
FenixEdu Connect
An Identity Management System for Academic Organizations

Paulo Ricardo Conde Branco

Thesis to obtain the Master of Science Degree in

Electrical and Computer Engineering

Supervisor(s): Prof. João Nuno de Oliveira e Silva
Eng. David Jorge Lopes Batista Martinho

Examination Committee

Chairperson: Prof. António Manuel Raminhos Cordeiro Grilo
Supervisor: Prof. João Nuno de Oliveira e Silva

Member of the Committee: Prof. Fernando Henrique Côrte-Real Mira da Silva

November 2018

ii

Declaration

I declare that this document is an original work of my own authorship and that it fulfills all the require-

ments of the Code of Conduct and Good Practices of the Universidade de Lisboa.

iii

iv

Acknowledgments

First and foremost, I would like to thank my adviser, Prof. Doutor João Nuno de Oliveira Silva for trusting

me with the development of this subject. It is highly uncommon for a student to be given the creative

freedom to pursue his own vision for a solution with this level of complexity. Thank you for allowing me

to do just that, while still going out of your way to finding a solution whenever a problem arose.

To everyone at IST’s IT Services team, with a special note for Ricardo Barata, Sérgio Silva and Luı́s

Cruz for welcoming me and allowing me to grow within one of the best software development teams the

country has ever known. Without your insights and countless hours of dedication to my personal growth

none of this would be possible.

I would like to thank my parents, Teresa and Paulo for the constant words of encouragement to follow

my true passion. I will be forever grateful for your unbelievable amount of support during these past five

years, without which this endeavour would be impossible to carry out.

To the old life-long friends, João, Tiago and Rui for forcing me to go out for a drink (or two), even

when it all seemed lost.

To the new life-long friends, José, Duarte and Frederico, with whom I had the pleasure to share the

long nights, the deadlines, and all the small precious momments that made our journey at IST unique.

I would also like to thank Ana Varanda for, perhaps unknowingly, being the role model that brought

me to this point. Thank you for showing me the taste for academic excellence and the slight perfectionist

behaviour that comes with it. Your radical honesty, along with your unique way of rationalising the world

that surrounds us were paramount for allowing me to solve some of the most significant challenges

during these last months.

Finally, but arguably the most important, I would like to thank my co-advisor Eng. David Jorge

Lopes Batista Martinho for reasons that words alone will never be able to express. Thank you for your

contagious cheerful personality. I have yet to know someone with the same ability to lighten up a room,

and honestly doubt I ever will. Thank you for teaching me that occasional failure is part of the process.

Thank you for believing in me, when I did not. For always finding a solution when it seemed there was

none. For striving for excellence in everything you did, and teaching everyone around you to follow suit.

For taking the time to teach me everything I needed to know. Without your constant support this thesis

would simply not be possible.

Thank you

Lisboa, October 2018

Paulo Ricardo Conde Branco

v

vi

Resumo

O aumento das consequências de falhas de segurança tem pressionado organizações por todo o mundo

a desenvolver medidas de proteção adicionais contra este tipo de ameaça. Os sistemas de gestão de

acessos e identidades (GAI) estão na linha da frente desta proteção ao disponibilizar um conjunto de

regras e processos para gerir as identidades digitais dos seus utilizadores. No entanto, as necessi-

dades especı́ficas das instituições académicas têm prevenido a adoção das mais recentes tecnologias

e processos. Esta tese propõe uma solução de GAI com o objetivo de solucionar os desafios de

autenticação, autorização e gestão de identidades das instituições de ensino superior com base na

definição de uma framework que permite a cada instituição adaptar o produto aos seus requisitos. O

modelo de implementação proposto é depois validado através de um caso de estudo da sua possı́vel

implementação no Instituto Superior Técnico, como substituição do sistema de gestão de identidades

existente no mesmo.

Palavras-chave: Gestão de Acessos e Identidades, Autenticação, Autorização, Json Web

Token, OAuth, OpenID Connect, Desenvolvimento de Software, Integração

vii

viii

Abstract

As security breaches result in ever increasing damages to organizations worldwide the pressure is on

to develop additional safeguards against these types of cyberattacks. Identity and Access Management

systems sit at the forefront of this protection by providing system administrators with a consistent set

of rules and processes for managing the digital identities of their users. However, the specific needs

of academic institutions have for long prevented the adoption of the latest state of art technologies and

practices at these organizations. This thesis proposes an open-source IAM solution designed to meet

the authentication, authorization and identity management challenges of higher education institutions by

describing a framework that allows each client institution to tailor the product to its specific requirements.

The proposed implementation model is then validated against a possible deployment at Instituto Superior

Técnico, as a replacement for the existent identity management product.

Keywords: Identity and Access Management, Authentication, Authorization, Json Web Token,

OAuth, OpenID Connect, Software Development, Integration

ix

x

Contents

Acknowledgments . v

Resumo . vii

Abstract . ix

List of Tables . xiii

List of Figures . xv

Nomenclature . xvii

Glossary . xvii

1 Introduction 1

1.1 The FenixEdu Project . 2

1.2 Objectives . 3

1.3 Thesis Outline . 3

2 Related Work 5

2.1 Theoretical Overview . 5

2.1.1 Digital Identity . 5

2.1.2 Identity Management . 7

2.1.3 Identity Federation . 11

2.1.4 Public Key Cryptography . 12

2.1.5 Digital Signatures . 14

2.1.6 Digital Certificates and Public Key Infrastructure 15

2.2 Technologies . 16

2.2.1 OAuth . 16

2.2.2 OpenID . 19

2.2.3 OpenID Connect . 19

2.2.4 JSON Web Token (JWT) . 20

2.2.5 SAML . 23

2.3 Existing Solutions . 24

2.3.1 Okta . 24

2.3.2 Auth0 . 25

2.3.3 Shibboleth . 26

xi

3 Proposed Solution 27

3.1 System Requirements . 27

3.2 Integration Goals . 29

3.3 Architecture . 29

3.3.1 Overview . 29

3.3.2 Backend . 31

3.4 Implementation Details . 34

3.4.1 Authentication . 34

3.4.2 User Management . 40

3.4.3 OAuth Authorization Server . 46

3.4.4 Security . 49

3.4.5 External Integrations . 54

3.4.6 Monitoring and Auditing . 55

4 Evaluation 59

4.1 Feature Completion Analysis . 60

4.1.1 Authentication . 60

4.1.2 Identity Management . 61

4.1.3 Access Delegation . 61

4.1.4 External Integrations . 62

4.1.5 Security . 63

4.1.6 Monitoring & Auditing . 63

4.2 Case study: FenixEdu Connect at Instituto Superior Técnico 64

4.2.1 General Overview of the IAM scenario at IST . 64

4.2.2 Authentication use case . 64

4.2.3 Account Management use case . 66

4.2.4 Identity Provider use case . 67

4.2.5 OAuth use case . 69

4.2.6 Session Management use case . 70

4.2.7 External Integrations use case . 71

4.2.8 Rollout . 72

5 Conclusions 75

5.1 Conclusions . 75

5.2 Future Work . 76

Bibliography 77

A API Endpoints A.1

xii

List of Tables

4.1 Authentication Features . 60

4.2 Identity Management Features . 61

4.3 Access Delegation Features . 61

4.4 External Integrations . 62

4.5 Security Features . 63

4.6 Monitoring and Auditing Features . 63

xiii

xiv

List of Figures

2.1 Abstract authorization architecture diagram. 9

2.2 The main actions of the digital identity lifecycle. 10

2.3 An overview of the process of sending a message using public key cryptography. 14

2.4 A sequence diagram of an authorization transaction using the OAuth 1.0 protocol. 16

2.5 A sequence diagram of an authorization transaction using the OAuth 2 protocol. 18

2.6 A breakdown of the three sections that make up a Javascript Object Notation (JSON) Web

Token. 21

2.7 A sequence diagram of SAML’s Web Browser Single Sign On (SSO) Profile. 24

3.1 A breakdown of the modular architecture of FenixEdu Connect. Brown modules are spe-

cific to the client institution while the green modules are generic. 30

3.2 Overview of the request handling flow implemented by Spring MVC. 31

3.3 Overview of the authentication flow implemented by Spring Security. 33

3.4 A Universal Modeling Language (UML) representation of the primary authentication provider

classes and their interaction with the infrastructure provided by Spring Security. 35

3.5 An overview of the authentication flow using the DelegatingAuthenticationProvider

component. 35

3.6 A UML representation of the classes that implement the 2-Factor Authentication (2FA)

subsystem. 38

3.7 A sequence diagram of the magic link authentication flow. 39

3.8 Magic Links UML diagram . 39

3.9 A UML representation of the User class. 40

3.10 The possible account states and the lifecycle transitions between them. 41

3.11 A comparison between the conventional invite flow and FenixEdu Connect’s. 42

3.12 A UML diagram of the classes that implement the password reset service. 42

3.13 An overview of the password reset flow. 43

3.14 FenixEdu Connect enforces a clear separation of responsibilities between account data

and profile information. 44

3.15 A UML diagram of the classes responsible for managing profile information in FenixEdu

Connect. 44

xv

3.16 An example of how multiple profile providers can be used to aggregate user information

and expose it through FenixEdu Connect. 46

3.17 An UML diagram of the classes that support the OAuth implementation in FenixEdu Con-

nect. 47

3.18 A comparison between the conventional OAuth authorization flow and FenixEdu Connect’s. 48

3.19 An overview of the OAuth token enhancement flow for OpenID Connect (OIDC) requests. 49

3.20 An overview of the flow of audit events from the source services to the possible consumers. 51

3.21 A UML diagram of the classes that make up Connect’s Extension Points feature. 52

3.22 An overview of the configuration and authentication flows of the Security Assertion Markup

Language (SAML) Connector. 56

3.23 An example of how Envers uses the concept of revisions to track changes to a set of objects. 58

3.24 An architectural overview of Connect’s main components and their associated abstract

layers. 58

4.1 An overview of the authentication system at IST. 65

4.2 An overview of how Connect can be used to provide global Multi-Factor Authentication

(MFA) support for the client applications at IST. 66

4.3 An overview of how data collected in one application can be handed over to multiple

systems according to the attributes they are authoritative over. 68

4.4 An overview of how Connect proxies multiple applications to expose a single user identity

to the client applications. 69

4.5 Evolution of FenixEdu Connect’s deployment at IST. 74

xvi

Glossary

2FA 2-Factor Authentication.

ACL Access Control Lists.

ACS Assertion Consumer Service.

API Application Programming Interface.

ATM Automatic Teller Machine.

CA Certificate Authority.

CAS Central Authentication Service.

CRL Certificate Revocation List.

CRM Customer Relationship Management.

CRUD Create-Read-Update-Delete.

CSRF Cross Site Request Forgery.

ERP Enterprise Resource Planning.

FdIM Federated Identity Management.

HEI Higher Education Institution.

HMAC Keyed-Hash Message Authenticator Code.

HRP Human Relations and Payroll.

HTTP Hypertext Transfer Protocol.

IAM Identity and Access Management.

IANA Internet Assigned Numbers Authority.

IDaaS Identity as a Service.

IdP Identity Provider.

IETF Internet Engineering Task Force.

IoC Inversion of Control.

IT Information Technology.

JAR Java Archive.

JPA Java Persistence API.

JSON Javascript Object Notation.

JWE JSON Web Encryption.

JWK JSON Web Key.

JWS JSON Web Signature.

JWT JSON Web Token.

LDAP Lightweight Directory Access Protocol.

MFA Multi-Factor Authentication.

MOOCs Massive Online Open Courses.

MVC Model View Controller.

OIDC OpenID Connect.

PDP Policy Decision Point.

PEP Policy Enforcement Point.

PIN Personal Identification Number.

PKI Public Key Infrastructure.

POJO Plain Old Java Object.

RBAC Role Based Access Control.

REST Representative State Transfer.

RFC Request For Comment.

RP Relying Party.

SAML Security Assertion Markup Language.

SLAs Service Level Agreements.

SOAP Simple Object Access Protocol.

SP Service Provider.

SSL Secure Sockets Layer.

SSO Single Sign On.

TLS Transport Layer Security.

TOTP Time-based One Time Password.

U2F Universal Second Factor.

UML Universal Modeling Language.

URL Universal Resource Locator.

XML Extensible Markup Language.

XSS Cross Site Scripting.

xvii

xviii

Chapter 1

Introduction

The past few years have seen a significant increase in the number of services available through digi-

tal channels. This is especially true in academic institutions where international regulation is pushing

for a higher use of electronic documents with the goal of cutting costs and reducing waste. The ever-

increasing number of information systems required to support this migration poses a challenge for the

traditional identity management processes that are still in place in many organizations. While the cur-

rent systems focus on solving the problem of authentication, often deploying Single Sign On (SSO)

solutions to reduce the number of credentials that users have to memorize, little is done when it comes

to managing the digital identities of each user.

Academic institutions are required to manage accesses for an extremely dynamic user base, often

consisting of large thousands of status changes per yer as students start and complete their educational

programmes. In addition, roles are often fluid: a student can simultaneously be a part-time teaching

assistant or an employee at the university’s Information Technology (IT) services. This poses a challenge

for the traditional role-based access control technologies in place in these organizations.

Discrete Identity and Access Management (IAM) solutions play a pivotal role in modern organiza-

tions, both through the obvious security layer they entail as through the accountability and traceability

they can offer. Organizations of all sizes can take advantage of advanced IAM solutions to improve

productivity, reduce downtime and ensure compliance with data protection laws and/or internal business

rules.

As organizations began to adopt the cloud-based service format the need for interoperable solutions

for identity management in these environments paved the way for the first offerings of Cloud-based

Identity and Access Management systems, also known as Identity as a Service (IDaaS). The significant

cost savings associated with this architecture are commonly cited as one of the main drivers for this

migration [1], as organizations are no longer required to employ development and system administration

teams and to maintain the computational resources required to run them. Additionally, cloud based

services often offer guarantees of performance and uptime, through Service Level Agreements (SLAs)

protecting organizations from failures in their provided services.

Whereas typical in-house IAM solutions are usually designed to meet the specific requirements of

1

the target institution, IDaaS solutions are built to accommodate a wide array of well known applications

and authentication protocols. As new standards gain traction, IDaaS providers race to include support

for them in their solutions. This presents a clear benefit for their client organizations which benefit from

the peace of mind of having support for the new protocols whenever they need to implement them

without the need to develop additional integration modules. However, the reverse is also true: large

scale organizations tend to rely, on a varying scale, on legacy applications which may use archaic

authentication protocols no longer supported by the current IDaaS providers. The adoption of one of

these IAM solutions requires companies to design and implement additional systems (often in the form

of another purpose-built IAM system) to maintain compatibility with the legacy applications.

Despite the clear advantages of the cloud model, its adoption has not kept up with the estimates [2].

Organizations are still reluctant to hand over their user identity data to a third party [3]. The core respon-

sibilities of an IDaaS solution demand that it necessarily takes part in every data exchange transaction

and often that it acts as a storage provider for user accounts and personal data. This poses severe chal-

lenges to the safety of this data if the appropriate measures are not followed by the vendor. In extreme

cases if the IDaaS provider operates a multi-tenant environment, an organization’s user database may

even be stored alongside other organizations’ data increasing the consequences of a security breach.

While some of these challenges affect every cloud computing solution, and are not restricted to IDaaS

providers, the type of information secured by these systems is often more sensitive to data breaches

and thus, requires additional security measures to protect it against unauthorized access.

1.1 The FenixEdu Project

As the number of connected households increased, higher education institutions looked for ways to

provide learning resources beyond the scope of the traditional classroom model. This led to the de-

velopment of the first Learning Management System (LMS), applications where educational resources

could be made available to the academic community over a network, often being shared online. As these

systems grew in popularity, so did the number of features available in each one, with universities often

resorting to in-house development teams to integrate other types of services (such as tuition payments

or official document requests), with direct consequences to the product’s complexity and maintainability.

Both commercial (Blackboard 1) and non-profit (Moodle 2) organizations attempted to develop learning

management systems that could be customized to each institution’s needs.

The FenixEdu Project, started in 2002 at IST aimed to provide a complete and integrated set of

open-source software platforms for academic organization management, including a LMS, a Student

Management System (SMS) and a Content Management System (CMS) [4]. FenixEdu’s extensible and

modular approach to the development of these tools was fundamental to the adoption of its products

outside IST, allowing each implementing institution to tailor it to its specific requirements.

However, the decoupled nature of this solution also creates its unique set of challenges as a SSO

1https://www.blackboard.com/
2https://moodle.org/

2

solution must be deployed to ensure users can roam between the different applications without being

asked to re-authenticate with each one. While support for third-party SSO systems (namely, the Central

Authentication Service (CAS)) is already implemented in FenixEdu’s suite of products, identity manage-

ment is still bundled with one of the products (FenixEdu Academic) and only a small set of features is

available. These features extend beyond the purpose of FenixEdu Academic and thus, should be re-

placed by a complete IAM solution that offers a central management point for authentication and user

identities across the FenixEdu suite of products.

1.2 Objectives

This thesis aims to offer an hybrid approach to the IAM problem by describing and implementing a

software solution to allow organizations to take advantage of the ease of integration and extensibility of

cloud-based identity providers while still ensuring the safety and security of the data it is responsible for

managing, which should be stored on-premises and thus never leave the organization’s IT perimeter.

The implemented solution, FenixEdu Connect, leverages the latest authentication and authorization

standards (such as OAuth, OpenID Connect and SAML) to provide a unified gateway to user identity

data in academic organizations. Its architecture is designed for extensibility and interoperability with

external applications, allowing organizations to easily integrate it with existing systems including legacy

applications.

In addition, FenixEdu Connect aims to relieve individual applications from the responsibility of having

to maintain their own OAuth Authorization server infrastructure to enable access delegation to their

resources by providing a centralized OAuth server for the organization, enabling developers to request

access to resources from multiple OAuth-enabled applications using the same set of credentials.

As part of the FenixEdu project, the implemented application is naturally open-source with support

and contributions being maintained by the project’s team.

1.3 Thesis Outline

This thesis’s report is divided into five chapters. This section concludes the Introduction chapter where

the motivation for the current work is described, along with a description of the problem it aims to solve.

Chapter 2 introduces the set of conceptual foundations required to contextualize the problem this

thesis aims to solve.

Chapter 3 describes the proposed solution, along with the main objectives it aims to accomplish.

Chapter 4 provides an evaluation of the implemented solution based on a concrete case study that

details the implementation constraints and expected outcomes of the deployment of FenixEdu Connect

in a major Portuguese University.

Chapter 5 concludes the report with a brief summary of the obtained results, how they pertain to the

initial objectives and a set of suggestions for future developments.

3

4

Chapter 2

Related Work

Following the introduction of the problem in the previous chapter, some contextual foundations must be

established to sustain the object of study of this thesis. This chapter begins with an overview of the

most important theoretical concepts that make up the foundations of this field of study. Then, the key

technologies that power the proposed solution are analysed. Finally, three of the leading IAM solutions

are briefly analysed.

2.1 Theoretical Overview

In order to contextualize the proposed solution within its field of study, this section will briefly highlight

the main theoretical concepts that make up the foundations of IAM systems.

2.1.1 Digital Identity

Identity existed long before humans learned to speak, or records started to be kept. Back then identity

was based on a set of easily recognizable attributes, such as physical features, behavior, or common

gestures. With the advent of the first languages, the concept of identity was also updated: entities could

now be referred by their names. Nowadays, when asked to provide a proof of identity most people will

resort to personally identifiable documents, such as a driver’s license, or a social-security card. These

documents, often issued by a trusted party such as a state or government, carry identifiers (usually a

number or a string) that are unique for every person (within that context), enabling third-party entities to

identify their owner.

When a customer uses a credit card to pay she is required to enter a Personal Identification Number

(PIN) to authorize the purchase. While the card’s number is unique worldwide (no two cards have the

same number), the user is still required to enter an additional piece of information to ensure the card

is being used by its legitimate owner. This constitutes a simple example of credentials, that is, a set of

private (and optionally public) data that can be used to assert the authenticity of a given claim (in this

case: ”the owner is in possession of the card”).

5

In addition to identifiers and credentials, there is often a set of information that, while not unique, is at

the core of an entity’s digital identity: attributes. Attributes define characteristics associated with a given

entity, which can either be based on personal traits, such as fingerprint data and eye color, or temporary,

such as an email address or a student number. Attributes, unlike identifiers, are not expected to be used

to assert a subject’s identity. Rather they make up, along with identifiers and credentials, the foundations

for a digital identity.

The similarities between the main components of a digital identity and its paper-based counterpart

were fundamental to the exponential growth of online services based on the premise of digital identities.

Users quickly embraced the possibility of maintaining a set of digital personas, each one with its set of

attributes and connections to other users [5].

As digital identities became more prevalent, so did the attempts to use Digital Identity Systems as a

risk management tool [6]. One of the most notable example is the creation of No-Flight lists, databases

containing personal identifiers of people who should not be allowed to board an airplane in a given

territory for security reasons. Throughout the world, airlines rely on these lists to pre-screen passengers

and decide if access to each flight should be granted. While these lists are used to manage the risk of

violent behavior on flights, this can only be possible if the systems which maintain them are less subject

to flaw than the organization’s security measures against untrusted adversaries. Otherwise, an attacker

would simply shift her focus from penetrating the secure system into forging an identity that would allow

her to access the protected resources. Ensuring the integrity of digital identities is thus of paramount

importance whenever they are expected to have a unary relationship with a physical subject.

While the policies for digital identity management should ideally be designed in the way that balances

the organization’s security policies and its business requirements this hasn’t always been the case. His-

torically, IT departments have relied on firewalls and access control technologies to maintain a secure

perimeter around the organization’s infrastructure, ensuring that any sensitive data would be kept inside.

As the Wold Wide Web surfaced, so did a wide array of new business opportunities that forced organi-

zations to abandon the secure perimeter model for the adoption of interoperability standards, such as

identity federation or identity aggregation. An example of this change is the advent of the Automatic

Teller Machine (ATM), which allowed bank costumers to perform a wide array of bank operations without

the presence of a teller. To implement them, banks were required to find a way to authenticate their

users in remote locations without the presence of an employee, a problem that was solved by issuing

costumers a combination of a card and a unique code (PIN). ATMs forced banks to expand their se-

cure perimeters beyond the realm of the organization’s infrastructure to support these remote devices.

This change was driven by business requirements as banks quickly realized that ATMs could operate

permanently, increasing the number of costumers that could be served simultaneously.

