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Abstract

Recombinant proteins (e.g. biopharmaceuticals, food processing enzymes, etc) are increas-
ingly becoming more relevant in Biotechnology and Pharmaceutical industries. Current ap-
proaches for microbial strain optimization for industrial purposes rely heavily on modern Systems
Biology. Regarding in silico methods, the most prominent currently comprise constraint-based
modelling of cell metabolism, from central carbon metabolism to genome-scale models. Such
approaches are used to solve metabolic engineering problems to fulfill an industrial objective
and can be divided into phenotype prediction and pathway analysis (PA) methods. Unlike phe-
notype prediction, PA methods try to provide a more unbiased perspective but heavily depend
on the complexity and scale of the model.

The aim of this work is to apply a PA method (minimal cut sets) to the optimization of
plasmid and recombinant protein production. For this purpose, a novel implementation of an
efficient algorithm for enumeration of minimal cut sets developed by Vieira (2015) was used.

The case study selected is based on a work performed by Pandey et al. (2018) and it involves
interferon gamma production. Using an E. coli central metabolism model and a genome-scale
model, different MCS enumeration problems were developed, for which knockout strategies were
determined. An exploratory data analysis (principal component analysis and hierarchical clus-
tering analysis) of the solutions was performed to select a few knockout sets for further analysis.
The latter was performed to study the flux distributions and highlight different mechanisms
of plasmid and/or product synthesis. From these analysis, it was possible to conclude that
deletion of genes pgi, pck and udhA/ptnAB seem promising to increase in vivo plasmid and/or
recombinant protein production. In addition, a further detailed analysis regarding genome-scale
modelling would be beneficial to corroborate the results and add new knockout suggestions.

Keywords: Recombinant proteins; Constraint-based metabolic modelling; Flux balance
analysis; Metabolic engineering; Pathway analysis; Minimal cut sets
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Resumo

As protéınas recombinantes são cada vez mais relevantes nas indústrias biotecnológicas e
farmacêuticas no que diz respeito, por exemplo, a agentes terapêuticos e à produção de enzimas
importantes ao processamento alimentar.

As abordagens atuais para a otimização de estripes microbianas para fins industriais recorrem
extensamente ao pensamento moderno da biologia de sistemas. Relativamente aos métodos in
silico, estes usam, entre outros, modelos matemáticos baseados em restrições do metabolismo
celular, desde metabolismo central a modelos de escala genómica. Tais abordagens são usadas
para resolver problemas de engenharia metabólica para cumprir um objetivo industrial e podem
ser divididas em métodos de previsão de fenótipos e de análise de vias metabólicas (AVM). Ao
contrário da previsão de fenótipos, os métodos de AVM tentam fornecer uma perspetiva mais
imparcial, mas são dependentes da complexidade e da escala dos modelos metabólicos.

Com este trabalho, o objetivo é aplicar um método AVM (minimal cut sets - MCS) na
otimização da produção de plasmı́deos e protéınas recombinantes. Para tal, utilizou-se uma nova
implementação de um algoritmo eficiente para a enumeração de minimal cut sets, desenvolvida
por Vieira (2015), num caso de estudo.

Este caso de estudo é baseado num trabalho realizado por Pandey et al. (2018) e envolve
a produção de interferão gama. Usando um modelo de metabolismo central e um modelo à
escala genómica de E. coli, foram desenvolvidos diferentes problemas de enumeração de MCS,
para os quais foram determinadas estratégias de deleção. Uma análise exploratória de dados
(análise de componentes principais e análise de clusters de métodos hierárquicos) das soluções foi
realizada para selecionar alguns conjuntos de deleções para posterior análise. Esta última análise
foi realizada com o intuito de estudar as distribuições de fluxo e destacar diferentes padrões e
mecanismos de śıntese de plasmı́deos e/ou produtos.

A partir destas análises, foi posśıvel concluir que deleção dos genes pgi, pck e udhA/ptnAB po-
dem ser uma aposta promissora para aumentar a produção in vivo de plasmı́deos e/ou protéınas
recombinantes. Adicionalmente, uma análise mais detalhada utilizando modelos à escala genom-
ica seria benéfica para corroborar os resultados encontrados e sugerir novos knockouts.

Palavras-Chave: Proteinas recombinantes; Modelação metabólica com base em re-
strições; Flux balance analysis; Engenharia metabólica; Análise de vias metabólicas; Minimal
cut sets
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Chapter 1

Introduction

In this Chapter, some biological and computational background knowledge and general def-
initions regarding the topics addressed in this thesis are presented.

1.1 Recombinant Proteins

Recombinant proteins result from the expression of recombinant DNA that is introduced
within a cell by genetic engineering methods. Over-expression of these therapeutically relevant
proteins is increasingly a research area of interest for the Biotechnology and Pharmaceutical
industry, as today over 100 recombinant proteins are used as therapeutic agents (Clark et al.,
2016). Most of these have human origin and some examples in clinical use are shown in Table 1.1.
Additionally, many recombinant proteins are also industrially relevant, such as enzymes for
laundry detergents and food processing.

Table 1.1: Examples of some therapeutically relevant proteins produced by recombinant DNA technol-
ogy.

Protein Function

Erythropoietin Promotes red blood cells formation. Used to treat anaemia.

Factor VIII Essential to blood-clotting. Used to treat haemophilia.

Insulin Regulates carbohydrate metabolism. Used to treat diabetes.

Insulin-like growth factor 1 (IGF1) Important role in child growth. Used to treat growth problems.

Interferon (beta) Reduces multiple sclerosis relapse rates. Used to treat multiple sclerosis.

Interferon (gamma) Important role in immunity. Used to treat chronic granulomatous disease.

The most commonly used host for over-expressing these proteins is E. coli, provided that
post-translational modifications are not essential. This preference is based on E. coli genome
being sequenced and extensively annotated; E. coli has a fast duplication time; cell culture is
affordable; straightforward genetic manipulation strategies; and high potential to produce large
protein amounts. In particular, E. coli B strains are more commonly used as expression hosts
than E. coli K-12 derived strains. The latter is overlooked as it has propensity to accumulate
acetate that may inhibit growth and the expression of heterologous proteins. However, B-type
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strains have shown, for example, plasmid loss that completely arrests protein production and, as
a result, non-B strains have gathered a lot of interest in recent years (Liu et al., 2005; Waegeman
et al., 2015).

In addition to host-related problems, expressing these recombinant proteins at large-scale has
its own obstacles such as, a high copy number of plasmids may lead to an increased metabolic
burden, reducing host growth and often increasing plasmid instability (Liu et al., 2015).

To improve the performance and yield of an expression host one can either manipulate its
growth environment or alter its genetic architecture (using mutations and/or gene regulations).
These changes may show effects on metabolic network flexibility, flux reaction efficiency and
transcriptional regulation towards a desired product. One of the most common approaches
tested by researchers to enhance and create an optimized microbial cell factory is to delete or
add genes (Liu et al., 2015; Pandey et al., 2018).

With classical strain optimization methods, new microbial factories were developed based on
the generation of mutants and selection of strains that have desirable phenotypic characteris-
tics. These mutants were created by inducing random mutations through chemicals, radiation or
transposons. Then, in a screening test, these mutants would grow in desired conditions and those
that survived would be further optimized in new conditions or used for the purpose. However,
in the start of the 21st century, with the development of systems biology and synthetic biology
towards utilizing cellular network models combined with mathematical methods, metabolic engi-
neering rationale had shifted. New computational methods, such as flux balance analysis (FBA)
and constraint-based modelling (CBM), emerged and gave birth to a metabolic engineering era
where strain optimization is first performed in silico and then tested in vivo. Instead of randomly
screening numerous mutants, computational metabolic engineering is becoming increasingly a
more direct and straightforward approach, that is continuously being improved throughout the
years by the addition of new levels of complexity to the networks, as well as development of new
methods and algorithms (Yang et al., 2007).

1.2 Systems Biology

Systems biology is an interdisciplinary field that studies biological systems by describing the
interactions within a system, instead of explaining individual mechanisms (Kirschner, 2005). In a
more traditional perspective, biological studies follow a reductionist approach in which individual
components of a living system are studied separately. This partitioning method requires a great
workload amount of analysis and integration - specially with new generation technologies that
present high throughputs - that could only be accomplished by innovative computational tools.
Consequently, in the 21st century, there has been a shift towards an holistic and integrative
methodology that has evolved not only from the reductionistic problem of dealing with bursting
informations harnessed by high-throughput technologies, but also from lines of work that aim
to study functional states of multiple components interactions simultaneously(Palsson, 2000;
Westerhoff & Palsson, 2004).

Systems biologists utilize mathematical modelling methods to analyze biological interac-
tions represented in different types of networks such as metabolic, transcriptional regulation

2



and signal transduction pathways to understand biological behaviour as a whole rather than
compartmentalized. This field is becoming increasingly significant together with the improve-
ment and development of high-throughput technologies and its objective is to enable the study
of biological systems using the maximum amount of information possible at different levels of
cell processes (Widlak, 2013). From cellular activities and metabolism to diagnosis and treat-
ment of diseases, these are just some possible applications that can benefit from such approach
(Raman & Chandra, 2009). In addition, other biotechnological fields such as genetic therapies
and metabolic engineering can benefit immensely from systematic researches such as the one
presented in this thesis. A schematic systems biology research cycle comprising main steps is
depicted in Figure 1.1.

Figure 1.1: Systems biology research cycle. A new hypothesis is formulated and undergoes experimental
design. From the lab experiments new data is generated and a model is constructed. From the latter the
hypothesis is evaluated and reformulated and the process restarts until the model explains the data at
maximum extent. From these cycles, new software and technologies may be developed. (From Institute
of Systems Biology, 2018)

1.3 Metabolic Networks

Metabolic networks combine different levels of information in biological systems and describe
relationships between metabolites and enzymes in a set of biochemical reactions (Castrillo et al.,
2013). Each reaction has key properties that are characterized as follows (Szallasi et al., 2010):

• Stoichiometry: Specifies the molar ratios in which compounds participating in a reaction
are consumed or produced. By convention, the stoichiometric coefficient of a compound is
positive if it is produced when the reaction proceeds in its forward direction, and negative
otherwise.
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• Reversibility: In theory, all reactions are thermodynamically reversible. However, some
can be considered irreversible due to their nearly unidirectionality. This information can
be helpful in constructing accurate metabolic networks.

• Enzymes: Most biochemical reactions are characterized by the participation of an enzyme
that facilitates or enables a reaction to proceed. Defining these enzymes allows correlating
between network properties and features of the genome encoding those enzymes.

• Kinetics: Describes the dynamics based on the reaction mechanism and enzyme prop-
erties. These are defined by rate laws, which are mathematical expressions that describe
reaction rates as a function of metabolite concentration and specific enzymatic kinetic
parameters.

A metabolic network can be depicted as a graph where proteins/enzymes, that are edges of
the network, interact with metabolites (nodes). An example of a metabolic network for central
carbon flow in E. coli is given in Figure 1.2.

Figure 1.2: Typical bioreaction network of E.coli central carbon metabolism. Arrows indicate the
assumed reaction reversibility. Fluxes to biomass building blocks are indicated by solid arrows (From
Emmerling et al., 2002).

The edges usually report an irreversible flux characterized by a uni-directional arrow (v2 in
Figure 1.2). Reversible reactions constitute two fluxes in opposite directions and are represented
by a bi-directional arrow (v1 in Figure 1.2). Intracellular reactions are edges that connect two
groups of nodes (reactants and products), whereas exchange reactions only need one node with
the edge connecting with the extracellular environment (Chalancon et al., 2013).
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Overall, metabolic networks play a critical role in numerous studies as this approach can
provide the underlying reactions controlling all the physicochemical states of a cell in large
scales.

