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Recombinant proteins (e.g. biopharmaceuticals, food processing enzymes, etc) are increasingly becoming more relevant in
Biotechnology and Pharmaceutical industries. Current approaches for microbial strain optimization for industrial purposes rely heavily
on modern Systems Biology. Regarding in silico methods, the most prominent currently comprise constraint-based modelling of cell
metabolism, from central carbon metabolism to genome-scale models. Such approaches are used to solve metabolic engineering
problems to fulfill an industrial objective and can be divided into phenotype prediction and pathway analysis (PA) methods. Unlike
phenotype prediction, PA methods try to provide a more unbiased perspective but heavily depend on the complexity and scale of
the model. The aim of this work is to apply a PA method (minimal cut sets) to the optimization of plasmid and recombinant protein
production. For this purpose, a novel implementation of an efficient algorithm for enumeration of minimal cut sets developed by Vieira
(2015) was used. The case study selected is based on a work performed by Pandey et al. (2018) and it involves interferon gamma
production. Using an E. coli central metabolism model, different MCS enumeration problems were developed, for which knockout
strategies were determined. An exploratory data analysis (principal component analysis and hierarchical clustering analysis) of the
solutions was performed to select a few knockout sets for further analysis. The latter was performed to study the flux distributions and
highlight different mechanisms of plasmid and/or product synthesis. From these analysis, it was possible to conclude that deletion
of genes pgi, pck and udhA/ptnAB seem promising to increase in vivo plasmid and/or recombinant protein production. In addition,
a further detailed analysis regarding genome-scale modelling would be beneficial to corroborate the results and add new knockout
suggestions.

Keywords: Recombinant proteins; Constraint-based metabolic modelling; Flux balance analysis; Metabolic engineering; Pathway
analysis; Minimal cut sets

INTRODUCTION

Recombinant Proteins. Result from the expression of recombinant
DNA that is introduced within a cell by genetic engineering methods.
Over-expression of these therapeutically relevant proteins is increas-
ingly a research area of interest for the Biotechnology and Pharma-
ceutical industry, as today over 100 recombinant proteins are used as
therapeutic agents (Clark et al., 2016).

The most commonly used host for over-expressing these proteins
is E. coli, provided that post-translational modifications are not essen-
tial. This preference is based on E. coli genome being sequenced and
extensively annotated; E. coli has a fast duplication time; cell culture
is affordable; straightforward genetic manipulation strategies; and high
potential to produce large protein amounts (Liu et al., 2005; Waegeman
et al., 2015).

In addition to host-related problems, expressing these recombinant
proteins at large-scale has its own obstacles such as, a high copy
number of plasmids may lead to an increased metabolic burden, re-
ducing host growth and often increasing plasmid instability (Liu et al.,
2015). With classical strain optimization methods, new microbial facto-
ries were developed based on the generation of mutants and selection
of strains that have desirable phenotypic characteristics. These mu-
tants were created by inducing random mutations through chemicals,
radiation or transposons. Then, in a screening test, these mutants
would grow in desired conditions and those that survived would be fur-
ther optimized in new conditions or used for the purpose. However, in
the start of the 21st century, with the development of systems biology
and synthetic biology towards utilizing cellular network models com-
bined with mathematical methods, metabolic engineering rationale had

shifted. New computational methods, such as flux balance analysis
(FBA) and constraint-based modelling (CBM), emerged and gave birth
to a metabolic engineering era where strain optimization is first per-
formed in silico and then tested in vivo. Instead of randomly screening
numerous mutants, computational metabolic engineering is becoming
increasingly a more direct and straightforward approach, that is con-
tinuously being improved throughout the years by the addition of new
levels of complexity to the networks, as well as development of new
methods and algorithms (Yang et al.,2007).

Constraint-based Models. Are static models where the reactions
stoichiometry and reversibility constraints are added to a network
metabolic topology. This network topology comprises m intracellular
metabolites and n reactions that are represented by a m × n ma-
trix S, containing all stoichiometric coefficients (stoichiometric matrix).
In these models, it is assumed that, metabolite concentration is time-
invariant and the system is in steady-state, consequently leading to a
system of linear equations (Szallasi et al., 2010):

S · v = 0 (1)

where v is the vector of fluxes (or rates) for each individual reaction.
Additionally, constraints that are expressed by linear equations or in-
equalities can be added. Regarding reaction capacity, one can define
a range of acceptable flux values for each reaction. This is done by
adding a upper bound ubi and a lower bound lbi to a reaction i, which
will impose a maximum and minimum value, respectively.

lbi ≤ vi ≤ ubi (2)
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Capacities can also be translated in reaction reversibilities. If a re-
action i is considered irreversible then lbi ≥ 0, whereas if lbi < 0
the reaction is reversible. When there is no knowledge in regards to
capacities the reaction rates limits are set to ±∞.

Given a stoichiometric matrix S with m × n dimensions, usually
there are more reactions n than the number m of internal metabolites.
Consequently, this system defined by Equations 1 and 2 will be unde-
termined (m ≤ n) and all feasible solutions are contained in a space
as a convex polyhedral cone hereby referred to as P .

Flux Balance Analysis (FBA). Is a widely used phenotype prediction
method to study biochemical networks. It calculates the flow of metabo-
lites through a metabolic network, finding biologically relevant solutions
whether by predicting the growth rate of an organism or the maximum
production of a biotechonologically relevant product (Orth et al., 2010).

To formulate a FBA problem, in addition to the constraint-based
modelling conditions, a linear objective function is required. This func-
tion is defined by choosing a relevant biological objective in the study
(Orth et al., 2010). For example, in the case of growth prediction, the
objective is biomass production. Mathematically, an objective function
is used to quantitatively define how much each reaction contributes to
the phenotype and can be formulated as

Z = cTv (3)

where c is the coefficient vector that defines the contributing weight
of each flux in the objective function (Pfau et al., 2011).

The metabolic network mathematical representation together with
the objective define a system of linear equations, whose optimization
problem can be generally solved using linear programming (LP) (Szal-
lasi et al., 2010). The general formulation for a simple FBA optimization
problem is given as follows:

max
v

Z = f(v)

s.t. S · v = 0

lbi ≤ vi ≤ ubi

(4)

Parsimonious enzyme usage FBA (pFBA). Is a derivative from FBA
where a second layer of optimization criteria is added making it a bilevel
linear programming problem. It relies on the minimization of gene-
associated protein cost while maintaining optimal growth. The pFBA
optima represents set of genes associated with maximum growth as
well as minimum-flux solutions, thereby predicting the most stoichio-
metrically efficient pathways.

This approach finds a flux distribution with minimum absolute val-
ues among the alternative optima, assuming that the cell attempts to
achieve the selected objective function while allocating the minimum
amount of resources (i.e. minimal enzyme usage).

Pathway Analysis (PA). In contrast to methods such as FBA, is able
to identify all metabolic flux vectors without imposing any objective
function. Instead, they characterize the complete space of admissible
steady-state flux distributions by functional/structural units alternately
to searching specific flux vectors. Thus, PA attempts to provide an un-
biased perspective of the theoretical limits of the network as a whole.

Elementary Flux Modes (EFM). Considering the constraint-based
modelling framework, an elementary mode represents the smallest
functional unit within it. Any elementary mode e is a flux distribution
that fulfills the following proprieties:

• Pseudo steady state: According to Equation 1, no metabolite is
consumed or produced in the overall stoichiometry.

• Feasibility: All fluxes have to be thermodynamically feasible and
abide to their reaction reversibility. Hence, formally it requires that
all rates vi ≥ 0 if reaction i ∈ irrev.

• Non-decomposability: This is the central property of EFMs and
states that these flux distributions (or modes) represent the mini-
mal functional units in a network. Hence, no reaction with a non-
null flux value can be deleted from it, while still yielding a valid
flux pattern. This feature is also known as genetic independence
as this condition implies that the participating enzymes in one
pathway are not a subset in another pathway.

Any point contained within P can be defined as a linear combination
of elementary modes. It is possible to find desirable solutions to the
metabolic model by finding points described by non-null combinations
of elementary modes contained within a desired set of flux vectors D.
Conversely, any set of undesired flux vectors (target vectors) T can be
blocked by disabling elementary modes contained within that space.

Minimal Cut Sets (MCS). Are a complementary concept to EFMs. A
cut set of T is a set of reactions that need to be removed to inactivate
a specified target reaction T . If no reactions can be removed from
the cut set without rendering it unable to block the vectors in T , it is
considered a minimal cut set (MCS) (Klamt & Gilles, 2004; Clark &
Verwoerd, 2012).

However, MCSs do not necessarily guarantee the set of desired
EFMsD will not be blocked as well. To account for the need of keeping
some reactions/EFMs intact, the concept of constrainted MCS (cMCS)
can be introduced. An MCS is considered a constrained minimal cut
set if it blocks all EMs describing the space in T , as well preserving a
minimum number n of desired EFMs inD. This results in a set of reac-
tions ready to be deleted from the network and that are still guaranteed
to provide the desired functionalities (Hadicke & Klamt, 2011).