Naturally, the impact of the widespread adoption of the World Wide Web isn’t restricted to the banking

sector. Universities have continuously leveraged the latest advances in the digital revolution to fuel new

learning opportunities and to expand their impact on societies. The rise in the number of institutions

providing Massive Online Open Courses (MOOCs) is challenging the traditional classroom model with

universities increasing the number of learning platforms and content they share with the community

6

through digital media. This poses challenges to the identity systems in place at these institutions, which

must now support an ever increasing number of users with only partial access to the organization’s

resources.

Digital identities are, similarly to their physical counterparts, dependent of a trust relationship be-

tween all the involved parties. Windley [7] defines trust as “a firm belief in the veracity, good faith and

honesty of another party with respect to a transaction that involves some risk”. Multiple identities for the

same user can bear different levels of trust depending on the set of attributes they contain or the context

they are originated from. As an example, whereas both can lay the same claims, a shopkeeper is more

likely to accept a driver’s license as a proof of date of birth than a library card, since it places a higher

degree of trust on the government agency that issued the driver’s license than it does on the library.

In the same way, before asserting a user’s identity, a digital system must be able to trust the provided

credentials and, ideally, that they are being held by the correct entity.

2.1.2 Identity Management

Identity Management, commonly referred to as Identity and Access Management refers to the combi-

nation of policies, processes and technology to ensure the identification and authorization of the users

accessing an organization’s resources [8]. Policies define constraints and/or standards in order to com-

ply with existing legislation or internal business rules. Processes implement the steps necessary to

complete a business process or task. Finally, technology encompasses the set of tools that are used to

accomplish business goals in an efficient way that still ensures all security constraints are met. Typical

IAM solutions encompass a set of components including, but not limited to:

1. Single Sign-On

2. Access control and authorization

3. User account repository

4. Auditing and reporting

2.1.2.1 Single Sign-On

As the Web moves to a more service-oriented architecture users are faced with the burden of creating

and managing an ever increasing number of passwords. Wash et al. [9] conducted a study on the re-use

of passwords across different websites where it found that the average user uses 12 distinct passwords

to access her online services. While the use of different passwords is encouraged by security experts [9]

users also reported engaging in a number of behaviors that degraded the security of their passwords,

such as intentionally re-using credentials for frequently used services. Web Single Sign-On systems

attempt to tackle this problem by providing users with the ability to use a single set of credentials to

authenticate with multiple services. In an SSO architecture, authentication is performed by an Identity

Provider (IdP) which can be a separate entity from the actual service hosting the requested resources,

usually known as the Relying Party (RP) or Service Provider (SP). While the sequence of steps for an

7

SSO authentication differs according to the implemented solution, the abstract flow involves the following

actions:

1. The user attempts to access a protected resource in a website that is part of an SSO system. This

website acts as the service provider. Since the user did not provide a valid set of credentials, the

SP redirects her to the Identity Provider for authentication.

2. The user authenticates with the Identity Provider using her credentials. The IdP redirects the user

back to the SP, passing in an authenticated token that asserts the user’s identity.

3. The SP validates the provided token and authorizes the user to access the resource.

Single Sign-On systems can be deployed as a standalone solution with some even bundling in some

basic access control features. However, these systems lack the flexibility to deal with account lifecycle

events such as automatic provisioning / deprovisioning and completely leave out the management of

the users’ profile information that can only be achieved with a complete IAM solution. In addition to

providing users with a unified set of credentials (and often a common web interface) for authenticating

with the organization’s services, IAM systems often rely on SSO solutions to enable users from outside

the organization to access internal resources using their own credentials. This is known as Identity

Federation and will be discussed in the next section.

2.1.2.2 Access control and authorization

Access control is the process of granting certain subjects access to a resource while denying others

access, that is, to use an entity’s previously verified identity to control the actions it can take on a set

of protected resources [7]. Access control systems are the direct result of business policies. Their task

is mainly to automate the enforcement of an existing policy that governs an entity’s access to a set

of resources. These systems are often founded on the principle of least privilege, which states that

users should be given no more access to resources than they need to accomplish necessary functions

[10]. How well this is accomplished depends heavily on the granularity of the implemented permission

system. There are multiple approaches to permission systems:

• The User-based permission system, popularized by the Unix file system. In this architecture,

resources can be directly owned by either users or groups, with users belonging to groups. In

addition, the system defines a set of three permission flags: read, write and execute. It is possible

to assign these flags to any user or group. A file can, for instance, be owned by a given user,

which has complete control (read, write and execute), be readable by users of a group A and both

readable and writable by users of a group B.

While widely used, this system suffers from a set of challenges related to behaviour inconsistencies

when a resource is protected by rules targeting both groups and users. As an example, a user can

have direct permissions to read a file and be part of a group with permissions to read the same

file. Removing access to the group does not remove access to the user who still has his direct

8

permission flag. This makes it very difficult to assert which resources can be accessed by each

user.

• Access Control Lists (ACLs) were designed to tackle this problem by providing an additional ab-

straction level. Instead of tying users and groups directly to the protected resource, the resource

holds a set of ACLs that specify the permission level for each user and group. However, being

maintained alongside the protected resource they still pose a maintenance challenge: revoking a

user’s access to a set of resources requires updating the ACL for each one.

• Role Based Access Control (RBAC) has become the leading architecture of access control for

medium to large companies [11]. RBAC is based on two main components: roles and permis-

sions. Users are assigned a set of roles, which can define an hierarchical relation (a user with the

Teacher role is also granted the Employee role). Each role is associated with a set of permissions.

Resource owners define the required permissions to access the resources. User’s with a role that

satisfies the required permissions for a resource are allowed to access it. Different operations on

the same resource can require different permissions. A user with the Student role may be able to

read the online material for a course but she cannot modify it, as that requires a permission only

granted to users with the Teacher role.

There are other relevant access control architectures not covered in this chapter. However, they all

share a common set of components that allows their analysis to be abstracted to a set of interactions

between them. Figure 2.1 highlights this abstract architecture. The Policy Enforcement Point (PEP)

operates as the frontend for the authorization transaction. It is there that the user directs her request,

and it is the component responsible for conveying the reply. The Policy Decision Points (PDPs) are the

components where the decision actually takes place, often by consulting a set of stored policies.

Policy Enforcement

Point (PEP)

Policy Decision

Point (PDP)

Policy Storage
Point (PSP)

Generic Web Service

Ok?

Ok

Figure 2.1: Abstract authorization architecture diagram.

2.1.2.3 User account repository

Windley [7] presents an abstract overview for the digital identity lifecycle, consisting of 5 actions:

1. Provision: The process under which an IT system is prepared to be accessed by a new user or

entity. Depending on the degree of system integration in the organization this action might involve

the creation of a single account with a set of roles/permissions or require intervention in multiple

systems.

9

Provision Propagate Use Deprovision

Maintain

Figure 2.2: The main actions of the digital identity lifecycle.

2. Propagation: In organizations that do not use a centralized directory to store user accounts it may

be necessary to propagate information on the newly created accounts for multiple systems. Even

if this type of account repository is used, some systems need to be made aware of the creation of

new accounts to provision other resources, such as creating directories, or databases.

3. Using: Once an identity is created and propagated across the necessary systems, it is used until

needed.

4. Maintaining: Similarly to their physical counterparts, digital identities are rarely static. As attributes

change, systems update the stored identity records and repropagation occurs, if needed.

5. Deprovisioning: The process under which an identity is removed from the IT system. Systems

need to be notified of the change so that any resources associated with the entity can be re-

leased. As with provisioning, the degree of system integration has a direct influence in the time

and resources required to perform this task.

A good Identity and Access Management system should, therefore, implement the processes to

assist the organization in the five phases of the lifecycle. As an example, an employee joining the orga-

nization should have instant access to the internal resources without the need to wait for lengthly manual

enrollment processes. Similarly, an employee that is leaving the organization should have her privileges

revoked in a timely manner. These features have been coined as zero-day start/stop by multiple IAM

providers and greatly reduce the on-boarding time for new accounts while providing additional protection

against misuse of existing systems by ex-employees.

IAM systems provide a common gateway to access information that may be spread throughout mul-

tiple systems. As an example, It is not uncommon for an organization to have a Human Relations and

Payroll (HRP) system to manage staff, a Customer Relationship Management (CRM) solution to manage

engagements with clients and an Enterprise Resource Planning (ERP) platform to manage its business

practices, all of which maintaining their own silos of identity data. In the physical world, users perform

the mental task of aggregating their identity relationships. A user will hardly think of herself as a student

at IST with a specific ID. Instead, she sees her role at the university as just one of the many identities

that she possesses. IAM systems should assist in the aggregation of identity attributes from multiple

systems in the organization by providing a common interface to manage them.

10

2.1.2.4 Auditing and reporting

Identity and Access Management systems are often at the core of an organization’s IT infrastructure

with most services, if not all, relying on these systems to provide them with critical information for the

security of the organization’s digital resources. As states and governments push for an increase in the

regulatory standards and policies that organizations must implement, the pressure to provide audit trails

for the personal information these organizations store is forcing IAM systems to collect and monitor data

on how this information is being accessed. As the gateways for user digital identities, IAM systems

should be able to provide accurate trails to account for every data transaction processed. Ideally, these

trails should be able to answer the five Ws (a journalistic concept consisting of five questions that start

with the letter W) for every transaction: (1) what data was accessed? (2) when was it accessed ? (3)

who accessed it ? (4) why was it accessed ? (5) where was it accessed from ?.

2.1.2.5 Discussion

The myriad of identity management standards and frameworks, often times independently developed,

coupled with the lack of a common ground for how identity should be created, managed and distributed

within the organizations leads to brittle approaches to identity management. As service-oriented archi-

tectures become more popular [12] and organizations move more resources to cloud-based environ-

ments, the concept of Identity as a Service gains traction as the preferred architecture of access control

at scale. IAM systems are now forced to adapt to this new paradigm or risk perish.

Lewis [7] describes the next generation of Identity and Access Management systems as a combina-

tion of: “(...) directory services, role-based user provisioning, delegated administration and self-service

administration for passwords and other attributes. General-purpose, strong authentication systems,

along with good credential management.” The implemented solution will lend on this concept to provide

an IAM system capable of supporting the needs of academic institutions.

2.1.3 Identity Federation

Any reader that has ever used a citizen card or a driver’s license to assert her identity to a third party has

experienced identity federation. The service trusts that the provided identity claim has only been granted

after the user passed a set of vetting checks from the government entity that issued the card. By trusting

the government the service is able to authenticate the user, even though the presented credentials have

been issued by another identity provider. This presents an obvious advantage to the user, who is not

required to carry identification cards for every service that she wishes to use and can instead carry a

single ID card. However, there are also significant advantages to the service provider when it chooses

to use federated identities: by offloading the authentication process to a trusted third party with a greater

vetting capacity not only is it simplifying its authentication responsibilities as it enjoys the additional

security offered by the increased user scrutiny of the identity provider (in this case, a government agency,

which is able to perform identity checks more thoroughly than any private organization).

11

The increase in the number of Internet-based services led to a new set of issues revolving around he

need to secure protected resources across multiple services while still providing an easy way to access

them. While the initial SSO systems alleviated this problem, enterprise users were still faced with the

challenge of having to access systems in another organization, which was not part of their SSO realm.

This access would have to be limited in scope to the essential systems and often required the creation

of a set of guest credentials, which, in turn, would have to be memorized for every external service the

user required access to. While organizations usually had security policies in-place to manage internal

passwords there was little control over these external credentials. An employee whose employment had

been terminated would have his internal credentials suspended, but could easily retain access to the

external services.

The solution came in the form of a decentralized IAM architecture, known as Federated Identity

Management (FdIM). Federated Identity refers to the portability of identity information across multiple

domains, allowing users from one organization to access data or systems of another domain using the

same set of credentials.

The eduroam1 initiative, which aims to provide secure access to wireless networks at academic

and research organizations in Europe, is an example of the use of identity federation. When a student

from a given institution attempts to access the eduroam network at another organization, she is asked

to provide a pair of credentials for authentication. Instead of contacting the organization’s IT services

to obtain a pair of guest credentials, the student can simply use the same username and password

that she already uses in her home institution. The organization’s eduroam infrastructure analyzes the

provided user ID (which has a fixed format of username@institutionDomain) and determines that it is

not responsible for that domain. As such, it proxies the request to a national entity that then forwards

the request to the user’s home institution, which validates the credentials and provides an authorization

decision. Naturally, this is only possible if the organization trusts the student’s original institution and

if it can be sure that the authorization decision will come from the correct entity. Both in the eduroam

initiative and in typical web-based identity federations this is accomplished through the use of digital

certificates, but other mechanisms are available.

Identity Federation relies on a set of common standards to achieve interoperability among systems,

mainly OAuth, SAML and OpenID, which will be analyzed in the next sections.

2.1.4 Public Key Cryptography

While the history of cryptography can be traced back to 1900 BC [13] as a way to hide information from

eavesdroppers it has always been based in the existence of a common secret, shared between the

sender and receiver through an alternative medium and used both to encrypt and decrypt the data. This

is known as symmetric cryptography and has been subject to significant advances (both in algorithm

strength and performance) which has made it the preferred way to encrypt large volumes of data. How-

ever, the issue of key distribution poses severe challenges to the use of these algorithms, since physical

1https://www.eduroam.org/

12

media often involves a courier or requires the key to be printed. On the other hand, if a phone or online

media is used, there is also the possibility of it being eavesdropped.

The solution came in the form of public key cryptography, which relies on a set of related keys (known

as public and private) with one being used for encrypting the data and the other to decrypt it. While it

is possible to infer the public key from the private key these systems rely on the infeasibility to perform

the inverse action. The public key can, therefore, be published to a known key repository or be made

available in some other form allowing any one to generate a ciphertext that can only be decrypted by the

intended party.

Rivest, Shamir and Adleman described, in 1977, the first algorithm to implement these principles. It

was named after the author’s initials: RSA. In it, the authors describe four base properties for public-

key crypto systems that correlate a generic encryption procedure E with its corresponding decryption

procedure D and the plaintext message to encrypt M.

1. Deciphering the enciphered form of a message M yields M. Formally,

D(E(M)) = M (2.1)

2. Both E and D are easy to compute.

3. By publicly revealing E the user does not reveal an easy way to compute D. This means that in

practice only she can decrypt messages encrypted with E, or compute D efficiently.

4. If a message M is first deciphered and then enciphered, M is the result. Formally,

E(D(M)) = M (2.2)

A function which satisfies the four properties is known as a trap-door one-way permutation, a concept

originally introduced by Diffie and Hellman [14]. A trap door function is easy to compute in one direction

but very difficult to compute in the opposite, that is, until private ”trap-door” information is available, in

which case the inversion becomes easy to perform.

Figure 2.3 depicts a common situation where Alice wants to send an encrypted message to Bob. Let

EA, EB be the encryption procedures that use Alice’s and Bob’s public keys respectively. Conversely,

let DA and DB be the respective decryption procedures which use their private keys. The following list

outlines the steps necessary to achieve this under a public cryptography system:

1. Bob has previously generated a pair of keys and shared his public key with Alice (for instance, by

publishing it to a central key repository). Alice retrieves Bob’s public key EB .

2. Alice encrypts the plaintext M with Bob’s public key, retrieved from the repository and sends the

resulting chiphertext to Bob.

C = EB(M) (2.3)

13

Generate key pair Kb and Kb-Bob

Alice

Encrypt M with Kb

(M)Kb
Bob Decrypt (M)Kb

with Kb- M

Key Repository
Publish Kb

Retrieve Kb

Figure 2.3: An overview of the process of sending a message using public key cryptography.

3. Bob receives the message and decrypts it with his own private key, obtaining the original plaintext.

DB(EB(M)) = DB(C) = M (2.4)

2.1.5 Digital Signatures

The last property of public key crypto systems, highlighted in equation 4 allows for an additional use

of these systems: digital signatures. As with their traditional counterparts, digital signatures assert the

identity of a given document’s owner. Additionally, they are able to guarantee the integrity of the signed

content, ensuring that is hasn’t been modified after it has been signed.

For a given user Alice to send a signed message to Bob the following sequence of steps should be

carried out:

• Alice starts by computing the message’s signature S by using her private key, DA.

S = DA(M) (2.5)

• The resulting signature is then encrypted using Bob’s public key, EB and sent to Bob.

P = EB(S) (2.6)

• Bob reverts the encryption step, using its decryption procedure DB and thus retrieving the signed

message S.

S = DB(S) (2.7)

• Bob attempts to recover the original message using Alice’s public key, EA ensuring that it came

from Alice (as only Alice, in possession of her private key could have generated a payload that

could be decrypted with her public key).

M = EA(S) (2.8)

14

While these principles paved the way for the use of digital signatures they were vulnerable to multiple

attacks [15]. New techniques then evolved to signing a hash of the document instead of its data which,

among other advantages, allowed recipients to read the document without the presence of the validation

key. It also decoupled the signature from the signed document itself.

2.1.6 Digital Certificates and Public Key Infrastructure

These simple examples outlined the main advantage of public key cryptography systems: the private

keys never have to be distributed, rendering attacks based on eavesdropping useless. However, it

should also be clear that the entire system relies on the security of the key repository. An attacker that

is able to infiltrate the key repository would be able to replace Alice and Bob’s public keys for its own

which would allow her to perform a Man in the Middle attack by reading the messages sent between

Alice and Bob and replaying them as if they had been sent by the other party. Digital Certificates help to

alleviate this issue by bundling an entity’s public key and some identifying information in a self-contained

structure that is then digitally signed by a trusted entity. These entities, known as Certificate Authorities

(CAs) perform additional layers of validation before issuing a certificate, such as verifying the requestor’s

identity through a government issued ID card [7].

In addition to subject authentication and certificate generation/distribution, a CA is also responsible

for ensuring that revoked certificates are no longer usable. Revoked certificates are placed on a Cer-

tificate Revocation List (CRL) which is signed by the CA. However, applications still need to know if a

certificate is in the CRL. There are three main approaches for solving this problem:

• Every time an application wants to use a certificate, it checks with the CA that issued it if it is still

valid. This may be incompatible with the application’s performance requirements.

• An application may subscribe to a service from the CA that sends the CRL whenever it is updated.

However, these messages may be blocked without the application ever being aware of it.

• The application may periodically query an online service provided by the CA.

Certificate Authorities can develop a hierarchical tree of trust, whereby the keys used to sign cer-

tificates issued by CA B can be digitally signed by another certificate authority, CA A, expressing a

trust relation between the two: a user who trusts CA B also trusts CA A. In this simple hierarchy CA A

would be known as the root CA. The infrastructure needed to operate public key cryptography at scale

is formed by a web of CAs and is known as Public Key Infrastructure (PKI) [7].

Since public key cryptography can take from 100 to 1000 times more time to perform than its sym-

metric counterpart [7] it is rarely used to encrypt large amounts of data. Instead, it is often used to

securely negotiate a secret symmetric key between the parties in the beginning of the communication.

Transport Layer Security (TLS), also known as Secure Sockets Layer (SSL) is a common example of

this use case.

15

2.2 Technologies

2.2.1 OAuth

As the number of online services increased so did the need for simple and efficient data exchange and

integration amongst them. The rise of web Application Programming Interfaces (APIs) as a privileged in-

terface between systems has been accompanied by its own set of challenges. Applications that needed

to access user’s data controlled by a third party service were forced to request (and often store) the

user’s access credentials. Not only was this a significant vulnerability (as a data breach could expose all

the users’ passwords) as these credentials allowed for full, unrestricted access to the user’s accounts,

which was well beyond the realm of information that was required by most services. This forced users

to carefully balance the advantages of using those third party services with the possible security risks

associated with sharing their personal account details.

The solution came in the form of OAuth, an open and standardized web resource authorization

protocol which allows users to grant third party entities access to a subset of their protected resources

without directly having to share their credentials [16]. OAuth’s origins can be traced back to 2006 and

stem from a desire to allow the use of OpenID (a distributed authentication protocol) to secure Twitter’s

public API. The lack of a viable open standard for API access delegation led to the drafting of the first

proposal that would, a year later, become OAuth 1.0.

A simplified version of the OAuth 1.0 flow [17] is as follows:

Fetch Request Token

Redirect User to Provider for
Authorization

Exchange for access token

Create connection

Fetch Request Token

User grants Authorization

Redirect User back to
application

Grant Access Token

Consumer Service Provider

Consumer Key
Consumer Secret
Callback URL

Request Token
Callback URL

Request Token
Verifier

Verifier

Access Token

Request Token

Figure 2.4: A sequence diagram of an authorization transaction using the OAuth 1.0 protocol.

1. The client application sends a signed request to the OAuth-enabled server containing its consumer

key and a callback Universal Resource Locator (URL).

2. The server generates a request token and an associated secret, sending them back to the client

application.

16

3. The application directs the user to the authorization server, along with the request token. The

user is asked to authenticate with her credentials and authorize access to one or more sets of

information (scopes).

4. If access to the required scopes is granted, the server will redirect the user back to the application,

along with the original OAuth request token and a set of temporary credentials, known as an OAuth

verifier.

5. The application can then exchange this verifier for an access token and, optionally, a refresh to-

ken. The access token can now be used access OAuth protected resources on behalf of the

authenticated user.

The lack of adoption of SSL/TLS at the time forced developers to design the protocol around digitally

signed requests that could be transmitted over an insecure medium. This led to an increase in the im-

plementation complexity of the algorithm, since both parties had to perform cryptographic operations on

the exchanged data. In addition, since there was no mandated signature method each implementation

was free to define its own requirements, which posed severe challenges on the use of OAuth between

different service providers.

While multiple services used OAuth 1.0 to secure their APIs, the significant complexity of its autho-

rization flow and the lack of support for the next generation of mobile and/or desktop app clients led to

the development of the second iteration: OAuth 2.0 [18]. By removing the need for digitally signing the

requests from the client applications and instead relying on SSL to ensure the messages could not be

tampered with while in-flight the new version of the OAuth protocol completely removed the need for the

use of cryptography in the client applications.

OAuth 2.0 defines a set of five flows, commonly known as grants, for applications to obtain access

tokens [18]:

• Authorization Code Grant: Similar to the OAuth 1.0 authorization flow. The user is redirected to

the OAuth server for authentication and authorization granting. The server redirects the user back

to the service provider with a token (referred to as an authorization code) that can be exchanged

for the access/refresh token pair.

• Implicit Grant: Provides an abbreviated flow where after the user authentication the server imme-

diately redirects the access token during the redirect to the service provider.

• Resource Owner (Password) Grant: Allows the service provider to directly exchange the user’s

credentials for an access token.

