game-to-play-it-on-mobile-devices/
https://www.emanueleferonato.com/2015/03/25/quick-tip-how-to-scale-your-html5-endless-runner-game-to-play-it-on-mobile-devices/
http://www.html5gamedevs.com/topic/38100-text-vs-bitmaptext-performance-the-conclusion
http://www.html5gamedevs.com/topic/38100-text-vs-bitmaptext-performance-the-conclusion
https://gamedevelopment.tutsplus.com/tutorials/understanding-steering-behaviors-collision-avoidance--gamedev-7777
https://gamedevelopment.tutsplus.com/tutorials/understanding-steering-behaviors-collision-avoidance--gamedev-7777
https://codepen.io/zyklus/pen/prvnb
https://developer.mozilla.org/en-US/docs/Web/API/CanvasRenderingContext2D/globalCompositeOperation
https://developer.mozilla.org/en-US/docs/Web/API/CanvasRenderingContext2D/globalCompositeOperation
https://phaser.io/examples/v2/bitmapdata/alpha-mask
https://tecnico.ulisboa.pt/pt/eventos/mojo-2019-montra-de-jogos-do-tecnico-12a-edicao/
https://pure.tue.nl/ws/files/21666907/Game_Experience_Questionnaire_English.pdf
https://pure.tue.nl/ws/files/21666907/Game_Experience_Questionnaire_English.pdf

[70] M. J. S. Bob G. Witmer, “Measuring presence in virtualenvironments: A presencequestionnaire,”

1998, https://nil.cs.uno.edu/publications/papers/witmer1998measuring.pdf.

[71] “Alpha prototype questionnaire,” https://docs.google.com/document/d/1BOh

4aY8QFqSLuXPo6-R5sYeU aeNYM7J-ciPmTHfko/edit?usp=sharing.

[72] “Beta prototype questionnaire,” https://docs.google.com/document/d/

1gYgAZIMiZmYwdElE0cSiavg1N604mbEvPPbOzytU7mo/edit?usp=sharing.

[73] “Alpha prototype responses,” https://docs.google.com/forms/d/1ofN1DikaQmGLsyWfFWHZ63B7oIkIIYwqYrIxeIByfkk/

viewanalytics.

[74] “Beta prototype responses,” https://docs.google.com/forms/d/15iiZJgXc68zeXVoRbZrLTcoW9dvHhQIlK9kv4JGcdH0/

viewanalytics.

[75] D. Silverman, “Map design,” 2012, https://gamedevelopment.tutsplus.com/tutorials/

starcraft-ii-level-design-introduction-and-melee-maps--gamedev-3304.

[76] T. Doll, “Multiplayer map design,” 2015, https://waywardstrategy.com/2015/06/07/

time-as-a-resource-part-2-multiplayer-map-design/.

85

https://nil.cs.uno.edu/publications/papers/witmer1998measuring.pdf
https://docs.google.com/document/d/1BOh_4aY8QFqSLuXPo6-R5sYeU_aeNYM7J-ciPmTHfko/edit?usp=sharing
https://docs.google.com/document/d/1BOh_4aY8QFqSLuXPo6-R5sYeU_aeNYM7J-ciPmTHfko/edit?usp=sharing
https://docs.google.com/document/d/1gYgAZIMiZmYwdElE0cSiavg1N604mbEvPPbOzytU7mo/edit?usp=sharing
https://docs.google.com/document/d/1gYgAZIMiZmYwdElE0cSiavg1N604mbEvPPbOzytU7mo/edit?usp=sharing
https://docs.google.com/forms/d/1ofN1DikaQmGLsyWfFWHZ63B7oIkIIYwqYrIxeIByfkk/viewanalytics
https://docs.google.com/forms/d/1ofN1DikaQmGLsyWfFWHZ63B7oIkIIYwqYrIxeIByfkk/viewanalytics
https://docs.google.com/forms/d/15iiZJgXc68zeXVoRbZrLTcoW9dvHhQIlK9kv4JGcdH0/viewanalytics
https://docs.google.com/forms/d/15iiZJgXc68zeXVoRbZrLTcoW9dvHhQIlK9kv4JGcdH0/viewanalytics
https://gamedevelopment.tutsplus.com/tutorials/starcraft-ii-level-design-introduction-and-melee-maps--gamedev-3304
https://gamedevelopment.tutsplus.com/tutorials/starcraft-ii-level-design-introduction-and-melee-maps--gamedev-3304
https://waywardstrategy.com/2015/06/07/time-as-a-resource-part-2-multiplayer-map-design/
https://waywardstrategy.com/2015/06/07/time-as-a-resource-part-2-multiplayer-map-design/