MATERIALS AND METHODS

Metabolic Model. A detailed network of the central metabolic path-
ways (Central Metabolism Model - CMM) used throughout this work
has its foundation in a model constructed by Pandey et al., 2018. It is a
small detailed network of the E.coli central carbon metabolic pathway.
This network comprises 100 metabolites and 114 reactions (Supple-
mentary Data A), where 9 are exchange and 17 are reversible (the
remainder are internal and irreversible reactions). Biomass pseudo re-
action was constructed with amino acids, nucleotides, lipids and other
requirements. Recombinant proteins and plasmids were synthesized
using amino acids and nucleotides, respectively, accounting energy ex-
penditures.

Model Formulations. The objective was to construct stoichiometric
reactions for the synthesis of a plasmid, its resistance marker and a re-
combinant protein. Additionally, different protein producing metabolic
networks and ways to formulate the enumeration problems were devel-
oped.

• Recombinant Protein The selected model protein for this work
was the human interferon gamma (IFNγ) as studied by Pandey et al.,
2018. This synthesis reaction was included by quantifying the per mole
amino acid requirement for the His-tagged IFNγ (Supplementary Data
B) and assuming 4.3 ATPs per peptide bond as it is, approximately,
the necessary energy to condensate two amino acids. Protein primary
sequence and composition is available at NCBI database reference
sequence number NP 000610.2 (Interferon gamma precursor [homo
sapiens]) and to this sequence, a 6 histidines His-tag was added to
perform stoichiometric computations, consistent with the protein pro-
duced experimentally by Pandey et al.(2018).
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• Plasmid The selected model plasmid for this work was the
pET28a vector system from Novagen as used by Pandey et al., 2018.
This synthesis reaction was included by quantifying the per mole de-
oxyribonucleotide triphosphate (dNTP) requirement for the pET28a-
IFNγ system (considering the His-tag) (Supplementary Data B). The
necessary energy to condensate two dNTPs was assumed to be ap-
proximately 1.36 ATPs per nucleotide bond. Plasmid primary se-
quence and composition is available at Addgene database and to
this sequence, a nucleotidic IFNγ sequence that is available at NCBI
database accession reference AB451324.1 was added to perform sto-
ichiometric computations.

• Resistance Marker A reaction was added based on the plas-
mid antibiotic resistance. The pET28-a vector system presents a
kanamycin resistance marker and thus a reaction was included quan-
tifying the per mole amino acid requirement for the production of
the enzyme that confers resistance to kanamycin (aminoglycoside O-
phosphotransferase APH(3’)-Ia). The energy expenditures were as-
sumed to be 4.3 ATPs per peptide bond and the primary sequence
and composition of this phosphotransferase was obtained from NCBI
database reference sequence number WP 000018329 (aminoglyco-
side O-phosphotransferase APH(3’)-Ia [Bacteria] (kanR)).

• Model Configurations In addition to the metabolic reactions
present in the models, different ways to balance the equations of plas-
mid and/or IFNγ synthesis were considered, giving rise to different
ways to represent the E. coli K12 system. In total 4 different balance
equation formulations were created and all the changes were done in
MATLAB using COBRA Toolbox.

The base model is the simplest and comprises only a reaction to
account for plasmid synthesis. It does not contain in its stoichiometric
matrix any information regarding IFNγ and phosphotransferase. Thus,
this model is built on an assumption that plasmid and recombinant pro-
tein production are directly proportional, meaning that the more plas-
mids there are, the more recombinant proteins will be translated from
those plasmids at a given time. Equation 5 represents, without ade-
quate stoichiometry, the reaction added to this model.

∑
pET28a-IFNγ dNTPs + ATP→ Plasmid

+ ADP + Pi
(5)

Moreover, another level of detail was added to the previous base
model. A IFNγ synthesis reaction was added and is independent from
the plasmid reaction. This model treats both plasmid and recombinant
protein as uncorrelated entities. From this model, it can be interesting
to visualize the flux to one product or another since their monomers’
origin is metabolically distinct. The following Equation 6 represents the
new reaction added.

∑
IFNγ amino acids + ATP→ IFNγ + ADP + Pi (6)

For the third model, a resistance marker synthesis reaction was
joined to the previous model. This reaction is independent from the
plasmid and IFNγ reaction, only relying on its primary amino acid se-
quence as precursors. All the entities are uncorrelated and indepen-
dent from each other. From this model, it can be interesting to inves-
tigate how the system behaves and what options are available when
constraints are imposed.

∑
Phosphotransferase amino acids + ATP

→ Phosphotransferase + ADP + Pi
(7)

Table 1 summarizes all the models previously described, as well as
a key that will be used throughout this work to simplify the analysis
when referring to each model.

Table 1: Model configuration key and main aspects summary based on the
previously described balance equations.

Model Equations Comment

A Eq. 5
Plasmid production.

Base model simplest configuration.

B
Eq. 5
Eq. 6

Plasmid and IFNγ production.
Independent reactions.

C
Eq. 5
Eq. 6
Eq. 7

Plasmid, IFNγ and phosphotransferase production.
Independent reactions.

• Problem Configurations In addition to the distinct model con-
structions, different enumeration problem configurations were devel-
oped based on yield constraints. In total, four different configurations
were implemented (Table 2). The first constraint to be tested was to
block solutions where product per biomass yield was below a certain
threshold. These products may be the plasmid, IFNγ and phospho-
transferase, depending on which model is used. For instance, for
model A it is only possible to perform simulations blocking low plas-
mid per biomass yield. However, model B simulations may have, in
addition to plasmid, IFNγ per biomass yield constraints. These con-
straints are treated and computed individually, hence one simulation
per product yield constraint is performed. Similarly, in the second set of
constraints, product per biomass yield is considered. However, in this
configuration, simulations are run considering all possible constraints
at the same time (instead of individually). For instance, in model C, one
simulation is run where it will be considered a plasmid, IFNγ and phos-
photransferase per biomass yield threshold constraint simultaneously.

Furthermore, the third and fourth constraints are similar to the first
and second, respectively. Instead of considering product per biomass,
product per plasmid yield thresholds are applied in the enumeration
problem. Table 2 summarizes all the configurations previously de-
scribed as well as a key that will be used throughout this work to sim-
plify the analysis when referring to each enumeration problem configu-
ration.

Table 2: Problem configuration key and main aspects summary based on the
previously described constraints.

Problem Comment

1
Block low product per biomass yield thresholds individually.
Products may be plasmid (P), recombinant protein (R) and
resistance marker (M).

2 Block low product per biomass yield thresholds simultaneously.

3
Block low product per plasmid yield thresholds individually.
Products may be recombinant protein (R) and resistance marker.

4 Block low product per plasmid yield thresholds simultaneously.

The problem and model configuration keys will be used together
throughout the rest of this work to simplify the analysis and discussion.
For instance, when referring to results of CMM A1M, one is referring
to a simulation performed on the a CMM model that only has a plas-
mid production reaction (model A) and whose enumeration problem
was constrained to block low phosphotransferase per biomass yield (1
means product per biomass yield and M refers to the product, in this
case the resistance marker).
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Cellular Constraints. To solve MCS and FBA problems, biological or
physiochemical cellular constraints need to be added to limit the so-
lution space to achieve desirable phenotypes. As the main objective
was to evaluate the system behaviour, most cellular constraints are
not extremely strict. Glucose maximum uptake rate was set to 1000
mmol/g ·h as well as the maximum oxygen consumption rate. These
bounds do not have any physiological and biological meaning. How-
ever, this way, the model has more freedom to use its main substrate
sources and it is possible to evaluate whether producing a by-product
(recombinant protein, for instance) is viable with cell growth. Moreover,
the upper and lower bounds on cellular maintenance energy (ATPM re-
action) were left at the empirical default of 8.39 mmol/g · h (Orth et
al., 2010). In addition to the previous constraints, a minimum biomass
and product per substrate yield threshold were added. Not desiring to
constraint too much the problem formulation, these values were both
set to 0.0001.

Furthermore, to perform FBA and pFBA simulations, the maximiza-
tion of biomass growth was the elected objective function as it is the
most commonly used biological optimization goal.

Enumeration Algorithm. To compute the MCS/cMCS enumeration
problems, a method developed by Vieira (2015) was provided. In this
work, Vieira implemented in Java programming language a library con-
taining routines for MCS enumeration that can be used from small net-
works to genome-scale metabolic models.

RESULTS AND DISCUSSION

Central Metabolism Model • Data Processing. Data were gener-
ated for each enumeration problem (combinatorial model and problem
configurations) as previously described. A maximum knockout size of
5 was allowed and all the solutions were stored as sets of strings en-
coding reactions. For each generated solution, a pFBA flux distribution
was computed and stored in a matrix where each row is a solution and
each column encodes a reaction. Hence, each matrix entry represents
a flux value for a given reaction in a particular set of knockouts (solu-
tion).

Before analyzing the data, a pre-processing step was performed in
order to help reducing data high dimensionality. In this step, some so-
lutions were filtered based on their set of knockouts. On one hand,
solutions that were biologically irrelevant were removed. These are so-
lutions that comprise one or more reactions regarding: (1) production,
such as biomass, plasmid, recombinant protein and resistance marker
reactions that are the objective of this work making their removal mean-
ingless; (2) energy, such as ATP maintenance and synthesis reactions
that are essential to cell survival; and (3) transport such as glucose
exchange reaction that is assured by the PTS system and are also
vital to cells.