• Client Credentials Grant: Allows the client application to obtain an access token on behalf of

itself, outside of the context of a user.

• Refresh Token Grant: Allows a client application to exchange a previously obtained refresh token

for a valid access token.

17

The authorization code grant constitutes the most common implementation of the OAuth 2.0 frame-

work. Before any application is allowed to take part in any of these flows it must first be registered with

the OAuth authorization server, which issues a pair of credentials (client ID and client secret) that identify

the application.

Redirect User to Provider for
Authorization

Exchange for access token

Create connection

User grants Authorization

Redirect User back to
application

Grant Access Token

Consumer Service Provider

Client ID
Client Secret
Scope (optional)

Redirect URI
Authorization Grant

Authorization
Grant

Access Grant

Figure 2.5: A sequence diagram of an authorization transaction using the OAuth 2 protocol.

Figure 2.5 depicts an overview of the OAuth 2.0 flow where the Service Provider and the OAuth

authorization server have been bundled in the same entity. The authentication flow starts with the

initial user redirect from the application to the identity provider, passing in its client ID, client secret and

a redirect URI that should match the one provided when the application was registered. If the user

authentication is successful and access to the required scopes has been granted, the OAuth server will

forward the user to the specified redirect URI, appending a code parameter that represents the user’s

session. Finally the application uses the provided code along with its client secret to obtain the final set

of credentials: the access token and an optional refresh token. Future requests to protected resources

use the provided access token for authentication. If the OAuth implementation uses short lived tokens

(which expire after a predetermined amount of time) the refresh token can be used to obtain a new

access token from the OAuth server’s token exchange endpoint.

2.2.1.1 OAuth 2.0 as a Single-Sign On solution

The flexibility of OAuth 2.0 allowed developers to extend its use beyond API authorization. The widespread

adoption from companies with significant user bases, such as Facebook[19], Google[20] or Twitter[21]

led to the development of the first SSO systems based on the OAuth protocol. The significant business

incentive [22] for client applications to tap into these massive user bases has led to the proliferation of

OAuth as a Single-Sign On service. Most implementations rely on the regular OAuth 2.0 flows with an

additional last step where the client application queries the IdP’s API for the user’s personal information

and creates a local session. Since authentication is federated to the IdP client applications are no longer

responsible for having to manage user credentials or implementing password reset strategies. Access

18

to the user’s profile information and social graph is also often cited as a strong business advantage

of using these OAuth-based SSO providers [22]. However, since the OAuth 2.0 framework was de-

signed to provide authorization decisions (and not authentication) some of the earlier implementations

of these systems have been shown to be vulnerable to Cross Site Scripting (XSS) and Cross Site Re-

quest Forgery (CSRF) attacks [23] that exploit some of the protocol’s features that are at the base of an

SSO implementation, such as the automatic authorization granting of a previously authorized application

request. Any system aiming at using OAuth as a base for its authentication layer should, therefore, be

designed to mitigate these vulnerabilities.

2.2.2 OpenID

Traditional SSO solutions are based on a fixed gateway that is used by multiple services when a user

needs to authenticate herself. A developer waiting to use a given SSO provider in his application will

need to go through a two-step process where it registers the application in the identity provider (thus

adding it to its list of allowed clients) and configures the application to redirect users to the desired IdP.

While the rationale behind this approach is easy to understand it poses significant challenges [24] to

services which need to support multiple SSO providers. A blog page that wants to authenticate users

with Facebook, Google and Twitter will need to be registered with the three providers and manage their

distinct authentication flows. A solution to this problem was purposed by the open source community in

2005 under the name of OpenID. OpenID is an open and decentralized authentication protocol created

with the aim of simplifying the use of multiple identity providers [25].

A user starts by enrolling into any Identity Provider that supports the OpenID protocol and collects her

unique OpenID URL. When attempting to access a service which supports this authentication protocol

the user provides it with her unique URL and is redirected to the associated IdP for authentication. If this

step is successful, the IdP redirects the user back to the service, along with her OpenID identifier and

profile information, digitally signed by the IdP.

While OpenID simplifies the process of IdP discovery (by integrating it into the protocol itself) the

distributed nature of the protocol necessarily leaves trust outside of its scope of responsibilities. Since

any IdP can become an OpenID provider services that rely on strict user verification (such as banking or

retail) need to perform additional checks to assert each user’s identity. This poses a significant challenge

to the widespread adoption of OpenID which has prevented it from being used in high security settings

due to the increased overhead required to establish a trust relation with the signed-in user.

2.2.3 OpenID Connect

OIDC, published in 2012, is an authentication layer built on top of the authorization capabilities pro-

vided by the OAuth 2.0 framework [26]. OIDC builds upon the foundations of OpenID and provides an

interoperable protocol, based on RESTful requests to provide user authentication.

When a user attempts to access a protected resource the service provider will send a regular OAuth

request to the authorization server, requesting access to the openid scope. The authorization server

19

(which may or may not also act as the IdP) will request the user to authenticate with an existing set of

credentials and to authorize the requested access to personal information by the service provider. If the

user grants authorization to this data she will be redirected back to the service provider, along with an

access token (standard for an OAuth authorization request) and an additional object, known as the ID

Token. The ID Token is packaged as a JSON Web Token (JWT) and contains a set of information that

allows the service provider to assert the user’s identity. This JWT is digitally signed by the IdP to prevent

it from being modified in transit, if an unsecured connection is used. In addition to user information the

ID tokens can also contain records that identify the issuing party, the target application of that token

(commonly known as its audience), creation and expiration timestamps and optional security features

(such as nonces).

In addition to the ID token, the standard also defines a set of endpoints [26] to ensure interoperability

between the different service providers and IdPs:

• /authorization: The authentication entrypoint. The service provider redirects the end user to

this endpoint, along with its client ID and redirect URI. The user performs the initial authentication

and is asked to authorize access to the requesting application.

• /token: The token exchange endpoint. Allows exchanging an OAuth 2.0 grant (such as an autho-

rization code or the user’s credentials) for a valid access token and ID Token.

• /userinfo: Allows applications to access the user’s profile information (the same that is present in

the provided ID token). Since the ID token may contain an expiration date (after which it must not

be consumed by the service provider) the applications may use the access token to access this

token and get the user’s updated profile information.

The OpenID Connect specification also defines additional extensions with optional endpoints for to-

ken introspection (allowing a service provider to check if a given token is valid without having to perform

the validation locally), token revocation, and client application registration. Since OIDC implementa-

tions are free to map each of these endpoints to any path an additional extension was created to allow

client applications to automatically determine the correct endpoint locations. Published as the OpenID

Connect Discovery protocol [27] the specification defines a fixed endpoint, mapped to the /.well-

known/openid-configuration path where IdPs which opt-in to the discovery protocol must expose

a JSON object (with a fixed schema) describing their OIDC configuration (including endpoint URLs)

allowing for the dynamic discovery of their OIDC configuration by developers and client applications.

2.2.4 JSON Web Token (JWT)

JSON Web Token is an open standard that defines a compact and self-contained way for securely trans-

ferring information between parties as a JSON object [28]. The standard defines an object comprised of

three individual sections with the first one, commonly referred to as the header, providing information on

the cryptographic operations to apply to the token’s contents by listing the algorithms used and whether

the JWT is signed or encrypted.

20

The second section, also know and the body or the claims set is comprised of a set of key/value

pairs that make up the set of assertions that the sending party wishes to expose. The JWT specification

defines a number of claim names with specific meanings, which are reserved. Each implementation is,

however, free to expand this existing set with as many user defined claims as required. Since most JWTs

are issued with a specific purpose (and a set of target users/applications) claim name collisions are not a

significant problem. Nevertheless, in the interest of achieving the highest possible level of interoperability

between systems and allowing JWTs to act as a universal container for user claim transfers the Internet

Assigned Numbers Authority (IANA) currently holds a public registry for the reserved JSON Web Token

claim names.

{
 "alg": "ES256",
 "typ": "JWT"
}

{
 "iss": "fenixedu-connect",
 "aud": "fenix.tecnico.ulisboa.pt",
 "sub": "ist123456",
 "username": "John Doe"
}

ECDSASHA256(

 base64UrlEncode(header) + "." +

 base64UrlEncode(payload),

 <PublicKey>, <PrivateKey>

)

eyJhbGciOiJFUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJmZW5p
eGVkdS1jb25uZWN0IiwiYXVkIjoiZmVuaXgudGVjbmljby51bGlz
Ym9hLnB0Iiwic3ViIjoiaXN0MTIzNDU2IiwidXNlcm5hbWUiOiJK
b2huIERvZSJ9.wrdmUzg8RcCg9ZY0xWkOtAjHEdNZXCtcXmb
boWtsTpA8hLskTjihgw4oZyewBhLVcmply5pB4Bq3Yw-
NADYJRg

Header:

Signature:

Payload:

Figure 2.6: A breakdown of the three sections that make up a JSON Web Token.

To create a JWT the first and second sections and individually encoded with base64 (to ensure its

safe transfer over Hypertext Transfer Protocol (HTTP)) and appended with a single period (’.’) as a

separation character. The resulting payload can now either be signed by the issuing party, allowing the

receiver to validate the token’s authenticity and integrity, or encrypted, ensuring the token’s contents

remain secret until its delivery to the indented audience. Both methods generate additional data which

is appended to the previous two sections with another period as a separation character. While the JWT

specification allows for the creation of unsigned and unencrypted tokens (also known as Unsecured

JWTs) this severely limits the range of applicable scenarios for JWT’s usage and thus, they are not

frequently used [29].

2.2.4.1 The JOSE Framework: JSON Web Signature (JWS), JSON Web Encryption (JWE) and

JSON Web Key (JWK)

While JWT defines the base container for transferring user claims between multiple parties one of its

most useful feature is the support for easily signing or encrypting the token’s contents.

JSON Web Signatures [30] defines a set of algorithms for signing JWTs which allow its intended au-

dience to validate the token’s authenticity and/or integrity. Once a signed token is received, the header

21

can be inspected to determine the algorithm used to generate its signature data. The consumer appli-

cation should be in possession of the cryptographic secret required to validate the signature (which can

either be a shared secret, in case a symmetric algorithm was used or the issuer’s public key if the token

was signed with an asymmetric algorithm). By re-signing the header and payload fields with this cryp-

tographic secret and comparing the obtained signature with the signature data found in the token the

consumer party can validate the token has been issued by the intended party and not modified in transit.

Signatures are usually performed using a Keyed-Hash Message Authenticator Code (HMAC) a symmet-

ric algorithm which combines the data to sign with a secret using a cryptographic hash function. The

resulting signature can only be verified in the presence of this shared secret. In addition to HMAC-based

algorithms JWS also supports signatures using RSA-based algorithms where a private key is used to

sign (and optionally verify) a JWT while its public counterpart is limited to the latter. In a shared-secret

environment, where all the entities are in possession of the cryptographic key used to sign the tokens,

it is impossible to reliably establish the identity of a specific message’s sender. When using asymmetric

cryptography (and under a controlled set of conditions) no party is able to create signed messages on

behalf of another, since the private key used to sign the tokens is only know to its respective owner.

JSON Web Encryption aims to provide a way to ensure the confidentiality of the token’s claims by en-

crypting it, which prevents it from being inspected in-transit [31]. Once again two schemes are available:

algorithms based on a shared secret and the asymmetric alternatives. While symmetric algorithms offer

some performance advantages they are subject to the significant challenge of key distribution, since the

disclosure of the encryption key exposes all the previously shared messages. The public/private-key

algorithms are implemented as the reverse of the JWS standard. The issuer encrypts the message

with the consumer’s public key. This creates an encrypted payload that can only be decrypted by the

receiver’s private key, thus allowing the token to be sent over unsecured channels and still retain its

confidentiality. However, unlike JWS where the message’s authenticity can be verified by any interested

party (provided that a suitable PKI is in place) in JWE since the message is encrypted with the target’s

public key there is no way to validate the identity of its sender.

Both JWS and JWE rely on the consuming party’s ability to retrieve the appropriate signature /

encryption key from the issuing entity. Since JWTs are designed to act as an interoperable container for

claim transfers between distinct systems it was necessary to define a common format for exchanging

these keys. JSON Web Key defines a standard way to describe a key in a JSON object, with a fixed

set of key values to represent its properties [32]. An identity provider that issues JWTs will often expose

an endpoint with the keys used to sign its tokens, in the form of JWKs, allowing consuming parties to

validate the token’s authenticity. Since JWT implementations often resort to multiple keys to sign its

tokens, the Internet Engineering Task Force (IETF) also defines a standard for sharing a set of JWK

objects: the JSON Web Key Set (JWKS), which simply wraps the keys in a JSON object with a single

”keys” array field.

22

2.2.5 SAML

The inherent complexity level of a Single Sign-On solution greatly depends on the location of the appli-

cations that need to share authentication data. While two applications that reside on the same domain

(for instance A.foo.org and B.foo.org) can easily share a cookie with a .foo.org domain this is not

possible if one of the applications needs to be accessed through a different domain. These cases re-

quire the presence of a separate service, responsible for managing authentication requests, known as

an identity provider. The Security Assertion Markup Language is an open standard, based on the Ex-

tensible Markup Language (XML) for the exchange of authentication and authorization data between an

IdP and a Service Provider. [33].

SAML’s architecture is made up of four major components:

• Assertions: Similar to claims in a JWT, SAML assertions specify the set of information that is

to be transferred between the two parties involved in the SAML transaction. They can contain

authentication data (such as the authenticated principal’s name or user ID), identity attributes

(such as the authenticated user’s name or email address) or authorization decisions (such as if

the authenticated user has access to the requested resource).

• Protocols: Describe the request/response flows and the valid SAML assertions that make up

each message in a transaction.

• Bindings: Specify how SAML messages are transported. SAML does not enforce the use of any

transport mechanism, delegating the decision to each implementation which can support one or

more bindings according to its requirements. Common SAML bindings are the Browser POST,

which transmits the messages in a hidden field in a form sent from a browser or the Simple Object

Access Protocol (SOAP) Binding which uses SOAP messages to carry the SAML payload.

• Profiles: Combine assertions, protocols and bindings to perform a predefined task. The Web

Browser SSO Profile is one of the most common profiles in the SAML specification and it describes

the details of a set of request/response pairs that allow applications to delegate authentication to

a third party service (the IdP) requesting, optionally, additional attributes to be returned along with

the authenticated user’s ID.

Figure 2.7 presents a diagram of the sequence of steps required to authenticate the user of an

application with a centralized IdP using SAML’s Web Browser SSO Profile. The user starts by requesting

access to a protected resource. Since the service provider is unable to detect a valid authentication,

the user is redirected to the IdP where she is authenticated. The IdP redirects the user back to a URL

previously registered by the service provider, known as the Assertion Consumer Service (ACS) endpoint

along with a SAML response containing an Authentication assertion that provides it with the user’s ID

and optional identity attributes. The ACS endpoint redirects the user to the original endpoint which, in

the presence of a valid authentication, returns the requested resource to the end user.

SAML powers some of the biggest identity federations worldwide, with a strong presence in the

23

Figure 2.7: A sequence diagram of SAML’s Web Browser SSO Profile.

education and public sectors through initiatives such as the InCommon Federation2, which provides a

common authentication and authorization layer for educational and research institutions in the United

States or the European Union’s project STORK3 which aims to allow users to access public services in

every member country using the same credentials.

2.3 Existing Solutions

The following section will explore three of the main IAM solutions currently in use on enterprise scenar-

ios: Okta, Auth0 and Shibboleth. While both Okta and Auth0 were selected as a representative sample

from a large set of comercial IAM products Shibboleth is the only open-source solution with a relevant

level of adoption that allows it to be featured in this comparison.

2.3.1 Okta

Okta provides a modular Identity and Access Management solution spanning across six products that

can be adjusted to the organization’s needs [34]. Although it makes available some integrations with

on-premise user directories it is mostly a cloud-based solution running on a hosted environment.

Okta is based around the concept of a customizable web-portal that acts as a gateway for registered

applications, with support for SAML and OpenID Connect. For applications that require static credentials
2https://www.incommon.org/federation/
3https://www.eid-stork2.eu/

24

(and thus are unable to use identity federation protocols) Okta offers administrators the possibility of

saving these credentials in an encrypted form using unique keys for each user.

The system can be configured either via the included administration dashboard or its RESTful APIs.

Okta’s authentication API allows developers to deeply integrate it within existing applications with login

happening purely over RESTful requests, thus removing the need to redirect the user to the IdP and

back. There is support for the most common MFA factors such as SMS, Push Notifications, Time-based

One Time Password (TOTP) and Universal Second Factor (U2F).

Okta provides built-in integrations for more than five thousand applications simplifying the initial setup

flow. Its Universal Directory feature allows for two-way mappings to be setup for the profile information

exchanged with each application. As an example, a user accessing Salesforce can have its username

exported as a combination of his first and last name with the same attribute being set to an internal iden-

tifier when accessing the organization’s expense tracker software. The Lifecycle Management solution

allows for complex workflows to be defined enabling, for instance, to implement a multi-step approval

process for access to some protected resource.

In terms of extensibility, the comercial nature of this product severely limits the possibilities beyond the

existing Representative State Transfer (REST) APIs. Okta has a complex pricing scheme that depends

heavily on the number of products subscribed, reaching 10$/user/month if all six products are used.

2.3.2 Auth0

Auth0 is an integrated cloud-based IAM solution with a strong focus on enterprise integrations. However,

unlike Okta, it also offers a solution that runs on-premise in a virtualized environment partially controlled

by Auth0.

At its heart is the Auth0 Dashboard, a web-based application that combines both the user and admin-

istration portals. Beyond the typical IAM features, Auth0 innovates by providing an additional configura-

tion layer that allows for the real time customization of the system, without any downtime. This feature

is known as Rules and is made up of simple Javascript functions that are executed as part of a trans-

action whenever a user authenticates to an application. Rules can be used to customize the returned

User Profile, create complex authorization conditions, notify external systems of user activity and even

conditionally require 2-factor authentication for specific requests (for instance, when a suspicious login

attempt is performed). Rules have complete access to the logged-in user’s profile, the authentication

context (incluiding IP address, location and target application) and Auth0’s Management API and run

after a successful primary authentication but before the authorization step (when the user gains access

to the intended resource). As an example, the following snippet implements a rule that restricts single

sign-on to users with a verified email address.

Auth0 is a comercial platform with a complex pricing structure that depends on the feature sets

required and the maximum number of active users per month. Pricing is decided on a case-by-case

basis but, as an example, it would range between 2 and 4$/month/user for an organization with an

average ten thousand active users per month.

25

1 function (user, context, callback) {

2 if (!user.email_verified) {

3 return callback(new UnauthorizedError('Please verify your email before logging in.'));

4 } else {

5 return callback(null, user, context);

6 }

7 }

Listing 1: An example of an Auth0 Rule that restricts single sign-on to users with a verified email address.

2.3.3 Shibboleth

Shibboleth is an open source implementation of an Identity and Access Management solution based

on SAML which is distributed across three main components: the Identity Provider (IdP), the Service

Provider (SP) and the Discovery Service (DS). The three components can be independently deployed

to fit the organization’s needs [35].

Since it only provides an identity layer on top of the existing infrastructure Shibboleth does not have

the concept of a built-in, unified user store. Instead, LDAP is used to connect to an existing directory

on the organization’s network. Additionally, there is no built-in dashboard for CRUD-like operations.

Identities need to be managed in a separate component that interacts with the LDAP store directly.

Shibboleth is implemented as a Java appplication, running on an application container (such as

Tomcat or Jetty) and is based on the Spring framework, specifically, Spring Web Flow. A flow definition

contains an ordered sequence of steps that are individually executed to authenticate a given user, rang-

ing from the initial form presentation to the validation of the provided credentials. While this approach

allows organizations to deploy complex authentication strategies it comes with the increased cost of

having to implement the required flows from the ground up.

The open source nature of Shibboleth makes it inherently extensible. Nevertheless, there is an active

effort to provide developers with an ever increasing number of extensibility points with well-documented

examples that allow organizations to plug in simple pieces of logic without the need to completely fork

from the application’s main codebase.

26

Chapter 3

Proposed Solution

This chapter describes the proposed solution. Section 3.1 outlines the main requirements that were de-

fined after the initial problem analysis. Section 3.2 provides an overview of how Connect integrates with

existing technology architectures. Section 3.3 provides an overview of FenixEdu Connect’s architecture

while section 3.4 focuses on the implementation details of the proposed solution.

3.1 System Requirements

After an initial analysis of the main issues that surround IAM systems at Higher Education Institutions

(HEIs) in general and Instituto Superior Técnico (IST) in particular, which included valuable insights from

the IST’s IT Services team, the following requirements for the proposed solution were defined:

• Architectural

– R1.1: Modular design, ensuring the separation between the core logic and additional compo-

nents through clear interfaces and component registries (plug-in architecture).

– R1.2: Be Extensible. Each implementing HEI should be able to customize as much of

Connect’s functionality as possible without compromising the core module’s logic. Features

should be designed to allow for future extensibility whenever possible.

– R1.3: Use Generic concepts. It should not be tightly coupled with any specific service, even

from the remaining FenixEdu ecosystem.

– R1.4: There should be a clear separation between the backend and frontend, with communi-

cation between the two layers occuring in a stateless way, through HTTP requests.

– R1.5: The backend should persist its information in a relational database which ideally should

not be constrained to any given provider.

• Authentication:

– R2.1: Provide authentication for the other applications in the organization, using a claim

transfer media that allows clients to validate its validity without having to contact the Connect

27

instance.

– R2.2: Support for multiple primary authentication providers, with enough built-in options to

deploy the system standalone.

– R2.3: Support for two-factor authentication with built in implementations for the most common

providers. Users should be able to manage their own authentication factors.

• Identity Management:

– R3.1: Connect should be able to aggregate the profile information for a given user from

multiple systems in the organization and present it according to the requesting party’s level of

privilege.

– R3.2: There should be a flexible account management system that allows administrators to

perform maintenance actions on any user account.

– R3.3: It should be possible to create user accounts ahead of time with 0-day provisioning

(invite system).

• Access Delegation:

– R4.1: The ability to act as an OAuth authorization server, with the option to also be a resource

server. It should provide a central location for registering OAuth applications and allow devel-

opers to manage their applications.

– R4.2: Support for authentication over OAuth (OpenID Connect).

• External Integrations:

– R5.1: It should be possible to base Connect on an existing Lightweight Directory Access

Protocol (LDAP) directory for account synchronization with legacy systems.