86

A
Annexes

A.1 RPS

One design pattern, present in the creation of each Unit and Monster is the Rock-Paper-Scissors (RPS)

[9, page 203]. This is a well known game where is played between two players and each of them picks

one of the available choices ’Rock’, ’Paper’ or ’Scissors’. The choices are revealed simultaneously, if the

choices are the same for both players it’s a tie, otherwise it wins the player that picked rock over scissors,

paper over rock or scissors over paper.

This model is used in many games to guarantee that there is a symmetry between the available

strategies in a game, and none of them is a dominant strategy. This is important because if there would

be a dominant strategy all the players would exploit it, and the game would become tedious and boring.

However the normal model of RPS for RTS games is still not sufficient. In RTS games the player

usually sends some of it’s units to spy theirs opponents, and see which kind of units they are producing.

With this information they produce other type of units that counters the opponent current units. The

problem with this approach is that the players will only care of micromanagment (component of efficient

management of produced units) over macromanagment (component of building an efficient global strat-

87

egy, such as army composition, large manoeuvres, expansion, relations between economy investment

and military units) [9, page 204]. So variation of a model of RPS is needed, that increases the interest

of RTS games using this model. Of the existing models, one appropriate for a RTS game is the RPS

diffuse model [9, page 206].

In the diffuse model the advantages and the disadvantages of each unit usually aren’t direct or

absolute (for instance a spearman infantry unit deal double damage versus a mounted knight unit), but

various parameters such as speed, type and quantity of damage, defence, health points, special powers,

terrain effects and others are different for each game object. It’s up to the player to use for his benefit

the advantages that each game object offers. If the player can play tactically well, he can have a type of

game object win against other type of game object that is stronger.

In order to balance the Units, Monsters and Tower structures using this model, it was made various

combat tests between these elements and tweaking some of their combat values. Also in the user tests

performed there was retrieved information results of the test experience from the server, to observe if

any of these game objects had balance issues or not.

A.2 Unit Combat Formula

In order to calculate the strength of an Unit, Monster and the Tower Structure it was used a formula for

it. The strength calculated would represent the combat value of those game objects.

After numerous theoretical tests and changes on some values, the formula is the following:

MH = Maximum Health; AP = Armor Points; AP = Attack Points; AS = Attack Speed; AR = Attack

Range; MS = Movement Speed; CV = Combat Value

MH × (1 +AP/6)×AP ×AS × (AR× 50 +MS)× 0.1 = CV (A.1)

Analyzing some values on the formula presented starting by Armor Points, the value indicated was

the best possible approximation to calculate an unit survival, together with Maximum health points.

The attack range value is multiplied by 50 because of the unit’s range points that can go from 1 to 3,

each point is equivalent to 50 pixels on the game screen. Finally for the sum of the attack range and

movement speed of an unit, since the value is usually much greater that any of the other attributes, the

sum is reduced to 10% on this formula.

The calculations for the Tower structure are identical tp the Unit and Monster calculations. However

the movement speed is set to 0 since structures do not move.

Unit and monster combat value cannot be directly compared to structure value (structure does not

have movement speed and can be repaired), also some unit upgrades are not being included in the

formula, although there are some calculations with the effects of each update at the end of the Annexes.

88

Orhgz Warrior and Wyvern have slight better combat value than Human Soldier and Eagle Knight,

Human Wizard and Cavalier have slight better combat value than Butcher and Shadow Knight.

There was also conducted multiple tests between the different types of each race, to observe if some

sort of unbalance would exist between them. The results are bellow the Information Values subsection

of each game element.