1.3.1 Stoichiometric Matrix

The stoichiometric matrix, S, is essential to the mathematical representation of metabolic
networks. It represents each metabolite as a row and each reaction as a column, where the
numerical elements correspond to stoichiometric coefficients. This means that an (i, j) element
represents the stoichiometric coefficients of metabolite i taking part in reaction j (Resendis-
Antonio, 2013). Each entry depends on the role of metabolites in the reaction as follows:

Sij =


a, number of molecules of i produced in reaction j

−a, number of molecules of i consumed in reaction j

0, if metabolite i does not take part in reaction j

Given a set of reactions, this matrix is constructed in a straightforward manner. As an
example, Figure 1.3 shows the S matrix for a toy example with 10 metabolites and 8 reactions.

Figure 1.3: Toy example of a simplified metabolic network of a microorganism. The microorganism
takes up metabolite A and produces Biomass, products D and E. On the right side, the correspond-
ing stoichiometric matrix S, with rows corresponding to metabolites and columns to reactions (From
Hanemaaijer et al., 2015).

From this example, exchange reactions with the environment can be represented with internal
metabolites that belong to the metabolic network (A, B, C, D, E, ATP, Biomass) and external
metabolites that are considered pools or sources of internal metabolites (A out, D out, E out).

If the same compound exists in multiple cellular compartments (for instance, ATP being
present in cytosol and mitochondria in eukaryotes), it must be treated as a different metabolite
for each compartment, meaning it must be given a separate row in the matrix (Becker et al.,
2007).

5



1.3.2 Genome-scale Metabolic Models

Metabolic models studies were initially restricted to small networks that only represented
the central cell metabolism. One of the earliest studies to systematically analyze E. coli utilized
a simplified constraint based model of acetate overflow (Majewski & Domach, 1990). Subse-
quent pre-genome-scale studies scaled-up to include reactions involved in central carbohydrate
metabolism, amino acid and nucleotide synthesis to evaluate the biocatalyst production poten-
tial. As high-throughput sequencing methods became readily available, aligned with annotated
content of E. coli in databases and detailed biochemical reviews, the information added to
metabolic networks increased significantly (Baumler et al., 2011). This expansion led to incor-
poration into a single systemic model of novel subsystems such as fatty acid synthesis, alternate
carbon metabolism or cell wall synthesis, improving and promoting the metabolic reconstruc-
tions to the genome scale, ultimately leading to the reconstruction of genome-scale metabolic
models (GSMs).

Genome-scale metabolic models have been reconstructed for over 150 organisms so far, in-
cluding E. coli (Feist et al., 2009). These reconstructions allow useful predictive calculations
to be performed with high detail. GSMs of E. coli have existed for nearly twenty years as the
first was released in 2000 by Palsson & Edwards, and this model continues to be expanded and
updated today (McCloskey et al., 2013). It accounts for the products of 660 metabolic genes,
and has 627 reactions and 438 metabolites. It includes a biomass reaction based on the measured
components of E. coli biomass that can be used to simulate growth (Edwards & Palsson, 2000).
Table 1.2 highlights key events in the evolution of GSMs of E. coli.

Table 1.2: Evolution of GSMs of E. coli regarding date and version of model release. In addition, the
number of model genes, metabolites and reactions is reported.

Date Version Model Genes Metabolites Reactions Reference

11/05/2000 iJ660 660 438 627 Edwards & Palsson

04/09/2003 iJR904 904 625 931 Reed et al.

28/06/2007 iAF1260 1260 1039 2077 Feist et al.

07/01/2011 iCA1273 1273 1111 2477 Archer et al.

13/10/2011 iJO1366 1366 1136 2251 Orth et al.

GSMs can be applied to study, for instance, evolutionary processes, interspecies interactions
and metabolic engineering problems (McCloskey et al., 2013). Amidst these, metabolic engi-
neering problems are some of the most studied using genome-scale models. This field tries to
design new cells by using mathematical and experimental tools in metabolic analysis and mod-
ification. Thus, a systematic modelling can help shed some light into the complex nature of
cellular metabolism and improve traditional methods for genetic engineering (e.g. random mu-
tagenesis and screening for better phenotypes) by predicting cellular phenotypes from a systems
level before in vivo implementation (Zhang & Hua, 2016; Yilmaz & Walhout, 2017). Figure 1.4
illustrates six fields and number of studies using E. coli metabolic GSMs until 2013. Since then,
these numbers have seen an increase.
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Figure 1.4: Six fields and number of studies for E. coli metabolic GSMs until 2013: (A) metabolic
engineering, (B) model-driven discovery, (C) prediction of cellular phenotypes, (D) analysis of biolog-
ical network properties, (E) studies of evolutionary processes and (F) interspecies interaction (From
McCloskey et al., 2013).

1.3.3 Mathematical Modelling Approaches

Combining the various levels of information from a biological system into a network enables
the development of mathematical models that can be simulated under different conditions -
dependant on the amount and type of data that is known and accessible.

Mathematical modelling is able to generate experimentally testable hypotheses on underlying
mechanisms as well as predictions of cellular behaviour, thereby iteratively producing refined
models and insight into the system (Kitano, 2002). It comprises several approaches to represent
reality that ranges from global, yet coarse, views of cellular systems to detailed descriptions with
a more limited scope. There are three main approaches to the mathematical modelling of cellular
networks: (1) interaction-based models that are based on interactions alone; (2) constraint-
based models that include constraints such as network topology, stoichiometry and reaction
reversibilities; and (3) mechanism-based models where detailed reaction mechanisms and
parameters are added (Stelling, 2004). A schematic summary of these mathematical modelling
approaches is shown below in Figure 1.5.
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Figure 1.5: Cellular networks mathematical modelling approaches. In the top row, some key features of
each method are presented. Schemes in the bottom row illustrate typical analysis results, namely (a) hubs
(red circles) in a scale-free interaction network, (b) the cone of admissible flux distributions in a metabolic
network constructed from the metabolic pathways (edges), and (c) dynamics in the concentrations of
cellular components along time (From Stelling, 2004).

These methods will be discussed in the following subsections at a detailed level. Nevertheless,
it is important to keep in mind that none of the approaches have the capability to cover the entire
network complexity while maintaining a high level of detail and accuracy. However, mechanism-
based modelling is the most obvious candidate for achieving a system-wide understanding; yet,
it is not possible to scale to a complete genomic level (Figure 1.6).

Figure 1.6: Mathematical modelling: scope and interactions. The three methods of modelling ap-
proaches are positioned according to the achievable degree of detail and accuracy, and the typical net-
work sizes they can handle (network complexity). Black arrows refer to possible interactions. The green
vertical arrow indicates the desirable progress towards genome-scale, mechanism-based models that allow
for a system-level understanding from the genotype. Boxes and arrows in light colours visualize the
contributions from all three approaches (From Stelling, 2004).
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1.3.3.1 Interaction-based Models

Interaction-based models are static models that are based on interactions alone, not taking
into account stoichiometry and kinetic parameters. These approaches highlight the existence
of modules, that are semi-autonomous units performing distinct functions in cellular systems
(Stelling, 2004). Network-level modules are defined variously as chemically isolated, operating
on different time or spatial scales, robust, independently controlled, clusters in the graph-theory
sense, and any or all combinations of the above (Hartell et al., 1999).

Due to these models properties, such as its high coarseness and low detail level, this topo-
logical analysis appears particularly suited to reveal principles of cellular organization, but less
able to handle network function and evolution (Wolf & Arkin, 2003).

1.3.3.2 Mechanism-based Models

Mechanism-based models are dynamic (or kinetic) models that attempt to describe cellular
processes that are characterized by their dependence on time and susceptibility to external
inputs on their states. In these models, mass balance equations that describe the temporal
behaviour of all biochemical species are defined by using reaction kinetics and stoichiometry.
For each metabolite involved in any reaction, one mass balance equation can be defined (Pfau
et al., 2011). In deterministic, continuous systems, these equations can be written as follows,

dx(t)
dt = S · v(x(t), u(t), θ) (1.1)

with their associated initial conditions,

x(0) = x0(θ) (1.2)

where x(t) denotes a vector of time-dependent metabolite concentrations (state variables),
S a stoichiometric matrix and v(x(t), u(t), θ) a vector that is dependent on the state variables, a
input vector u(t) and a set of parameters θ. A system is then defined by a set of ordinary differ-
ential equations that are solved given a vector of initial conditions. The parameters appearing
in the rate expression are also necessary to solve the equations and are often estimated using
maximum likelihood, bayesian parameter estimates and by comparison with experimental data
(Almquist et al., 2014; Schaber et al., 2009).

Although kinetic models excel at describing time-dependent cellular processes, the main
challenge lies in producing high quality predictive models that can be used to improve cell
performance. This is mainly due to incomplete and uncertain knowledge regarding kinetic rate
expressions, as well as lack of experimental data to estimate valid parameters to characterize
the complex metabolic network structure (Schaber et al., 2009; Soh et al., 2011).
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1.3.3.3 Constraint-based Models

Constraint-based Models (CBMs) are static models where reactions stoichiometry and re-
versibility constraints are added to the network topology. This deals with the lack of kinetic
information as these characteristics are largely available for metabolic networks (Szallasi et al.,
2010).

CBMs core idea is to incorporate physicochemical and biological constraints that limit the
overall network behaviour and possible flux patterns confining the cellular phenotype to a set of
feasible states (Orth et al., 2010). Metabolism usually involves fast reactions and high turnover
of substances. Therefore, it is assumed that, in longer time scales, metabolite concentration
is stable meaning that the rates at which a metabolite is produced and/or consumed become
constant over time. This generates an assumption that the system is time-invariant and in
steady-state (Szallasi et al., 2010). Applying this assumption to Equation 1.1 leads to:

dx(t)
dt = 0 (1.3)

and therefore,

S · v = 0 (1.4)

where v is no longer dependent on u(t) and θ as it is in Equation 1.1 as these models do
not account for kinetic rates. One trivial solution to this equation is v = 0 that represents
thermodynamic equilibrium. However, one is looking for the remaining non-obvious solutions.
Given a stoichiometric matrix S with m×n dimensions, usually there are more reactions n than
the number m of internal metabolites. Consequently, this system will be undetermined (m ≤ n)
and all possible solutions are contained in a vector space called the null-space (or kernel) of S.
Any point in this space can be described by a vector v ∈ Rn which is called a solution or flux
distribution (Orth et al., 2010).

Moreover, additional constraints can be added that are expressed by linear equations or
inequalities. Regarding reaction capacity, one can define a range of acceptable flux values for
each reaction. This is done by adding a upper bound ubi and a lower bound lbi to a reaction i,
which will impose a maximum and minimum value, respectively.

lbi ≤ vi ≤ ubi (1.5)

Capacities can also be translated in reaction reversibilities. If a reaction i is considered
irreversible then lbi ≥ 0, whereas if lbi < 0 the reaction is reversible. When there is no knowledge
in regards to capacities the reaction rates limits are set to ±∞.

It is important to note that, if there is exact knowledge and measurements mi of a flux
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rate then vi = mi. This allows a reduction of degrees of freedom and, consequently reduces
the solution space (Szallai et al., 2010). An overall representation of CBMs is presented in
Figure 1.7.

Figure 1.7: Principles of the stoichiometric modeling framework. Given a metabolic network, the
mass balance around each intracellular metabolite can be mathematically represented with an ordinary
differential equation. If we do not consider intracellular dynamics, the mass balances can be described by
a homogeneous system of linear equations. Other constraints can be also incorporated to further restrict
the space of feasible flux states of cells (Adapted from Estrada, 2010).

1.4 Phenotype Prediction

1.4.1 Flux Balance Analysis

Flux Balance Analysis (FBA) is a widely used phenotype prediction method to study bio-
chemical networks. It calculates the flow of metabolites through a metabolic network, finding
biologically relevant solutions whether by predicting the growth rate of an organism or the
maximum production of a biotechonologically relevant product (Orth et al., 2010).