– R5.2: It should be possible to inject authentication filters at runtime, that are executed after

every successful authentication transaction, similarly to Auth0’s Rules system.

– R5.3: Connect should expose a SAML IdP interface for integration with identity federations.

• Security:

– R6.1: Signing keys should be generated and automatically distributed in a secure way that

allows them to be accessible for multiple application instances.

– R6.2: Users should be able to access a history of relevant security events pertaining to their

account (such as granted authorizations, failed login attempts or password changes).

– R6.3: It should be possible to manage individual sessions, incluiding remotely terminating

any open session.

• Monitoring and Auditing:

– R7.1: It should be possible to audit any resource managed by the Connect system and trace

back every change made over its lifetime.

28

– R7.2: It should support multiple logging facades, allowing it to be selected at deployment

time.

3.2 Integration Goals

FenixEdu Connect tackles the challenges of managing the vast digital identities of the academic com-

munity in higher education institutions while also providing a centralized authentication gateway for all

applications in the organization. A complete implementation of Connect within an organization’s infras-

tructure would naturally place it in the role of the authoritative source for user information with every

application querying it through one of the supported protocols. While this may be possible in new de-

ployments or in the case of organizations where applications are mostly open source this is rarely the

case in established Higher Education Institutions where the use of proprietary software can be a deter-

rent to the adoption of this solution. Connect was thus designed for ease of extensibility, allowing each

organization to develop the necessary logic to adapt it to its necessities, rather than focusing on deliv-

ering a one-size-fits-all solution which would, undoubtedly, leave out features that could be of significant

importance to some organizations.

Section 4.2 provides a case study for the deployment of FenixEdu Connect at Instituto Superior

Técnico, highlighting the necessary development efforts that would be required to support this IAM

solution along with a comparison with the existing solutions.

3.3 Architecture

3.3.1 Overview

FenixEdu Connect follows a traditional client-server architecture whereby processing is divided between

two sets of entities: the servers, which host all of the system’s resources and the clients, who request ac-

cess to a resource or service hosted by the servers. More specifically, it follows a three-tier architecture,

organizing the applications’s responsibilities between three separate layers:

1. Presentation: The topmost layer, responsible for displaying information to the end user. This layer

is commonly known as the application’s frontend.

2. Application: Where the application’s services and business logic run.

3. Persistence: The bottom layer, responsible for providing data access and abstracting the applica-

tion layer from the persistence mechanism used to store it.

One of Connect’s design requirements was to enforce a clear separation between the frontend (the

presentation layer) and the backend (the remaining two). While it would be possible to develop these

two modules as part of the provided work it was decided to drop the frontend module completely as part

of the FenixEdu Connect solution and this thesis. The rationale behind this decision is twofold:

29

• Higher Education Institutions often have specific design systems in place to ensure the coherency

of their applications’ interfaces. While the FenixEdu ecosystem of applications takes this into

account by providing extensive support for theming there are still limitations in the way the UI can

be customized.

• Connect’s extensible approach allows each institution to tailor the implemented solution to its in-

dividual needs. These extensions often require additional interfaces to be designed. Constraining

this interfaces to a limited set of layout options could be a significant challenge to their deployment.

On the opposite side, organizations may wish to restrict specific features (such as not offering sup-

port for a built-in authentication factor, like SMS codes) and should be able to not include these

features in the User Interface (UI).

The provided solution, as part of the FenixEdu family is, therefore, restricted to the backend module,

which is to be maintained by the FenixEdu team and centrally versioned. Each organization should

then implement a frontend module capable of supporting its specific design guidelines and and busi-

ness requirements. Decoupling these two layers allows for the independent development of each one.

Organizations can then easily update the backend module to add a new feature or pull a security patch

from the FenixEdu team without disrupting the frontend layer.

FenixEdu Core

Magic LinksLDAP Authentication

HEI Module #1 HEI Module #2 HEI Module #3

Backend Application:

Frontend
REST APIs

FenixEdu Connect Instance:

Figure 3.1: A breakdown of the modular architecture of FenixEdu Connect. Brown modules are specific
to the client institution while the green modules are generic.

Figure 3.1 provides an overview of this architecture. The core module provides a number of exten-

sibility points to be used by each organization. Being an open source application, it becomes possible,

for exemple, to have an organization pull in an authentication module developed at another institution.

In the depicted situation, the Connect deployment uses two modules obtained from the open source

community and three modules developed in-house to make up the final backend application. The fron-

tend was naturally implemented by the organization, with communication between the two components

occurring through well defined REST APIs.

Redundancy is a major concern for any system that is part of the core IT infrastructure of an organi-

zation. FenixEdu Connect can easily scale vertically (by increasing the computational resources it can

access) or horizontally (by replicating it across multiple nodes). Since the core module operates in a

stateless way it can easily be replicated across as many instances as needed to suit the performance

requirements of the organization.

30

3.3.2 Backend

The implemented solution is a Java application, built on top of the Spring framework. Spring is a free and

open source framework for the development of Java applications based on the Inversion of Control (IoC)

design pattern. IoC differs from the traditional design methodologies by inverting the call flow between

the application’s logic and its supporting libraries: instead of having the application’s own code call into

its dependencies it is the underlying application framework that calls the application code in specific

events. The Spring framework relies on dependency injection, whereby an object is responsible for

providing (or injecting) the required dependencies of another object for implementing its IoC container.

The separation between a client’s dependencies and its behavior allow for a loosely coupled architecture

where components can easily have their implementation replaced without breaking changes.

The Spring initiative offers more than 20 libraries in active development, accelerating the develop-

ment of Java applications by providing solutions for configuration, persistence, security, enterprise inte-

grations or web services. Since Connect has been built on top of some of these projects, the remainder

of this section will provide an overview of the most relevant ones and how they enabled the development

of the features described in later sections.

The presentation layer is mostly handlded by Spring’s MVC framework, which provides the necessary

servlet infrastructure to implement a Model View Controller (MVC) pattern. Figure 3.2 provides an

overview of the HTTP request/response flow implemented by Spring MVC:

DispatcherServlet

View View Resolver

Handler Mapping

HTTP Request

HTTP Response

Controller

Model + View
Name

Business Services

Repository Services

1
2 3

45

Figure 3.2: Overview of the request handling flow implemented by Spring MVC.

1. Incoming HTTP requests are handled by the front facing DispatcherServlet.

2. Controllers register the set of paths they should handle in the HandlerMapping component at

application startup. This component is then queried for the Controller component that matches

each incoming request and returns it to the DispatcherServlet.

3. The controller is called with the incoming request data. Spring provides automatic type conver-

sion between the HTTP body and simple Java objects (often referred to as Plain Old Java Objects

(POJOs)). The controller accesses the business layer and returns a ModelAndView object, encom-

passing the name of the view that should be rendered and associated model data.

31

4. The ViewResolver is queried for the view with the specified name.

5. The returned view is rendered, and the resulting data is sent back as an HTTP response.

While the core component only exposes REST endpoints, where the use of a ModelAndView object

is not required, Spring MVC also provides framework support for this type of controller, including the

automatic serialization of model objects to JSON or XML.

For persistence Spring offers the the Spring Data JPA library as a wrapper for the Java Persistence

API (JPA) that offers repositories with basic Create-Read-Update-Delete (CRUD) methods out of the box,

as well as the automatic generation of queries from user defined interfaces. Hibernate1 is an Object-

Relational Mapper library that is often used with Spring Data as a JPA implementation. In addition to

abstracting the developer from the persistence provider (allowing it to be defined for each deployment)

these libraries often offer performance improvements, such as multiple cache levels or the ability to lazily

load objects.

Security is another major concern for every application. The Spring Security framework aims to ease

the challenges of implementing authentication and access control in Spring applications. Since security

is often a cross-cutting concern, Spring Security is not focused on any specific component providing,

instead, a global umbrella over the presentation and business layers. These features range from ba-

sic support for multiple authentication providers to optional integrations with Spring MVC which allow

controllers to directly specify access-control rules through an internal expression language. Spring’s

authentication system is designed for extensibility, with developers being able to easily inject their own

logic into the base scaffolding provided by the framework.

Developing Connect on top of an already existing security framework is not without its challenges.

While Spring’s frameworks are often easy to extend, there are always specific scenarios in which the

existing extensibility points are not enough to implement the required logic. However, relying on a

mature, well-tested framework greatly reduces the attack surface that would otherwise have to be audited

for security risks. Being an widely-used open source framework ensures that security vulnerabilities are

reported and fixed in a timely manner.

Figure 3.3 provides an overview of Spring security’s authentication flow.

1. The user’s HTTP request is filtered through the servlet filter chain until it hits an Authentication

Filter.

2. The AuthenticationFilter is responsible for converting the request to an object that implements

the Authentication interface. This is usually accomplished by parsing the request and extracting

the credentials that were passed in (which can either be a token in the authorization header,

username and password parameters, a key in the request’s body or some custom credentials

schema). Spring provides some built-in implementations, such as the UsernamePasswordToken

which holds a pair of username/password credentials.

1https://hibernate.org/

32

3. The authentication object is forwarded to the Authentication Manager, which acts as a central-

ized container for the multiple authentication providers that might be available in the application.

The manager queries each registered provider to check for support for the incoming authentication

type. Providers that support the object are asked to attempt to authenticate it.

4. Each provider implements the internal logic required to authenticate the principal from the infor-

mation available in the incoming authentication object.

5. Providers may query a UserDetailsService to obtain additional information for a given user id

(such as retrieving its password) before issuing an authentication response.

6. If no exceptions were thrown, an authentication object is forwarded up the chain until the initial

Authentication Filter.

7. The filter then sets the received authentication object in Spring Security’s Security Context, which

marks the user as authenticated.

AuthenticationManager
credentials

AuthenticationFilterHTTP Request

PrimaryAuthenticationProvidersPrimaryAuthenticationProviders
AuthenticationProviders User Details Service

Implements

<<interface>>
UserDetails

SecurityContextHolder

SecurityContext

Authentication

1
2 3

4
5

67

Figure 3.3: Overview of the authentication flow implemented by Spring Security.

While using the wide array of frameworks provided by the Spring initiative results in a significantly

faster development cycle there are some concerns which must be addressed beforehand. Each frame-

work relies on a set of dependencies, some of them pinned to specific versions. Managing these de-

pendencies while ensuring that version conflicts do not arise can be difficult. Additionally, since Spring

frameworks are designed to be applicable to a wide array of scenarios they often require significant

configuration before they can be used. The Spring Boot project aims to alleviate this issues by taking an

opinionated approach to dependency management and attempting to auto configure the integration be-

tween the different spring frameworks. One of the most relevant examples is the automatic configuration

of an embedded Tomcat server, which is included in the Java Archive (JAR) files generated by Spring

Boot. The application can thus be run anywhere with a simple java -jar command. Connect takes

advantage of Spring Boot to accelerate the development times and simplify dependency management.

33

3.4 Implementation Details

Now that the overall architecture has been defined, this section will focus on describing in further detail

the main features of the proposed solution, along with additional details on how they were implemented.

3.4.1 Authentication

Authentication is at the foundation of every identity management system. It is the process under which a

previously registered user is able to establish her identity by presenting one or more sets of credentials.

Credentials can come in many forms, with most usually grouped in three types [36]:

1. Knowledge factors: requiring the user to provide a set of information that only she knows (i.e. a

username/password combination or a PIN code).

2. Ownership factors: requiring the user to provide something that only she should be in possession

of, such as a hardware key or a code sent to the user’s mobile phone.

3. Inherence factors: requiring the user to provide some form of personal trait identifier, such as a

fingerprint or an iris scan.

The use of a single authentication component, generally known as a single-factor authentication has

been proven to not provide enough protection against malicious attempts to access secured resources,

especially in high-security contexts where personal data is at stake [37]. To alleviate this issue, experts

have been advocating for the use of multiple authentication components, ideally through the combination

of at least two factors from different groups. This is commonly known as Two-Factor Authentication. The

implemented solution separates the authentication flow into two consecutive flows: primary authentica-

tion and secondary authentication.

3.4.1.1 Primary Authentication

Connect defines primary authentication as the first (and mandatory) step in establishing a user’s identity.

The implemented solution takes an opinionated approach to the type of factor that should be used for

this step by shipping a complete solution for username and password credentials (a knowledge factor).

Nevertheless, the final implementation provides a high degree of provider flexibility, allowing other types

of authentication factors (such as a smart card) to be used for primary authentication.

While Spring Security already provides a very significant authentication API with support for multiple

authentication providers it clashes with Connect’s design philosophy of a solution centered around easy

extensibility through the addition of small modules that allow each HEI to tailor the system to its own

preferred authentication provider. Spring’s authentication APIs were designed to be easy to customize,

with less regard for their usage in a modular application. To overcome this limitation, Connect proxies

Spring Security’s AuthenticationProvider by implementing its interface in the DelegatingAuthenti-

cationProvider (DAP) class, which is the only authentication provider that gets registered with Spring’s

34

Security Manager. The DAP is responsible for maintaining a set of registered authentication provider

instances, which can be added at any point of the application’s lifecycle.

Spring Security

<<interface>>
AuthenticationProvider

Delegating
AuthenticationProvider

<<interface>>
PrimaryAuthenticationProvider

LDAPAuthenticationProvider CitizenCardAuthenticationProviderInternalAuthenticationProvider

Registers with

. . .

Figure 3.4: A UML representation of the primary authentication provider classes and their interaction
with the infrastructure provided by Spring Security.

The PrimaryAuthenticationProvider abstract class is a lightweight wrapper for Spring Security’s

AuthenticationProvider interface that defines a set of common logic to be available for every authen-

tication provider, such as the ability to toggle a provider on/off at runtime. New authentication providers

can be implemented by simply extending the abstract class since a servlet initializer hook will take care

of registering it with the DAP automatically on application startup.

While Connect supports multiple authentication providers they are only expected to process objects

conforming to Spring’s Authentication interface. Connect implements a built-in entry point for authen-

tication credentials by exposing a RESTful endpoint at /api/auth that consumes a JSON object with

username and password fields and takes care of parsing and translating the input object into a valid Au-

thentication object that can be processed by the registered providers. Additional providers that require

credentials to be supplied in other formats (such as an endpoint with a different URL or consuming other

content types) will need to implement it by extending Spring’s AbstractAuthenticationProcessing-

Filter.

AuthenticationManager
credentials

AuthenticationFilter
HTTP Request

DelegatingAuthenticationProviderPrimaryAuthenticationProvidersPrimaryAuthenticationProviders
PrimaryAuthenticationProviders

authentication
HTTP Response

authentication credentials

credentials

authentication

authentication
token

Figure 3.5: An overview of the authentication flow using the DelegatingAuthenticationProvider com-
ponent.

Figure 3.5 provides an overview of the primary authentication flow and how it interacts with Spring

Security’s infrastructure. Multiple implementations of the AbstractAuthenticationProcessingFilter

class can be registered in Spring’s filter chain. They provide an entry point for a given type of credentials

and are responsible for translating them into Authentication objects. These objects are then passed

on to Spring’s Authentication Manager which is responsible for querying the registered authentication

providers and returning an authenticated principal. Since the DAP is the only provider registered with

Spring’s Security Manager this is the only class to be queried. The DAP will, in turn, forward the au-

35

thentication request to all of its registered providers that support it. Whether a valid authentication is

accomplished or an exception has been thrown, the result is carried upstream, with the DAP informing

the authentication manager of its decision. The manager then returns the result to the AbstractAu-

thenticationProcessingFilter object that initiated the call which is then responsible for returning an

appropriate response (either an error message, or a some type of credential representing that session).

Authenticating a user is a two step process, with the authentication provider asserting whether or

not the user’s credentials are valid and the authentication filter then using this decision to issue the

credentials. This separation of concerns allows Connect to provide different types of credentials for

each situation. An organization wanting to extend Connect to authenticate users in its 802.11 network

could, for instance, implement a simple RADIUS2 server that delegated authentication to Connect’s

providers.

One of the possible types of credentials granted by Connect (in fact, the only one implemented by

the provided solution) is a JSON Web Token. A successful authentication results in a JWT being issued

by the authentication filter. Listing 2 provides an example of the body (or claim set) of a JWT issued by

Connect. The iat and exp represent, respectively, the token’s issue and expiration dates. jti is the

unique identifier for the token. sub asserts the token’s subject, which can either be a user or an OAuth

application. The aud field lists the services which should accept this token. Finally, the authorities

field asserts the user’s roles and permissions.

1 {

2 "iss": "fenixedu-connect",

3 "iat": 1533897834,

4 "exp": 1533919434,

5 "jti": "NB9IGug7sqExJVb8iKhy8xFdjbzVQRP4",

6 "sub": "ist178401",

7 "grant_type": "jwt",

8 "authorities": [

9 "ADMIN", "STUDENT", "GRANT_OWNER"

10],

11 "aud": "fenixedu-connect"

12 }

Listing 2: The body section of a JWT authentication token issued by Connect

When a user attempts to access Connect passing in a JWT in the Authorization header the Authen-

ticationTokenFilter intercepts the request and attempts to authenticate the principal. The JWT is

extracted from the header, and its signature is validated against Connect’s signing keys. If the token is

valid, a JWTAuthentication object is created from the token’s data and loaded into Spring’s Security

context.

Connect records all issued tokens along with some additional metadata (such as IP Address or user

agent) in the form of an AccessToken object, which is persisted in the backend. This allows for an histori-

cal overview of a given user’s sessions, and is made available in the api/v1/users/{user}/authorizations

endpoint. Users can manually revoke a single token or all of the active ones. In both cases, tokens are

added to a public revocation list which will be analyzed in section 3.4.5.

2https://tools.ietf.org/html/rfc2865

36

3.4.1.2 Secondary Authentication

While a user is considered authenticated after a successful primary authentication step (with a JWT

being issued to assert the principal’s identity) a secondary step is available to reduce the chances of a

malicious attack on a user’s identity.

Spring Security does not provide clear support for two factor authentication out of the box. To ac-

complish this, Connect provides a registration service, implemented in the MFAManagementService class

which maintains a set of available 2FA providers and is responsible for returning the correct instance

when a provider of a specific type is required.

Secondary authentication factors require a small set of operations to be available:

• Create: Create a new factor of a given type.

• Activate: Activate a previously created factor.

• Start Verification [Optional]: Initiate the verification process of a previously activated profile, if its

verification process implements a two-step challenge/response.

• Verify: Complete the provider’s challenge/response verification cycle.

• Delete: Remove the provider from the user’s list of authorized factors.

The AuthenticationFactorProvider generic abstract class declares the five required actions that

should be implemented in each of its subclasses. Since each subclass is only the provider for a given

type of authenticator factor implementations are also required to bind the generic type to a specific

implementation of the AuthenticationFactor interface.

Figure 3.6 presents an architectural overview of the MFA subsystem with the MFAManagementService

component implementing a central repository of second factor authentication providers. Subclasses of

the AuthenticationFactorProvider class implement the required logic to manage a given type of fac-

tor (i.e. to manage AuthenticationFactor objects). Similarly to the PrimaryAuthenticationProvider

class, a servlet initialization hook automatically registers all subclasses of the AuthenticationFactor-

Provider class in the top level MFAManagementService.

Implementing a new type of 2FA is a two step process:

1. Extend the AuthenticationFactor abstract class to persist the required information for each in-

stance of the authentication factor (such a seed value or a secret). Let this be AuthFactorImpl.

2. Extend the AuthenticationFactorProvider abstract class specializing it for the AuthFactorImpl

type. This class should implement the logic required to perform the five main actions described

beforehand on objects of AuthFactorImpl.

The core package provides built-in support for three of the most common secondary authentication

factors:

• Time-base One Time Password (TOTP): An algorithm that generates a one-time password from

a secret seed value and the current time [38]. Implemented in the TOTPAuthenticationFactor-

Provider class.

37

+ createFactor()
+ activate()
+ startVerification()
+ verify()
+ deleteFactor()

<<abstract>>
AuthenticationFactorProvider

TOTPAuthenticationFactorProvider

<<bind>>

T

<T -> TOTPAuthenticationFactor>

U2FAuthenticationFactorProvider

<<bind>>
<T -> U2FAuthenticationFactor>

<<interface>>
AuthenticationFactor

U2FAuthenticationFactor SMSAuthenticationFactorTOTPAuthenticationFactor

SMSAuthenticationFactorProvider

<<bind>>
<T -> SMSAuthenticationFactor>

MFAManagementService

Registers with

. . .

Figure 3.6: A UML representation of the classes that implement the 2FA subsystem.

• Universal 2nd Factor (U2F): An open standard for hardware security keys [39]. Implemented in

the U2FAuthenticationFactorProvider class.

• SMS verification: Where a secret code is sent to a previously registered mobile phone. Imple-

mented in the SMSAuthenticationFactorProvider class.

After a successful secondary authentication the user is issued a new JWT token with an additional

MFA VERIFIED authority, which can be used by Connect instances or resource serves to restrict access

to some resources to users who were authenticated with two different factors. This is especially helpful

to secure sensitive areas such as application administration portals.

3.4.1.3 Passwordless Authentication

Web applications have traditionally resorted to username/password pairs to perform user authentication

due to their inherent simplicity over other methods such as digital certificates. However, there are two

main reasons why these systems often fall short on the security they provide. [40]

• When faced with the need to memorize multiple passwords, users tend to opt for using simpler

combinations which get reused on multiple applications.

• Developers often fail to implement the necessary security policies when managing these creden-

tials storing them in plaintext or using insecure hashing algorithms.

38

To alleviate these issues, a new type of authentication known as Passwordless Authentication has

emerged. As the name suggests, passwordless authentication is based on the premise of using alter-

native authentication providers to avoid storing a user’s password in the application’s backend.

There are multiple strategies for passwordless authentication with one of the most common being the

use of Magic Links. With this form of authentication, when a user wishes to access a protected system

she is asked for her previously registered email address. The application checks its user database and,

if a match is found, generates a unique token which is appended to a preset URL belonging to the

application. This URL is then sent to the user’s email address and the user is directed to check her

inbox. When the user clicks on the link sent to her email it is exchanged by a regular authentication

token, as if the user had logged in with her username and password combination. As long as the magic

links have a short life span and the servers implement measures to prevent brute-force attacks, this type

of authentication can provide a similar level of security to the regular approach.

The provided solution includes an optional module, connect-magic-links, that implements pass-

wordless authentication through magic links. In addition, it also serves the purpose of acting as a

template for how an organization could implement an additional authentication provider and use it to

extend Connect’s built in feature set.

Figure 3.7: A sequence diagram of the magic link authentication flow.