On the other hand, solutions that were computationally irrelevant
were removed. These were selected based on biomass-product cou-
pled yields (BPCY) and combined reaction flux values, depending on
each model and formulation available. For instance, it can be con-
sidered that, solutions whose BPCY was above zero or solutions that
present a flux different from zero in plasmid and recombinant protein
reactions, at the same time, are the ones to be kept for further analysis.

Central Metabolism Model • Exploratory Data Analysis. A Princi-
pal Component Analysis (PCA) was performed after data filtration and
standardization with the objective of evaluating the main source of data
variation. In addition, a hierarchical cluster analysis (HCA) was per-
formed with the aim of reducing the solution pool by grouping solutions
that present different sets of knockouts reactions but show similar phe-
notypes. These methods were applied on the pFBA flux distributions.

• Model A
Model A takes only into consideration the plasmid production reac-

tion. Consequently, there is only one way to compose the enumeration
problem, which is by constraining low plasmid production per biomass
yields (formulation 1P). From the initial 723 different solutions obtained
for this problem, only 8.2% remained for further analysis after the pro-
cessing step. Most of the solutions in the pool suggests a four or five
set of knockout reactions. Smaller solutions account for less than 1 %
of the pre-processed data and there are not any MCSs with only one
reaction.

To better visualize and analyze the PCA results, a scree plot was
computed showing the variance explained by each principal compo-
nents until the tenth component. In addition, a correlation circle ac-
counting variables (network reactions) and a graph of individuals (solu-
tions) was computed. The individuals are represented by their projec-
tions and the variables are represented by their correlations. Lastly, a
HCA was performed to try to cluster solutions. Since the resulting tree
is too large, only a specific sub-tree will be shown in the results but the
full dendrogram is in Supplementary Data C.

A scree plot is a useful visual tool for determining an appropriate
number of principal components that explain the most variability in the
data. Figure 1 plot shows that five components explain approximately
98.8% variance in these data, i.e., the majority of the data can be
reduced to this amount of dimensions without compromising on ex-
plained variance and losing important information. Regarding model A
data, two principal components were chosen to be analyzed as they
account for a reasonable fraction of the total variance - around 86.2%
cumulative explained variance percentage.
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Figure 1: Model CMM A Exploratory data analysis results: A) Scree plot per-
centage of explained variances (%) in each principal component (up to a total of
ten PCs); B) Correlation circle correlation between the top 10 variables con-
tributing to the PCs and the first and second principal components; C) Dendro-
gram hierarchical cluster analysis performed using single linkage method and
euclidean distance metric. The sub-tree was obtained by a cut done at a den-
drogram height equal to 15; D) Individuals graph data projection coordinates

in the first two principal components: CMM A1P.

A correlation plot gives the variables direction vectors and helps de-
scribing the strength of relationship between two variables. A corre-
lation coefficient ranges from -1 to +1, where +1 indicates a perfect
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positive linear relationship, and -1 a perfect negative linear relation-
ship. Variables which have little contribution to a direction have almost
zero weight. Figure 1 correlation circle shows the top ten contributing
variables to the fist and second dimensions. From this plot, all arrows
have a similar length, so the parameters contribute equally. Moreover,
nine out of ten variables are strongly positively correlated, whereas
R PGM is negatively correlated. The latter, corresponds to a reaction
in gluconeogenesis where glucose-6-phosphate is transformed back to
glucose for energy reservation. In this way, it is valid that this variable
is negatively correlated as the remaining reactions are mostly essen-
tial to nucleotide synthesis, where there is a high energy and substrate
consumption, in contrast to R PGM whose objective is completely the
opposite. Furthermore, some of the positively correlated reactions con-
cern to amino acid synthesis such as R PSP (serine synthesis) and
R ASPOX (aspartate synthesis). Even though in this model there is
not a reaction accounting for recombinant protein production, these
amino acids are essential for the pseudo biomass reaction. Addition-
ally, these are also fundamental early precursors in nucleotide synthe-
sis for the plasmid production (serine is involved in MetTHF synthe-
sis and aspartate in PRAIC synthesis). Overall, these top contributing
variables show that there is high variation in reactions concerning nu-
cleotide synthesis which is consequently related to plasmid production.

The individuals graph, also known as score plot, is a projection of
the data scores into principal components and it is used for finding and
interpreting relationships between individuals/observations. From this
score plot it is possible to say that an amount of solutions are very
closely grouped (highlighted by the strong pink coloured circle in the
left, resulting of solution overlapping) and that contribute exclusively
to the first dimension. These solutions may be a possible cluster that
could reduce the solution pool as they may represent the same phe-
notype. In this group, most of the solutions have a MCS length of 5,
where 4 suggested knockouts remain the same (R TRANSH2, R ACK,
R ADH and R SDH) and the last reaction is different for each solution.
These reactions are tightly related to overflow metabolites that are se-
creted by cells to balance NADH/NAD+ and obtain ATP (R ACK for
acetate and R ADH for ethanol), as well as other cell mechanisms to
balance reducing power such as R TRANSH2 for NADPH/NADH and
R SDH for FADH2. In addition, these solutions have a similar pheno-
type to a smaller suggested 2 knockout solutions (R TRANSH2 and
R PDH) and, thus it may be an interesting target for a further detailed
analysis to study and explain how a similar phenotype is achieved by
deleting 2 reactions instead of 5.

A dendrogram is a tree diagram used to illustrate the arrangement
of the clusters produced by hierarchical clustering, which is useful to
find correlated groups. Cutting a dendrogram at a certain level/height
gives a set of clusters. Thus, depending at which height the cut is
done, one can have variable cluster numbers. There is no definitive
height at which a dendrogram should be cut as the resulting hierarchi-
cal structure is context-dependent. Looking at the full dendrogram (in
Supplementary Data C), there are two very distinct groups separated
by a high dissimilarity. The top group (represented in Figure 1 sub-tree)
seems to consist of more distinct clusters, while most of the individu-
als in the bottom group are all clustered together at the same height.
Comparing the PCA with the HCA results, it is possible to corroborate
that the group in PCA corresponds to an actual cluster in HCA (bottom
group) and, thus the phenotypes are equal in all those solutions. These
are also the solutions that are less related to the wild-type (WT) which
can be an indicator in a sense that, being the primary focus to search
plasmid producing phenotypes, these are the complete opposite of the
WT. Overall, it is possible to see patterns of clusters that are based
on solutions that are closely related as they share 3 or 4 suggested
knockouts in common, only differing in 1 or 2 reactions.

• Model B
Model B considers the individual plasmid and recombinant protein

production. Consequently, there are multiple ways to formulate the
enumeration problem - formulations 1P, 1R, 2, 3R and 4. On average,
for each formulation, from the initial number of different solutions ob-
tained, only 3.2 % remained for further analysis after processing. As
a whole, from the 3649 total solutions, only 115 were left for further
analysis, which corresponds to a 96.8 % decrease in total solutions.
To better understand and visualize these differences and results, the
PCAs and HCAs performed are shown in Figure 2.
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Figure 2: Model CMM B Exploratory data analysis results: A) Scree plot per-
centage of explained variances (%) in each principal component (up to a total
of ten PCs); B) Correlation circle correlation between the top 10 variables
contributing to the PCs and the first and second principal components; C) Den-
drogram hierarchical cluster analysis performed using single linkage method
and euclidean distance metric. The sub-tree was obtained by a cut done at a
dendrogram height equal to 10.2; D) Individuals graph data projection coor-

dinates in the first two principal components: CMM B1P CMM B1R

CMM B2 CMM B3R CMM B4 .

From the scree plot it is possible to compute that at least seven
principal components are necessary to explain approximately 97.0 %
variance in these data. In comparison to the previous model, at least
two more dimensions are required to achieve almost the same vari-
ance percentage, meaning that, by introducing the recombinant pro-
tein reaction in the model, more contrast and divergence was included.
Concerning model B data, two principal components were chosen to
be analyzed as they account for 72.8 % of cumulative explained vari-
ance percentage. Although this value is 13.4 % lower than the previous
model, it still considers a reasonable amount of explained variance in
just two dimensions. This also corroborates that the IFNγ production
reaction introduced more variation in the system.

From the correlation circle, it is possible to visualize that all top ten
contributing variables share the same amount of contribution to the
components as their arrows present the same length (equal to the
correlation circle radius, which is equal to one). Furthermore, all ten
variables are in the negative side of component 2 and positive side
of component 1 but are strongly positively correlated with each other.
Two interesting reactions that contribute to this variance are the ones
related to plasmid production (R PlasmidProduction and R Plasmid e).
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By adding the recombinant protein production reaction, it seems that
producing a plasmid became extremely variable and perhaps depen-
dant on precursors availability, now that the cell may require amino
acids for IFNγ production. The remaining reactions are mostly related
to nucleotide synthesis. Four of these account for deoxyribonucleotide
triphosphate (dNTPs) synthesis which are the precursors for plasmid
production (R DCTPK, R THYMK, R DGTPK and R DATPK that cor-
respond to the dCTP, dTTP, dGTP and dATP synthesis, respectively).
The remaining variables concern other precursors necessary for dNTP
synthesis. The only outlier is R DHFR that belongs to the one carbon
units family but, nevertheless, produces an important compound for nu-
cleotide synthesis reactions (THF). Overall, by introducing the recom-
binant protein production, all top contributing variables are related with
plasmid production and nucleotide synthesis and, thus it is expected
that these reactions present a strong positive correlation.