A.3 Combat Value Tables

Acronyms:

N - Name

HP - Health Points

ATK - Attack Points

ARM - Armor

ATR - Attack Range

MSP - Movement Speed

MOT - Movement Type (G - Ground, F - Flying)

RC - Resources Cost (C - Crystal, N - Nitrogen, H - Hydroxygen)

TRS - Total Resources Spent

PV - Population Value

RT - Research Time (in seconds)

CV - Unit Combat Value

CV/(T*P) - Unit Combat Value / (Total Resources Spent * Population Value)

89

A.3.1 Orghz Units and Tower

Table A.1: Orghz Units and Tower attributes

Name HP ATK ARM ATR MSP MOT PV RC RT CV CV/(T*P)

Peon 40 3 0 1 90 G 1 50 C 10 1680 33.6

Warrior 70 7 0 1 100 G 1 100 C, 50 N 14 7350 49

Butcher 70 6 0 2 95 G 1 125 N, 50 H 14 8190 46.8

Shadow Knight 155 14 0 2 115 G 2 250 C, 200 H 24 46655 51.83

Wyvern 190 17 2 1 115 F 2 325 N, 325 H 29 71060 54.66

Tower 110 11 1 2 n/a n/a n/a 175 C, 100 H 35 14116.6 51.3

Total resources for 1 copy of every unit (minus tower) :

450C + 500 N + 575 H = 1525, Production Time Total: 91s

A.3.2 Human Units and Tower

Table A.2: Human Units and Tower attributes

Name HP ATK ARM ATR MSP MOT PV RC RT CV CV/(T*P)

Peon 40 3 0 1 90 G 1 50 C 10 1680 33.6

Soldier 80 5 1 1 100 G 1 100 C, 15 7233.33 72.133

Wizard 55 8 0 2 95 G 1 125 N 15 8470 67.76

Cavalier 155 15 1 1 115 G 2 250 C, 125N 25 47600 73.23

Eagle Knight 155 18 1 2 115 F 2 200 N, 250 H 30 69982.5 77.75

Tower 120 10 1 2 n/a n/a n/a 200 C 35 14000 70

Total resources for 1 copy of every unit (minus tower) : 550 C + 500 N = 1050

Multiplying by 1.5 (hypothetically counting Hydroxygen resource) : 1575, Production Time Total: 95s

A.3.3 Monster Units

Acronyms:

TRA - Trade (1st resource for 2nd resource)

REC - Recruit (recruit 3 types of monster)

PIL - Pillage (when killed each monster drops resources)

CV * 3 / (REC * PV) - Combat value * 3 recruit units / (Recruit resources * Population Value)

90

Table A.3: Monster attributes

Name HP ATK ARM ATR MSP MOT PV RC CV
CV * 3 /

(REC * PV)

Ogre 90 8 0 1 90 G 1 500 C 12180 73.08

Archer 75 8 1 2 95 G 1 300 N, 200 H 11700 70.2

Gnomish Airplane 175 17 2 2 105 F 2 350 C, 550 N, 650 H 81316.6 78.69

Total resources to recruit one group of 3 elements, of each unit type: 850 C + 850 N + 850 H =

2550

Counterparts (Monster receives unique upgrade of race unit):

Ogre: Warrior or Soldier; Archer: Butcher or Wizard; Gnomish Airplane: Wyvern or Eagle Knight

Each of the monster has better combat value than their unit counterparts, since the monsters re-

cruited are limited.

A.3.4 Orghz Strucutres

CT - Construction Time (in seconds)

Table A.4: Orghz Structures attributes

Name HP AR RC CT

Command Center 400 3 275 C, 200 H 40

Barracks 300 2 200C, 125 N 35

House 200 0 100 C 25

Tower 100 1 175 C, 100 H 35

Factory 300 2 225 C, 150 N 35

Research Building 250 1 225 N, 100 H 30

Wyvern Nest 250 2 175 C, 175 N, 175 H 30

Power Building 300 1 200 N, 250 H 35

Resources Total: 1150 C + 875 N + 825 H = 2850, Constructing Time Total: 265s

91

A.3.5 Human Structures

Table A.5: Human Structures attributes

Name HP AR RC CT

Command Center 400 3 300 C, 100 N 40

Barracks 300 2 150 C, 50 N 35

House 200 0 100 C 25

Tower 120 2 200 C 35

Factory 300 2 150 C , 100 N 35

Research Building 250 1 50 C, 150 N 30

Wyvern Nest 250 2 150 C, 250 N 30

Power Building 300 1 100 C, 200 N 35

Resources Total: 1200 C + 850 N = 2050, Constructing Time Total: 265s

(With Hydroxygen approximation) 1025 + 2050 = 3075

A.3.6 Orghz Weapons and Armor Upgrade

Acronyms:

UT - Upgrade Type

LV - Level

RC - Resource Costs (C - Crystal, N - nitrogen, H - Hydroxygen)

RT - Research Time (in seconds)

Table A.6: Orghz Weapons and Armor Upgrades attributes

UT LV RC CT

Melee Weapon 1/2/3 200 / 300 / 375 C, 150 / 250 / 325 N 45 / 60 / 75

Ranged Weapon 1/2/3 250 / 350 / 425 N, 100 / 200 / 275 C 45 / 60 /75

Armor 1/2/3 150 / 250/ 350 C, 150 / 250 / 325 N 75 / 90 / 105

Total Resource spent for every upgrade at maximum level: 1725C + 1750N + 1725H = 5200,

Production Time Total: 540s

92

A.3.7 Human Weapons and Armor Upgrade

Table A.7: Human Weapons and Armor Upgrades attributes

UT LV RC CT

Melee Weapon 1/2/3 150 / 250 / 300 C, 50 / 125 / 200 N 40 / 55 / 70

Ranged Weapon 1/2/3 150 / 225 / 300 N, 50 / 125 / 200 C 40 / 55 / 70

Armor 1/2/3 150 / 250/ 350 C, 150 / 250 / 325 N 70 / 85/ 100

Total Resource spent for every upgrade at maximum level: 1800C + 1800N = 3600, Production

Time Total: 585s

(With Hydroxygen approximation) 1800 + 3600 = 5400

A.3.8 Orghz Unique Upgrades and Super Power

Race skill: Wall Breaker - Units deal 2 more damage to buildings.

Tower: Precision Shot - Increase tower attack range by 1.

Orghz Warrior: Brute Force - Reduce enemy target units or monsters Armor to 1 when attacking

them, for 2 seconds.

Orghz Butcher: Poison Corrosion - Poisons enemy unit or monster dealing 2 damage per 2 sec-

onds, up to 3 stacks. A stack is lost per poison damage and increasing 1 damage per stack. Each

Butcher attack adds a poison stack to the enemy unit. Ex: (In 6 seconds without being attacked by a

Orghz Butcher, damage will be 4 - ¿ 3 - ¿ 2, being 9 damage in total).

Orghz Shadow Knight: Soul Drain - Recovers 2 HP per Shadow Knight attack if this unit is injured

against units or monsters. If this unit has full health points it deals plus 2 damage against enemy units

or monsters instead.

Orghz Wyvern: Infernal Armor - Deals 2 damage every time an unit, monster or tower attacks

Orghz Wyvern.

Orghz Super Power: BloodLust - Increases affected units attack points by 3.

A.3.9 Human Unique Upgrades and Super Power

Race skill: Improved Development Tools- Construction time of structures and research time of all up-

grades is 20% faster.

Tower: Fortified Plating - Increases Tower’s armor by 1 and HP by 40.

Human Soldier: Shield Bash - Decreases attack points of an enemy unit or monster by 1 for 2

seconds.

93

Human Wizard: Bind Shackle - Decreases movement speed of an enemy unit or monster by 20%

for 2 seconds.

Human Cavalier: Equestrian training - Increases Cavalier’s Movement Speed by 10 and armor by

1.

Human Eagle: Electric Current - Deals 3 damage per second to an enemy unit, monster or building,

ending at 4 seconds. This effect is applied by Eagle Knight’s attack.

Human Super Power: Indomitable Spirit - Places a 35 HP shield for affected units. Each time an

affected unit is hit, the shield is decremented by the value of enemy object attack points. If the remaining

shield points are lesser than the damage inflicted by an attack, the difference is afflicted to the unit’s

health points. The unit’s armor points are not evaluated, to reduce the attack damage while this super

power is active.