To formulate a FBA problem, the first step is to mathematically represent the metabolic
network. This is done by constructing a stoichiometric matrix that imposes constraints on the
flow of metabolites through the network. Furthermore, additional constraints are added such as
inequalities that impose boundaries in the system. Lastly, a linear objective function is required
to solve the FBA problem. The latter function is defined by choosing a relevant biological
objective in the study (Orth et al., 2010). For example, in the case of growth prediction, the
objective is biomass production, whereas in the case of product prediction, the objective is the
reaction that produces it. Mathematically, an objective function is used to quantitatively define
how much each reaction contributes to the phenotype and can be formulated as

Z = cTv (1.6)

where c is the coefficient vector that defines the contributing weight of each flux in the
objective function (Pfau et al., 2011).
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The metabolic network mathematical representation together with the objective define a
system of linear equations, whose optimization problem can be generally solved using linear
programming (LP) (Szallasi et al., 2010). The general formulation for a simple FBA optimization
problem is given as follows:

max
v

Z = f(v)

s.t. S · v = 0

lbi ≤ vi ≤ ubi

(1.7)

A summary representation of a FBA problem characterization is given below in Figure 1.8.

Figure 1.8: The conceptual basis of a FBA problem. With no constraints, the flux distributions may
lie at any point in the solution space. When constraints are imposed by the stoichiometry matrix S and
by the lower and upper bounds it defines an allowable solution space. Finally, through optimization of
an objective function, a single optimal flux distribution can be determined that lies on the edge of the
allowable solution space (From Orth et al., 2010).

1.4.2 Flux Variability Analysis

The optimal solution to a FBA problem is rarely unique as there are other equally optimal
existing solutions in the solution space. Flux variability analysis (FVA) is a derivative from
FBA that aims to identify maximum and minimum fluxes through a reaction given an objective
value, returning flux boundaries for each reaction.

Each flux is maximized and minimized and these objective values correspond to the true
reaction limits in the metabolic network. Each reaction flux is computed using a double linear
programming problem, meaning there is a maximization and a subsequent minimization, and
these values correspond to the flux range in the metabolic network,

min/max
v

vi

s.t. S · v = 0

lbi ≤ vi ≤ ubi

(1.8)

where vi is the solution space for a reaction where vmax and vmin are calculated, containing
the maximum and minimum feasible flux values, respectively (Gudmundsson & Thiele, 2010).

Reactions that present a low flux variability are more likely to be of a higher importance
to the organism. Thus, FVA can be a promising technique for identifying important reactions
and/or pathways in the model (Muller & Bockmayr, 2013).
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1.4.3 Parsimonious Enzyme Usage FBA

Parsimonious enzyme usage FBA (pFBA) is a derivative from FBA where a second layer
of optimization criteria is added making it a bilevel linear programming problem. It relies
on the minimization of gene-associated protein cost while maintaining optimal growth. The
pFBA optima represents set of genes associated with maximum growth as well as minimum-flux
solutions, thereby predicting the most stoichiometrically efficient pathways.

This approach finds a flux distribution with minimum absolute values among the alterna-
tive optima, assuming that the cell attempts to achieve the selected objective function while
allocating the minimum amount of resources (i.e. minimal enzyme usage).

1.5 Pathway Analysis

Pathway Analysis methods (PA), in contrast to methods such as FBA, are able to identify all
metabolic flux vectors without imposing any objective function. Instead, they characterize the
complete space of admissible steady-state flux distributions by functional/structural units alter-
nately to searching specific flux vectors. Thus, PA attempts to provide an unbiased perspective
of the theoretical limits of the network as a whole.

1.5.1 Nullspace Analysis

The nullspace is characterized by the kernel matrix K containing columns of linearly inde-
pendent vectors that satisfy the condition given by Equation 1.4. Each column from this matrix
is a basis vector that generates the complete solution space (Pfau et al., 2011). From linear
algebra rank-nullity theorem, it is possible to find the number of columns by determining the
nullity of K using Equation 1.9.

nullity(S) = n− rank(S) (1.9)

where n is the number of reactions in the system. Additionally, any flux distribution valid
for Equation 1.4 can be constructed through linear combination of the columns from K,

r = K · b (1.10)

where b is a vector with the weight of each column in K.

Analysing the K matrix one can retrieve important information such as blocked reactions
and enzyme subsets. Blocked reactions can be identified if their corresponding row i in K is
a zero row. This is helpful since these reactions hardly have any function in the system and
may be removed for practical reasons. Enzyme subsets (ES) (or coupled/correlated reaction set)
are set of reactions that must operate together with a fixed reaction rate ratio. These can be
identified from the null space matrix as the corresponding rows in K of a set of reactions from
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the same ES can only differ by a scalar factor α,

vi = α · r, i = 1, ..., n (1.11)

where vi is the reaction rate vector for reaction i. These reactions are therefore linearly
dependent (Szallasi et al., 2010).

In nullspace analysis, thermodynamic constraints are not applied and thus, it is necessary
to be careful when aiming for biologically relevant results as some proprieties, such as reaction
reversibilities, are unconstrained and may be transgressed.

1.5.2 Convex Analysis

In convex analysis, contrarily to nullspace analysis, in addition to steady-state assumption,
thermodynamic constraints are applied and the space of feasible flux distributions can be defined
as follows,

P = {v ∈ Rn : S · v = 0 ; I · v ≥ 0} (1.12)

where S is a m× n stoichiometric matrix, v a possible solution in the admissible space and
I a diagonal n× n matrix with I ii = 1 if the flux i is irreversible (otherwise is 0).

This is a subset of the nullspace of S and in geometrical terms, this space of admissible flux
distributions P , is a pointed convex polyhedral cone. This cone has a finite number of edges
and is located in the positive orthant Rn

+. By being convex, any vector within the cone (feasible
solution) can be generated by non-negative linear combination of the vectors that generated
the cone (which correspond to its edges) (Llaneras & Picó, 2010; Klamt et al., 2017). A visual
example of a convex polyhedral cone is given below in Figure 1.9.

Figure 1.9: Representation of a pointed convex polyhedral cone for a metabolic network with three
reactions (V1, V2 and V3). The admissible solution space (highlighted in grey) has positive or null
reaction rates since it is strictly in the positive orthant R3

+. The edges (E1-E5) define the cone and can
be used to describe any feasible flux distribution through linear combination. The cone basis represents
the optimal solution space, obtained when using constraint-based approaches (Adapted from Papin et
al., 2002).
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1.5.3 Elementary Flux Modes

Elementary Flux Modes (EFM) are flux distributions that are calculated by solving Equa-
tion 1.4 in conjunction with thermodynamic feasibility (Equation 1.12) and non-decomposability
constraints. The support function supp(v) provides a set of reaction indices from v with the
condition that a reaction i can only be a part of supp(v) if it has a nonzero flux value (vi 6= 0).
Any elementary mode e is unique and minimal, in the sense that no reaction carrying a flux
can be removed without violating the solving conditions. If a set of reactions constitutes an
EMF then it fulfills the following proprieties (Schuster & Hilgetag, 1994; Schilling et al., 2000;
Schuster et al., 2002):

• Pseudo steady state: According to Equation 1.4, no metabolite is consumed or produced
in the overall stoichiometry. Hence, EFMs must belong to the nullspace of S.

• Feasibility: All fluxes have to be thermodynamically feasible and abide to their reaction
reversibility. Hence, formally it requires that all rates vi ≥ 0 if reaction i ∈ irrev.

• Non-decomposability: This is the central property of EFMs and states that these flux
distributions (or modes) represent the minimal functional units in a network. Hence, no
reaction with a non-null flux value can be deleted from it, while still yielding a valid flux
pattern. This feature is also known as genetic independence as this condition implies that
the participating enzymes in one pathway are not a subset in another pathway.

• If e is an elementary flux mode, so is any f = k · e with k > 0.

• Every valid flux distribution v can be generated through linear combinations of support
vectors that describe EFMs and/or scalars. These define the relative weight of each EFM
in the flux distribution vector.

• Considering a set E of EFMs and a flux distribution vector v defined by Equation 1.13
where w is a vector with the relative weight of each EFM. If the EFMs in E are valid,
supp(E) can not contain reaction indices that are not already contained in supp(v).

v = w · E ; w ∈ R|E|0+ (1.13)

In sum, each EFM can be defined as a unique, minimal set of reactions that support steady
state operation of a metabolic network with irreversible reactions to proceed in appropriate di-
rections (Trinh et al., 2009). Thus, EFMs can be interpreted as the most elementary pathways
of a metabolic system and are capable of providing concise information about the metabolic net-
work, because they describe the possible (simplest) modes of operation of a system (Zanghellini
et al., 2013). The EFMs for a simple reaction network are shown in Figure 1.10.
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Figure 1.10: Simple example of a biochemical network and its elementary flux modes. The network
consists of three metabolites (A, B and C), three internal reactions and three exchange reactions (a),
and there are four elementary modes (b). The flux directionality is represented by black arrows, whereas
reactions that do not have flux are represented by blue arrows. (Adapted from Papin et al., 2004)

In the model, an EFM includes at least one input and one output that can be called net
conversion. Identifying all the EFMs present in a model can be useful to identify which net con-
version has the highest efficiency and which products are formed under each substrate. Similarly,
EFMs performing undesired net conversions can also be identified (Pfau et al., 2011; Zanghellini
et al., 2013). For instance, from the biochemical network from Figure 1.10, one can see that
EFM2 and EFM4 have metabolite B as a product but what differs is the substrate, being A and
C, respectively. This may be an indicator that this metabolic network is more robust when it
comes to produce metabolite B.

Some of the most interesting applications of EFM analysis in Metabolic Engineering are:
(1) identifying all range of possibles substrates and products, as well as finding ideal pathways
to essentially modify and improve a desired metabolic capability (Szallasi et al., 2010); (2)
establishing the relative importance of a given reaction in a pathway. The higher number of
EFMs that have the same reaction involved, the higher the likelihood of that reaction being
a critical element to the metabolic system (Schuster & Hilgetag, 1994); and (3) measuring
a pathway robustness through quantification. The number of EFMs that perform a given net
conversion can be used as estimator to the pathway robustness (Szallasi et al., 2010).

1.5.4 Minimal Cut Sets

Minimal Cut Sets (MCS) are a complementary concept to EFMs. A cut set is a set of reac-
tions that need to be removed to inactivate a specified target reaction or, in another perspective,
reactions whose deletions leads to network failure (considering a target reaction). A cut set be-
comes a MCS and is minimal in the sense that removing any subset of it from the network is
not sufficient to maintain the target reaction inactivation. This means that by removing one
reaction from the MCS prevents it from being a cut set anymore (Klamt & Gilles, 2004; Clark
& Verwoerd, 2012).
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To illustrate the MCS concept, consider the example network shown in Figure 1.11.

Figure 1.11: Biochemical network example. The network consists of six metabolites (A, B, C, D, E
and X) and nine reactions (R1, R2, R3, R4, R5, R6, R7, R8 and R9) (Adapted from Klamt & Gilles et
al., 2004).

Assuming that one wants to block the production of metabolite X, a trivial solution is to
cut the target reaction (R9 ) itself. However, it is not a biological reasonable strategy as R9 is
an exchange flux (pseudo-reaction) and, therefore, might not have the corresponding genes to
be candidates for deletion. To find all MCSs that block R9, the minimal set of reactions that
disable all EFMs must be found (Klamt & Gilles, 2004; Klamt, 2006). The set of EFMs and
MCSs that block R9 in the network depicted in Figure 1.11 are in Figure 1.12.

Figure 1.12: Elementary modes and minimal cut sets that block R9 from the network in Figure 1.11.
Elementary flux modes that carry flux through R9 are highlighted in grey. (Adapted from Klamt &
Gilles et al., 2004).
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Another example is MCS5, where R5 and R8 are deleted. This cut set is sufficient enough
to prevent production of X. Moreover, removing only R5 or only R8 will allow the flux to
go through R9 again. Thus, this cut is a MCS because no subset of {R5,R8} would be a
subset anymore. If there was a new subset, one would have a sub-optimal cut set instead of
a minimal cut set. Additionally, MCS2 is the only cut set with one reaction (apart from the
trivial solution). This could be an excellent suitable candidate since it seems to be essential to
synthesize metabolite X (Klamt & Gilles, 2004; Klamt, 2006).