As far as the individuals graph is concerned, this analysis shows
that there is a clear separation between most solutions from formula-
tions 1P and 2, in contrast to formulations 1R, 3R and 4. In addition,
a point in space is clearly seen that has all possible formulations over-
lapped (highlighted by the arrow in Figure 2). This point naturally corre-
sponds to the WTs for each formulation as it presents always the same
phenotype. The data points that are completely on top of each other
suggest a very strong grouping of equal phenotypes. In fact, all the
solutions for these three enumerations are exactly the same, meaning
that they can be treated as one, having a total of 60 different solutions
that can be reduced to 20 solutions that explain the exact same phe-
notype. Most of these solutions identify a reaction that concerns to
reducing power (R TRANSH2) in addition to combinations of reactions
from the pentose phosphate pathway (PPP) that are knocked out at
different stages (R 6PGDH, R TALA1, R R5P1, R TKT1, R G1D and
R GLUCK ). Moreover, regarding the other two formulations, some so-
lutions may be grouped but there is more variety in these formulations.
In addition, a few of these solutions are closely related to the WTs phe-
notype.

From the full HCA dendrogram (in Supplementary Data C) it is pos-
sible to corroborate that there is a complete separation based on dis-
similarity for the previously mentioned PCA groups. In this case it is
harder to find an evident cut-off height that can be helpful to separate
different clusters as there are plenty of options at many heights. Nev-
ertheless, it is possible to at least isolate a group as shown in Figure 2
sub-tree where a cut-off of 10.2 was applied. It is also available to
see which solutions are closer to the WT phenotype and which ones
are not. Overall, this HCA is helpful to visualize the solutions group
separation as well as understand that the inclusion of the recombinant
protein added a level of variation in the system that is shown by the
new multiple ways to cluster all the solutions.

• Model C

Model C considers the individual plasmid, recombinant protein and
resistance marker production and thus there are multiple ways to for-
mulate the enumeration problem- formulations 1P, 1 R, 1M, 2, 3R, 3M
and 4. On average, for each formulation, from the initial number of
different solutions, only 2.5 % prevailed for further analysis in the post-
processing steps. As a whole, from a total of 2770 solutions, only
76 remained for further analysis, which corresponds approximately to
a 97.3 % total solutions decrease. To better understand and visual-
ize these differences and results, the PCAs and HCAs performed are
shown in Figure 3.

The scree plot shows that a minimum of seven principal compo-
nents are required to explain approximately 97.2 % variance in this
data, which is nearly equal to the previous model scree plot. Regarding
this model data, two principal components were once more chosen to

be analyzed and account for 72.2 % of cumulative explained variance,
which is a reasonable amount of explained variation in a two dimen-
sional space. This value is similar to the previous one, which may be
indicative that, by adding the resistance marker production reaction,
there was not a major shift and introduction of divergence. This may
happen as the resistance marker is essentially another protein to be
produced and, thus, the amino acids required for the IFNγ production
are the same needed for the resistance marker production, but in dif-
ferent quantities. Comparing to model A, models B and C have a less
gap difference as their core dissimilarity relies on one protein produc-
tion reaction (and not plasmid, where nucleotides are involved instead
of amino acids).
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Figure 3: Model CMM C Exploratory data analysis results: A) Scree plot per-
centage of explained variances (%) in each principal component (up to a total
of ten PCs); B) Correlation circle correlation between the top 10 variables
contributing to the PCs and the first and second principal components; C) Den-
drogram hierarchical cluster analysis performed using single linkage method
and euclidean distance metric. The sub-tree was obtained by a cut done at a
dendrogram height equal to 10; D) Individuals graph data projection coordi-

nates in the first two principal components: CMM C1P CMM C1R

CMM C2 CMM C3R CMM C4 .

Analyzing the correlation circle, it is possible to state that, again, all
top ten variables equally contribute to the components as they show
equivalent arrow length. All these reactions are in the positive side
of the second principal component and the negative side of the first
component, and demonstrate a strong positive correlation among each
other. In comparison to the previous model, it is interesting to note that,
with the addition of the resistance marker production, the reactions re-
garding plasmid production are no longer on the top contributing vari-
ables. Nevertheless, nine out of ten variables belong to the nucleotide
synthesis family. Two of these are related with plasmid production pre-
cursors (R DCTPK and R THYMK that correspond to dCTP and dTTP
synthesis, respectively) and the remaining are related to other precur-
sors necessary for dNTP synthesis. The former being reactions with
respect to nucleoside monophosphate (R ASPCMT for UMP synthe-
sis), nucleoside diphosphate (R GUAK and R UMPK for GDP and
UDP synthesis, respectively) and nucleoside triphosphate (R CDPK
and R CTPS for CTP synthesis). Again, the only outlier corresponds
to R DHFR that belongs to the one carbon units family but, neverthe-
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less is important in nucleotide synthesis. Overall, the main differences
between this model and the previous rely on the plasmid production
reactions. Regardless, on both models, nucleotidic synthesis reactions
are heavily represented as the top contributing variables to variance.

Concerning the individuals graph, a similar pattern to the one ana-
lyzed previously can be observed, where there is a clear separation be-
tween formulations 1P and 2, in contrast to formulations 1R, 3R and 4.
There is also a point in space that has many possible formulations over-
lapped and that corresponds to the WTs. All overlapping data points
suggest a strong grouping of equal phenotypes as usual, and may be
confirmed through HCA. The few solutions from formulations 1R and
3R are, in fact, equal to each other which means they can be treated as
unique solutions. A noticeable difference comparing to model B is that
formulation 4 has its own independent grouping. Nevertheless, these
solutions demonstrate similar behaviour to model B solutions where
most have a reaction that concerns reducing power (R TRANSH2)
with combinations of PPP reactions (R 6PGDH, R TALA1, R R5P1,
R TKT1, R G1D and R GLUCK ) and glycolysis/gluconeogenesis re-
actions (R PGI, R PGM, R PFK and R ENO). Furthermore, regarding
the remaining two formulations, there is less grouping and more so-
lution variety and these are the solutions more closely related to the
WTs.

From the full HCA dendrogram (in Supplementary Data C) it is pos-
sible to corroborate the separation visualized on the score plot. Once
more, it is harder to find an evident cut-off height that can be helpful to
separate different clusters as there are plenty of options. Regardless,
it is possible to isolate four main groups as seen in the full dendrogram
colour labelling. Overall, the addition of the phosphotransferase pro-
duction did not add too much variation in the system as before. The
grouping is very closely related to Model B results and there are not
many new options or solutions from this metabolic model.

Central Metabolism Model • Detailed Network Analysis.

In order to understand and find solutions that could be possible can-
didates for testing in vivo, a more detailed network analysis based on
the pFBA fluxes was performed. For this, the first step was to find
two to three solutions that could be strong candidates based on what
was explored in previous exploratory data analysis. The core idea is
to compare the mutant flux pattern to the WT and try to understand
where is the carbon source being allocated and what differences there
are that seem relevant in a biological context. To find these solutions, a
set of selection criteria was applied as follows: (1) biomass growth re-
action with a positive non-zero flux; (2) priority to solutions with number
of knockouts as low as possible; (3) avoid solutions whose suggested
knockouts are transport and exchange reactions; (4) priority to solu-
tions that are highly represented in the MCS pool; and (5) if possible,
allow some variability regarding suggested reactions pathways (for in-
stance, a 2 KO solution with a reaction from fatty acid synthesis and
one from glycolysis). These sets of criteria were all applied, with no
specific order but rather in a way that it is possible to make a weighted
and conscious decision.

That being said, the first MCS that is going to be analyzed com-
prises the reactions R PGI and R ENO (MCS1). This solution appears
in enumeration problems CMM A1P, B1P, B2, C1P and C2. Moreover,
this MCS follows most selection criteria and, in addition, is a good so-
lution to compare to the previous work done by Pandey et al. (2018)
as it suggests pgi knockout. These simulation results are presented in
Figure 4, in a E. coli central carbon metabolism representation.

Figure 4: MCS1 metabolic flux distribution within central carbon metabolism of
E. coli wild-type (top values) and ∆pgi∆eno double knockout mutant (bottom
values). Fluxes are given relative to the specific glucose consumption rate and
are expressed as the net fluxes. Knocked-out reactions are highlighted by a red
cross and respective reaction name. Reactions from the mutant pFBA distri-
butions that did not present flux were highlighted with red. Arrows indicate the
directions of the proposed metabolic model (negative fluxes correspond to the
inverse reaction). For abbreviations and detailed reactions, vide Supplementary
Data A.

In this solution, by knocking-out these two reactions in the model,
it was possible to produce plasmid with a 4.36 BPCY, while keeping
the growth rate at 34.1% of the parental strain. In regard to the pgi
knockout, since this reaction is a common node for different glucose
catabolism pathways, its inactivation is particularly relevant for study-
ing metabolic behaviour as carbon flux is redirected towards the PP
pathway and/or the ED pathway. This flux rerouteing has a profound
impact in redox balance where transhydrogenases have a critical role
(Canonaco et al., 2001). Moreover, concerning the eno knockout, this
reaction is the penultimate step of glycolysis and catalyzes the re-
versible reaction between 2-phospho-D-glycerate and PEP. It is also
a relevant reaction to study as it has an important role in gluconeoge-
nesis. Regarding the latter knockout, there is a lack of experimental
13C-fluxomics data, which can difficult the double knockout mutant flux
distribution analysis (Long & Antoniewicz, 2014).