Upgrades are not cumulative, for instance Brute Force can only reduce the armor of an enemy by 1,

even if 2 or more Orghz Warriors are attacking the same enemy object.

A.3.10 Unique Upgrades Resource Costs and Combat Value Increases

Acronyms:

UT - Upgrade Type

RC - Resource Cost (C - Crystal, N - Nitrogen, H - hydroxygen)

RT - Research Time (in seconds)

AFF - Affected units or tower

OCV - Old combat value (before upgrade)

NCV - New combat value (after upgrade)

- For Orghz

Table A.8: Orghz unique upgrades attributes

UT RC RT AFF OCV NCV

Wall Breaker 100 C, 150 N 45 Every Orghz Unit n/a n/a

Precision Shot 100 C, 150 H 45 Tower 14341.46 21513.96

Brute Force 150 C, 100 N 50 Warrior 7350 9912

Poison Corrosion 150 N, 100 H 50 Butcher 8190 10920

Soul Drain 150 C, 100 H 55 Shadow Knight 46655 53320

Infernal Armor 150 N, 200 H 60 Wyvern 71060 88825

Total resources spent: 600 C + 600 N + 600 H = 1800

94

- For Human

Table A.9: Human unique upgrades attributes

UT RC RT AFF OCV NCV

Improved Development Tools 100 C, 150 N 40 Every Human Structure n/a n/a

Fortified Plating 100 C, 150 H 40 Tower 14000 21333

Shield Bash 150 C, 100 N 45 Soldier 7233.33 9262.2

Bind Shackle 150 N, 100 H 45 Wizard 8470 10518.75

Equestrian Training 150 C, 100 H 50 Cavalier 47600 57600

Hammer of Judgment 150 N, 200 H 55 Eagle Knight 69982.5 80720

Total resources spent for every upgrade: 900 C + 850 N = 1750, Production Time Total: 275s

Total resources spent by the Orghz for one copy of every Unit, Structure and Upgrade: 11300

Total resources spent by the Human for one copy of every Unit, Structure and Upgrade (with

Hydroxygen approximation): 12750

A.4 Technical Design

In this section of the Annexes chapter, there is a discussion on some technical details about decisions

made for some of the elements discussed in the Game Design section, on the chapter 3 of this docu-

ment.

Race Design

To provide an engaging experience to the players when playing, there are differences between the

two races.

The first one is in the resource consumption between each race. The Orghz race use the 3 re-

sources available to increase their military power. The Human race uses 2 (Crystals and Nitroxygen)

for military power increase and Hydroxygen is not spent on any production or research, instead being

consumed overtime. The amount of Hydroxygen spent each 6 seconds depends on the Human’s pop-

ulation amount. The difference between the resource consumption of these 2 races adds depth to the

playability of Planetary Conquest, as the two races have different means of spending their resources.

The total resource cost for various productions and researches for the Orghz race is more expensive

than of the Human race. However the average spending cost of the resources Crystal and Nitrogen for

the Orghz on this matter, is almost identical than the Human resources spent. Then the consumption

of the Hydroxygen resource for the Orghz race as the game progresses, also tends to be similar to the

Human Hydroxygen spent.

95

With this behaviour while the resources are spent differently between the two races, each of them is

important to their race development.

Units

Then there are differences between the units. While both races have 4 military units with the same 4

different types available, there are different in their military attributes, resource production cost, produc-

tion time and in 2 military types their attack type.

Starting with the units military power, Orghz military infantry and Flying units have slightly better

combat value, than the Human units of this type. Human ranged infantry and mounted units have the

same situation described than the Ogre units of the same type. Even if their Unit Combat Value is quite

similar, most of their attributes are different between each other.

Another difference to add heterogeneity to the units of the two races, is the attack type of the mounted

and flying units. Orghz have ranged and melee type respectively, while Humans have melee and ranged.

Also Orghz military units take one less second to be produced than Human units.

For the resource costs some Orghz units need 2 or 3 types of resource to produce an unit type, while

the Human units of the same military type costs 1 or 2 types of resources.