In a Metabolic Engineering context, MCSs are useful to predict sets of genes which should
be knocked out in order to inactivate a particular metabolic reaction based on the smallest set
of reactions to achieve this goal. Alternatively, in a scenario where a given metabolite is desired
to be produced it is feasible to calculate the MCS using additional constraints (Klamt & Gilles,
2004; Clark & Verwoerd, 2012).

A limitation to using MCSs is that they might disable not only undesired reactions but also
desired functions. For instance, one MCS may block the synthesis of an undesired product, while
at the same time removing the substrate uptake for a reaction where a metabolite of interest is
being produced. To account for the need of keeping some reactions/EFMs intact, the concept
of constrainted MCS (cMCS) can be introduced. Formally, a set of desired EFMs , D, is defined
alongside a set of undesired modes (target), T. An admissible MCS is reached when all target
modes T are hit, while preserving a minimum number n of desired EFMs. This results in a set
of reactions ready to be deleted from the network and that are still guaranteed to provide the
desired functionalities (Hadicke & Klamt, 2011).

1.6 Motivation and Objectives

This thesis has its starting grounds on a previous study done by Pandey et al. (2018). In this
study, an E. coli type K-12 phosphoglucose isomerase (∆pgi) mutant strain was transformed with
a plasmid coding for IFNγ and tested for its expression capabilities, plasmid copy number and
mRNA coding for IFNγ number. In addition, a detailed network comprising 100 metabolites and
114 reactions of the central carbon metabolism of this strain was constructed. Then, elementary
mode analysis was performed to check flux efficiency from pgi mutation and it was predicted
that the mutant would have a higher efficiency towards plasmid and protein synthesis. This
hypothesis was corroborated experimentally as there was a 3.0-fold increase in IFNγ in the ∆pgi
mutant.

At the same time, in a work done by Vieira (2015), a generic pipeline for enumeration
of minimal cut sets in stoichiometric metabolic models (based on MCSEnumerator algorithm
(Kamp & Klamt, 2014)) was implemented and validated. These types of algorithms are relevant
in this work as they enable the possibility to enumerate knockouts in a more efficient and
simplified manner. Without these methods, enumerating MCSs would be very demanding and
would require high computation power even to compute lower sized knockout solutions.

Bearing this in mind and combining these two works together, the main objective of this
thesis is to apply minimal cut sets algorithm to find solutions for the optimal and efficient plasmid
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and recombinant protein production. In the present work, IFNγ was used as the recombinant
protein to apply the MCS algorithm developed by Vieira (2015). IFNγ is a dimerized soluble
cytokine that plays a critical role in innate and adaptive immunity against mainly viral infections.
Besides its ability to inhibit viral replication, IFNγ plays a big role in the immune system with
its immunostimulatory and immunomodulatory effects. As a therapeutic agent, this protein
can be used to treat chronic granulomatous disease, that is a condition in which cells of the
immunity system have difficulty forming superoxide radical to kill certain pathogens.

Furthermore, the central carbon metabolic network developed by Pandey (2018) and a
genome-scale E. coli K-12 metabolic network were used. To these models, plasmid, recom-
binant protein and resistance marker production reactions were formulated in four different
ways and added. Then, different MCS enumeration problem formulations were constructed and
applied to these models.

Lastly, all the results from both models were analysed with the objectives of: (1) corrob-
orating the findings from Pandey et al. (2018) that E. coli pgi mutant increases plasmid and
recombinant protein production flux efficiency; and (2) identifying a possible new knockout or
set of new knockouts strategies that would lead to a more optimal and efficient plasmid and/or
recombinant protein production and that are biologically relevant and feasible.
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Chapter 2

Materials and Methods

In this Chapter, the methodology used in the practical part of this work is described. Em-
phasis on the framework and mathematical algorithms is added.

2.1 Metabolic Models

All metabolic models that were used to perform simulations and their characteristics are
detailed in the following sections.

2.1.1 Central Metabolism Model

The Central Metabolism Model (CMM) used throughout this work has its foundation in a
model constructed by Pandey et al., 2018. It is a small detailed network of the E.coli central
carbon metabolic pathway. This network comprises 100 metabolites and 114 reactions (Appendix
A), where 9 are exchange and 17 are reversible (the remainder are internal and irreversible
reactions). From the list of metabolites, only seven are considered external, those being glucose,
ammonium, phosphate, oxygen, carbon dioxide, ethanol and acetate. Glucose is considered
the sole carbon source whose cell uptake is done via the phosphotransferase system (PTS).
Simultaneously, ethanol and acetate are the overflow metabolites secreted that are produced by
the cell to balance the NADH/NAD+ pool and obtain extra ATP under high carbon source
uptake rate or low oxygen availability, which is normal during batch growth. Once secreted,
these metabolites can be consumed back, thus the glyoxylate cycle, gluconeogenesis and Entner-
Doudoroff (ED) pathways were added. The synthesis of nucleotides and amino acids, essential
to biomass production, were also included separately. As for transhydrogenase activity, E.coli is
known for having two transhydrogenases, that are represented in this network by two reactions
with a cost of 0.25 mole ATP per mole of produced NADH. Regarding energy balance, on the
one hand, maintenance energy requirements were addressed by including an ATP hydrolysis
reaction. On the other hand, for ATP regeneration via oxidative phosphorylation, both NADH
and FADH were considered separately with a yield of 2 and 1 mole of ATP on one mole of
NADH and FADH, respectively. Furthermore, biomass pseudo reaction was constructed with
amino acids, nucleotides, lipids and other requirements. Recombinant proteins and plasmids
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were synthesized using amino acids and nucleotides, respectively, accounting energy expenditures
(further details in Section 2.1.3 - Model Formulations).

2.1.2 Genome-scale Model

The Genome-scale model (GSM) used throughout this work was iJO1366, whose reconstruc-
tion was done by Orth et al., 2011. It is an extremely detailed network that is representative
of the E. coli K-12 MG1655 metabolism and that was expanded from a previous model, the
iAF1260. The updated version of this network was obtained from BiGG Models database
and presently accounts for 1367 associated genes, 2585 metabolic reactions and 1805 metabo-
lites. Unlike CMM, these metabolites and reactions can be compartmentalized in cytoplasmic,
periplasmic or extracellular, adding another level of complexity. Additionally, this model has 39
subsystems, from which alanine and membrane lipid metabolism to glycolysis/gluconeogenesis
and tricarboxylic acid (TCA) cycle, are just some examples. Recombinant proteins and plas-
mids synthesis were added to the model using amino acids and nucleotides, respectively, and
accounting energy expenditures that are further detailed in the following Section 2.1.3.

2.1.3 Model Formulations

In model formulations, the objective was to construct stoichiometric reactions for the syn-
thesis of a plasmid, its resistance marker and a recombinant protein. Additionally, different
protein producing metabolic networks and ways to formulate the enumeration problems were
developed.

Recombinant Protein

Regarding the recombinant protein synthesis, the selected model protein for this work was the
human interferon gamma (IFNγ) as studied by Pandey et al., 2018. This synthesis reaction was
included by quantifying the per mole amino acid requirement for the His-tagged IFNγ (Appendix
B) and assuming 4.3 ATPs per peptide bond as it is, approximately, the necessary energy to
condensate two amino acids. Protein primary sequence and composition is available at NCBI
database reference sequence number NP 000610.2 (Interferon gamma precursor [homo sapiens])
and to this sequence, a 6 histidines His-tag was added to perform stoichiometric computations,
consistent with the protein produced experimentally by Pandey et al.(2018).

Plasmid

For plasmid synthesis, the selected model plasmid for this work was the pET28a vector
system from Novagen as used by Pandey et al., 2018. This synthesis reaction was included by
quantifying the per mole deoxyribonucleotide triphosphate (dNTP) requirement for the pET28a-
IFNγ system (considering the His-tag) (Appendix B). The necessary energy to condensate two
dNTPs was assumed to be approximately 1.36 ATPs per nucleotide bond. Plasmid primary
sequence and composition is available at Addgene database and to this sequence, a nucleotidic
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IFNγ sequence that is available at NCBI database accession reference AB451324.1 was added
to perform stoichiometric computations.

Resistance Marker

A resistance marker synthesis reaction was added based on the plasmid antibiotic resistance.
The pET28-a vector system presents a kanamycin resistance marker and thus a reaction was
included quantifying the per mole amino acid requirement for the production of the enzyme that
confers resistance to kanamycin (aminoglycoside O-phosphotransferase APH(3’)-Ia). The energy
expenditures were assumed to be 4.3 ATPs per peptide bond and the primary sequence and
composition of this phosphotransferase was obtained from NCBI database reference sequence
number WP 000018329 (aminoglycoside O-phosphotransferase APH(3’)-Ia [Bacteria] (kanR)).

Model Configurations

In addition to the metabolic reactions present in the models, different ways to balance the
equations of plasmid and/or IFNγ synthesis were considered, giving rise to different ways to
represent the E. coli K12 system. In total 4 different balance equation formulations were created
and all the changes to both models (CMM and GSM) were done in MATLAB using COBRA
Toolbox.

The base model is the simplest and comprises only a reaction to account for plasmid syn-
thesis. It does not contain in its stoichiometric matrix any information regarding IFNγ and
phosphotransferase. Thus, this model is built on an assumption that plasmid and recombinant
protein production are directly proportional, meaning that the more plasmids there are, the
more recombinant proteins will be translated from those plasmids at a given time. Equation 2.1
represents, without adequate stoichiometry, the reaction added to this model.

∑
pET28a-IFNγ dNTPs + ATP→ Plasmid + ADP + Pi (2.1)

Moreover, another level of detail was added to the previous base model. A IFNγ synthesis
reaction was added and is independent from the plasmid reaction. This model treats both
plasmid and recombinant protein as uncorrelated entities. From this model, it can be interesting
to visualize the flux to one product or another since their monomers’ origin is metabolically
distinct. The following Equation 2.2 represents the new reaction added.

∑
IFNγ amino acids + ATP→ IFNγ + ADP + Pi (2.2)

For the third model, a resistance marker synthesis reaction was joined to the previous model.
This reaction is independent from the plasmid and IFNγ reaction, only relying on its primary
amino acid sequence as precursors. All the entities are uncorrelated and independent from each
other. From this model, it can be interesting to investigate how the system behaves and what
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options are available when constraints are imposed.

∑
Phosphotransferase amino acids + ATP→ Phosphotransferase + ADP + Pi (2.3)

Regarding the fourth and last model, a different approach was investigated. In this model,
all the reactions are correlated with each other, meaning that IFNγ and phosphotransferase pro-
duction are directly dependent on plasmid availability. In turn, plasmid availability is dependent
on dNTPs as described in Equation 2.1. In addition, IFNγ and phosphotransferase depend on
amino acids availability as described in Equations 2.2 and 2.3, respectively. Hence, for this pur-
pose, and since there is not available information on ratios such as recombinant protein formed
per plasmid, it was assumed that 1 mole of plasmids would give rise to 1 mole of IFNγ and 1
mole of phosphotransferase, as represented by Equation 2.4.

1 Plasmid pET28a → 1 IFNγ + 1 Phosphotransferase (2.4)

From a biological standpoint this is the closest to reality since there is a correlation between
products. However, from a computational point of view, it may not work as intended as it is
metabolically heavy for the network to mathematically allocate all these fluxes while maintaining
biomass growth. Table 2.1 summarizes all the models previously described, as well as a key that
will be used throughout this work to simplify the analysis when referring to each model.