From the simulated flux distribution, it is possible to indicate that
practically all glucose flux is redirected to ED pathway and there is not
reallocation towards the oxidative PP pathway. In previous 13C-MFA
studies of a pgi-knockout strain it was experimentally determined that
the PP pathway was the major route for glucose metabolism, providing
a high NADPH source. Nevertheless, the ED pathway was also ac-
tively catalyzing a minor fraction of glucose in both wild-type and mu-
tant strains (Hua et al.,2003; Fischer & Sauer, 2003). Although this sin-
gle pgi-knockout MFA experimental results do not match the predicted
pFBA flux distributions, it is important to take into consideration that
our simulations concern a double knockout. Thus, the eno-knockout
may present an important role in flux redirection. It is possible that, in
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our MCS simulation, a carbon flux allocation priority is shifted towards
ED pathway as it is a more direct way to obtain T3P readily available to
subsequently produce, for instance, serine family amino acids.

Moreover, in a study performed by Canonaco and Sauer it was
shown that pgi inactivation led to a drastically reduction in maximum
growth rate from 0.74 to 0.16 h-1. In this mutant, it was also observed
an accumulation of NADPH due to an insufficient re-oxidation. The
deficit observed in the growth rate was partly recovered by overex-
pressing the soluble transhydrogenase UdhA. Since this enzyme is re-
sponsible for converting NADPH into NADH, there is a probability that
the growth recovery was due to the restored redox balance. In a cell,
the redox balance is mainly described by the ratios NAD+/NADH and
NADP+/NADPH.

These molecules participate in oxidation-reduction reactions and
are specialized in carrying high-energy electrons and hydrogens, while
transferring them to different sets of molecules. The main differ-
ence between these two molecules lies in NADH being mostly used
in catabolic pathways and NADPH in anabolic pathways. Concern-
ing catabolic reactions, NAD+ serves as an oxidizing agent and is re-
duced to NADH whereas, in anabolic reactions, NADPH serves as a
reducing agent and provides high-energy electron being reduced to
NADP+. The difference of a single phosphate group has no effect in
both molecules redox properties; however it helps enzymes distinguish
these substrates. This is important so that both catabolic and anabolic
pathways can be independently regulated, preventing futile metabolic
cycles (Alberts et al., 2002; Berg et al., 2002). Considering Canonaco
and Sauer experimental results, the fact that in our simulation the PP
pathway is inactive can represent an advantage to the cell, since it
prevents NADPH excessive accumulation and a potential redox un-
balance. However, the cell still requires a NADPH source to support
anabolic metabolism.

When the PPP is inactive, NADPH production can potentially be
achieved by three different routes in E. coli : (1) the NADPH dependent
malic enzyme; (2) the membrane-bound transhydrogenase PntAB; and
(3) the soluble transhydrogenase UdhA (Canonaco et al., 2001). The
first hypothesis is not feasible as our double-knockout pFBA flux distri-
butions (in Figure 4) show that the reactions regarding malic enzymes
are inactive (reaction R MAL1 and R MAL2). This is supported by
experimental evidence that demonstrates that in pgi-knockout strains
there is no malic enzyme activity(Canonaco et al., 2001). Addition-
ally, the behavior observed in this single knockout is expectable to
be seen in the double mutant. Concerning options 2 and 3, in our
metabolic network, these re-oxidation mechanisms are represented as
two distinct reactions (R TRANSH1 and R TRANSH2). From our re-
sults, it is possible to see that the flux towards R TRANSH1, which
generates NADPH from NADH, is one of the highest. In fact, this tran-
shydrogenase activation is our main NADPH source as it accounts
for 78% of total NADPH pool. The remaining 22% are solely allo-
cated from 5,10-methenyltetrahydrofolate (MeTHF) production reaction
(R MTHFD), since there is no carbon flux directed towards the oxida-
tive branch of PP pathway.

Since in the flux distribution of the pgi and eno double knockout mu-
tant, the NADPH availability is dependent on NADH pool, it is impor-
tant to understand its source. In our simulation, NADH accumulation
is mostly originated via TCA cycle (31.7 %) and via glycolytic pathway
(30.5 %). Comparing with the WT simulation, an increment in the TCA
cycle flux is observed which can explain NADH availability in the mu-
tant. In particular, the flux in the conversion of malate into oxaloacetate
is increased by 15-fold, providing a good NADH source. Contrarily to
what was observed in the simulations with the WT strain, the glyoxylate
shunt flux was activated in this double mutant. This is corroborated by
some findings in a study performed by Usui et al. . The authors re-

ported a sequential increment in the flux through the glyoxylate shunt
as the phosphoglucose isomerase was successively down-expressed
until it was completely knocked-out. It is known that in E. coli, the gly-
oxylate shunt is utilized mainly for the supply of oxaloacetate to the TCA
cycle via malate by using isocitrate and acetyl-CoA (Kondrashov et al.,
2006). Thus, the activation of the glyoxylate shunt in the mutant strain
increases malate availability, which in its turn is converted to oxaloac-
etate releasing NADH. That being said, probably in this simulation, the
glyoxylate shunt activation is essential to provide: (1) extra NADH to
fulfill the NADPH requirements of the cell; and (2) oxaloacetate, that is
an important precursor to a large family of amino acids, some of which
are required in the nucleotide synthesis (such as L-aspartate).

This solution was generated in the model that only contemplates
plasmid production, thus it is important to understand the flux allocation
into nucleotide synthesis. The metabolite ribose 5-phosphate (R5P) of
the PP pathway is the common building block in the de novo purine
and pyrimidine synthesis pathways (Moffatt & Ashihara, 2003). In our
simulation, this metabolite is generated by a reverse path through the
non-oxidative PP pathway branch starting from the T3P generated in
the ED pathway. From R5P, the flux is then directed towards PRPP, a
common precursor to nucleotide synthesis (Moffatt & Ashihara, 2003).
In the pFBA simulation results from the mutant, the flux increases in
the previously described reactions with a consequent increment in nu-
cleotide synthesis. Comparing with the WT flux values, there is an av-
erage 27-fold increase in the flux towards dNTPs synthesis reactions.
In addition to nucleotide synthesis, energy expenditure concerning nu-
cleotidic bonding needs to be taken into consideration (Equation 5).
This means that, in our simulations, the flux of ATP must match this
nucleotide synthesis increment to lead to a higher plasmid production.
From the double mutant knockout pFBA results, it is possible to con-
clude that the TCA cycle operates predominantly for ATP generation
by producing NADH that goes through oxidative phosphorylation. This
is corroborated by the model reactions regarding oxidative phosphory-
lation (R ATPS1 and R ATPS2 that are NADH and FADH2 dependent,
respectively) accounting for approximately 88.1% of ATP generation
flux. In particular, it is interesting to note that in the WT, FADH2 produc-
tion via TCA cycle is non-existent, whereas in the mutant it becomes an
important energy source. Additionally, in the double knockout mutant,
since the glycolytic pathway is mostly inactive, it provides only 11.4%
of the energy source to the system.

Overall, this MCS is helpful in corroborating the findings by Pandey
et al. even if the flux distribution does not fully match the experimental
results. Nevertheless, it is necessary to take into consideration that our
results are based on pgi and eno knockouts, instead of single knock-
out mutants. In spite of that, our double mutant did improve in silico
plasmid production. However, it would be interesting to compare this
simulation with experimental data from 13C-MFA of single eno-knockout
strains as well as double pgi and eno knockout strains to confirm, for
instance, if the flux is preferably allocated towards ED pathway and
how it impacts NADH/NADPH pool availability. In addition, contingent
on the results from the single and/or double knockouts, it could be inter-
esting to study the soluble transhydrogenase UdhA expression with the
purpose to verify and corroborate its kinetic limitations in cell growth,
plasmid and/or recombinant protein production.

Furthermore, a second and final MCS was analyzed in detail and
comprises reactions R PEPCK, R TRANSH2, R PGI and R GLUCK.
This solution appears in enumeration problems CMM B1R, B3R, B4,
C1R and C3. Moreover, this MCS matches most selection criteria.
Contrarily to the previous MCS1, this solution has flux going through
recombinant protein production reaction, instead of plasmid produc-
tion. Additionally, the suggested knockouts show a reasonable variabil-
ity regarding their role in metabolism. These simulations results are
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presented in Figure 5 in an E. coli central carbon metabolism repre-
sentations.

Figure 5: MCS2 metabolic flux distribution within central carbon metabolism of
E. coli wild-type (top values) and ∆pck∆pgi∆pntAB/udhA∆idnK/gntK quadru-
ple knockout mutant (bottom values). Fluxes are given relative to the specific
glucose consumption rate and are expressed as the net fluxes. Knocked-out
reactions are highlighted by a red cross and respective reaction name. Reac-
tions from the mutant pFBA distributions that did not show flux were highlighted
with red. Arrows indicate the directions of the proposed metabolic model (neg-
ative fluxes correspond to the inverse reaction). For abbreviations and detailed
reactions, vide Supplementary Data A.