- code : String
- issuedAt: DateTime
- expires : DateTime

MagicLink

User

1

Figure 3.8: Magic Links UML

diagram

Figure 3.7 provides an overview of this authentication strategy. The user sends her email to the

Connect instance, which queries the internal database through the UserManagementService service. If

a user is found, a MagicLink object is created and persisted in the database. The constructor for this

object generates a secure random string which, when appended to the path /api/v1/auth/magicLink

39

forms the complete magic link that is sent to the user’s email. When Connect intercepts a magic link

request, through the MagicLinksAuthenticationFilter it extracts the code from the path, attempts to

retrieve the previously stored MagicLink object and generates a JWT for the user’s session.

3.4.2 User Management

At the heart of every Identity Management system lies a directory responsible for maintaining user ac-

counts and their associated data. The core module defines a UserRepository interface with a set of

base methods required by its internal logic. An implementation of this interface is automatically gener-

ated by Spring Data JPA however, organizations are free to extend this interface to suit the requirements

of additional modules, with Spring’s dependency injection automatically using the extended version in

place of the provided one. FenixEdu Connect limits the scope of the personal information it stores di-

rectly, delegating profile data to a set of external providers. As a consequence, the user model (shown

in figure 3.9) is quite simple:

- id : String
- accountStatus : AccountStatus
- username : String
- password : String
- expiration : DateTime
- credentialsExpiration : DateTime
- authorities : String[]
- created : DateTime

User

STAGED,
ACTIVE,
DEPROVISIONED,
LOCKED_OUT,
PASSWORD_EXPIRED,
SUSPENDED

<<enum>>
AccountStatus

Figure 3.9: A UML representation of the User class.

In addition to the unique user identifier, credentials and account metadata (creation and expiration

timestamps) there is only an additional field, which holds the set of user authorities. Authorities (often

also referred as roles) represent a permission to perform a certain action or to access a protected

resource. User accounts are created with an initial set of authorities, which may be updated over time to

reflect changes in the user’s permissions (i.e. students may have a STUDENT authority granted when first

enrolling in the institution which grants access to some educational resources. Upon completing their

degree, the authority is removed from the account, preventing them from accessing the same protected

resources). Connect provides a way to define a hierarchical set of authorities, such that if a resource is

protected with a required authority of HELP DESK EMPLOYEE it is automatically available to a user with a

SYSTEM ADMIN authority without it having to be made explicit (assuming a system administrator should

be able to perform all the actions of an IT help desk employee).

3.4.2.1 Account Lifecycle

As users join, leave and progress within the organization their digital identities must be updated to reflect

these changes in status. The set of possible states and the transitions between them are often referred

40

Staged

Active

Suspended

Deprovisioned

Password ExpiredLocked Out

Activate

Expire credentials SuspendExceed maximum
Invalid password attempts

Deactivate

Deactivate

Deactivate

Figure 3.10: The possible account states and the lifecycle transitions between them.

to as the organization’s account lifecycle. Figure 3.10 provides an overview of FenixEdu Connect’s

account lifecycle. Accounts can be created in any state, but they will usually start at either the Staged or

Active states and progress through the remaining states through well-defined lifecycle events.

• Staged: The account has been created, but still requires activation before it can be used.

• Active: The account is active and ready to use.

• Locked out: The account has been locked for security reasons (e.g. the maximum number of

invalid login attempts has been reached, or suspicious activity has been detected).

• Password Expired: The credentials have expired.

• Suspended: The account has been manually suspended by staff.

• Deprovisoned: The account has been permanently terminated.

FenixEdu Connect implements an invite system whereby an authorized user can send account in-

vites, allowing external users to create accounts without the need for generating (and distributing) tem-

porary credentials. The invited user will receive a short lived token that can be used to sign up to

Connect. The account is not created until the user visits the link and selects her own credentials. In

addition, when creating an invite it is possible to define the set of authorities to grant to the created

account, which allows users to have access to allowed resources as soon as their account is activated.

This is a clear improvement over the traditional systems in place at many HEIs where not only are in-

vited users emailed a pair of temporary credentials as the required accesses are rarely created ahead

of time, forcing them to request the necessary permissions after the account has been set up. Figure

3.11 illustrates the two flows.

While most account lifecycle transitions will be the result of user intervention or automatic events

FenixEdu Connect exposes a complete RESTful API for account management, which naturally includes

controlling the transition between lifecycle states. Authorized personal (such as IT Help Desk employees

41

Email Credentials to
the User

User updates the
password and requests
access to the services.

Access is manually
granted

Creaate Temporary
Account with
Credentials

User sets her own
password

User has immediate
access to all services

Invite created with
appropriate roles

FenixEdu Connect Invite Flow

Conventional Invite Flow

Figure 3.11: A comparison between the conventional invite flow and FenixEdu Connect’s.

or system administrators) can easily suspend/unsuspend accounts, force credentials to expire, unlock

accounts and reset passwords.

3.4.2.2 Password Reset

As previously discussed, password reset requests are responsible for a significant portion of the total

volume of IT Help Desk support tickets. FenixEdu Connect implements a flexible system of self-served

password reset strategies that allows implementing organizations to extend the built-in account recovery

methods.

CredentialsManagementService <<abstract>>
PasswordResetMethod

SMSPasswordResetMethod EmailPasswordResetMethod . . .

Registers with

WebRTCPasswordResetMethod

Figure 3.12: A UML diagram of the classes that implement the password reset service.

A central service holds a registry of the password reset methods currently in use. This is imple-

mented in the CredentialsManagementService class. All valid methods should extend the Passwor-

dResetMethod abstract class, which defines a simple interface to abstract the password reset behavior.

Subclasses are automatically registered with the credentials management service at application start.

The core module defines a common entry point for all password reset requests, independent of

the requested reset strategy. This endpoint consumes a JSON object whose only required field is the

unique identifier of the reset strategy to use. From this information, the credential management service

performs some initial validation checks (such as validating the account is in state that allows credentials

to be recovered) and forwards the request to the appropriate PasswordResetMethod which is responsible

for performing any additional steps that may be required. If the strategy requires a second step to be

performed, it should generate and persist a PasswordResetToken which is automatically managed by

the core module. An additional endpoint ensures that users are able to exchange the generated token

for a new password.

42

Password Reset
Request CredentialsManagementService SMSPasswordResetMethod

EmailPasswordResetMethod

WebRTCPasswordResetMethod

CustomPasswordResetMethod

Sends an SMS to a mobile phone
retrieved from the user’s profile

Sends an email to an address
retrieved from the user’s profile

Initiates a video chat with a member
of the IT support staff.

Institution-specific logic, such as the use of
an alternative authentication provider or a
set of secret questions

Example:

POST /api/v1/user/{id}/credentials/reset_password

{
 “type”: “sms”,
 “meta”: {
 “phone_number”: “+351 910 123 456”
 }
}

CredentialsManagementService SMSPasswordResetMethod
request code

POST /api/v1/user/{id}/credentials/reset_password/{code}

{
 “new_password”: “qwerty”
}

CredentialsManagementService
code

Password Updated

Figure 3.13: An overview of the password reset flow.

Figure 3.13 illustrates this two-step process and how the request is handled internally. The user,

Alice, wishes to reset her password and chooses the SMS recovery type. To accomplish this, Alice

sends an initial request to the password reset endpoint with the specified payload. The request is

forwarded internally to the SMSPasswordResetMethod service, which fetches Alice’s phone number from

her profile information and uses an SMS gateway to send her the recovery code. Alice then makes a

second request to the appropriate endpoint passing in the recovery code (which authorizes the reset

operation) and her new password.

3.4.2.3 User Profile Management

While it could be argued that the Identity Management system should maintain all the user’s profile

information in a self-contained fashion that is rarely the case. Higher Education Institutions, as most

medium to large scale organizations rely on a multitude of applications responsible for maintaining semi-

isolated clusters of information. These applications may either be the authoritative source for this data, or

just consumers of some previously replicated dataset. In a FenixEdu ecosystem, for instance, FenixEdu

Academic is the authoritative source for the user’s completed courses, while FenixEdu Sotis can provide

an authoritative answer regarding the user’s ORCID number (a researcher identifier used in scientific

publications). While Connect should be able to provide both pieces of profile information, it would be

infeasible in most situations to refactor all the existing applications to store their user profile information

in a Connect instance.

To overcome this limitation, Connect defines an additional level of abstraction, through the User-

43

- id
- username
- credentials
- expiration date
- account status
- roles / permissions

User Account

- name
- display name
- photo
- email address
- phone number
- student number
- employee ID
- (…)

User Profile

Managed by
FenixEdu Connect

Managed by
Profile Providers

Figure 3.14: FenixEdu Connect enforces a clear separation of responsibilities between account data
and profile information.

ProfileProvider interface. This interface defines the required set of methods to interface between the

Connect instance and a second entity, responsible for maintaining the user’s profile information. Each

client institution can provide an implementation of this interface, through an additional module, to act as

the interface between FenixEdu Connect and its internal applications that are responsible for managing

user information. However, to facilitate the deployment of a Connect solution, a concrete implementa-

tion of this interface was included in the core module, through the DelegatingProfileProvider (DPP)

class.

<<interface>>
UserProfileProvider DelegatingProfileProvider <<abstract>>

DelegateProfileProvider

InternalProfileProvider RESTProfileProvider . . .

Registers with

Figure 3.15: A UML diagram of the classes responsible for managing profile information in FenixEdu
Connect.

The DPP service allows Connect to be used in an environment where applications want to maintain

control over the user’s profile information they are authoritative sources for. A set of delegates, extending

the DelegateProfileProvider abstract class are registered with the DPP service. Each delegate is

able to inform its parent service of whether or not it is an authoritative source for a given attribute key.

When the delegating service receives a request for a set of profile attributes it demultiplexes it into sub-

requests querying the delegates for the attributes they are authoritative for and assembling the final

result. Figure 3.16 provides an overview of this flow. It depicts two concrete implementations of the

DelegateProfileProvider abstract class:

44

• The InternalProfileProvider class provides a simple key/value store backed by a Spring JPA

repository. This is the ideal solution for deployment scenarios where it is possible to import all the

user’s profile information into Connect, since it can be stored in the same relational database as

the user’s account data. In the event that this is not possible, an instance of this class can still be

used to allow Connect to persist profile information that is not managed by any other application.

• The RESTDelegateProfileProvider aims to ease the deployment of profile providers in orga-

nizations with a strong presence of open source tools (such as the FenixEdu ecosystem). To

accomplish this, Connect defines the specification for a simple API which, if implemented by the

client applications, allows profile provider delegate instances to be automatically generated from

only a few configuration properties (such as the client’s API base URL and a shared secret). The

specification for the client API is made up of two simple endpoints:

– POST /read: Which consumes a JSON array of attribute names to retrieve. Listing 3 provides

an example of a request to this endpoint.

– POST /write: Which consumes a JSON object of attribute key/value pairs to set. An example

is provided in listing 4.

When Connect is requesting profile attributes on behalf of the user, the authentication token used

when contacting Connect is forwarded to the profile provider as the authorization header for the

read and write endpoints. This allows each provider to set its own security policies, i.e. define

the set of roles/permissions required to access each attribute. When attributes are requested on

behalf of another trusted application or Connect itself, the authorization header carries a JWT

issued directly to FenixEdu Connect, in which case providers should ignore any additional security

checks and provide the requested attributes.

1 {

2 "userId": "ist123456",

3 "attrs:" [

4 "fenix:profile:name",

5 "fenix:profile:gender",

6 "fenix:profile:birthdate",

7 "fenix:courses:completed",

8 "fenix:degrees"

9]

10 }

Listing 3: A request to a client’s /read endpoint

The delegate interface provides a pluggable architecture for organizations to expose profile attributes

from any application. HEIs can easily deploy a module to interface with a HRP system, such as SAP, to

expose the user’s employee number in Connect’s profile information. In a traditional system, applications

that require access to this attribute would be integrated with the HRP system, usually resorting to its

public APIs. If this system was replaced or the APIs deprecated all the client applications would have

to be updated to reference the new one. In a Connect-enabled environment only the profile provider

45

1 {

2 "userId": "ist123456",

3 "attrs:" {

4 "fenix:profile:name" : "John Doe",

5 "fenix:profile:gender" : "Male",

6 "fenix:profile:birthdate" : "01-01-1970",

7 "fenix:profile:emails": [

8 "john.doe@doe.org",

9 "jdoe@tencico.ulisboa.pt"

10]

11 }

12 }

Listing 4: A request to a client’s /write endpoint

module would have to be made aware of the change for all client applications to continue to have access

to the employee number attribute.

DelegatingProfileProvider

RESTProfileProvider
Consuming an API from FenixEdu

Academic

Authoritative for:
- student_id
- courses
- degrees

Retrieve the user’s “phone_number” and “student_id” profile attributes

Example:

RESTProfileProvider
Consuming an API from FenixEdu Sotis

Authoritative for:
- orcid
- researcher_id
- publications

[Custom] SAP Profile Provider

Authoritative for:
- employee_id
- phone_number
- address

FenixEdu Academic

FenixEdu Sotis

SAP

{
 “phone_number”: “+351 912 123 456”,
 “student_id”: 89432
}

student_id

phone_number

Figure 3.16: An example of how multiple profile providers can be used to aggregate user information

and expose it through FenixEdu Connect.

3.4.3 OAuth Authorization Server

In addition to offering Identity Management features Connect’s design philosophy rests on it simultane-

ously acting as a central point for the registration and authorization of OAuth applications. To achieve

this, Connect relies on the foundations offered by the Spring Security framework to implement an OAuth

Authorization Server. Figure 3.17 documents the domain model for the OAuth authorization server fea-

tures. The OAuthApplication class is used to persist the relevant information for the registered OAuth

applications including basic metadata, credentials, authorized grant types and required scopes. A dis-

tinction is made between required and optional scopes, allowing developers to fine-tune the requested

permissions to the essential resources while still allowing users to opt-in for providing additional infor-

mation. The OAuthScope class represents an OAuth Scope with an option to restrict it to applications

created by users with an administration role. This allows for the use of OAuth for internal applications, as

46

regular users will not see administrator-only scopes and thus, will be unable to create OAuthApplications

which require these scopes.

- id : String
- client_id : String
- name : String
- description : String
- logoUrl : String
- owner : String
- client_secret : String
- redirectUri : String
- scopes : String[]
- autoApprovedScopes: String[]
- authorizedGrantTypes: String[]
- accessTokenValiditySeconds : int
- refreshTokenValiditySeconds : int
- secretRequired : boolean

OAuthApplication

- id : String
- scopeKey : String
- name : String
- description : String
- adminOnly : boolean

OAuthScope

- code : String
- authentication : byte[]
- expiration : DateTime

OAuthCode

- value : String
- owner : String
- client_id : String
- creation : DateTime
- expiration : DateTime
- scopes : String[]
- revoked : boolean

RefreshToken

- id : String
- type: TokenType
- owner : String
- client_id : String
- created : DateTime
- expiration : DateTime
- scopes : String[]
- authorities : String[]
- application : String
- userAgent : String
- ipAddress : String
- lastUsed : DateTime
- revoked : boolean

AccessToken

Authentication

OAuthRequest

1
1

0..1
0..1

Figure 3.17: An UML diagram of the classes that support the OAuth implementation in FenixEdu Con-

nect.

As previously discussed in section 2.2.1, the OAuth 2.0 Core Request For Comment (RFC) does

not specify how the client applications should perform their initial registration in the authorization server.

While a standard has been recently published [41] to provide a protocol for dynamic client registrations

FenixEdu Connect only implements support for a subset of the required client metadata. There is,

nevertheless, a complete API for client application registration allowing for CRUD-like operations on

OAuth Applications and scopes.

The OAuth 2.0 Core RFC only specifies two endpoints as required for any protocol implementation,

usually referred to as the authorization and token exchange endpoints. When using some grant types,

such as the authorization code, the resource owner’s user agent interacts with the authorization end-

point, where the user is asked to provide a valid set of credentials and authorize access to the client

application before an authorization code can be issued. This step naturally involves the UI layer, both

through the authentication form (if the user isn’t yet authenticated), the authorization step and the fi-

nal redirect to the client application. This contradicts the main architectural decision of restricting the

core module’s exposure and forcing all communication to happen over RESTful endpoints. While Spring

Security provides ready-made OAuth authorization and token exchange endpoints, a significant part of

their logic had to be refactored to maintain this purely RESTful interface while still allowing the frontend

to perform the necessary steps of the authorization flow.

Figure 3.18 provides an overview of the original flow, offered by Spring Security, and the resulting

version, with the frontend and core module working together to establish a coherent flow while still only

resorting to RESTful calls for communication between the two layers.

47

Figure 3.18: A comparison between the conventional OAuth authorization flow and FenixEdu Connect’s.

3.4.3.1 Access Tokens

The OAuth 2.0 RFC intentionally left out a specification for how access tokens should be formed, what

information they should contain and how they should be used. While some of these issues have been

addressed in a later specification [42], which defines how tokens should be sent in an HTTP request

there is still some ambiguity on how they should be constructed with some implementations relying on

opaque strings (used to reference some authentication details previously stored) and others opting for

sending all the required information in the token itself, along with some type of signature for verifica-

tion. Spring provides an implementation of the former by providing a built-in solution for opaque access

tokens. However, Connect’s architecture relies on the use of JWTs whenever possible as a way to

decouple the verification of the issued tokens from the authentication server. To achieve this, it takes

advantage of a feature offered by the Spring Security framework that allows developers to enhance the

opaque access tokens issued by the underlying OAuth implementation to convert them to signed JWTs

with additional information on the authenticated principal.

The issued access tokens contain information on the authenticated user (the subject), the client

application for which the token is issued (known as the token’s audience) and the scopes whose access

has been granted by the authenticated principal. Since all the information is contained in the token

itself, client applications can both validate the token’s authenticity and access the authenticated user’s

identifier and allowed scopes without having to contact the authorization server.

The use of opaque strings for access tokens requires authorization servers to implement a protocol

that allows client applications to validate if a given token is authentic, that it hasn’t been revoked and to

fetch the list of authorized scopes. Once again, this step was left out of the original OAuth 2.0 RFC. A

later specification proposed the creation of a token introspection endpoint implemented by authorization

servers to allow protected resources to check the active state of access/refresh tokens and to obtain

additional information about them [43]. This endpoint has been designed to bridge a specification gap

in the implementation of opaque tokens and is unlikely to offer significant advantages when JWTs are

used as access tokens, since the endpoint will simply return the same information that was already

included in the token itself. Nevertheless, Connect implements an introspection endpoint as a fallback

48

verification strategy for client applications that are unable to deploy the necessary logic to validate and

decode the issued JWTs. Instead of periodically refreshing the signing keys used by the Connect server

and validating the access tokens’ signatures against them these applications can simply send the token

to the introspection endpoint and parse the resulting JSON response. This emulates the behavior of

opaque tokens at the expense of nullifying the main advantage of using JWTs as access tokens.

Since this validation strategy may result in unnecessary load to the Connect servers (with developers

abusing the introspection endpoint when local validation was possible) client organizations can easily

opt to remove this feature.

3.4.3.2 OpenID Connect Provider

In addition to acting as an OAuth 2 authorization server for access delegation Connect also implements

an OpenID Connect provider, allowing client applications to authenticate users using the same OAuth

flow that was already being used for API authorization. As discussed in section 2.2.3, OIDC introduces

a reserved openid scope which, when requested by a client application, causes the OAuth authorization

server to treat it as an authentication request. The OAuth response should include, in addition to the

access and optional refresh tokens, an ID Token asserting the authenticated user’s identity. This is the

only modification to the regular OAuth authorization flow. As such, when access to the openid scope

is granted, Connect leverages the token enhancer that was already put in place to convert the opaque

access tokens generated by Spring Security into signed JWTs to inject the additional id token field in

the resulting OAuth response. Figure 3.19 provides an overview of the enhancement flow.

Token Enhancer

Spring OAuth
generates an opaque

Access Token

User grants
authorization to
openid scope

Convert Access Token
to JWT

Add Metadata
(i.e. “token_id” field)

if(openid) {
 append(ID Token)
}

{
 “access_token”: “eyJraWQiUFEwTX…”,
 “refresh_token”: “6ImNncFa1E0Q02…”,
 “id_token”: “SI6ImNncFVKE0Q0V63…”,
 “token_id”: “cgpUJcUrTcTkiC9jAY53O”,
 “expires”: 8600
}

OIDC-Compliant Response

Figure 3.19: An overview of the OAuth token enhancement flow for OIDC requests.

3.4.4 Security

3.4.4.1 Key Management

Connect’s reliance on JWT as the transport container for its authentication assertions requires a careful

approach to key management. The JSON Web Signature specification allows for the use of both sym-

metric (HMAC) and asymmetric (ECDSA and RSA) algorithms in token signatures. However, the use of

symmetric tokens would present additional challenges in key generation and distribution when deploying

49

new client applications (known as resource servers). An additional protocol would have to be designed

to exchange symmetric keys between the Connect instances and the applications that consume its to-

kens. As a consequence, it was decided to restrict Connect to only use asymmetric algorithms with the

final product supporting two main classes: Elliptic Curve (EC) and RSA.

At any given point, Connect maintains a set of valid signing keys which are made available to a

trusted set of applications, described in section 3.4.5.1. One of those keys is considered the active key

and is used to sign the issued tokens but any token signed with a key from the valid keys set should still

be accepted by the resource servers.

Due to Connect’s distributed nature, which allows it to scale horizontally, instances must store the

Public and Private Keys that are used to sign the tokens. This is accomplished by persisting the Private

Keys in Connect’s database. To reduce the risk of exposure in case the database is compromised, the

Private Keys are persisted encrypted using, by default, AES-CBC with 128-bit keys. The encryption keys

are provided in the application’s configuration files and multiple keys can be specified. The KeyEncryp-

tionService encompasses all the logic required to create, validate and securely fetch the keys used to

sign the issued JWTs.

To create a new key, a system administrator selects the desired algorithm, key size and a display

name. Connect generates the key pair and searches the configuration files for the encryption key to use

to encrypt the newly generated private key. The configuration properties follow a known pattern of the

type connect.key.password.<keyName> = <keyPasswordData>. A ConnectKey object is then created

to hold the key pair and associated metadata including the name of the key used to encrypt the Private

Key.

Whenever a valid key is required to perform a signature operation the process is reversed. The

KeyEncryptionService searches the persisted ConnectKey objects for the active one, attempts to re-

trieve its associated encryption key from the application’s configuration properties, decrypts the key and

hands it to the JWT builder.