Table 2.1: Model configuration key and main aspects summary based on the previously described
balance equations.

Model Equations Comment

A Eq. 2.1 Plasmid production. Base model with simplest configuration.

B
Eq. 2.1

Eq. 2.2
Plasmid and IFNγ production. Independent reactions.

C

Eq. 2.1

Eq. 2.2

Eq. 2.3

Plasmid, IFNγ and phosphotransferase production. Independent reactions.

D Eq. 2.4 IFNγ and phosphotransferase production dependent on plasmid availability.
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Problem Configurations

In addition to the distinct model constructions, different enumeration problem configura-
tions were developed based on yield constraints. In total, four different configurations were
implemented (Table 2.2).

The first constraint to be tested was to block solutions where product per biomass yield was
below a certain threshold. These products may be the plasmid, IFNγ and phosphotransferase,
depending on which model is used. For instance, for model A it is only possible to perform
simulations blocking low plasmid per biomass yield. However, model B simulations may have,
in addition to plasmid, IFNγ per biomass yield constraints. These constraints are treated and
computed individually, hence one simulation per product yield constraint is performed. Similarly,
in the second set of constraints, product per biomass yield is considered. However, in this
configuration, simulations are run considering all possible constraints at the same time (instead
of individually). For instance, in model C, one simulation is run where it will be considered a
plasmid, IFNγ and phosphotransferase per biomass yield threshold constraint simultaneously.

Furthermore, the third and fourth constraints are similar to the first and second, respectively.
Instead of considering product per biomass, product per plasmid yield thresholds are applied in
the enumeration problem. Table 2.2 summarizes all the configurations previously described as
well as a key that will be used throughout this work to simplify the analysis when referring to
each enumeration problem configuration.

Table 2.2: Problem configuration key and main aspects summary based on the previously described
constraints.

Problem Comment

1
Block low product per biomass yield thresholds individually.

Products may be plasmid (P), recombinant protein (R) and resistance marker (M).

2 Block low product per biomass yield thresholds simultaneously.

3
Block low product per plasmid yield thresholds individually.

Products may be recombinant protein (R) and resistance marker (M).

4 Block low product per plasmid yield thresholds simultaneously.

The problem and model configuration keys will be used together throughout the rest of
this work to simplify the analysis and discussion. For instance, when referring to results of
CMM A1M, one is referring to a simulation performed on the a CMM model that only has
a plasmid production reaction (model A) and whose enumeration problem was constrained to
block low phosphotransferase per biomass yield (1 means product per biomass yield and M refers
to the product, in this case the resistance marker). Another example, GSM C4 is referred to
the GSM model that has the 3 individual reactions (model C) and whose enumeration problem
was constrained to block low product per plasmid yield simultaneously (in this case, IFNγ and
phosphotransferase per plasmid yield, at the same time).
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2.2 Cellular Constraints

To solve MCS and FBA problems, biological or physiochemical cellular constraints need to
be added to limit the solution space to achieve desirable phenotypes. As the main objective was
to evaluate the system behaviour, most cellular constraints are not extremely strict. Glucose
maximum uptake rate was set to 1000 mmol/g ·h as well as the maximum oxygen consumption
rate. These bounds do not have any physiological and biological meaning. However, this way,
the model has more freedom to use its main substrate sources and it is possible to evaluate
whether producing a by-product (recombinant protein, for instance) is viable with cell growth.
Moreover, the upper and lower bounds on cellular maintenance energy (ATPM reaction) were
left at the empirical default of 8.39 mmol/g · h (Orth et al., 2010). In addition to the previous
constraints, a minimum biomass and product per substrate yield threshold were added. Not
desiring to constraint too much the problem formulation, these values were both set to 0.0001.
These cellular constraints were maintained in all simulations in this work and are presented in
summary in Table 2.3.

Table 2.3: Cellular constraints applied to all the simulations and models used throughout this work.

Constraint
Value

(mmol/g · h)
Comment

Glucose 1000 Glucose maximum uptake rate set to not constraint too much the system

Oxygen 1000 Oxygen maximum uptake rate set to not constraint too much the system

Maintenance 8.39 ATPM reaction set to empirical value as requirement cell maintenance.

Biomass 0.0001 Biomass reaction minimum threshold

Product/Glucose 0.0001 Product per substrate minimum yield threshold

To perform FBA and pFBA simulations, the maximization of biomass growth was the elected
objective function as it is the most commonly used biological optimization goal.

2.3 Enumeration Algorithm

To compute the MCS/cMCS enumeration problems, a method developed by Vieira (2015)
was provided. In this work, Vieira implemented in Java programming language a library con-
taining routines for MCS enumeration that can be used from small networks to genome-scale
metabolic models. In this context, the pipeline constructed by Vieira and incorporating four
main steps is depicted in Figure 2.1.
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Figure 2.1: Generic pipeline for enumerating MCSs featured in Vieira (2015) work (From Vieira, 2015).

• Model setup: In this step, the model is imported and unbounded fluxes are removed to
improve numerical stability. In addition, pseudo-reactions are identified as they will not
be part of the solutions.

• Pre-processing: This steps aims to improve computational speed by reducing the net-
work complexity. It is accomplished by removing blocked reactions that are found through
flux variability analysis (FVA) and network compression by lumping correlated reactions.
This compression is based on the enzyme subset concept from nullspace analysis, where
each enzyme subset is considered a single reaction.

• Problem setup: In this step, the enumeration problem is assembled and validated before
continuing. A group of desired and undesired phenotypes is constructed based on flux
bounds (acting as capacity constraints) and yield constraints (that forces the ratio between
two fluxes to a threshold). After defining the phenotypic space, problem feasibility is
assessed.

• Enumeration: In this last step, the proper formulation is built in the pre-processed model
and solved. The K-shortest algorithm is used to compute the EFMs (Figueiredo et al.,
2009) and the MCSEnumerator algorithm to enumerate the MCSs (Kamp & Klamt, 2014).
Then, the MCSs are checked for feasibility in the desired conditions. Finally, solutions are
decompressed with simple combinatorics and MCSs that do not belong to the desired
phenotypic space are discarded, leaving only cMCSs.

The provided problem formulation script was modified, using Eclipse software, to accommo-
date the desirable phenotypes for this work described in the previous sections.
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2.4 Statistical Methods

2.4.1 Principal Component Analysis

Principal component analysis (PCA) is an unsupervised learning method that aims to reduce
the high dimensionality of a dataset while retaining its variation, patterns and trends. This
dimensionality reduction is achieved by defining new variables that are a linear combination of
the original ones and, geometrically, are the orthogonal projection - the principal components
(PC). It is done as such that the first PC has the largest possible variance (accounting for as much
of the variability in the data) and each succeeding component in turn has the highest variance
possible under the constraint that it is orthogonal to the preceding components (Ringnér, 2008).

Firstly, the data may require some processing, such as its centralization and standardization,
taking into consideration that PCA is sensitive to the relative scaling of the original variables.
Then, a correlation matrix is computed, containing the correlation values between all pairs
of variables. From this matrix, the eigenvectors and eigenvalues can be extracted, describing
the directions of patterns in data and the variance explained by these directions, respectively.
Eigenvectors correspond then to the principal components and the eigenvalues to the variance
each component explains (Smith, 2002; Ringnér, 2008).

PCA is useful and very common in biology as it helps reduce the high dimensionality in,
for instance, NGS data where the number of samples is significantly lower than the number of
features (genes or transcripts). The samples can then be plotted according to their projection
onto each of the components, allowing the visualization of possible patterns and groups contained
in it.

In this work, PCA was used with the purpose of searching for patterns in reaction fluxes
and to group similar solutions, ultimately to reduce the solution pool size. Principal component
analysis was implemented in R using the function PCA from the FactoMineR package (Husson
et al., 2017).

2.4.2 Cluster Analysis

Cluster analysis (or clustering) is an unsupervised learning methodology which means there
are no predefined data labels or classes. The main goal of these methods is to group a set of
objects in such way that objects in the same group (called clusters) are more similar to each other
than to those in other clusters. The similarity/dissimilarity is a key component in clustering as
it is the main controlling factor when grouping data and it is typically expressed in terms of
distance. For such calculations, a distance metric is required and it is chosen according to the
features and type of data available. The most popular metrics are the Manhattan and Euclidean
distances that calculate the distance between data points as given by Equations 2.5 and 2.6 ,
respectively (Rokach & Maimon, 2005).

d(i, j) =
∣∣xi1 − xj1

∣∣+ ∣∣xi2 − xj2
∣∣+ ...+

∣∣xip − xjp

∣∣ (2.5)

28



d(i, j) =
√∣∣xi1 − xj1

∣∣2 +
∣∣xi2 − xj2

∣∣2 + ...+
∣∣xip − xjp

∣∣2 (2.6)

The appropriate clustering algorithm and parameter settings (including distance function,
a density threshold or the number of expected clusters) depend on the data set and intended
use. As such, cluster analysis is rather an iterative process of knowledge discovery and it is
often necessary to modify data preprocessing and model parameters until the results achieve the
desired properties.

Hierarchical Cluster Analysis

Hierarchical cluster analysis (HCA) is a method which seeks to build a hierarchy where
clusters have subclusters that are organized in a tree, and each node (clusters) is the union of its
children (subclusters). It can fall into two categories: the agglomerative and divisive approach.

The agglomerative clustering methods are the most used and work in a ”bottom-up” manner.
That is, each object is initially considered a single-element cluster (leafs) and at each step of
the algorithm the two most similar clusters are merged into one single big cluster (nodes). This
procedure is iterated until a stopping criteria is met or all elements are joined in one single cluster
(root). This allows the construction of a nested grouping of patterns, usually represented in a
dendrogram (Gan et al., 2007).

On the other hand, divisive clustering methods are essentially the inverse process of an
agglomerative technique and work in a ”top-down” manner. In this case, at the start, all objects
are included in one single cluster (root). At each step of iteration, the most heterogeneous cluster
is divided into two (nodes). This process is iterated until each object has its own single-element
cluster (leafs) (Gan et al., 2007).

In this type of clustering the clusters of a higher hierarchy level encompass all the objects
that belong to the merged clusters from the lower level, which means that when an object is
assigned to a certain cluster it is not possible to reassigned to another cluster. In Figure 2.2 the
two HCA approaches described above are represented (Rokach & Maimon, 2005).

To compute the dissimilarity between two clusters of observations there are three popular
methods:

• Single linkage: It computes all pairwise dissimilarities between elements in cluster A
and elements in cluster B, and considers the smallest of these dissimilarities as a linkage
criteria.

min{d(x, y) : x ∈ A, y ∈ B} (2.7)

• Complete linkage: It computes all pairwise dissimilarities between elements in cluster
A and elements in cluster B, and considers the maximum value of these dissimilarities as
the distance between the two clusters.

max{d(x, y) : x ∈ A, y ∈ B} (2.8)
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• Average linkage: It computes all pairwise dissimilarities between elements in cluster A
and elements in cluster B, and considers the average of these dissimilarities as the distance
between the two clusters. It is an in between to the last two methods.

1
|A| · |B|

∑
x∈A

∑
y∈B

d(x, y) (2.9)

Hierarchical algorithms are suitable for dataset with arbitrary shape and is advantageous as
it outputs a hierarchy, that is a structure that can be more informative cluster-wise when com-
parison to unstructured sets of flat clusters returned in other algorithms. However, it presents
high inability to adjust decisions, given the impossibility of reassigning the objects to different
clusters after their assignment. It is also very sensitive to outliers and is not suitable for very
large datasets (Santini, 2016).

Figure 2.2: Representation of the agglomerative and the divisive HCA approach.

2.5 Tools and Software

2.5.1 The R Programming Language

All the analytical work described throughout this thesis was implemented in R programming
language, a free software environment for statistical computing and graphics. R provides a
grand variety of not only statistical methods but also good graphical visualization and can be
easily extended using a wide range of available packages, thereby facilitating data analysis and
visualization (R Development Core Team, 2011). In order to run R, a user-friendly environment,
RStudio, that is an integrated development environment (IDE) was used.