In this solution, by knocking-out these four reactions in the model,
it was possible to produce IFNγ with a 1.30 BPCY, while keeping the
growth rate at a 14.6% of the parental strain. However, there was no
flux going through the plasmid and phosphotransferase production re-
actions. This is due to the fact that this solution was originated from
a formulation problem that considers recombinant protein production
optimization. Hence, it is rather difficult to obtain solutions where pro-
duction of 2 or 3 of these products take place at the same time.

The inactivated reactions from this solution comprise a reaction from
glycolysis R PGI that is encoded by pgi gene; a reaction concerning
an anaplerotic pathway (R PEPCK ) that is encoded by pck gene; a
step in gluconate metabolism catalyzed by the enzyme gluconokinase
(R GLUCK ) that is encoded by genes idnK or gntK ; and a reaction
regarding NADH regenerating through NADPH (R TRANSH2), that is
catalyzed by a transhydrogenase which is encoded by pntAB or udhA
genes.

According to the flux distributions in Figure 5, the pgi and idnK/gntK
inactivation led to a rewire of the carbon flux towards the ED and PP
pathways. Considering these pathways, there was a 74.8% carbon
allocation towards oxidative branch of PP pathway, while the remain-
ing flux was redirected towards ED pathway. These predicted pFBA
flux distributions are in accordance with previous 13C-MFA studies of a
pgi-knockout strain, where it was experimentally validated that the PP
pathway was the major route for glucose metabolism after knocking-
out pgi gene. In addition, these experimental studies proved that the

ED pathway was also actively catalyzing a minor glucose fraction (Fis-
cher & Sauer, 2003). Regarding idnK/gntK -knockout, there is a lack
of biological fluxomics data, which can difficult the interpretation of its
role in our quadruple-knockout mutant. Nevertheless, in our simulation
results, it seems that this knockout mostly reinforces the carbon flux
redirection towards PP and ED pathways.

Considering our quadruple-knockout mutant pFBA flux distributions,
there is a high NADPH production due to a flux allocation towards
the PP pathway. Nearly 97.8% of NADPH is produced in this path-
way, while the remaining 2.2% are from 5,10-methenyltetrahydrofolate
(MeTHF) production reaction (R MTHFD). NADPH is an important co-
factor for anabolic reactions. To increase recombinant protein produc-
tion, a concomitant increment in amino acids pool is also required.
Consequently, to produce these amino acids, a higher NADPH pool
is necessary. In our simulations, the conversion of NADPH into NADH,
catalyzed by reaction R TRANSH2, is knocked out. This way, all
NADPH generated through the PP pathway can be allocated towards
biosynthetic pathways (such as amino acids precursors synthesis).
However, experimental data retrieved from literature shows that car-
bon flux redirection to PP pathway leads to an accumulation of NADPH
due to an insufficient re-oxidation (Canonaco et al., 2001). This ac-
cumulation led to a reduction in growth rate that was later partly re-
covered by overexpressing the soluble transhydrogenase UdhA. This
enzyme is responsible for converting NADPH into NADH, hence there
is a probability that growth recovery was due to the restored redox bal-
ance, as previously described in MCS1. In our metabolic model, this
mechanism is inactivated (R TRANSH2) and thus, our model is unable
to re-oxidize NADPH through this reaction that is catalyzed by transhy-
drogenase. Therefore, our simulation results may not correspond to
a feasible biological state. Since pgi-knockouts were experimentally
proven to accumulate NADPH, it is probable that a double pntAB/udhA
and pgi-knockout is not able to strive in growth. Nevertheless, accord-
ing to the amino acid synthesis requirements (Supplementary Data B),
and since we want to improve plasmid and recombinant protein produc-
tion, it is understandable that the suggested knockouts try to increase
cofactors pool such as NADPH. Hence, this solution could be a sug-
gestion to test in vivo, as accumulated NADPH could be induced and
redirected towards biosynthetic pathways.

Furthermore, in our simulation results, the flux is then directed to-
wards the bottom half part of glycolysis and towards the TCA cycle. It
is important to note in Figure 5 that the reaction interconverting F6P
and T3P shows a higher amount of net flux in comparison to the re-
maining reactions. This is due to a futile cycle in this interconversion. It
can be considered that the real flux is given by the subtraction of fluxes
and, thus this reaction is preferably going in the forward direction. En-
tering an interrupted TCA cycle, in comparison to the WT, there is an
increment on flux towards alpha-ketoglutarate formation (aKG) that is
completely rewired towards glutamic acid amino acids family produc-
tion with no further conversion into SucCoa. Additionally, this incre-
ment towards aKG is accompanied by glyoxylate shunt activation. This
activation leads to a flux re-allocation towards malate and succinate
leading to a higher accumulation of oxaloacetate that is a precursor to
aspartic acid amino acids family. Hence, both of these mechanisms
are essential to accumulate important biosynthetic precursors towards
recombinant protein production. This is also corroborated by the PEP
carboxykinase knockout (R PEPCK ) as it prevents oxaloacetate de-
carboxylation into PEP, increasing even more its availability to the syn-
thesis of these precursors. The results from an experimental study
performed by Yang et al., (2003), proved that pck -inactivation led to
glyoxylate shunt activation to participate in anaplerosis and replenish
the TCA cycle. Hence, the experimental results from the literature sup-
port the flux distributions obtained in our simulations.
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Regarding IFNγ synthesis, most of the fluxes directed towards
amino acids synthesis are increased when comparing with the WT sim-
ulation results. Comparing with the WT flux values, there is an average
1.5 to 2-fold increase through many amino acid synthesis reactions.
These reactions are related to amino acids whose demand differs a
lot from biomass to recombinant protein production. Some examples
of these amino acids are lysine, serine, phenylalanine, histidine and
leucine. In addition to amino acids synthesis, energy expenditure con-
cerning peptidic bonding needs to be considered. This means that,
in our simulation, the flux of ATP must follow this amino acid synthe-
sis increment to effectively lead to a higher recombinant protein pro-
duction. From the quadruple mutant knockout simulation results, it is
possible to conclude that ATP generation is predominantly provided
by oxidative phosphorylation as it accounts for 74.2% of the energy
source (reactions R ATPS1 and R ATPS2 that are NADH and FADH2

dependent, respectively). The NADH required for aerobic respiration
is mostly provided by glycolysis (64.5%), while some is produced from
the TCA cycle (27.0%). Moreover, FADH2 production is exclusively a
result of succinate dehydrogenase activity in the TCA cycle.

Overall, in this quadruple-knockout results the flux is redirected
towards PP pathway with consequent NADPH accumulation due to
transhydrogenase inactivation. Additionally, in comparison to the WT
simulation results, the higher flux through TCA cycle increases the
amino acids synthesis precursors such as oxaloacetate and alpha-
ketoglutarate. From experimental data in the literature, the in vivo ap-
plication of these results probably will affect the maximum growth but
enhance plasmid and recombinant protein production.

CONCLUSIONS
The work developed in this thesis was set out with the aim of apply-

ing a minimal cut set enumeration algorithm to find solutions for optimal
and efficient plasmid and/or recombinant protein production (IFNγ in
our case study). To accomplish this, a central carbon metabolism was
used to perform simulations. To this model, a set of different ways to
produce these compounds were added . In addition, different enumer-
ation problem configurations were performed and, in the end, all results
were concatenated and analyzed.

From the exploratory data analysis, it was possible to observe a
pattern regarding different formulations in most data for each model.
Additionally, it was possible to cluster some of the solutions that pre-
sented different knockouts but similar phenotypes, hence reducing the
solutions pool size. From this analysis and a previously defined crite-
ria, three solutions that were well represented were chosen for a further
detailed analysis.

From the two examples solutions highlighted in the detailed network
analysis section, a clear distinction between carbon flux allocations
could be made. The first solution, MCS1, main goal was to corrob-
orate the findings from Pandey et al. (2018) that E. coli pgi mutant
increased plasmid and recombinant protein production efficiency. This
solution was a good candidate as it had a pgi knockout and suggested
only one additional reaction for deletion (eno knockout). Even though
the pFBA flux distribution did not fully match the findings by Pandey
et al., possibly due to the eno knockout effect in our double mutant, it
was helpful to corroborate that plasmid production efficiency increased.
Moreover, regarding MCS2, the main objective was to identify a possi-
ble new knockout or set of knockout strategies that could lead to optimal
production and seem biologically relevant and feasible. Accounting for
all information collected in the pFBA flux distributions and experimen-
tal single-knockout studies some considerations can be made. E. coli
pgi knockouts are proven to rewire carbon flux towards PP pathway
which leads to a higher NADPH production (an important cofactor in
anabolism). By knocking out the transhydrogenase activity, the inter-

conversion between NADPH and NADH becomes blocked, resulting in
NADPH accumulation. This metabolite pool can then be used to pro-
duce the necessary precursors for plasmid and recombinant protein
production in higher quantities. Thus, a possible knockout to test in vivo
is transhydrogenases udhA or ptnAB genes. Even though, transhydro-
genase inactivation was proven to affect cell growth, the NADPH ac-
cumulation may be beneficial to produce higher plasmid and recombi-
nant protein yields. Moreover, another knockout that, from the detailed
analysis, could be beneficial towards plasmid and protein production is
PEP carboxykinase gene pck knockout. This may lead to a glyoxylate
shunt activation and oxaloacetate accumulation (an important amino
acid precursor) without compromising too much on maximum biomass
growth. Overall, the genes pgi, pck and udhA/ptnAB seem promising
to increase in vivo plasmid and/or recombinant protein production.