System administrators have the ability to manage Connect’s signing keys through a set of API end-

points. These allow for the creation of new keys, revocation of an existing key or setting the current

active key.

3.4.4.2 Security Events

As the core component for the users’ account security FenixEdu Connect must be able to provide users

with an historical overview of the events that may have had a security impact on their accounts. These

are typically associated with changes in the user’s profile data or credentials. An attacker who was able

to obtain temporary access to a user’s account could, for instance, register a secondary authentication

factor that was in her possession without the user ever becoming aware. Beyond the regular logging

and auditing information, which is only available for system operators, Connect keeps a special record of

these actions, which is made available to the user through the api/v1/users/{user}/securityEvents

API endpoint. Users are able to query the endpoint to get a complete list of security events pertaining to

their account, or limit the scope to a single type of event or date.

50

To implement this feature, Connect leverages Spring’s built-in support for signals. Figure 3.20 pro-

vides an overview of the global flow. Connect services, such as the UserManagementService or the

MFAManagementService create AccountAuditEvent objects whenever one of these key account actions

occurs. At the same time, they forward these newly created objects to Spring’s application event system,

which takes care of distributing them for all the registered listeners. External modules can opt to listen

to these signals but, in any case, Spring provides a built in listener that consumes all signals and stores

the event objects in a known repository. Connect’s security events API endpoint simply consumes this

repository and makes the events available to the user.

PrimaryAuthenticationProvidersPrimaryAuthenticationProviders
FenixEdu Connect Services

Event Bus

External Module #1

Fire Events

Consume
“MFA_ENROLLED” event

External Module #2

Consume
“USER_CREATED” event

Spring Security

Spring Audit
Listener Store in Audit Events

Repository

PrimaryAuthenticationProvidersPrimaryAuthenticationProviders
API Controllers

Query user
audit events

Figure 3.20: An overview of the flow of audit events from the source services to the possible consumers.

3.4.4.3 SecurityManager

While the most security-conscious users will likely opt to use two-factor authentication whenever it is

available, the often voluntary nature of this security feature tends to result in less than ideal adoption

rates. With the goal of increasing security and reducing the chances of an account becoming com-

promised FenixEdu Connect actively monitors authentication attempts against suspicious behaviours.

Through a direct integration with the DelegatingAuthenticationProvider Connect’s SecurityManager

service validates each authentication event against a set of checks:

• Repeated attempts with invalid credentials: Leveraging the auditing infrastructure outlined in

section 3.4.4.2 Connect limits the number of invalid authentication attempts to a configurable value,

after which the offending IP address is blocked from making further requests.

• Significant location changes between login events: IP location is used to obtain an approxi-

mate distance between the current authentication event and the last. If this distance is incompat-

ible with the time required to travel it at a preset speed the account is suspended and the user is

notified.

As with most Connect components, the provided implementation of the SecurityManager service

51

can easily be extended or even replaced by an organization which requires a different set of account

security verifications.

3.4.4.4 Connect Extensions

Today’s business environment requires organizations to undergo changes almost constantly. Authen-

tication systems must be able to adapt to this fast pace with little to no downtime. While Connect’s

architecture allows organizations to develop additional modules to fine tune its behavior to the general

requirements of the organization there are some scenarios in which the development of a separate mod-

ule may not be justifiable. Connect Extensions offers system administrators the ability to customize the

application’s behavior in runtime, without the need to perform changes to the codebase.

An extension is a regular java class, which implements an interface from a specific set, known as

Extension Points. The proposed solution implements two extension points, as a proof-of-concept.

• Authentication: Through the AuthenticationExtension interface, administrators have the chance

to run code synchronously as part of every successful authentication transaction.

• Pre-User Registration: Through the PreUserRegistration interface, allows administrators to run

code immediately before the creation of a new user account.

interface
ExtensionPoint

interface
AuthenticationExtension

- void intercept(HttpServletRequest,
Authentication, Collection<GrantedAuthority>)

interface
PreUserRegistrationExtension

- void intercept(User)

- id : String
- name : String
- className : String
- javaCode : DateTime
- created : DateTime

ConnectExtension

Figure 3.21: A UML diagram of the classes that make up Connect’s Extension Points feature.

Extension point interfaces extend the top level ExtensionPoint. Connect exposes a set of API

endpoints to retrieve the current extensions or add new ones. New extensions can be added by sending

a POST request to the /api/v1/extensions endpoint with the extension’s type, full class name, a

display name and the class’ code encoded with base64. Connect then performs an initial validation by

attempting to compile the code. If no exceptions were thrown, it is encapsulated in a ConnectExtension

object which, being a domain entity, is persisted to the database. At the same time an instance of the

provided class is created and maintained in memory, ready to use. When the application is started,

ConnectExtension objects are loaded from the database, compiled and instantiated into memory.

Listing 5 provides an example for a possible authentication extension. In this example, a change in

the organization’s legal requirements has required users to give explicit consent to its updated privacy

policy, which is managed in a separate micro-service. This system exposes an API that allows callers

to check whether or not a given user (identified by its username) has consented to the updated privacy

52

policy. The IT Services team has been ordered to deny users access to all systems until they consent

to the new privacy policy.

1 package org.fenixedu.connect.core.security;

2

3 import org.fenixedu.connect.core.security.exception.ConnectAuthenticationException;

4 import org.springframework.http.HttpStatus;

5 import org.springframework.http.ResponseEntity;

6 import org.springframework.security.core.Authentication;

7 import org.springframework.security.core.GrantedAuthority;

8 import org.springframework.web.client.RestTemplate;

9

10 import javax.servlet.http.HttpServletRequest;

11 import java.util.Collection;

12 import java.util.Collections;

13

14 public class GDPRConsentAuthenticationCheck implements AuthenticationExtension {

15

16 private static final String GDPR_CONSENT_HOLDER_SERVICE_URL = "https://acme.org/api/v1/gdpr/consent";

17

18 @Override

19 public void intercept(HttpServletRequest request, Authentication authentication,

Collection<GrantedAuthority> grantedAuthorities) {↪→

20 String username = authentication.getName();

21

22 String path = GDPR_CONSENT_HOLDER_SERVICE_URL.concat("/").concat(username);

23 RestTemplate restTemplate = new RestTemplate();

24 ResponseEntity<Boolean> responseEntity = restTemplate.getForEntity(path, Boolean.class,

Collections.emptyMap());↪→

25

26 if(responseEntity.getBody() == false) {

27 throw new ConnectAuthenticationException(HttpStatus.PRECONDITION_REQUIRED, "GDPR_REQUIRED",

28 "You need to consent to the organization's privacy policy before logging in");

29 }

30 }

31 }

Listing 5: An authentication extension that queries a remote service to check if the user has already
consented to the organization’s privacy policy. If not, an authentication exception is thrown.

The simple example highlights the flexibility of Connect Extensions. Having the ability to run code in a

synchronous way after a successful primary authentication allowed Connect administrators to implement

the required block without the need to create a separate module to implement this check and with no

downtime. The Pre-User-Registration extension point could, for instance, be used to send a welcome

email if the user belonged to a specific role, or to notify an external system that a new user had been

created.

The ability to inject Java code at runtime is certainly powerful, but it is not without its risks. There

are two possible attack vectors to abuse this feature: the authorization checks for the API endpoints can

fail, allowing a user without the right permissions to inject an extension in the system or an account with

administrative privileges may be compromised. If the first were to happen, the security of the remainder

endpoints would also have been breached, since Connect delegates the authorization checks to the

Spring Security framework. On the other hand, if an administrator’s account were to be compromised, a

significant amount of user data would also be available through the regular API endpoints.

It could be argued that Connect Extensions should run in a controlled, sandboxed environment, iso-

lated from the rest of the application. While this would certainly be a necessity if the classes came from

an untrusted source, this approach would severely limit the feature’s flexibility. A developer wanting to

53

write a rule to send an SMS or an email under certain conditions can just resort to Spring’s dependency

injection features to @Autowire a EmailGateway or an SMSGateway from the core module instead of hav-

ing to copy the relevant code from this classes to the extension. However, considering the potential

security implications of this feature, which may not be acceptable for some organizations, it can easily

be turned on/off from the application’s configuration properties.

3.4.5 External Integrations

3.4.5.1 Trusted Applications

While Connect implements flexible and comprehensive support for OAuth applications, enabling users

to grant granular permissions to their secure resources this security model is naturally designed for

access delegation. Internal applications still require a way to authenticate users who visit their web

pages directly. These applications are known as Trusted Applications and have access to the following

set of features:

• Key Synchronization: While Connect’s authentication API is open, the public counterpart of the

signing keys used to sign the issued tokens is a protected resource, only available for trusted

applications.

• Revoked Token Synchronization: One of the main disadvantages of using JWT as authentication

tokens is the inability to revoke them in real time once they have been issued. When a token is

manually revoked (by the owner or a system administrator) it is added to a list of revoked (but

not yet expired) tokens that is accessible to trusted applications. Consumers should periodically

refresh this list and reject any token whose ID matches one of the list.

• Single Log-off protocol: Trusted applications are allowed to take part in Connect’s single log-off

protocol.

3.4.5.2 Single log-off protocol

To ensure that trusted applications reject recently revoked authentication tokens without having to rely on

the periodic synchronization of the token revocation lists Connect implements a single log-off protocol.

This implementation is compliant with a recently published draft for a back-channel logout protocol for

OpenID Connect [44].

Trusted applications define a logout handler URL as part of their Connect registration info. When a

user performs a logout on a Connect-enabled application the request is forwarded to a Connect instance

which POSTs the now invalid token information to all registered trusted applications. which can now add

it to their internal revocation lists. If a user attempts to access one of these applications with the old

token it will be found in the client’s revocation list and thus, access will be denied, causing the user to

have to re-authenticate.

The revocation notice is sent as JWT, digitally signed by a valid Connect key, with a sub field corre-

sponding to the user’s id, a tid claim with the revoked token’s ID and a predetermined claim name to

54

identify the event type. Since the token ID uniquely identifies the JWT (thus allowing client applications

to reject it, if found) there is no need to expose the entire token to the network which could be exploited

to perform man in the middle attacks on vulnerable applications. While applications are not required to

implement the logout handler (and thus take part in the Single Log Off protocol) it is highly recommended

they do, to prevent recently revoked tokens from being used to impersonate users (which may happen

until the client applications update their internal revocation lists).

3.4.5.3 SAML Identity Provider

As countries expand their offer for digital services, so does the need for reliable user authentication

across multiple realms. Cross-country identity federation has usually been carried out through the SAML

protocol, which is currently used in some of the most common projects, such as the InCommon Fed-

eration3 in the United States or the European STORK 2.04 project. Academic organizations wanting to

take part in these identity federations need to implement the required support for the SAML protocol as

Identity Providers.

To alleviate this issue, Connect provides an optional module that allows it to act as a SAML IdP,

implemented in the connect-saml package. Since institutions may have the need to take part in mul-

tiple identity federations this module was designed around the concept of SAML Connectors. A SAML

Connector represents a SAML IdP configuration for a specific purpose. Rather than creating SAML

Connectors ad-hoc, each one must be associated with a Trusted Application, which provides additional

context for the integration.

In the SAML protocol, the attributes to be provided after a successful authentication are statically

defined at the time of the initial configuration of the federation. To maintain this list of attributes, Connect

defines the SAMLConnector entity. However, SAML attributes are often identified using Uniform Resource

Names (URNs) which may not correspond to the attribute keys used by Connect’s Profile Providers. To

allow federations to request access to the users’s profile attributes each SAML Connector specifies a

list of mappings between the internal attribute names and the desired URN with which they should be

exposed in the SAML Response. Figure 3.22 provides an overview of how this attribute map is used in

the SAML SSO request flow.

3.4.6 Monitoring and Auditing

3.4.6.1 Logging

Connect takes advantage of Spring’s built in integration with SLF4J5 which provides a common facade

for logs while allowing developers to select from a wide range of concrete logging implementations. This

allows Connect’s log output strategies to vary from simple console output to sophisticated log analysis

tools, such as Greylog6 or Logstash7 with only minor changes to the configuration files and included
3https://www.incommon.org/federation/
4https://www.eid-stork2.eu/
5https://www.slf4j.org/
6https://www.graylog.org/
7https://www.elastic.co/products/logstash

55

Initial Configuration:

Create Trusted Application:
STORK EU

Add SAML Connector:

Mappings:
“orcid”: “urn:orcid:names:orcid”

Configure SAML Peers:

SAML SSO URL: /saml/auth/123132
SAML Metadata URL: /saml/metadata/123132

Send SAML Request to
SAML SSO URL

PrimaryAuthenticationProvidersPrimaryAuthenticationProviders
Profile Providers

Construct SAML Response:

Authenticated Principal: ist987786
Attributes: “urn:orcid:names:orcid”: <user_orcid>

User
Authenticated

?

Authenticate User

Request Validation.
Retrieve SAML Connector Configuration.

ConnectorID: 123132
Mappings: “orcid”: “urn:orcid:names:orcid”

UserProfileProvider:
Get “orcid” profile attribute

Authentication:

Yes

No

Figure 3.22: An overview of the configuration and authentication flows of the SAML Connector.

dependencies. Most of the relevant actions are logged. While the format of these logs is configurable by

each institution (through configuration properties) Connect implements some additional logic to supply

relevant information to the logging agents:

• The use of a Mapped Diagnostics Context (MDC8) allows the application to maintain a thread local

map of information that can be accessed by the logging framework. Connect injects the current

user’s id and the token ID used for authentication in the MDC, which is then appended to each log

line generated by that thread.

• The user’s id is injected in the HTTP session after a successful authentication allowing the appli-

cation server to populate the access logs with the authenticated user.

The use of these techniques reduces the need to manually add the author information to each logger

call, simplifying the log statements. In addition, since this information is part of the log message’s format,

it can easily be parsed and extracted by log analysis tools, allowing system administrators or auditors to

track the sequence of requests made by a given user at some point in time.

3.4.6.2 Audit Log

Application logs are an invaluable tool for monitoring the real-time state of any software component

as well as a major contribution for troubleshooting issues or retracing user behaviour. However, when

performing these actions there is often the need to access information that was only partially logged,

or not logged at all. Developers are left with no choice but to introduce changes to the application’s

codebase that increase the log coverage and wait for the issue to happen again. This might not be

possible in the event of a security breach, where the missing log data could be essential for determining

the extent of the damages. To help to minimize this issue, organizations often resort to audit logs, which

provide an historical view of the application’s data over time. Maintaining an audit log presents a clear

set of advantages:
8https://www.slf4j.org/api/org/slf4j/MDC.html

56

• Troubleshooting/debugging: Having the ability to get a snapshot from the application’s database

for a specific point in time or being able to trace all the changes made to a particular object is an

invaluable tool for tracking down issues that may be otherwise hard to reproduce.

• Usage metrics: While application logs might be enough for gathering basic usage metrics having

the ability to drill down in snapshots of the database may allow for the collection of detailed metrics

that would otherwise not be possible to generate from the logged data.

• Compliance: Having the ability to track changes to user accounts, credentials and roles is es-

sential for compliance with the most common security standards and frameworks, such as the

Payment Card Industry Data Security Standard (PCI DSS9) or the General Data Protection Regu-

lation (GDPR10).

However, the extra information provided by an audit log also poses a few challenges on the audited

applications and their supporting infrastructure. Audit logs generate a significant amount of data, which

has to be persisted to a secure location. The most common audit tools use the same database as

the main application. If the application’s databases are backed up on regular intervals, the same audit

information will be persisted over multiple DB backups. In addition, database writes incur in a natural

performance hit, since there is a need to create additional entries every time a row is modified.

Spring Data JPA ships with basic support for auditing, allowing some metadata, such as an object’s

last modification date and the responsible user to be automatically persisted. While this may be enough

for simpler applications, it is not the case of Connect, where its core role in an organization’s security

layer demands a higher degree of control and accountability over database changes. The solution came

in the form of Envers11, a Hibernate module that provides an automatic audit log for all JPA entities

annotated with @Audited.

Envers works by maintaining a history of revisions, with each one corresponding to a transaction

made to the application’s database. Each transaction is assigned a sequential identifier, which is global

in scope. Figure 3.23 depicts a simple use case. For every object, it is possible to query its revision

history, allowing auditors to track down changes over time. Connect takes advantage of Spring Security’s

authentication context data to augments Envers’ standard revision metadata with the user who originated

it, providing accountability over every change made to the database.

9https://www.pcisecuritystandards.org/documents/PCI DSS v3-2-1.pdf
10https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:02016R0679-20160504&from=EN
11http://hibernate.org/orm/envers/

57

User (id=1) User (id=2) User (id=3)

Revision 1

Revision 2

Revision 3

Revision 4

 - id: 3
 - name : “John”
 - rev : 1
 - revType : 0

User (created)

 - id: 3
 - name : “Mark”
 - rev : 3
 - revType : 1

User (updated)

 - id: 2
 - name : “Mary”
 - rev : 4
 - revType : 2

User (deleted)

Figure 3.23: An example of how Envers uses the concept of revisions to track changes to a set of

objects.

Overall View

Figure 3.24 provides an overall view of how the aforementioned components make up the complete

architecture. The authentication and OAuth sub-systems, being the most directly exposed to the end

user make up the interface layer, where external integrations such as SAML were also included. These

services share a common data source for user data, provided by the components in the identity layer,

which operate on a lower abstraction level and manage accounts, credentials and the direct interface

with the profile providers. The security layer encompasses the components that are manage the user

sessions, issued tokens and overall key management. Finally, as a cross-cutting concern, the audit layer

includes the services responsible for logging all relevant user actions, both through regular logs, audit

logs, and account security events, which are made available to the end user.

User Account Management

Primary
Authentication

Secondary
Authentication

Magic Links Authentication

Authentication Sub-System

OAuth Application Management

OIDC Authentication

OAuth Sub-System

Credentials Management Profile Providers

Key Management Session Management Security Manager

Logging Facilities Audit Logs Account Security Events

Interface
Layer

Identity
Layer

Security
Layer

Audit
Layer

SAML

External Integrations
Sub-System

Figure 3.24: An architectural overview of Connect’s main components and their associated abstract

layers.

58

Chapter 4

Evaluation

This chapter discusses the validation of the implemented solution. While methods based on the quanti-

tative analysis of key metrics (such as the total execution time or resource requirements of a given task)

are often preferred for the evaluation of software applications there were a set of constraints that limited

the effectiveness of these methods in the evaluation of the implemented solution:

• As previously discussed in chapter 1 regarding the motivation of this thesis’s work, FenixEdu Con-

nect is based on the premise of expanding the realm of features that are typically available in the

IAM systems of higher education institutions. As such, it is not expected of this solution to provide

a noticeable improvement in the execution time of common tasks, such as authentication or ac-

cess decisions, preventing any comparison with the existing systems’ performance from providing

a relevant result.

• Most IAM systems which offer a similar feature set to the one implemented in FenixEdu Connect

are proprietary and require comercial licenses that depend on the number of active users. This

renders comparisons with these solutions unfeasible from an economic standpoint, as the appro-

priate licenses would have to be purchased for a significant number of users to be able to conduct

a relevant study.

The most significant validation results would only be achieved for a deployment of this solution in

a production environment, where it could be subject to the common load and usage patterns. Only

then would some of Connect’s main advantages, such as the reduction in the number of support tickets

achieved from the multiple self-served password reset strategies have a measurable (and thus compa-

rable) impact.

While the initial schedule included the deployment of FenixEdu Connect at Instituto Superior Técnico

as part of this thesis, where it would work alongside the existing system for a limited period acting as

the IAM solution for a pre-approved set of non-vital applications, unforeseen circumstances from the

part of IST’s IT department prevented this from happening. The decision to roll out a new IAM system

is never one to be made lightly, due to the sensitive nature of these applications and the data they

are responsible for protecting. The imposed requirement of performing a thorough security audit of the

59

project’s codebase and internal delays in providing a frontend compatible with IST’s design guidelines

dictated this decision.

The remainder of this section will then focus on the evaluation of the implemented solution by ana-

lyzing feature completion, that is, which of the requirements specified in section 3.1 were successfully

implemented in the final product. Following this discussion, a case study outlining a possible Connect

deployment at Instituto Superior Técnico will be presented where the appropriate comparisons with the

comercial alternatives will be made.

4.1 Feature Completion Analysis

This analysis is broken down by functional areas, following a similar structure to section 3.4 where the

solution’s implementation details were outlined.

4.1.1 Authentication

Authentication

Primary Authentication

Feature Completed? Requirement Okta/Auth0

JWT Authentication Tokens Yes R2.1 Yes / Yes

Authentication API Yes R2.1 Yes / Yes

Extensible Primary Authentication Providers Yes R2.2 No / No

Internal Authentication Provider Yes R2.2 Yes / Yes

LDAP Authentication Provider Yes R2.2 Yes / Yes

Passwordless authentication provider - Magic Links Yes R2.2 Yes / Yes

Multi-factor Authentication (MFA)

Feature Completed? Requirement Okta/Auth0

MFA Management API Yes R2.3 Yes / Yes

Extensible MFA Providers Yes R2.3 No / No

Time-based One-Time Password (TOTP) Factor Yes R2.3 Yes / Yes

Universal 2nd Factor (U2F) Yes R2.3 Yes / Yes

SMS Verification Factor Yes R2.3 Yes / Yes

Table 4.1: Authentication Features

Table 4.1 presents an overview of Connect’s authentication features. As described in section 3.4.1.3

passwordless authentication is implemented in a separate package allowing institutions to opt in to

use this provider. Regarding the secondary authentication options, support for the three main types of

providers is available as well as a comprehensive API for managing these factors (creation, removal and

60

verification).

4.1.2 Identity Management

Identity Management

Feature Completed? Requirement Okta/Auth0

User Management API Yes R3.2 Yes / Yes

User Search API Yes R3.2 Yes / Yes

User Invite API Yes R3.3 Yes / Yes

Extensible support for profile providers Yes R3.1 No / No

Internal profile provider Yes R3.1 Yes / Yes

Table 4.2: Identity Management Features

Connect implements the necessary infrastructure to allow organizations to delegate the responsibility

over sets of profile attributes to multiple applications within the organization. These attributes are made

available for both OAuth applications and external connections (from SAML clients, including the re-

quired conversion between its namespace and Connect’s). Additionally, Connect also allows for profile

attributes to be stored in its database. There are, however, no security constraints for these fields (i.e.

no specific role is required to access profile attributes stored directly in the Connect instance).