The main majority of graphics and data visualization displayed throughout this work were
generated through the ggplot function from the ggplot2 package available for R (Wickham, 2009).
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2.5.2 MATLAB

MATrix LABoratory (MATLAB) is a computing environment and programming language
for algorithm development, data analysis, visualization and numerical computation. It allows
matrix calculations, plotting of functions and data, creation of graphical user interfaces (GUI)
and algorithms that can be implemented or used from a vast library of pre-built toolboxes.
In addition, it is possible to interface with programs developed in different languages (C/C++,
Java R©, .NET, Python, SQL, Hadoop and Microsoft R© Excel R©) which makes it possible to harness
the unique strengths of each language for various purposes.

Throughout this work, MATLAB was used to manipulate and construct all the metabolic
models that were simulated. All these changes were achieved using the COBRA Toolbox
(Heirendt et al., 2018).

2.5.2.1 The COBRA Toolbox

The COnstraint-Based Reconstruction and Analysis (COBRA) Toolbox is a set of methods
and utilities integrated as a form of software package to provide easy access to core COBRA
methodologies. It provides methods for quantitative prediction of cellular phenotype and multi-
cellular biochemical networks with constraint-based modelling. It implements an extended and
comprehensive collection of modelling methods, from reconstruction and model generation to
prediction and analysis methods. The openCOBRA project has been developing, starting with
tools for MATLAB that are currently at their third version (The COBRA Toolboox v3.0) and
that have been expanding to Python (COBRApy) and Julia (COBRA.jl) modules (Heirendt et
al., 2018).

The COBRA Toolbox for MATLAB was used to deal with the model reconstruction and
refinement. This toolbox offers the processing of SBML (Systems Biology Markup Language)
files of metabolic networks, as well as the capability of reading and writing. Model manipulation
functions such as addReaction and addMetabolite were commonly used to add information to
the network regarding the synthesis of plasmids or recombinant proteins. Some functions were
called to export the new models; however, this toolbox was not used to apply any phenotype
prediction or analysis algorithm.

2.5.3 The Java Programming Language

In order to run the Java scripts to perform flux distributions simulations (pFBA and FVA)
and apply the necessary problem formulation modifications, a user-friendly integrated develop-
ment environment (IDE), Eclipse, was used. This software contains a base workspace with an
extensive plug-in system for further customization. It is primarily used to develop Java applica-
tions but may be also used with other programming languages. For this work, Eclipse Oxygen
version, released on June 2017, was used.
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Chapter 3

Results and Discussion

In this Chapter, the main results generated with the different models are presented, analyzed
and discussed. Regarding the Central Metabolism Models (CMM), an exploratory data analysis
was performed with the aim of finding a small number of solutions for a further detailed network
analysis. For the Genome-scale Model (GSM), only an exploratory data analysis was performed
in order to evaluate differences comparing to the smaller model.

3.1 Central Metabolism Model

3.1.1 Data Processing

Data were generated for each enumeration problem (combinatorial model and problem con-
figurations) as previously described in Chapter 2. A maximum knockout size of 5 was allowed
and all the solutions were stored as sets of strings encoding reactions. For each generated solu-
tion, a pFBA flux distribution was computed and stored in a matrix where each row is a solution
and each column encodes a reaction. Hence, each matrix entry represents a flux value for a given
reaction in a particular set of knockouts (solution).

Before analysing the data, a pre-processing step was performed in order to help reducing data
high dimensionality. In this step, some solutions were filtered based on their set of knockouts.
On one hand, solutions that were biologically irrelevant were removed. These are solutions
that comprise one or more reactions regarding: (1) production, such as biomass, plasmid,
recombinant protein and resistance marker reactions that are the objective of this work making
their removal meaningless; (2) energy, such as ATP maintenance and synthesis reactions that
are essential to cell survival; and (3) transport such as glucose exchange reaction that is assured
by the PTS system and are also vital to cells. Table 3.1 summarizes all the reactions that were
targets of this filtration step.

On the other hand, solutions that were computationally irrelevant were removed. These were
selected based on biomass-product coupled yields (BPCY) and combined reaction flux values,
depending on each model and formulation available. For instance, it can be considered that,
solutions whose BPCY was above zero or solutions that present a flux different from zero in
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plasmid and recombinant protein reactions, at the same time, are the ones to be kept for further
analysis.

These filtration steps were applied to each model and formulation. After processing, each
formulation data corresponding to a model was concatenated and analyzed simultaneously.

Table 3.1: Biologically relevant reactions that were filtered in the CMM data processing step. Solutions
(set of knockouts) that comprised one or more of these reactions were removed from further analysis.

Reaction Description

R BiomassProduction Biomass production reaction

R PlasmidProduction Plasmid production reaction

R RecProduction Recombinant protein production reaction

R ResProduction Resistance marker production reaction

R ATPM ATP Maintenance reaction

R ATPS1 ATP Synthesis reaction (NADH related)

R ATPS2 ATP Synthesis reaction (FADH2 related)

R PTS Glucose transport system

3.1.2 Exploratory Data Analysis

In order to understand the main characteristics of the data, some exploratory data analysis
methods were applied. A Principal Component Analysis (PCA) was performed after data fil-
tration and standardization with the objective of evaluating the main source of data variation.
In addition, a hierarchical cluster analysis (HCA) was performed with the aim of reducing the
solution pool by grouping solutions that present different sets of knockouts reactions but show
similar phenotypes. These methods were applied on the pFBA flux distribution data.

In the next Sections, these methods’ results will be presented and discussed for all the four
models, and each model with all its possible problem configurations.

3.1.2.1 Model A

Model A takes only into consideration the plasmid production reaction. Consequently, there
is only one way to compose the enumeration problem, which is by constraining low plasmid
production per biomass yields (formulation 1P). From the initial 723 different solutions obtained
for this problem, only 8.2% remained for further analysis after the processing step. Table 3.2
summarizes the number of suggested knockouts in a solution (MCS Size) and the amount of
solutions that have that size.
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Table 3.2: Model CMM A Summary of the suggested knockout number in a solution (MCS Size) and
the amount of solutions that have that size (# MCS), corresponding to each formulation before (pre-)
and after (post-) processing steps.

Formulation MCS Size # MCS

Pre-Processing 1P

1 0 (0%)

2 2 (0.3%)

3 1 (0.2%)

4 264 (36.5%)

5 456 (63.0%)

Total 723

Post-Processing 1P

1 0 (0%)

2 2 (3.4%)

3 1 (1.7%)

4 4 (6.8%)

5 52 (88.1%)

Total 59

It is noticeable that most of the solutions in the pool suggests a four or five set of knockout
reactions. Smaller solutions account for less than 1 % of the pre-processed data and there are
no MCSs with only one reaction. After the filtration step, small solutions number remained
the same, and solutions with larger knockout pools were heavily reduced (a 98.5% and 88.6%
reduction regarding MCSs with a size of 4 and 5 knockouts, respectively).

Moreover, to better visualize and analyze the PCA results, a scree plot was computed show-
ing the variance explained by each principal components until the tenth component. In addition,
a correlation circle accounting variables (network reactions) and a graph of individuals (solu-
tions) was computed. The individuals are represented by their projections and the variables
are represented by their correlations. Lastly, a HCA was performed to try to cluster solutions.
Since the resulting tree is too large, only a specific sub-tree will be shown in the results but the
full dendrogram is in Appendix C.

A scree plot is a useful visual tool for determining an appropriate number of principal com-
ponents that explain the most variability in the data. Figure 3.1 plot shows that five components
explain approximately 98.8% variance in these data, i.e., the majority of the data can be reduced
to this amount of dimensions without compromising on explained variance and losing important
information. There is no defined objective way to decide the number of required components
as this depends on each individual dataset and its application. However, in practice, one aims
to analyze the first few components in order to find interesting patterns in the data. Regarding
model A data, two principal components were chosen to be analyzed as they account for a rea-
sonable fraction of the total variance - around 86.2% cumulative explained variance percentage.
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Figure 3.1: Model CMM A Exploratory data analysis results: A) Scree plot percentage of explained
variances (%) in each principal component (up to a total of ten PCs); B) Correlation circle correlation
between the top 10 variables contributing to the PCs and the first and second principal components; C)
Dendrogram hierarchical cluster analysis performed using single linkage method and euclidean distance
metric. The sub-tree was obtained by a cut done at a dendrogram height equal to 15; D) Individuals
graph data projection coordinates in the first two principal components: CMM A1P.

A correlation plot gives the variables direction vectors and helps describing the strength
of relationship between two variables. A correlation coefficient ranges from -1 to +1, where
+1 indicates a perfect positive linear relationship, and -1 a perfect negative linear relationship.
Variables which have little contribution to a direction have almost zero weight. Drawing this
plot may contribute to understand, in general, which variables have positive and negative impact
on the principal components. Strongly related variables, will be positively correlated, and in
this plot, will appear near each other. Meanwhile, negatively correlated variables will appear
diagonally opposite to each other. If two variables are unrelated, they will appear orthogonal to
each other. Additionally, the length of an arrow represents how well it explains the distribution
of the data. A variable with a long arrow means it is better represented in the principal com-
ponents. Figure 3.1 correlation circle shows the top ten contributing variables to the fist and
second dimensions. From this plot, all arrows have a similar length, so the parameters contribute
equally. Moreover, nine out of ten variables are strongly positively correlated, whereas R PGM
is negatively correlated. The latter, corresponds to a reaction in gluconeogenesis where glucose-
6-phosphate is transformed back to glucose for energy reservation. In this way, it is valid that
this variable is negatively correlated as the remaining reactions are mostly essential to nucleotide
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synthesis, where there is a high energy and substrate consumption, in contrast to R PGM whose
objective is completely the opposite. Furthermore, some of the positively correlated reactions
concern amino acid synthesis such as R PSP (serine synthesis) and R ASPOX (aspartate syn-
thesis). Even though in this model there is not a reaction accounting for recombinant protein
production, these amino acids are essential for the pseudo biomass reaction. Additionally, these
are also fundamental early precursors in nucleotide synthesis for the plasmid production (serine
is involved in MetTHF synthesis and aspartate in PRAIC synthesis). Overall, these top con-
tributing variables show that there is high variation in reactions concerning nucleotide synthesis
which is consequently related to plasmid production.

The individuals graph, also known as score plot, is a projection of the data scores into
principal components and it is used for finding and interpreting relationships between individ-
uals/observations. It can be used to assess the data structure and detect clusters, outliers,
and trends. Groupings of data on the plot may indicate two or more separate distributions
in the data. In this model, there is only one possible enumeration problem and, thus PCA is
not as helpful in pattern visualization as there are not any separations to be made. Although
PCA does not compute which solutions belong together, since to do that clustering methods
are needed, it can still give a good visualization of how individual solutions are grouped. For
instance, from this score plot it is possible to say that an amount of solutions are very closely
grouped (highlighted by the strong pink coloured circle in the left, resulting of solution overlap-
ping) and that contribute exclusively to the first dimension. These solutions may be a possible
cluster that could reduce the solution pool as they may represent the same phenotype. In this
group, most of the solutions have a MCS length of 5, where 4 suggested knockouts remain the
same (R TRANSH2, R ACK, R ADH and R SDH ) and the last reaction is different for each
solution. These reactions are tightly related to overflow metabolites that are secreted by cells to
balance NADH/NAD+ and obtain ATP (R ACK for acetate and R ADH for ethanol), as well
as other cell mechanisms to balance reducing power such as R TRANSH2 for NADPH/NADH
and R SDH for FADH2. In addition, these solutions have a similar phenotype to a smaller
suggested 2 knockout solutions (R TRANSH2 and R PDH ) and, thus it may be an interesting
target for a further detailed analysis to study and explain how a similar phenotype is achieved
by deleting 2 reactions instead of 5.