Regarding methodology, it can be concluded that from all model
configurations, model A has more results with the lowest number of
KOs. Nevertheless, models B and C also showed a good number of
feasible KO suggestions. Hence, from all configurations, having a sin-
gle reaction accounting for plasmid and/or plasmid production seem to
perform the best, depending on the production objective.
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SUPPLEMENTARY DATA A

Table 0.1: List of reactions and respective abbreviations used in the central metabolism model network. Adapted from supple-
mentary data in Pandey et al. (2018).

Abbreviation Reaction Group Reaction

PTS

Glycolysis

and Glucogenesis

Glc+PEP −→ G6P+Pyr

PGM G6P −→ Glc+Pi

PGI G6P←→ F6P

PFK F6P+ATP −→ 2 T3P+ADP

FBA 2 T3P −→ F6P + Pi

G3PD T3P+ADP+Pi←→ PG3+ATP+NADH

ENO PG3←→PEP

PYK PEP+ADP−→Pyr+ATP

PYC PEP+CO2−→OA

PEPCK OA+ATP−→PEP+CO2 +ADP+Pi

PDH Pyr−→AcCoA+CO2 +NADH

G6P1D

Pentose

Phosphate

Pathway

G6P−→Gluc6P+NADPH

G1D Glc−→Gluc+NADH

GLUCK Gluc+ATP−→Gluc6P+ADP

6PGDH Gluc6P−→R5P+CO2+NADPH

RP3E R5P←→Xyl5P

R5PI R5P←→Rib5P

TKT1 Xyl5P+Rib5P←→S7P+T3P

TALA1 Xyl5P+E4P←→F6P+T3P

TALA2 T3P+S7P←→F6P+E4P

ADH Overflow

Metabolism

AcCoA+NADH←→Eth

ACK AcCoA+ADP+Pi←→ Ac+ATP

PGDH
Entner Doudoroff

Pathway
Gluc6P−→Pyr+T3P

ICL Glyoxylate Cycle AcCoA+ ICit−→Mal+Suc

MAL1 Malic

Enzymes

Mal−→Pyr+CO2 +NADH

MAL2 Mal−→Pyr+CO2 +NADPH

CS

TCA

Cycle

AcCoA+OA−→Cit

ACONT Cit−→ICit

ICDH ICit−→αKG+CO2+NADH

AKGD αKG−→SucCoA+CO2+NADH

SUCOAS SucCoA+Pi+ADP←→Suc+ATP

SDH Suc−→Fum+FADH2

FUM Fum−→Mal

MDH Mal−→OA+NADH

PSP Serine

Family

Amino Acids

PG3+Glu−→Ser+αKG+NADH+Pi

GHMT Ser+THF−→Gly+MetTHF

STAC Ser+AcCoA+H2S−→Cys+Ac

ALATA
Alanine

Family

Amino Acids

Pyr+Glu−→Ala+αKG

KAR 2Pyr+NADPH−→Kval

VALTA Kval+Glu−→Val+αKG

i



Table 0.1 continued from previous page

Abbreviation Reaction group Reaction

LEUDH Kval+AcCoA+Glu−→Leu+αKG+NADH+CO2

RPPK Histidine

Family

Amino Acids

R5P+ATP−→PRPP+AMP

HISDH PRPP+ATP+Gln−→His+PRAIC+αKG+2Ppi+2NADH+Pi

ASPOX

Aspartic Acid

Family

Amino Acids

OA+Glu−→Asp+αKG

ASPAS Asp+Gln+ATP−→Asn+Glu+AMP+Ppi

ASPK Asp+ATP+NADPH−→AspSa+ADP+Pi

DHDPS AspSa+Pyr−→DC

DHDPR DC+NADPH−→Tet

THPS Tet+AcCoA+Glu−→Ac+αKG+mDAP

DAPDC mDAP−→Lys+CO2

HOMD AspSa+NADPH−→HSer

HOMSK Hser+ATP−→Thr+ADP+Pi

THRDH α Thr+Pyr+NADPH+Glu−→Ile+αKG+NH3 +CO2

HOMST AcCoA+Cys+HSer+H2S+MTHF−→Met+Pyr+2Ac+NH3+THF

CHORS

Aromatic Family

2PEP+E4P+ATP+NADPH−→Chor+ADP+4Pi

CHORM Chor+Glu−→Phe+αKG+CO2

PRPDH Chor+Glu−→Tyr+αKG+CO2 +NADH

GLUTS

Glutamic Acid

Family

Amino Acids

αKG+NH3+NADPH−→Glu

GLUTST Glu+ATP+NH3 +−→Gln+ADP+Pi

PYRRDH Glu+ATP+2NADPH−→Pro+ADP+Pi

ORNTA 2Glu+AcCoA+ATP+NADPH−→Orn+αKG+Ac+ADP+Pi

ORNCT Orn+CaP−→Citr+Pi

ARGSS Citr+Asp+ATP−→Arg+Fum+AMP+PPi

APPRT

Nucleotide

Synthesis

PRPP+2Gln+Asp+CO2+Gly+4ATP+F10THF−→
2Glu+PPi+4ADP+4Pi+THF+PRAIC+Fum

PRISC PRAIC+F10THF−→IMP+THF

I5MPDH IMP+Gln+ATP−→NADH+GMP+Glu+AMP+PPi

GUAK GMP+ATP−→GDP+ADP

GDPK ATP+GDP←→ADP+GTP

DATPK ATP+NADPH−→dATP

DGTPK GDP+ATP+NADPH−→ADP+dGTP

ADSUCS IMP+GTP+Asp−→GDP+Pi+Fum+AMP

ADK AMP+ATP−→2ADP

ASPCMT PRPP+Asp+CaP−→UMP+NADH+PPi+Pi+CO2

UMPK UMP+ATP−→ADP+UDP

UDPK UDP+ATP−→ADP+UTP

CTPS UTP+NH3+ATP−→CTP+ADP+Pi

DCTPK ATP+NADPH+CDP−→dCTP+ADP

CDPK CDP+ATP←→CTP+ADP

THYMK UDP+MetTHF+2ATP+NADPH−→dTTP+DHF+2ADP+PPi

DHFR

One Carbon

Units

DHF+NADPH−→THF

MTHFT MetTHF+CO2+NH3+NADH−→Gly+THF

MTHFR MetTHF+NADPH−→MTHF

ii



Table 0.1 continued from previous page

Abbreviation Reaction group Reaction

MTHFD MetTHF−→MeTHF+NADPH

MTHFC MeTHF−→F10THF

TRANSH1 Transhydrogenase

Reactions

0.25ATP+NADH−→NADPH+0.25ADP+0.25Pi

TRANSH2 NADPH−→NADH

ATPS1 Electron

Transport

NADH+0.5O2++2ADP+2Pi−→2ATP

ATPS2 FADH2+ADP+Pi+0.5O2−→ATP

GL3PD

Fatty Acid

Synthesis

T3P+NADPH−→GL3P

FAS1 7 AcCoA + 6 ATP + 12 NADPH −→ C14:0 + 6 ADP + 6 Pi

FAS2 7 AcCoA + 6 ATP + 11 NADPH −→ C14:0 + 6 ADP + 6 Pi

FAS3 8.2 AcCoA + 7.2 ATP + 14 NADPH −→ FA+ 7.2 ADP + 7.2 Pi

FAS4 2 ATP + CO2 + Gln −→ CaP + Glu + 2 ADP + Pi

GLUTT

Other Biomass

Components

F6P + Gln + AcCoA + UTP −→ UDPNAG + Glu + PPi

GLCNACS PEP + NADPH + UDPNAG −→ UDPNAM + Pi

CMPKDOS RL5P + PEP + CTP −→ CMPKDO + PPi + 2 Pi

PPDSDC Ser + CTP + ATP −→ CDPEtN + ADP + PPi+ CO2

PGM2 G6P −→ G1P

UTPG1PUT UTP + G1P −→ UDPGlc + PPi

BiomassProduction Biomass

0.594 Ala + 0.198 Arg + 0.143 Asn + 0.284 Asp + 0.060 Cys + 0.272

Gln + 0.367 Glu + 0.495 Gly + 0.086 His + 0.288 Ile + 0.368 Leu +

0.342 Lys + 0.118 Met + 0.059 Orn + 0.175 Pro + 0.304 Ser + 0.239

Thr + 0.335 Val +0.17 Phe + 0.13 Tyr + 0.05 Trp + 0.136 UTP + 0.126

CTP + 0.203 GTP + 0.0246 dATP + 0.0254 dGTP + 0.0254 dCTP +

0.0246 dTTP + 0.083 GL3P + 0.0238 C14:0 + 0.0238 C14:1 + 0.15 FA

+ 0.095 UDPNAG + 0.095 UDPNAM + 0.111 UDPGlc + 0.154 + G1P+

0.0235 CMPKDO + 0.0235 CDPEtN + 22.738 ATP −→ 1g Biomass +

22.738 ADP + 22.738 Pi

ATPM Maintenance ATP−→ADP+Pi

CO2 e

Transport

Reactions

CO2←→exp

NH3 e Imp←→NH3

H2S e 2ATP+4NADPH−→AMP+ADP+H2S+PPi+Pi

PPI PPi−→2Pi

Pi e Imp←→Pi

AA e Ser+PRPP+Gln+Chor−→Trp+Glu+CO2+Pyr+T3P+Ppi

GLC e Imp−→Glc

O2 e Imp−→O2

ETH e Eth−→exp

AC e Ac−→exp

Biomass e Biomass Synthesis Biomass−→exp

iii



Table 0.2: List of metabolites and respective abbreviations used in the central metabolism model network. Adapted from
supplementary data in Pandey et al. (2018).