Structures

For the differences between the races structures, there is the resource costs of each structure,

different military attributes for the Tower structure and different construction time. The last one is applied

for the Human race, which takes 20% less time, when it’s Race Upgrade is researched.

Monsters

To add variety to the monster encampments there are 3 types of monsters that the player can interact

to. Also to add more complexity each player can only choose one of 3 available options, when interacting

with those monsters.

For those 3 options the resources to be spent for each of them is completely different between each

type of monster. Each monster will ask for a different resource type in the Trade option, also providing

to the player a different resource type between them. The resources requested between each monsters

are identical in number, the same situation is applied for the resources given.

For the recruit cost, the total quantity of resources for the Orcs and Archer is identical, since they are

both infantry units. To differentiate them the resource types for recruiting these monsters are different

between each other, with the quantity of resource types also being different. For the Gnomish Airplanes

the total quantity requested is more expensive, since they have superior military power than the former

two monsters.

Discussing the final option Pillage, the 3 types of monster when killed will give to the player 3 types

of different resource, referent to their monster type. The Gnomish Airplane monsters will give the double

amount of resource quantity to the player comparing to the former two monster types, because they

96

have superior military power, rewarding the player in a greater extend for defeating them.

Upgrades

While the weapon and the armor upgrades are identical in terms of military improvement between

the two races, the race and unique upgrades are completely different between each other. The thinking

point when designing each of them was having the Orghz with an aggressive and competitive mindset.

Meaning that the Orghz unique upgrades would strength an unit, to be slightly more powerful against

the Human unit of the same type. The Human upgrades have an adaptive approach for an unit type,

to it’s military counter type. For example the Human Cavalier upgrade increases it’s movement speed.

This permits this units to escape it’s counter unit which is flying units, since the Cavalier cannot attack it,

with more easiness.

Since the Human race is more technology advanced as the Orghz race, their upgrades take 5 sec-

onds less to be researched.

Super Power

Each race has it’s own Super Power. The effects of each other are completely different. The Orghz

Super Power is the Brute Force. It increases the attack of every affected unit by 3 points. This super

power reflects the nature of the Orghz, competitive and agressive.

The Human Super Power is Indomitable Spirit. It gives to each affected unit a 35 hp shield, that

can only be decremented by the enemies damage. However the armor points do not enter in equation,

when the shield points are decremented. The reason for it is for not having dominant strategies when

choosing the units to be affected by the Super Power. Giving the case of the Human Super Power, units

with the most armor points such as Cavalier would be preferred because they have more starting armor

points that any other Human military unit, making the number of possible choices for the units to be

affected by this Super Power be reduced.

Another factor that was taken in account when designing the Super Powers, was to have the same

increased amount of military power for every type of unit regardless of their attributes, for the same

purposed discussed before. This decision helped to avoid dominant strategies from happening.

Map

Starting by referring the map size,the dimensions are of 2880 per 1440 pixels containing 45 to 45

tiles. The size of the map is appropriate for the players to explore it, and to conquest territory to gather

more resources or to interact with monster encampments.

The bases location are at the top and bottom of the map, for Orghz and Human respectively. Those

bases are surrounded by mountains except a small part serving as an entrance, to make the player’s

military base difficult to attack.

Each base also starts with one resource deposit for each available resource, however the player in

order to improve it’s economy growth may explore other locations with resource deposits, constructing

97

expansion bases [75]. As the article cited explains for Expansion Bases, there are two types of them:

Natural Expansions that are generally adjacent or close to one of the starting bases; and Unnatural

Expansions which are not close to the player’s starting base.

In the map designed for this game, there are also these type of bases. There are 2 Natural Expansion

bases close to each player’s starting base symmetrical between each other, however on each side of

the map each natural expansion of a player side is also close of each other. With this layout players may

be likely to engage each other when trying to construct Natural Expansion Bases.

For Unnatural Expansions there is only one, which is located at the middle of the map surrounded by

flora and lava, containing Ancient Resource Deposits for each resource available. This zone of the map

may encourage confrontation between the players, in order for them to be able to extract the resources

present in these deposits, since the quantity of resources extracted is twice as much as the normal

extraction of resources, further increasing the player’s economy.