A dendrogram is a tree diagram used to illustrate the arrangement of the clusters produced
by hierarchical clustering, which is useful to find correlated groups. The horizontal axis of a
dendrogram represents the distance or dissimilarity between clusters, whereas the vertical axis
represents the objects and clusters. Each joining (fusion) of two clusters is represented on the
graph by the splitting of a horizontal line into two horizontal lines. The horizontal position
of the split, shown by a short vertical bar, gives the distance (dissimilarity) between the two
clusters. Furthermore, cutting a dendrogram at a certain level/height gives a set of clusters.
Thus, depending at which height the cut is done, one can have variable cluster numbers. There is
no definitive height at which a dendrogram should be cut as the resulting hierarchical structure is
context-dependent. Figure 3.1 shows a sub-tree that was obtained by cutting the full dendrogram
at a height equal to 15. This tree was computed using single linkage method and euclidean
distance as the metric distance. Since the main objective behind our HCA is to find solutions

37



that are highly similar between each other, these methods seem to be the most appropriate as
individuals are grouped by how close their squared distances are. Looking at the full dendrogram
(in Appendix C), there are two very distinct groups separated by a high dissimilarity. The top
group (represented in Figure 3.1 sub-tree) seems to consist of more distinct clusters, while most
of the individuals in the bottom group are all clustered together at the same height. Comparing
the PCA with the HCA results, it is possible to corroborate that the group in PCA corresponds
to an actual cluster in HCA (bottom group) and, thus the phenotypes are equal in all those
solutions. These are also the solutions that are less related to the wild-type (WT) which can be
an indicator in a sense that, being the primary focus to search plasmid producing phenotypes,
these are the complete opposite of the WT. Overall, it is possible to see patterns of clusters
that are based on solutions that are closely related as they share 3 or 4 suggested knockouts in
common, only differing in 1 or 2 reactions.

In addition to the previous results, the number of times each reaction appeared in all overall
solutions (# KO) was computed. This was done to provide a general idea which reactions are
deleted repeatedly, as well as to guide the decision on which solutions to further analyze. The top
10 most targeted reactions for knockouts in solutions concerning model A data are summarized
below in Table 3.3.

Table 3.3: Model CMM A top ten most targeted reactions for knockouts in the overall solutions set
(#KO).

Reaction # KO

R TRANSH2 42

R SDH 42

R ACK 40

R ADH 40

R PGM 17

R PYK 16

R PGDH 12

R PYC 9

R G6P1D 5

R ICL 3

The most targeted reactions, which were suggested for knockout 40 and 42 times, had been
previously mentioned in the PCA analysis and are tightly related to reducing power balance and
ATP production.

3.1.2.2 Model B

Model B considers the individual plasmid and recombinant protein production. Conse-
quently, there are multiple ways to formulate the enumeration problem - formulations 1P, 1R,
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2, 3R and 4. On average, for each formulation, from the initial number of different solutions
obtained, only 3.2 % remained for further analysis after processing. As a whole, from the 3649
total solutions, only 115 were left for further analysis, which corresponds to a 96.8 % decrease
in total solutions. Table 3.4 summarizes the MCS size and the amount of solutions to that
corresponding size (# MCS) for enumeration problems performed on this model.

As seen previously, most solutions in the pool comprise sets of four or five knockout reactions,
whereas smaller solutions account for less than 1% of the pre-processed data. No MCSs were
found with only one reaction. The pattern repeats itself, as most of the smaller solutions
remain after processing, with larger knockout sets being heavily reduced (an average processing
reduction of 98.9% and 97.6% for MCSs with sizes of 4 and 5 knockouts, respectively). In
addition, there are formulations that do not present any MCSs with 3 or less knockouts -
formulations 1R, 3R and 4.

To better understand and visualize these differences and results, the PCAs and HCAs per-
formed are shown below in Figure 3.2.
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Figure 3.2: Model CMM B Exploratory data analysis results: A) Scree plot percentage of explained
variances (%) in each principal component (up to a total of ten PCs); B) Correlation circle correlation
between the top 10 variables contributing to the PCs and the first and second principal components; C)
Dendrogram hierarchical cluster analysis performed using single linkage method and euclidean distance
metric. The sub-tree was obtained by a cut done at a dendrogram height equal to 10.2; D) Individuals
graph data projection coordinates in the first two principal components: CMM B1P CMM B1R

CMM B2 CMM B3R CMM B4 .
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Table 3.4: Model CMM B Summary of the suggested knockout number in a solution (MCS Size) and
the amount of solutions that have that size (# MCS), corresponding to each formulation before (pre-)
and after (post-) processing steps.

Formulation MCS Size # MCS

Pre-Processing 1P

1 0 (0%)

2 3 (0.3%)

3 1 (0.1%)

4 186 (21.7%)

5 669 (77.9%)

Total 859

Pre-Processing 1R

1 0 (0%)

2 0 (0%)

3 0 (0%)

4 128 (20%)

5 501 (80%)

Total 629

Pre-Processing 2

1 0 (0%)

2 3 (0.3%)

3 1 (0.1%)

4 196 (21.7%)

5 703 (77.9%)

Total 903

Pre-Processing 3R

1 0 (0%)

2 0 (0%)

3 0 (0%)

4 128 (20%)

5 501 (80%)

Total 629

Pre-Processing 4

1 0 (0%)

2 0 (0%)

3 0 (0%)

4 128 (20%)

5 128 (20%)

Total 629

Formulation MCS Size # MCS

Post-Processing 1P

1 0 (0%)

2 1 (5%)

3 1 (5%)

4 2 (10%)

5 16 (80%)

Total 20

Post-Processing 1R

1 0 (0%)

2 0 (0%)

3 0 (0%)

4 2 (10%)

5 18 (90%)

Total 20

Post-Processing 2

1 0 (0%)

2 1 (2.8%)

3 1 (2.8%)

4 9 (25.7%)

5 24 (68.7%)

Total 35

Post-Processing 3R

1 0 (0%)

2 0 (0%)

3 0 (0%)

4 2 (10%)

5 18 (90%)

Total 20

Post-Processing 4

1 0 (0%)

2 0 (0%)

3 0 (0%)

4 2 (10%)

5 18 (90%)

Total 20

From the scree plot it is possible to compute that at least seven principal components are
necessary to explain approximately 97.0 % variance in these data. In comparison to the previous
model, at least two more dimensions are required to achieve almost the same variance percentage,
meaning that, by introducing the recombinant protein reaction in the model, more contrast and
divergence was included. Concerning model B data, two principal components were chosen to
be analyzed as they account for 72.8 % of cumulative explained variance percentage. Although
this value is 13.4 % lower than the previous model, it still considers a reasonable amount of
explained variance in just two dimensions. This also corroborates that the IFNγ production
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reaction introduced more variation in the system.

From the correlation circle, it is possible to visualize that all top ten contributing variables
share the same amount of contribution to the components as their arrows present the same length
(equal to the correlation circle radius, which is equal to one). Furthermore, all ten variables are
in the negative side of component 2 and positive side of component 1 but are strongly positively
correlated with each other. Two interesting reactions that contribute to this variance are the
ones related to plasmid production (R PlasmidProduction and R Plasmid e). By adding the
recombinant protein production reaction, it seems that producing a plasmid became extremely
variable and perhaps dependant on precursors availability, now that the cell may require amino
acids for IFNγ production. The remaining reactions are mostly related to nucleotide synthesis.
Four of these account for deoxyribonucleotide triphosphate (dNTPs) synthesis which are the
precursors for plasmid production (R DCTPK, R THYMK, R DGTPK and R DATPK that
correspond to the dCTP, dTTP, dGTP and dATP synthesis, respectively). The remaining vari-
ables concern other precursors necessary for dNTP synthesis. The only outlier is R DHFR that
belongs to the one carbon units family but, nevertheless, produces an important compound for
nucleotide synthesis reactions (THF). Overall, by introducing the recombinant protein produc-
tion, all top contributing variables are related with plasmid production and nucleotide synthesis
and, thus it is expected that these reactions present a strong positive correlation.

As far as the individuals graph is concerned, this analysis shows that there is a clear sepa-
ration between most solutions from formulations 1P and 2, in contrast to formulations 1R, 3R
and 4. In addition, a point in space is clearly seen that has all possible formulations overlapped
(highlighted by the arrow in Figure 3.2). This point naturally corresponds to the WTs for each
formulation as it presents always the same phenotype. The data points that are completely
on top of each other suggest a very strong grouping of equal phenotypes. In fact, all the solu-
tions for these three enumerations are exactly the same, meaning that they can be treated as
one, having a total of 60 different solutions that can be reduced to 20 solutions that explain
the exact same phenotype. Most of these solutions identify a reaction that concerns to reducing
power (R TRANSH2 ) in addition to combinations of reactions from the pentose phosphate path-
way (PPP) that are knocked out at different stages (R 6PGDH, R TALA1, R R5P1, R TKT1,
R G1D and R GLUCK ). Moreover, regarding the other two formulations, some solutions may
be grouped but there is more variety in these formulations. In addition, a few of these solutions
are closely related to the WTs phenotype.

From the full HCA dendrogram (in Appendix C) it is possible to corroborate that there is
a complete separation based on dissimilarity for the previously mentioned PCA groups. In this
case it is harder to find an evident cut-off height that can be helpful to separate different clusters
as there are plenty of options at many heights. Nevertheless, it is possible to at least isolate a
group as shown in Figure 3.2 sub-tree where a cut-off of 10.2 was applied. It is also available to
see which solutions are closer to the WT phenotype and which ones are not. Overall, this HCA
is helpful to visualize the solutions group separation as well as understand that the inclusion
of the recombinant protein added a level of variation in the system that is shown by the new
multiple ways to cluster all the solutions.
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Moreover, the top ten targeted reactions for suggested knockouts in model B data solution
set are given below by Table 3.5.

Table 3.5: Model CMM B top ten most targeted reactions for knockouts in the overall solutions set
(#KO).

Reaction # KO

R TRANSH2 77

R PGM 60

R 6PGDH 58

R PYK 38

R PGI 32

R PGDH 27

R G1D // R GLUCK 23

R R5PI // R TALA2 // R TKT1 22

R PFK 20

R PYC 19

Once more R TRANSH2 is the most suggested knockout in the solution set. Top KOs are
reactions concerning glycolysis and gluconeogenesis. Furthermore, some also concern the PPP
and the sole reaction representing the Entner Doudoroff (ED) pathway (R PGDH ) is present.
In general, all these reactions belong to bacterial primary metabolism and to pathways whose
goal is to catabolize glucose to pyruvic acid.

3.1.2.3 Model C

Model C considers the individual plasmid, recombinant protein and resistance marker pro-
duction, and thus there are multiple ways to formulate the enumeration problem- formulations
1P, 1 R, 1M, 2, 3R, 3M and 4. On average, for each formulation, from the initial number of
different solutions, only 2.5 % prevailed for further analysis in the post-processing steps. As a
whole, from a total of 2770 solutions, only 76 remained for further analysis, which corresponds
approximately to a 97.3 % total solutions decrease. Table 3.6 summarizes the MCS size and
the amount of solutions correspondent to that size for all enumeration problems performed on
model C.
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Table 3.6: Model CMM C Summary of the suggested knockout number in a solution (MCS Size) and
the amount of solutions that have that size (# MCS), corresponding to each formulation before (pre-)
and after (post-) processing steps.