Abbreviation Metabolite

Ac Acetate

AcCoA Acetyl coenzyme A

Actn Acetoin

ADP Adenosine 5’ -diphosphate

Ala L-Alanine

AMP Adenosine 5’-monophosphate

Arg L-Arginine

Asn L-Asparagine

Asp L-Aspartate

AspSa Aspartate semialdehyde

ATP Adenosine 5’-triphosphate

C14:0 Myristic acid

C14:1 Hydroxymyristic acid

CaP Carbamoyl-phosphate

CDP Cytidine 5’-diphosphate

CDPEtN CDP-ethanolamine

Cit Citrate

Citr Citruline

Chor Chorismate

CMP Cytidine 5’-monophosphate

CMPKDO CMP-3-deoxy-D-manno-octulosonic acid

CO2 Carbon dioxide

CTP Cytidine 5’-triphosphate

Cys L-Cysteine

dATP 2’ -Deoxy-ATP

dCTP 2’ -Deoxy-CTP

dGTP 2’ -Deoxy-GTP

dTTP 2’ -Deoxy-TTP

DC L,2,3 dihydrodipicolinate

DHF 7,8-Dihydrofolate

E4P Erythrose 4-phosphate

Eth Ethanol

F10THF N10 -Formyl-THF

F6P Fructose 6-phosphate

FADH Flavine adenine dinucleotide (reduced)

Fum Fumarate

G1P Glucose 1-phosphate

G6P Glucose 6-phosphate

GDP Guanosine 5’-diphosphate

GL3P Glycerol 5’-phosphate

Glc Glucose

Gln L-Glutamine

Glu L-Glutamate

Gluc Gluconate

Gluc6P Gluconate 6-phosphate

Glx Glyoxylate

Gly L-Glycine
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Table 0.2 continued from previous page

Abbreviation Metabolite

GMP Guanosine 5’-monophosphate

GTP Guanosine 5’-triphosphate

H2S Hydrogen sulfide

His L-Histidine

HSer Homoserine

ICit Isocitrate

Ile L-Isoleucine

IMP Inosine monophosphate

aKG a-ketoglutarate

Kval Ketovaline

Leu L-Leucine

Lys L-Lysine

Mal Malate

mDAP meso-Diaminopimelate

Met L-Methionine

MeTHF N5-N10-methenyl-THF

MetTHF N5-N10-methylene-THF

MTHF N5-methyl-THF

NADH Nicotinamide adenine dinucleotide (reduced)

NADPH Nicotinamide adenine dinucleotide phosphate (reduced)

NH3 Ammonia

OA Oxalacetate

Orn Ornithine

PA Fatty acids

PEP Phosphoenolpyruvate

PG3 Glycerate 3-phosphate

Phe L-Phenylalanine

Pi Inorganic orthophosphate

PPi Inorganic pyrophosphate

PRAIC 5’-Phosphoribosyl-4-carboxamide-5-aminoimidazole

Pro L-Proline

PRPP 5-Phospho-D-ribosylpyrophosphate

Pyr Pyruvate

R5P Ribulose 5-phosphate

Rib5P Ribose 5-phosphate

S7P Sedoheptulose-7-phosphate

Ser L-Serine

Suc Succinate

SucCoA Succinate coenzyme A

Xy15P Xylulose 5-phosphate

Tet L,2,3,4,5 Tetrahydrodipicolinate

T3P Triose 3-phosphate

THF Tetrahydrofolate

Thr L-Threonine

Trp L-Tryptophan

Tyr L-Tyrosine

UDP Uridine 5’-diphosphate

UDPGlc UDP-glucose
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Table 0.2 continued from previous page

Abbreviation Metabolite

UDPNAG UDP-N-acetyl-glucosamine

UDPNAM UDP-N-acetyl-muramic acid

UMP Uridine 5’-monophosphate

UTP Uridine 5’-triphosphate

Val L-Valine
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SUPPLEMENTARY DATA B

Table 0.3: Nucleotide composition of pET28a(+) sequence (that already accounts for the resistance marker sequence) added to IFNγ nucleotidic sequence (NCBI database reference sequence
number AB451324.1).

Nucleotide Code MW (g/mol) # in pET28a # pET28a dS % Nucleotidic MW in pET28a (g/mol) mmole/g pET28a

dATP A 331.2 1 446 2 892 24.63 957 830.4 0.7591

dTTP T 322.2 1 395 2 790 23.76 898 938 0.7324

dGTP G 347.2 1 551 3 102 26.42 1 077 014.4 0.8143

dCTP C 307.2 1 478 2 956 25.18 9 08 083.2 0.7759

Total 5 870 11 740 100 3809630
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Table 0.4: Amino acid composition of human interferon gamma fused to an hexa-histidine affinity tag (NCBI database reference sequence number NP 000610.2 - Interferon gamma precursor [homo
sapiens]).

Amino acid (AA) Code MW (g/mol) MW - MW(H2O) # in IFNγ % AA MW in IFNγ mmole/g IFNγ

Alanine A 89.09 71.08 10 5.29 710.80 0.4587

Arginine R 174.19 156.18 9 4.76 1405.62 0.4128

Asparagine N 132.11 114.10 10 5.29 1141.00 0.4587

Aspartic Acid D 133.10 115.09 10 5.29 1150.90 0.4587

Cysteine C 121.15 103.14 3 1.59 309.42 0.1376

Glutamic acid E 147.13 129.12 9 4.76 1162.08 0.4128

Glutamine Q 146.14 128.13 10 5.29 1281.30 0.4587

Glycine G 75.06 57.05 10 5.29 570.50 0.4587

Histidine H 155.15 137.14 9 4.76 1234.26 0.4128

Isoleucine I 131.17 113.16 9 4.76 1018.44 0.4128

Leucine L 131.17 113.16 15 7.94 1697.40 0.6880

Lysine K 146.18 128.17 21 11.11 2691.57 0.9633

Methionine M 149.20 131.19 7 3.70 918.33 0.3211

Phenylalanine F 165.19 147.18 11 5.82 1618.98 0.5046

Proline P 115.13 97.12 3 1.59 291.36 0.1376

Serine S 105.09 87.08 19 10.05 1654.52 0.8715

Threonine T 119.12 101.11 6 3.17 606.66 0.2752

Typtophan W 204.22 186.21 1 0.53 186.21 0.0459

Tyrosine Y 181.19 163.18 7 3.70 1142.26 0.3211

Valine V 117.14 99.13 10 5.29 991.3 0.4587

Total 189 100 21800.92
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Table 0.5: Amino acid composition of plasmid resistance marker phosphotransferase (NCBI database reference sequence number WP 000018329 - aminoglycoside O-phosphotransferase APH(3’)-Ia
[Bacteria] (kanR)).

Amino acid (AA) Code MW (g/mol) MW - MW(H2O) # in kanR % AA MW in kanR mmole/g kanR

Alanine A 89.09 71.08 15 5.54 1066.20 0.4842

Arginine R 174.19 156.18 16 5.90 2498.88 0.5165

Asparagine N 132.11 114.10 15 5.54 1711.50 0.4842

Aspartic Acid D 133.10 115.09 25 9.23 2877.25 0.8070

Cysteine C 121.15 103.14 5 1.85 515.70 0.1614

Glutamic acid E 147.13 129.12 13 4.80 1678.56 0.4196

Glutamine Q 146.14 128.13 10 3.69 1281.30 0.3228

Glycine G 75.06 57.05 17 6.27 969.85 0.5488

Histidine H 155.15 137.14 7 2.58 959.98 0.2260

Isoleucine I 131.17 113.16 13 4.80 1471.08 0.4196

Leucine L 131.17 113.16 29 10.70 3281.64 0.9361

Lysine K 146.18 128.17 12 4.43 1538.04 0.3874

Methionine M 149.20 131.19 8 2.95 1049.52 0.2582

Phenylalanine F 165.19 147.18 16 5.90 2354.88 0.5165

Proline P 115.13 97.12 15 5.54 1456.80 0.4842

Serine S 105.09 87.08 16 5.90 1393.28 0.5165

Threonine T 119.12 101.11 10 3.69 1011.10 0.3228

Typtophan W 204.22 186.21 6 2.21 1117.26 0.1937

Tyrosine Y 181.19 163.18 7 2.58 1142.26 0.2260

Valine V 117.14 99.13 16 5.90 1586.08 0.5165

Total 271 100 30979.17
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SUPPLEMENTARY DATA C
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Figure 0.1: Model CMM A HCA full dendrogram obtained using single linage with Euclidean distance. The colour in solution
labelling refers to the colours used for the respective enumeration problems.
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Figure 0.2: Model CMM B HCA full dendrogram obtained using single linage with Euclidean distance. The colour in solution
labelling refers to the colours used for the respective enumeration problems.
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Figure 0.3: Model CMM C HCA full dendrogram obtained using single linage with Euclidean distance. The colour in solution
labelling refers to the colours used for the respective enumeration problems.
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