4.1.3 Access Delegation

Access Delegation

Feature Completed? Requirement Okta/Auth0

OAuth Authorization Server Yes R4.1 Yes / Yes

OAuth Application registration & management API Yes R4.1 Yes / Yes

Scopes management API Yes R4.1 Yes / Yes

Support for all OAuth 2.0 grant types Yes R4.1 Yes / Yes

OpenID Connect Identity Provider Yes R4.2 Yes / Yes

Table 4.3: Access Delegation Features

61

Connect implements a feature-complete OAuth 2 Authorization server with a RESTful API for application,

scope and grant type management. Support for the required endpoints of OpenID Connect is available,

although some of the optional endpoints (such as the discovery and session management features)

were not implemented.

4.1.4 External Integrations

External Integrations

Feature Completed? Requirement Okta/Auth0

Management of authentication interceptors in runtime

(Connect Extensions)

Yes R5.2 No / Yes

SAML Identity Provider Yes R5.3 Yes / Yes

LDAP account synchronization Yes R5.1 Yes / Yes

LDAP Interface (for external queries) No R5.1 Yes / No

Table 4.4: External Integrations

At the heart of Connect’s requirements was the need to support a wide array of existing systems with

different authentication protocols. This was mainly translated in the need to act as a SAML IdP and a

CAS Server to ensure proprietary applications, which could not be updated to use the authentication

API, would still work in an organization with Connect as its IAM system. While support for SAML was

included in a separate package, connect-saml, it was not possible to accommodate support for the CAS

protocol in the project’s timeframe.

Extension points, which allow system administrators to inject custom logic in specific actions at run-

time (such as after a successful authentication) were not part of the initial project requirements. They

were, however, included in the final implementation. We strongly believe the possible applications of

this feature far outweigh the additional development time, which negatively impacted the completeness

of other features such as the LDAP interface, designed to allow external systems to synchronize with

Connect’s user database using the LDAP protocol.

62

4.1.5 Security

Security

Feature Completed? Requirement Okta/Auth0

Secure Key Generation Yes R6.1 - / -

Independent key encryption passwords Yes R6.1 - / -

Security event listings for end users Yes R6.2 Yes / Yes

Session Management with remote session termination Yes R6.3 Yes / Yes

Single log-off protocol Yes R6.3 Yes / Yes

Key segregation (separation between keys used for au-

thentication from keys used to sign OAuth tokens

No R6.1 - / -

Table 4.5: Security Features

Most of Connect’s initial security requirements were accomplished. Support for remote session termi-

nation is built-in but, naturally, requires the client applications to take part in Connect’s Single Log-off

protocol to be effective. Support for specifying the uses of each of Connect’s signing keys was not

completed. Some of the requirements pertain to specific implementation details that are not available

in closed-source products. For this reason, it was not possible to ascertain if the commercial solutions

complied with a set of requirements.

4.1.6 Monitoring & Auditing

Monitoring & Auditing

Feature Completed? Requirement Okta/Auth0

Audit Logs for all domain objects tagged with the au-

thenticated principal for every change event

Yes R7.1 No / No

Comprehensive logging of all relevant activity tagged

with the authenticated principal

Yes R7.2 Yes / Yes

Support for multiple logging implementations and data

analysis tools (Graylog, Logstash, etc...)

Yes R7.2 No / No

Table 4.6: Monitoring and Auditing Features

The implementation complied with the established monitoring and auditing requirements.

63

4.2 Case study: FenixEdu Connect at Instituto Superior Técnico

This section will contextualize the implemented solution in a real life scenario by exploring its possible

deployment at Instituto Superior Técnico as a replacement for the current IAM solution. Seven use cases

will be analyzed, following a similar structure to the previous section.

4.2.1 General Overview of the IAM scenario at IST

On any given day more than one hundred services run on IST’s IT infrastructure, relying on a set of

authentication providers (CAS, OAuth, JWTs, SAML) to authenticate its users. The causes for this

fragmentation are twofold: (1) the decentralized nature of the development process, which has been

carried out by a multitude of organizations within IST ranging from student groups to research units and

(2) the lack of a publicly accessible authentication gateway that allows developers outside the university’s

IT department to authenticate its users.

With the aim of centralizing authentication and providing a consistent experience across its applica-

tions IST introduced a CAS service which provides SSO capabilities to the most used applications within

the organization. While this was clearly a step forward, CAS’s adoption has been less the ideal, with a

significant number of services still running their own authentication logic. This can both be attributed to

the administrative restrictions imposed on the applications that can use the CAS system (which is seen

as an internal tool that should not be used by third party developers) as well as the complex setup and

development cost required to support the CAS protocol as an authentication provider.

The current authentication system is depicted in figure 4.1. At its heart lies an LDAP directory,

which acts the single source of truth for user identities across all IST systems. Services such as the

ID gateway are implemented on top of this user store to provide authentication mechanisms suitable for

each application’s needs. While every year more than one thousand students enrol into IST for the first

time (which requires user accounts to be setup) there is not yet a process to create these accounts ahead

of time. Users enter their personal information on one of the client applications (FenixEdu Academic)

upon their arrival for the first time. This system is set up to periodically export a JSON file with the

account information of all its local users. The file is then periodically queried by an application that

is responsible for creating the appropriate records in the LDAP directory, updating existing ones when

necessary.

4.2.2 Authentication use case

While the use of 2-Factor Authentication has become commonplace on most enterprise organizations

it is still not part of Técnico Lisboa’s centralized authentication. Support for 2FA must be implemented

at the application level, separating the authentication concerns between two entities with CAS handling

the first (more general) authentication layer and the application implementing custom logic to support

2FA and handling its verification. Not only does this put an additional burden on the users, who are

forced to register their 2FA tokens in multiple services as it forces developers to deal with unnecessary

64

Figure 4.1: An overview of the authentication system at IST.

authentication concerns (such as token registration and validation).

Applications that want to enforce 2FA verification to protect sensitive areas (such as administration

portals) or as an additional confirmation step before important actions are taken (such as submitting

a course’s marksheet) are thus faced with the technical challenges of deploying internal support for

these authentication factors. This is a clear violation of the Separation of Concerns principle. When

operating in an environment protected by a SSO system applications should not have to perform custom

authentication logic and should, instead, rely on the existing infrastructure to validate the requestor’s

identity and provide any required personal information.

FenixEdu Connect allows users to register a number of 2FA factors ranging from Time-based One-

Time Passwords, SMS phone numbers or U2F tokens in a centralized application that are made available

on every subsequent authentication attempt. Figure 4.2 provides an overview of how Connect would be

used with one of the existing applications (FenixEdu Academic) to enforce 2FA verification when users

attempted to access the application’s administration portal.

4.2.2.1 Comparison with Commercial Offers

The relevance of 2FA is the current security ecosystem has made it commonplace in most commercial

IAM offerings. Both Okta and Auth0 have comprehensive support for the registration, management and

verification of the main types of 2FA providers. However, there is no support for custom provider types.

The versatility of FenixEdu Connect allows its possible use cases to extend beyond the realm of software

authentication allowing it, for instance, to be integrated with a building’s access control system. In this

65

Figure 4.2: An overview of how Connect can be used to provide global MFA support for the client
applications at IST.

specific situation, it would be feasible to require a combination of three authentication factors (such as

a password, smart-card and TOTP code) to access a especially sensitive area (such as a datacenter).

Commercial solutions lack the versatility to implement these types of advanced identity verification.

4.2.3 Account Management use case

As the number of applications that used the centralized authentication system increased so did the

need to provide users with a quicker and easier way to recover their credentials. The ID project

(https://id.tecnico.ulisboa.pt) aimed to provide both end users and developers with a common

gateway for user authentication augmenting the existing CAS service with additional account manage-

ment tools including a self-served password recovery system. There are currently two reset strategies:

(1) an SMS code sent to the user’s registered mobile phone or (2) the use of the Portuguese Citizen

Card for identity verification. While these strategies played a significant role in the reduction of the IT

Help Desk support tickets for password resets they have had varying degrees of success in the differ-

ent types of IST users. As an example, students rarely update their profile when their phone number

changes. This is especially significant for international students which often purchase Portuguese mo-

bile SIM cards on arrival that are only active during their stay. Future attempts to reset their password

will require access to the registered phone, which is often no longer in service. Since the only alternative

to this strategy is to visit the university’s IT services, students are often left without access to their IST

accounts for extended periods of time.

FenixEdu Connect extends the existing password recovery strategies by offering users the ability to

reset their credentials by email, using an alternative address that may have been previously registered

66

by the user. Since in a Connect-enabled environment applications are offered a unified version of the

user’s profile information it becomes possible for multiple systems to contribute contact information to the

user’s identity record, i.e. both the email provided by the HR management system and the one registered

in the academic management system will be available for use as a password reset option. When the

registered contact information cannot be used for password recovery (either because it is missing or

no longer available) FenixEdu Connect provides an alternative approach consisting of a video call with

a member of the IT support staff, implemented on top of the WebRTC protocol suite. During this call

the support staff member will validate the user’s identity by a predetermined protocol (such as requiring

the user to display her ID card and comparing its photo with the user). If validation is successful, the

member of the support staff will be able to add an additional contact point (an email address or phone

number) to be used by the user for password recovery.

4.2.3.1 Comparison with Commercial Offers

Both Okta and Auth0 have built-in support for account recovery options based on the traditional strate-

gies (SMS and email). There is not, however, support for any custom implementations. FenixEdu’s ex-

tensible approach to password reset strategies allows, for instance, for the development of self-service

solutions. It would be possible to deploy Kiosks across the university where by authenticating with their

national citizen card students would be able to, for instance, reset their lost passwords without having to

visit the university’s IT department with clear advantages to the efficiency of these services.

4.2.4 Identity Provider use case

At IST user identities live in semi-isolated silos maintained by each application, with attributes commonly

duplicated in multiple applications, in some instances with conflicting values. Students who enrol in a

degree fill out their personal information in FenixEdu Academic, which exports a small subset of it to

the core LDAP directory. Other applications may query the LDAP directory for these attributes, but

they are unable to access the information that was left in FenixEdu Academic. As an example, while

FenixEdu Sotis stores the user’s ORCID number, since it isn’t part of the information exported to the

LDAP directory, the user is forced to fill it in FenixEdu Academic if she wants it to be exposed in her

public profile page.

FenixEdu Connect would allow for all applications at IST to share a global view of the user’s profile

data through the use of small add-on modules, known as profile providers, responsible for establishing

an interface between the Connect service and the internal applications. In this scenario, the information

gathered during the student account provisioning would be split and distributed by the systems that

have declared to be authoritative over those specific attributes. As an example, figure 4.3 provides an

overview of how data collected is handed over to multiple systems according to the attributes they are

authoritative over.

Connect provides an abstraction layer over where the profile data is located. Applications are not

made aware of where a specific profile attribute is stored. Rather they request it to be read or written

67

firstName
lastName
birthDate
idDocumentType
idDocumentNumber
taxNumber
address
postalCode
phoneNumber
emailAddress
orcidNumber (optional)
admissionCode
entryPhase
degree

FenixEdu Academic:
Student Enrollment Form

admissionCode
entryPhase
degree

Stored in FenixEdu Academic

orcidNumber

Stored in FenixEdu Sotis

taxNumber

Stored in Payment/Invoice
Management System

firstName
lastName
birthDate
idDocumentType
idDocumentNumber
address
postalCode
phoneNumber
emailAddress

Stored in SAP

FenixEdu Connect
Create Account

Data is stored in
its authoritative source

Figure 4.3: An overview of how data collected in one application can be handed over to multiple systems
according to the attributes they are authoritative over.

through a Connect instance. This flexibility allows for data to be moved between authoritative sources,

without any disruption to the existing applications. As an example, while currently FenixEdu Academic

holds the postal addresses of the registered students, and thus is the authoritative source for this at-

tribute, in the event of the development of a micro-service to hold basic profile data only Connect would

have to be notified about the change in the authoritative source. Since all the applications query the

Connect instance to obtain the user’s address, every system would continue to behave in the same

way, without the need for any further updates. Figure 4.4 provides an overview of how Connect proxies

multiple applications to expose a single user identity to the client applications.

4.2.4.1 Comparison with Commercial Offers

While Auth0 has support for custom user stores, allowing system administrators to define a set of scripts

that run whenever an authentication attempt is made (which allows Auth0 to proxy a remote directory)

all the profile information must be stored in the cloud service itself. Unlike FenixEdu Connect, it isn’t

possible to have Auth0 distribute profile data over a set of authoritative sources.

68

Figure 4.4: An overview of how Connect proxies multiple applications to expose a single user identity to
the client applications.

4.2.5 OAuth use case

Instituto Superior Técnico offers its academic community mobile applications for the two major operating

systems (iOS and Android) 1 enabling users to access their most relevant information, ranging from

course announcements, evaluations or pending payments to canteen menus and car park occupancy

levels. These applications consume a RESTful API exposed in a contribution module compiled alongside

FenixEdu Academic and secured with OAuth, through the Bennu OAuth project. The existing OAuth

implementation relies on Academic to act as an authorization server, responsible for the registration of

client applications, scopes and authorizations. It also exposes all the protected resources in the same

application resulting in a self-contained system.

IST offers a free shuttle service [45] to transport students and academic staff between its two campi.

The shuttle service runs multiple routes, on varying schedules and the required capacity changes every

day. To alleviate this issue an online platform, the Shuttle Management Service (SMS), has been devel-

oped to allow students to book their rides ahead of time, allowing IST personal to reserve enough buses

for each day.

For the mobile applications to be able to offer the ability to reserve shuttle tickets would require them

to be registered in two OAuth authorization servers (FenixEdu Academic and IST’s Shuttle Management

System). Even in the event of both servers sharing the same authentication gateway (allowing the use

of the same credentials to login) the user would still have to authorize access to both applications, each

with its own set of scopes. If the user decided to revoke access to all the data that has been accessed by

1https://tecnico.ulisboa.pt/en/campus-life/services/tecnico-mobile-app/

69

the mobile applications it would be forced to revoke access on both FenixEdu Academic and the shuttle

management service.

The deployment of FenixEdu Connect would severely reduce the complexity of this use case:

1. Both FenixEdu Academic’s and SMS’ developers would register their intended scopes in the orga-

nization’s Connect server, ideally in an hierarchical structure such as academic:read:evaluations

and shutle:bookTickets.

2. The mobile application developers would register an OAuth application in Connect, requesting

access to both scopes.

3. Users who downloaded the applications would be asked authenticate in Connect and authorize

access to both scopes. The application would be granted a signed access token, which would be

used to access the protected resources on both applications.

While developers are still required to be aware of the different locations of each resource (i.e. aca-

demic resources are available in Academic’s API while shuttle information is served from the SMS’s API)

the ability to access both APIs using the same credentials is a fundamental step forward that allows for

the development of OAuth applications that consume information from multiple IST systems.

In addition to the aforementioned features, Connect has native support for OpenID Connect, allowing

developers of OAuth applications to securely authenticate their users while still remaining isolated from

Connect’s Authentication API, reserved for internal applications.

4.2.5.1 Comparison with Commercial Offers

Both comercial solutions offer similar OAuth authorization server and OpenID Connect capabilities.

4.2.6 Session Management use case

Under the current SSO system in place at Instituto Superior Técnico it is impossible to list the current

active sessions for each user or to remotely terminate a single session (or all of them). A user whose

account credentials have been stolen may be unaware of this fact until unusual changes are made

to the account. There is no security warnings for significant location changes between subsequent

authentications or any limit on the amount of invalid password attempts that can be performed on a

specific account. While the existing solution offers single logout within the same session (i.e. all the

sessions started within that browser window are terminated) it is based on an iframe redirect to the

client applications’ specific logout URLs. This is known as a front-channel protocol and requires the user

to remain in the logout page for enough time to visit all the required application logout URLs.

FenixEdu Connect offers complete session management allowing users to, for instance, remotely

terminate any of their active sessions from any device. Users would be able to remotely end a session

that was accidentally left open in a public computer from their device or end all active sessions simul-

taneously. In addition, the implemented solution ships with some basic security measures that detect

70

brute-force attacks and block the originating IP address after a number of incorrect authentication at-

tempts. There is also protection against significant location changes in subsequent login attempts. All of

these events are logged and are made available to the end user who can then evaluate if further security

measures (such as a password reset) are necessary.

4.2.6.1 Comparison with Commercial Offers

Both solutions offer opinionated (and experimental) features of suspicious behaviour detection ranging

from brute force prevention or IP distance checking between logins to password breach detection sys-

tems (which monitor known websites where stolen passwords are often published). These systems,

while currently broader in scope than the ones offered in FenixEdu Connect, suffer from the significant

disadvantage of being static. Developers are not able to customize them to their needs or expand them

to comply with specific security requirements of the organization, a feature which FenixEdu Connect

makes available from the start.

4.2.7 External Integrations use case

Beyond the mentioned authentication mechanisms IST actively takes part in a number of identity feder-

ations, mainly to interface with external vendors (such as Microsoft’s Office365) or scientific publication

repositories. These federations are based on the SAML 2 protocol, previously described in section 2.2.5.

Additionally, CAS and SAML are often seen as competing authentication providers and IST is currently

undergoing a push to phase out CAS within the next years replacing it for SAML in all the applications

that still use this protocol to authenticate its users. The existing SAML IdP lives in the ID Project and,

while effective, is severely limited in the attributes it can provide to the client applications, as its only

attribute source is the university’s LDAP directory.

FenixEdu Connect’s SAML IdP leverages the extensible profile provider infrastructure to allow SAML

client applications to request access to any profile attribute that is managed by Connect, regardless of

the application responsible for maintaining it. Since SAML authentication requests resort to Uniform Re-

source Names (URNs) for attribute names and Connect profile attributes may use a more user friendly

syntax, when creating a new SAML client application in Connect developers are able to specify the map-

ping between the internal attribute names and the URN they wish it is shared with in SAML responses.

4.2.7.1 Comparison with Commercial Offers

Both commercial solutions offer similar SAML IdP features incluiding the ability to map between SAML’s

URN attribute names and internal representations.

Discussion

The previous use cases were a representative, but far from extensive, overview of the IAM challenges

faced at IST and how FenixEdu Connect would help to solve them. Naturally, the commercial nature

71

of the closed-source products requires them to support the latest standards and protocols, which has

shown to be true. However they lack, in many instances, the flexibility to allow developers to extend the

built-in behavior to fit their individual needs, which is exactly one of Connect’s design goals. The anal-

ysed products’ pricing scheme follows a subscription model which can range from 2 to 10$/user/month.

4.2.8 Rollout

The rollout of a complete IAM solution requires careful planning to ensure the least amount of downtime

and reduce the attack surface stemming from incorrect application configurations. As such, we purpose

a rollout plan consisting of four deployment phases that should ensure the gradual transition from the

existing ID system to FenixEdu Connect while still allowing for gradual improvements and security fixes

to be applied without major system disruption.

4.2.8.1 Phase 1: Proof of concept

The initial rollout phase of FenixEdu Connect at Instituto Superior Técnico is designed to validate the

performance profile of the solution under real load conditions. This step is expected to provide valu-

able insights on possible optimizations while also limiting the extent of the damages brought on by any

unidentified security vulnerabilities that may be disclosed during this trial period. While the final list of

applications to be enrolled in this phase would always be subject to approval from the IT department,

both the Group Server and Ticketing applications are prime candidates for the trial phase, due to the

limited amount of personal data they hold. During this period FenixEdu Connect would run alongside the

existing authentication solution, TécnicoID, feeding its user information of the university’s LDAP directory.

4.2.8.2 Phase 2: General rollout

Once the required performance optimizations were identified and carried out the remaining applications

can be switched over to FenixEdu Connect. The development of a Bennu Authentication Provider mod-

ule would instantly allow all Bennu-based applications (such as the FenixEdu suite of products and the

DOT applications) to use Connect, without any further modifications to their codebases. SAML integra-

tions, including Office365, OpenStack or the Portuguese Citizen Card would also be instantly supported

by FenixEdu Connect, since it exposes a SAML 2.0 IdP. The remaining applications that rely on CAS to

perform authentication would have to be refactored to use SAML, OpenID Connect, or consume Con-

nect’s authentication API directly. At this point, Connect should be used by the majority of the active

applications at IST. TécnicoID would still be available to support legacy applications, but it should be

limited to serving requests from those products.

4.2.8.3 Phase 3: Migration of legacy systems

The third deployment phase would consist of the identification of the legacy applications that cannot

be directly ported to FenixEdu Connect and the development of auxiliary systems to overcome this

72

challenge. Solutions may include the development of additional authentication modules, such as support

for Kerberos2 or NTLM3. However, the high adoption rate of open source software at Instituto Superior

Técnico should severely limit the number of applications at this stage.

4.2.8.4 Phase 4: Integration with external entities

The last phase would allow Connect to act as the authentication provider for external systems, that are

rarely included in IAM solutions:

• The implementation of a wrapper around FreeRadius4 would allow Connect to take on the role of

authenticating network access to IST’s wireless network, eduroam.

• An integration module could be developed to allow Connect to interact with the campi’s physical

security system. This would allow, for example, to have a guest user’s account provisioned with

privileges to access a certain room for a limited period of time from day zero. As more rooms have

networked locks installed, so do the inherent advantages of having Connect handle this system.

A simple integration with FenixEdu Gears would allow, for instance, to setup an approval process

(consisting of multiple authorization steps by different people) to grant access to a room. For

sensitive areas (such as a vault or a data center), two-factor authentication (or even the combined

authentication of two or more people) could be implemented with the effort being limited to the

development of a connector module to act as the interface between FenixEdu Connect and the

target system.

2https://web.mit.edu/kerberos/
3https://msdn.microsoft.com/en-us/library/cc236699.aspx
4https://freeradius.org/

73

LDAP Directory Técnico ID FenixEdu
Connect

Group Server

Ticketing System
(SIGA)

Test Realm

Legacy Systems

Eduroam ID Realm

Kerberos

Remaining Systems (CAS)

Bennu Applications

External Federations (SAML)

LDAP Directory Técnico ID FenixEdu
Connect

Test Realm

Legacy Systems

Eduroam

Kerberos

Remaining Systems (CAS)
Bennu Applications

External Federations (SAML)

LDAP Directory FenixEdu
Connect

Test Realm

Legacy Systems

Eduroam

Kerberos

Bennu Applications

External Federations (SAML)

ConnectorRemaining Systems (CAS)

Connector

Phase 1

Phase 2

Phase 3

Figure 4.5: Evolution of FenixEdu Connect’s deployment at IST.

74

Chapter 5

Conclusions

5.1 Conclusions

The constant pressure of migrating an ever increasing number of services to the virtual world has left

organizations struggling with ways to transition existing structures and business practices while still

ensuring the same level of availability, security and accountability offered by their offline counterparts.