There are many non-movable objects such as rocks, mountains, trees, lava or water spread across

the map. Some of these are positioned closed from each other creating narrow passages, where player’s

units might have to travel on them. These passages are called Choke Points, that can force the players

to avoid passing by them or to use them to their advantage [76]. A good example of the later is the

entrance of the player’s starting base. The player can construct at the entrance structures such as

Houses or Towers occupying the entire entrance zone, forcing the opponent to either destroy those

structures to be able to attack the player’s base or to use Flying units to walk over them. Either way this

strategy will delay the opponent’s attack to the player base.

The monster encampments locations are also spread symmetrically between each other. The weaker

monster encampment types Ogres and Archer are close to the player’s starting base, however the last

monster type Gnomish Airplane not only are situated at the horizontal edges of the map, but are also

closer to the Natural Expansions of each player, which could be another factor to promote confrontation

between the players.

The existence of various symmetrical points of interest across the map such as the monster encamp-

ments and resource deposits, is to give equal conditions for each player to use them, in order to grow

their military power and conquering the planet.

98

	Titlepage
	Acknowledgments
	Abstract
	Abstract
	Resumo
	Resumo
	Contents
	List of Figures
	List of Tables
	Listings
	Acronyms

	1 Introduction
	1.1 Motivation
	1.2 Objectives
	1.3 Contributions
	1.4 Structure of this document

	2 Related Work
	2.1 RTS game elements
	2.1.1 Theme
	2.1.2 Units
	2.1.3 Structures
	2.1.4 Resources
	2.1.5 Fog of War
	2.1.6 Player Actions
	2.1.7 Interface
	2.1.8 4X
	2.1.9 Player archetypes

	2.2 RTS History and Examples
	2.2.1 Stonkers
	2.2.2 Dune II
	2.2.3 Warcraft: Orcs & Humans
	2.2.4 Command & Conquer

	2.3 Technologies used
	2.3.1 Mobile platforms
	2.3.2 HTML
	2.3.3 JavaScript
	2.3.4 Advantages of using HTML5 to make games
	2.3.5 HTML5 Game Framework

	2.4 Discussion

	3 Game Design and Architecture
	3.1 Game Design
	3.1.1 Races and Objectives
	3.1.2 Perspective
	3.1.3 Features
	3.1.4 Economy
	3.1.5 Units
	3.1.6 Structures
	3.1.7 Monsters
	3.1.8 Upgrades
	3.1.9 Super Power
	3.1.10 4X
	3.1.11 Progression
	3.1.12 Planetary Conquest Concept Map
	3.1.13 Interface

	3.2 Architecture Design
	3.2.1 Technical Limitations
	3.2.2 Client-Server Networking
	3.2.3 Phaser.io
	3.2.4 File Structure

	3.3 Discussion

	4 Implementation
	4.1 Development Process
	4.1.1 Starting Tutorials
	4.1.2 Spritesheets
	4.1.3 Game Map
	4.1.4 Isometric plugin
	4.1.5 A-Star movement
	4.1.6 Spatial Hashing
	4.1.7 Device orientation
	4.1.8 Server authoritative
	4.1.9 Performance optimization

	4.2 What went wrong
	4.3 Discussion

	5 User Tests
	5.1 Conditions
	5.1.1 Focus Group
	5.1.2 Where it was tested
	5.1.3 How it was tested

	5.2 Alpha Prototype
	5.3 Beta Prototype
	5.4 Discussion

	6 Conclusion
	6.1 Conclusions
	6.2 Future Work

	Bibliography
	Appendix B

	A Annexes
	A.1 RPS
	A.2 Unit Combat Formula
	A.3 Combat Value Tables
	A.3.1 Orghz Units and Tower
	A.3.2 Human Units and Tower
	A.3.3 Monster Units
	A.3.4 Orghz Strucutres
	A.3.5 Human Structures
	A.3.6 Orghz Weapons and Armor Upgrade
	A.3.7 Human Weapons and Armor Upgrade
	A.3.8 Orghz Unique Upgrades and Super Power
	A.3.9 Human Unique Upgrades and Super Power
	A.3.10 Unique Upgrades Resource Costs and Combat Value Increases

	A.4 Technical Design