IT architectures who were previously limited to serving a small subset of users safely shielded behind

enterprise firewalls had to be reimagined to accommodate the cross-domain nature of today’s systems.

Identity and Access Management systems, through the use of adaptive authentication strategies, clear

authorization and access control rules and advanced reporting and auditing tools will be a decisive

factor in determining the success of this transition, and ultimately the organization’s ability to remain

competitive and relevant in a virtual world.

Commercial vendors have been taking advantage of the demand for IAM solutions by offering tailor-

made solutions based on the client’s specific needs, often in per-user subscription model. While most

of these solutions support the latest authentication and access control protocols the budgetary con-

straints faced by academic organizations often prevent them from taking advantage of these services.

In addition, closed-source solutions inherently lack the flexibility to be extended and adapted to the

organization’s actual needs.

This thesis set out to design and implement the foundations for a customizable Identity and Access

Management system that was able to meet the requirements of a wide array of academic institutions.

While the initial requirement analysis was heavily inspired by the specific challenges faced at Instituto

Superior Técnico, its architecture was designed around the premise of ease of extensibility, limiting the

opinionated decisions to no more than a few sensitive defaults whenever it was justified. Both small to

medium HEIs should be able to customize the final product to fit their specific requirements.

The motivation behind this product was never to develop an entire new authentication technology or

protocol. Rather, it focused on solving a real-world need of academic institutions: to reliably authenticate

its users across a variety of channels and ensure all applications have secure access to their identity. Its

outcome is thus, two-fold: from a theoretical standpoint, it provided the community with a framework for

75

the design of extensible IAM solutions, capable of supporting the custom business practices in place at

each institution. From a practical standpoint, it provided a working solution for how such systems could

be implemented.

As mentioned in section 3.3, the final product still requires a frontend layer to be implemented on top

of the provided Connect Core. This work is already underway at IST’s IT department with the first trials

of the complete Connect solution scheduled to begin in early 2019.

5.2 Future Work

The cross-cutting nature of IAM systems directly translates in the impact these solutions have in the

entire organization’s IT infrastructure. The concrete implementation provided with this thesis focused on

providing a functionally-ready solution that can be used in the initial system trials at IST. However, as it is

expected of a solution that is responsible for protecting a wide range of personal information, FenixEdu

Connect must still undergo a thorough security validation by IST’s IT department before it can be used in

a production environment. Following this, future developments should occur in two concurrent vectors:

• Fostering the adoption of the system by third party developers: This can be accomplished by

developing Connector modules for the most common frameworks and / or programming languages.

In the presence of a simple solution to authenticate with FenixEdu Connect developers may prefer it

over a custom authentication scheme, with the added benefit of being able to take part in Connect’s

SSO realm.

• Extend the system’s supported authentication factors: Connect’s vision is one where it is the

single authentication and identity provider of each implementing institution. While the provided

solution focused on implementing support for the most common authentication protocols, there is

still room for the development of additional features, such as the ability to accept CAS or Kerberos

authentication.

76

Bibliography

[1] M. Stieninger, D. Nedbal, W. Wetzlinger, G. Wagner, and M. A. Erskine. Impacts on the organiza-

tional adoption of cloud computing: A reconceptualization of influencing factors. Procedia Technol-

ogy, 16:85 – 93, 2014. ISSN 2212-0173. doi: https://doi.org/10.1016/j.protcy.2014.10.071. URL

http://www.sciencedirect.com/science/article/pii/S2212017314002989. CENTERIS 2014 -

Conference on ENTERprise Information Systems / ProjMAN 2014 - International Conference on

Project MANagement / HCIST 2014 - International Conference on Health and Social Care Informa-

tion Systems and Technologies.

[2] U. Habiba, R. Masood, M. A. Shibli, and M. A. Niazi. Cloud identity management security issues &

solutions: a taxonomy. Complex Adaptive Systems Modeling, 2(1):5, Nov 2014. ISSN 2194-3206.

doi: 10.1186/s40294-014-0005-9. URL https://doi.org/10.1186/s40294-014-0005-9.

[3] I. Indu, P. R. Anand, and V. Bhaskar. Identity and access management in cloud environment:

Mechanisms and challenges. Engineering Science and Technology, an International Journal, 21

(4):574 – 588, 2018. ISSN 2215-0986. doi: https://doi.org/10.1016/j.jestch.2018.05.010. URL

http://www.sciencedirect.com/science/article/pii/S2215098617316750.

[4] I. S. Técnico. The fenixedu project: an open-source academic information platform, March 2001.

[5] K. Shu, S. Wang, J. Tang, R. Zafarani, and H. Liu. User identity linkage across online social

networks: A review. SIGKDD Explor. Newsl., 18(2):5–17, Mar. 2017. ISSN 1931-0145. doi: 10.

1145/3068777.3068781. URL http://doi.acm.org/10.1145/3068777.3068781.

[6] J. L. Camp. Digital identity. IEEE Technology and Society Magazine, 23(3):34–41, Fall 2004. ISSN

0278-0097. doi: 10.1109/MTAS.2004.1337889.

[7] P. Windley. Digital Identity. O’Reilly Media, Inc., 2005. ISBN 0596008783.

[8] Microsoft Corporation. Identity and access management, 2004. https://msdn.microsoft.com/

en-us/library/aa480030.aspx, Last accessed on 2018-09-04.

[9] R. Wash, E. Rader, R. Berman, and Z. Wellmer. Understanding password choices: How frequently

entered passwords are re-used across websites. In Twelfth Symposium on Usable Privacy and

Security (SOUPS 2016), pages 175–188, Denver, CO, 2016. USENIX Association. ISBN 978-

1-931971-31-7. URL https://www.usenix.org/conference/soups2016/technical-sessions/

presentation/wash.

77

http://www.sciencedirect.com/science/article/pii/S2212017314002989
https://doi.org/10.1186/s40294-014-0005-9
http://www.sciencedirect.com/science/article/pii/S2215098617316750
http://doi.acm.org/10.1145/3068777.3068781
https://msdn.microsoft.com/en-us/library/aa480030.aspx
https://msdn.microsoft.com/en-us/library/aa480030.aspx
https://www.usenix.org/conference/soups2016/technical-sessions/presentation/wash
https://www.usenix.org/conference/soups2016/technical-sessions/presentation/wash

[10] J. H. Saltzer and M. D. Schroeder. The protection of information in computer systems, 1975.

[11] D. Ferraiolo and R. Kuhn. Role-based access control. In In 15th NIST-NCSC National Computer

Security Conference, pages 554–563, 1992.

[12] C. Emig, F. Brandt, S. Kreuzer, and S. Abeck. Identity as a service – towards a service-oriented

identity management architecture. In A. Pras and M. van Sinderen, editors, Dependable and Adapt-

able Networks and Services, pages 1–8, Berlin, Heidelberg, 2007. Springer Berlin Heidelberg.

ISBN 978-3-540-73530-4.

[13] Cypher Research Laboratories. A brief history of cryptography, 2006. http://www.cypher.com.

au/crypto_history.htm, Last accessed on 2018-09-04.

[14] W. Diffie and M. Hellman. New directions in cryptography. IEEE Transactions on Information Theory,

22(6):644–654, November 1976. ISSN 0018-9448. doi: 10.1109/TIT.1976.1055638.

[15] A. J. Menezes, S. A. Vanstone, and P. C. V. Oorschot. Handbook of Applied Cryptography. CRC

Press, Inc., Boca Raton, FL, USA, 1st edition, 1996. ISBN 0849385237.

[16] S.-T. Sun and K. Beznosov. The devil is in the (implementation) details: An empirical analysis of

oauth sso systems. In Proceedings of the 2012 ACM Conference on Computer and Communica-

tions Security, CCS ’12, pages 378–390, New York, NY, USA, 2012. ACM. ISBN 978-1-4503-1651-

4. URL http://doi.acm.org/10.1145/2382196.2382238.

[17] E. Hammer-Lahav. The OAuth 1.0 Protocol. RFC 5849, April 2010. URL https://tools.ietf.

org/html/rfc5849.

[18] D. Hardt. The OAuth 2.0 Authorization Framework. RFC 6749, October 2012. URL https://

tools.ietf.org/html/rfc6749.

[19] Facebook. Facebook: Access tokens - facebook login - documentation, 2017. URL https://

developers.facebook.com/docs/facebook-login/access-tokens/.

[20] Google. Using oauth 2.0 to access google apis — google identity platform, 2016. URL https:

//developers.google.com/identity/protocols/OAuth2.

[21] Twitter. Twitter: Oauth twitter developers, 2017. URL https://dev.twitter.com/oauth.

[22] S.-T. Sun, Y. Boshmaf, K. Hawkey, and K. Beznosov. A billion keys, but few locks: The crisis of web

single sign-on. In Proceedings of the 2010 New Security Paradigms Workshop, NSPW ’10. ACM,

2010. ISBN 978-1-4503-0415-3. URL http://doi.acm.org/10.1145/1900546.1900556.

[23] S.-T. Sun. Simple but not secure: An empirical security analysis of oauth 2.0-based single sign-on

systems. 01 2018.

[24] S.-T. Sun, E. Pospisil, I. Muslukhov, N. Dindar, K. Hawkey, and K. Beznosov. What makes users

refuse web single sign-on?: An empirical investigation of openid. In Proceedings of the Seventh

78

http://www.cypher.com.au/crypto_history.htm
http://www.cypher.com.au/crypto_history.htm
http://doi.acm.org/10.1145/2382196.2382238
https://tools.ietf.org/html/rfc5849
https://tools.ietf.org/html/rfc5849
https://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/rfc6749
https://developers.facebook.com/docs/facebook-login/access-tokens/
https://developers.facebook.com/docs/facebook-login/access-tokens/
https://developers.google.com/identity/protocols/OAuth2
https://developers.google.com/identity/protocols/OAuth2
https://dev.twitter.com/oauth
http://doi.acm.org/10.1145/1900546.1900556

Symposium on Usable Privacy and Security, SOUPS ’11, New York, NY, USA, 2011. ACM. ISBN

978-1-4503-0911-0. URL http://doi.acm.org/10.1145/2078827.2078833.

[25] T. O. Foundation. OpenID Authentication 2.0. Specification, OIDF, December 2007. URL http:

//openid.net/specs/openid-authentication-2_0.html.

[26] N. Sakimura, J. Bradley, M. Jones, B. de Medeiros, and C. Mortimore. OpenID Connect Core 1.0.

Specification, OIDF, November 2014. URL http://openid.net/specs/openid-connect-core-1_

0.html.

[27] N. Sakimura, J. Bradley, M. Jones, and E. Jay. OpenID Connect Discovery 1.0. Specification, OIDF,

November 2014. URL http://openid.net/specs/openid-connect-discovery-1_0.html.

[28] M. Jones, J. Bradley, and N. Sakimura. JSON Web Token (JWT). RFC 7519, IETF, May 2015. URL

https://tools.ietf.org/html/rfc7519.

[29] S. Peyrott. The JWT Handbook. Auth0, 2016.

[30] M. Jones, J. Bradley, and N. Sakimura. JSON Web Signature (JWS). RFC 7515, IETF, May 2015.

URL https://tools.ietf.org/html/rfc7515.

[31] M. Jones and J. Hildebrand. JSON Web Encryption (JWE). RFC 7516, IETF, May 2016. URL

https://tools.ietf.org/html/rfc7516.

[32] M. Jones. JSON Web Key (JWK). RFC 7517, IETF, May 2015. URL https://tools.ietf.org/

html/rfc7517.

[33] Organization for the Advancement of Structured Information Standards. Security assertion markup

language (saml) v2.0, 2005.

[34] Okta. Okta. https://www.okta.com. Accessed: 18-12-2017.

[35] S. Consortium. Shibboleth. https://www.shibboleth.net/. Accessed: 18-12-2017.

[36] E. Emandii. Authentication - threats and countermeasures. Mircea cel Batran, Naval Academy

Scientific Bulletin, XIX(1):4, Nov 2016. doi: 10.21279/1454-864X-16-I1-063. URL https://doi.

org/10.21279/1454-864X-16-I1-063.

[37] E. Ikhalia and C. Imafidon. The need for two factor authentication in social media. In Proceedings

of the International Conference on Future Trends in Computing and Comunication, FTCC 2013,

pages 76–82, 2013. doi: 10.3850/978-981-07-7021-1 16.

[38] D. M’Raihi, S. Machani, M. Pei, and J. Rydell. TOTP: Time-Based One-Time Password Algorithm.

RFC 6238, IETF, May 2011. URL https://tools.ietf.org/html/rfc6238.

[39] S. S., B. D., and T. E. Fido universal 2nd factor (u2f) overview, version v1. 0-

rd-20140209, 2014. URL https://fidoalliance.org/specs/fido-u2f-v1.0-rd-20140209/

fido-u2f-overview-v1.0-rd-20140209.pdf.

79

http://doi.acm.org/10.1145/2078827.2078833
http://openid.net/specs/openid-authentication-2_0.html
http://openid.net/specs/openid-authentication-2_0.html
http://openid.net/specs/openid-connect-core-1_0.html
http://openid.net/specs/openid-connect-core-1_0.html
http://openid.net/specs/openid-connect-discovery-1_0.html
https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7515
https://tools.ietf.org/html/rfc7516
https://tools.ietf.org/html/rfc7517
https://tools.ietf.org/html/rfc7517
https://doi.org/10.21279/1454-864X-16-I1-063
https://doi.org/10.21279/1454-864X-16-I1-063
https://tools.ietf.org/html/rfc6238
https://fidoalliance.org/specs/fido-u2f-v1.0-rd-20140209/fido-u2f-overview-v1.0-rd-20140209.pdf
https://fidoalliance.org/specs/fido-u2f-v1.0-rd-20140209/fido-u2f-overview-v1.0-rd-20140209.pdf

[40] K. Sælensminde and V. Boonjing. A simple password less authentication system for web sites.

In 2010 Seventh International Conference on Information Technology: New Generations, pages

132–137, April 2010. doi: 10.1109/ITNG.2010.154.

[41] M. Jones, J. Bradley, M. Machulak, and P. Hunt. OAuth 2.0 Dynamic Client Registration Protocol.

RFC 7591, July 2015. URL https://tools.ietf.org/html/rfc7591.

[42] M. Jones and D. Hardt. The OAuth 2.0 Authorization Framework: Bearer Token Usage. RFC 6750,

October 2012. URL https://tools.ietf.org/html/rfc6750.

[43] J. Richer. OAuth 2.0 Token Introspection. RFC 7662, October 2015. URL https://tools.ietf.

org/html/rfc7662.

[44] M. Jones and J. Bradley. OpenID Connect Back-Channel Logout 1.0 - draft 04. Specification, OIDF,

January 2017. URL http://openid.net/specs/openid-connect-backchannel-1_0.html.

[45] I. S. Técnico. Mobility and transports. https://tecnico.ulisboa.pt/en/campus-life/services/

mobility-and-transports/. Accessed: 2019-10-14.

80

https://tools.ietf.org/html/rfc7591
https://tools.ietf.org/html/rfc6750
https://tools.ietf.org/html/rfc7662
https://tools.ietf.org/html/rfc7662
http://openid.net/specs/openid-connect-backchannel-1_0.html
https://tecnico.ulisboa.pt/en/campus-life/services/mobility-and-transports/
https://tecnico.ulisboa.pt/en/campus-life/services/mobility-and-transports/

Appendix A

API Endpoints

The following section outlines the complete list of API endpoints exposed by FenixEdu Connect.

Note: The base path (/api/v1/) has been omitted for brevity.

Authentication

Method Path Description

POST /auth Performs primary authentication

GET /auth/factors Returns the available MFA factors

GET /users/{userId}/factors Returns the user’s enrolled MFA

factors

POST /users/{userId}/factors Enrols a new MFA factor

DELETE /users/{userId}/factors Removes an enrolled MFA factor

POST /users/{userId}/factors/{factorId}/activate Activates an enrolled MFA factor

POST /users/{userId}/factors/{factorId}/

startVerification

Begins the verification transaction of

an enrolled MFA factor

POST /users/{userId}/factors/{factorId}/verify Concludes the verification transac-

tion of an enrolled MFA factor

POST /auth/magicLink Requests a magic link

POST /auth/magicLink/{code} Redeems a magic link

Session Management

Method Path Description

GET /users/{userId}/authorizations Lists the user’s active sessions

DELETE /users/{userId}/authorizations Revokes all active sessions

DELETE /users/{userId}/authorizations/{sessionId} Revokes a session

A.1

/auth
/auth/factors
/users/{userId}/factors
/users/{userId}/factors
/users/{userId}/factors
/users/{userId}/factors/{factorId}/activate
/users/{userId}/factors/{factorId}/startVerification
/users/{userId}/factors/{factorId}/startVerification
/users/{userId}/factors/{factorId}/verify
/auth/magicLink
/auth/magicLink/{code}
/users/{userId}/authorizations
/users/{userId}/authorizations
/users/{userId}/authorizations/{sessionId}

Account Management

Method Path Description

GET /users Returns a list of all users

POST /users Creates a new user account

POST /users/invite Creates a new user account invite

GET /users/current Returns the authenticated user

GET /users/find Performs a user search

PUT /users/{userId}/credentials/password Updates the user’s password

POST /users/{userId}/credentials/reset_password Requests a password reset

POST /users/{userId}/credentials/reset_password/

{code}

Concludes a password reset

PUT /users/{userId}/username Updates the user’s username

PUT /users/{userId}/roles Updates the user’s roles

POST /users/{userId}/lifecycle/activate Activates an account

POST /users/{userId}/lifecycle/suspend Suspends an account

POST /users/{userId}/lifecycle/reactivate Reactivates an account

POST /users/{userId}/lifecycle/deprovision Deprovisions an account

POST /users/{userId}/lifecycle/deprovision Deprovisions an account

Trusted Applications

Method Path Description

GET /trusted-applications Returns a list of all trusted applica-

tions

POST /trusted-applications/ Create a new trusted application

DELETE /trusted-applications/ Remove an existing trusted applica-

tion

PUT /trusted-applications/{appId} Regenerate API key for a trusted

application

POST /trusted-applications/{appId}/connectors/saml Create a SAML connector for a

trusted application

GET /sync/keys Sync signing keys

GET /sync/token/revoked Sync revoked tokens

A.2

/users
/users
/users/invite
/users/current
/users/find
/users/{userId}/credentials/password
/users/{userId}/credentials/reset_password
/users/{userId}/credentials/reset_password/{code}
/users/{userId}/credentials/reset_password/{code}
/users/{userId}/username
/users/{userId}/roles
/users/{userId}/lifecycle/activate
/users/{userId}/lifecycle/suspend
/users/{userId}/lifecycle/reactivate
/users/{userId}/lifecycle/deprovision
/users/{userId}/lifecycle/deprovision
/trusted-applications
/trusted-applications/
/trusted-applications/
/trusted-applications/{appId}
/trusted-applications/{appId}/connectors/saml
/sync/keys
/sync/token/revoked

OAuth

Method Path Description

GET /oauth/applications/all Returns a list of all registered appli-

cations

GET /oauth/applications Returns the authenticated user’s

applications

POST /oauth/applications Creates a new OAuth application

PUT /oauth/applications/{appId} Updates an OAuth application’s

data

POST /oauth/applications/{appId}/scopes/{scopeId} Adds a scope to an application

DELETE /oauth/applications/{appId}/scopes/{scopeId} Removes a scope from an applica-

tion

POST /oauth/applications/{appId}/grant/{grantId} Adds a grant type to an application

DELETE /oauth/applications/{appId}/grant/{grantId} Removes a grant type from an ap-

plication

GET /oauth/scopes Returns the available scopes

POST /oauth/scopes Creates a new scope

PUT /oauth/scopes/{scopeId} Edits an existing scope

DELETE /oauth/scopes/{scopeId} Removes an existing scope

POST /oauth/authorize Get data for authorization request

form

POST /oauth/confirm_access Authorize an OAuth application

POST /oauth/token Exchange a grant for OAuth creden-

tials

A.3

/oauth/applications/all
/oauth/applications
/oauth/applications
/oauth/applications/{appId}
/oauth/applications/{appId}/scopes/{scopeId}
/oauth/applications/{appId}/scopes/{scopeId}
/oauth/applications/{appId}/grant/{grantId}
/oauth/applications/{appId}/grant/{grantId}
/oauth/scopes
/oauth/scopes
/oauth/scopes/{scopeId}
/oauth/scopes/{scopeId}
/oauth/authorize
/oauth/confirm_access
/oauth/token

A.4

	Acknowledgments
	Resumo
	Abstract
	List of Tables
	List of Figures
	Nomenclature
	Glossary
	1 Introduction
	1.1 The FenixEdu Project
	1.2 Objectives
	1.3 Thesis Outline

	2 Related Work
	2.1 Theoretical Overview
	2.1.1 Digital Identity
	2.1.2 Identity Management
	2.1.3 Identity Federation
	2.1.4 Public Key Cryptography
	2.1.5 Digital Signatures
	2.1.6 Digital Certificates and Public Key Infrastructure

	2.2 Technologies
	2.2.1 OAuth
	2.2.2 OpenID
	2.2.3 OpenID Connect
	2.2.4 JSON Web Token (JWT)
	2.2.5 SAML

	2.3 Existing Solutions
	2.3.1 Okta
	2.3.2 Auth0
	2.3.3 Shibboleth

	3 Proposed Solution
	3.1 System Requirements
	3.2 Integration Goals
	3.3 Architecture
	3.3.1 Overview
	3.3.2 Backend

	3.4 Implementation Details
	3.4.1 Authentication
	3.4.2 User Management
	3.4.3 OAuth Authorization Server
	3.4.4 Security
	3.4.5 External Integrations
	3.4.6 Monitoring and Auditing

	4 Evaluation
	4.1 Feature Completion Analysis
	4.1.1 Authentication
	4.1.2 Identity Management
	4.1.3 Access Delegation
	4.1.4 External Integrations
	4.1.5 Security
	4.1.6 Monitoring & Auditing

	4.2 Case study: FenixEdu Connect at Instituto Superior Técnico
	4.2.1 General Overview of the IAM scenario at IST
	4.2.2 Authentication use case
	4.2.3 Account Management use case
	4.2.4 Identity Provider use case
	4.2.5 OAuth use case
	4.2.6 Session Management use case
	4.2.7 External Integrations use case
	4.2.8 Rollout

	5 Conclusions
	5.1 Conclusions
	5.2 Future Work

	Bibliography
	A API Endpoints