Formulation MCS Size # MCS

Pre-Processing 1P

1 0 (0%)

2 3 (0.4%)

3 1 (0.1%)

4 186 (23.5%)

5 601(76%)

Total 791

Pre-Processing 1R

1 0 (0%)

2 0 (0%)

3 0 (0%)

4 2 (0.7%)

5 268 (99.3%)

Total 270

Pre-Processing 1M

1 0 (0%)

2 0 (0%)

3 0 (0%)

4 0 (0%)

5 319 (100%)

Total 319

Pre-Processing 2

1 0 (0%)

2 3 (0.5%)

3 1 (0.2%)

4 196 (34.3%)

5 371 (65%)

Total 571

Pre-Processing 3R

1 0 (0%)

2 0 (0%)

3 0 (0%)

4 2 (0,7%)

5 268 (99.3%)

Total 270

Pre-Processing 3M

1 0 (0%)

2 0 (0%)

3 0 (0%)

4 0 (0%)

5 319 (100%)

Total 319

Pre-Processing 4

1 0 (0%)

2 0 (0%)

3 0 (0%)

4 2 (0.9%)

5 228 (99.1%)

Total 230

Formulation MCS Size # MCS

Post-Processing 1P

1 0 (0%)

2 1 (5%)

3 1 (5%)

4 2 (10%)

5 15(80%)

Total 19

Post-Processing 1R

1 0 (0%)

2 0 (0%)

3 0 (0%)

4 2 (100%)

5 0 (0%)

Total 2

Post-Processing 1M

1 0 (0%)

2 0 (0%)

3 0 (0%)

4 0 (0%)

5 0 (0%)

Total 0

Post-Processing 2

1 0 (0%)

2 1 (3%)

3 1 (3%)

4 9 (25.7%)

5 24 (68.3%)

Total 35

Post-Processing 3R

1 0 (0%)

2 0 (0%)

3 0 (0%)

4 2 (100%)

5 0 (0%)

Total 2

Post-Processing 3M

1 0 (0%)

2 0 (0%)

3 0 (0%)

4 0 (0%)

5 0(0%)

Total 0

Post-Processing 4

1 0 (0%)

2 0 (0%)

3 0 (0%)

4 0 (0%)

5 18 (100%)

Total 18
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Again, large solutions prevailed over smaller solutions (1, 2 and 3 knockouts), which account
for about 1% or less of the pre-processed data. No MCSs with one reaction were identified.
Larger knockout solutions were reduced with an average processing reduction of 99.0 % and
97.5 % for MCSs with size of 4 and 5 deletions, respectively. Some formulations do not present
solutions with 3 and 4 knockouts or below - formulations 1R, 1M, 3R,3M, 4. Interestingly,
some formulations regarding resistance marker production did not survive the processing steps
(formulations 1M and 3M). In addition, formulations for the recombinant protein lost 99.3 % of
their solutions, where only 2 remained. Overall, with the resistance marker introduction fewer
solutions were computed and got through the processing steps.
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Figure 3.3: Model CMM C Exploratory data analysis results: A) Scree plot percentage of explained
variances (%) in each principal component (up to a total of ten PCs); B) Correlation circle correlation
between the top 10 variables contributing to the PCs and the first and second principal components; C)
Dendrogram hierarchical cluster analysis performed using single linkage method and euclidean distance
metric. The sub-tree was obtained by a cut done at a dendrogram height equal to 10; D) Individuals
graph data projection coordinates in the first two principal components: CMM C1P CMM C1R

CMM C2 CMM C3R CMM C4 .

The scree plot shows that a minimum of seven principal components are required to explain
approximately 97.2 % variance in this data, which is nearly equal to the previous model scree
plot. Regarding this model data, two principal components were once more chosen to be analyzed
and account for 72.2 % of cumulative explained variance, which is a reasonable amount of
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explained variation in a two dimensional space. This value is similar to the previous one,
which may be indicative that, by adding the resistance marker production reaction, there was
not a major shift and introduction of divergence. This may happen as the resistance marker
is essentially another protein to be produced and, thus, the amino acids required for the IFNγ
production are the same needed for the resistance marker production, but in different quantities.
Comparing to model A, models B and C have a less gap difference as their core dissimilarity relies
on one protein production reaction (and not plasmid, where nucleotides are involved instead of
amino acids).

Analyzing the correlation circle, it is possible to state that, again, all top ten variables equally
contribute to the components as they show equivalent arrow length. All these reactions are in
the positive side of the second principal component and the negative side of the first compo-
nent, and demonstrate a strong positive correlation among each other. In comparison to the
previous model, it is interesting to note that, with the addition of the resistance marker produc-
tion, the reactions regarding plasmid production are no longer on the top contributing variables.
Nevertheless, nine out of ten variables belong to the nucleotide synthesis family. Two of these
are related with plasmid production precursors (R DCTPK and R THYMK that correspond
to dCTP and dTTP synthesis, respectively) and the remaining are related to other precursors
necessary for dNTP synthesis. The former being reactions with respect to nucleoside monophos-
phate (R ASPCMT for UMP synthesis), nucleoside diphosphate (R GUAK and R UMPK for
GDP and UDP synthesis, respectively) and nucleoside triphosphate (R CDPK and R CTPS for
CTP synthesis). Again, the only outlier corresponds to R DHFR that belongs to the one carbon
units family but, nevertheless is important in nucleotide synthesis. Overall, the main differences
between this model and the previous rely on the plasmid production reactions. Regardless,
on both models, nucleotidic synthesis reactions are heavily represented as the top contributing
variables to variance.

Concerning the individuals graph, a similar pattern to the one analyzed previously can
be observed, where there is a clear separation between formulations 1P and 2, in contrast to
formulations 1R, 3R and 4. There is also a point in space that has many possible formulations
overlapped and that corresponds to the WTs. All overlapping data points suggest a strong
grouping of equal phenotypes as usual, and may be confirmed through HCA. The few solutions
from formulations 1R and 3R are, in fact, equal to each other which means they can be treated
as unique solutions. A noticeable difference comparing to model B is that formulation 4 has
its own independent grouping. Nevertheless, these solutions demonstrate similar behaviour to
model B solutions where most have a reaction that concerns reducing power (R TRANSH2 )
with combinations of PPP reactions (R 6PGDH, R TALA1, R R5P1, R TKT1, R G1D and
R GLUCK ) and glycolysis/gluconeogenesis reactions (R PGI, R PGM, R PFK and R ENO).
Furthermore, regarding the remaining two formulations, there is less grouping and more solution
variety and these are the solutions more closely related to the WTs.

From the full HCA dendrogram (in Appendix C) it is possible to corroborate the separation
visualized on the score plot. Once more, it is harder to find an evident cut-off height that can
be helpful to separate different clusters as there are plenty of options. Regardless, it is possible
to isolate four main groups as seen in the full dendrogram colour labelling. Overall, the addition
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of the phosphotransferase production did not add too much variation in the system as before.
The grouping is very closely related to Model B results and there are not many new options or
solutions from this metabolic model.

Lastly, the top ten contributing knockouts concerning the overall model C solutions is sum-
marized below in Table 3.7.

Table 3.7: Model CMM C top ten most targeted reactions for knockouts in the overall solutions set
(#KO).

Reaction # KO

R PGM 48

R TRANHS2 39

R PYK 38

R PGDH 27

R 6PGDH 22

R PYC 19

R PGI 18

R MTHFT // R SDH 16

R G1D // R G6P1D // R GLUCK //

R R5PI // R TALA2 // R TKT1
10

R ENO // R PFK 8

These statistics are very similar to the previous ones (from model B) with just some smaller
differences regarding knockout order. Nevertheless, it is interesting to note that R TRANSH2
is still on top of the list. Overall, practically all reactions belong to a pathway that metabolizes
glucose to pyruvic acid, with the exception that R MTHFT and R SDH belong to the one
carbon unit and TCA cycle family, respectively.

3.1.2.4 Model D

In Model D, plasmid and resistance marker productions are dependent on plasmid availability
and, thus only one formulation was computed (formulation 1R). A major difference in the
enumeration problem for this model is that it was allowed a MCS size of 8 knockouts as there
were not many solutions for smaller sized MCSs. From the initial 29 different solutions obtained
for this problem, only 27.6 % remained for further analysis after processing steps. Table 3.8
summarizes the number of knockouts in a solution and the number of solutions that have that
size.

46



Table 3.8: Model CMM D Summary of the suggested knockout number in a solution (MCS Size) and
the amount of solutions that have that size (# MCS), corresponding to each formulation before (pre-)
and after (post-) processing steps.

Formulation MCS Size # MCS

Pre-Processing 1R

1 0 (0%)

2 0 (0%)

3 0 (0%)

4 2 (7%)

5 2 (7%)

6 11 (37.9%)

7 5 (17.2%)

8 9 (31%)

Total 29

Post-Processing 1R

1 0 (0%)

2 0 (0%)

3 0 (0%)

4 2 (25%)

5 0 (0%)

6 0 (0%)

7 0 (0%)

8 6 (75%)

Total 8

It is noticeable that solutions have a size that ranges from four to eight knockouts, and are
more concentrated around the six to eight knockout size. After the filtration step, solutions with
a four MCS size remained the same. At the same time, solutions with a size of 8 knockouts were
reduced from 9 to 6 and the remainder were completely removed by processing. From all the
models, this is the one with less pre- and post-processed solutions and it could be interesting to
understand in detail why there are fewer possibilities.

Moreover, to better understand and visualize these differences and results, the PCAs and
HCAs performed are shown in Figure 3.4.

The scree plot shows that only three principal components are required to explain 100%
of the data variance, which is the lowest comparing to all previous models. Thus, concerning
model D data, two principal components were chosen to be analyzed as they account for nearly
the totality of variation (98.2 % cumulative explained variance percentage). This may have
happened due to low amount of solutions in comparison to the other enumeration problems, as
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well as these solutions being possibly closely related regarding their variables (reaction fluxes)
which will translate in low variation.
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Figure 3.4: Model CMM D Exploratory data analysis results: A) Scree plot percentage of explained
variances (%) in each principal component (up to a total of ten PCs); B) Correlation circle correlation
between the top 10 variables contributing to the PCs and the first and second principal components; C)
Dendrogram hierarchical cluster analysis performed using single linkage method and euclidean distance
metric. The sub-tree was obtained by a cut done at a dendrogram height equal to 15; D) Individuals
graph data projection coordinates in the first two principal components: CMM D1R.

Concerning the correlation circle, from all the models, this is the one that shows more di-
versity. All top ten variables contribute equally to the components as previously stated and
are separated in mainly three groups. The first group comprises R FAS4, R ASPCMT and
R UMPK, which are reactions that are related to nucleotide synthesis. Furthermore, a second
group comprises the reactions R FUM, R CHORM, R ASPAS, R HISDH, R RecProduction and
R Protein e. Contrarily to the previous group, these reactions are all related to amino acid syn-
thesis, mainly histidine, aspartate and aromatic families. These two groups share a 180 degree
which means that they are negatively correlated. In solutions, when amino acids are being pro-
duced, it negatively influences nucleotide synthesis and vice-versa. This can be problematic since
in this model recombinant protein production is completely dependent on plasmid availability.
The last group is composed only by R ASPOX which accounts for asparagine synthesis. This
arrow is nearly orthogonal to the remaining vectors which implies that it does not have a strong
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correlation to both groups. This result may be interesting as this reaction is tightly connected
with R ASPAS and, therefore requires further flux analysis.

Furthermore, from the score plot and dendrogram it is possible to observe three distinct
clusters. In sol 0 and sol 1 group, the MCS size is equal to 4 knock outs, where 3 are
contained in both solutions (R PEPCK, R TRANSH2, R PGI ) as the only difference lies on
R GLUCK/R G1D. Moreover, for the middle and top clusters, the size increases to 8 knock-
outs and these solutions share always six reactions in common (R 6PGDH, R PYK, R PGM,
R MAL1, R MAL2 and R G6P1D) and the variation lies in PPP reactions R TALA2, R R5PI
and R TKT1. The solutions from this model can be easily clustered for further analysis which
is an advantage in comparison to the previous models. However, eight knockout solutions may
be too much to apply in a biological setting and thus, lower knock out reactions that present
the same phenotype may be prioritized. Regardless, in the next Section 3.1.3 the core criteria
behind which solutions are chosen for further detailed analysis will be described.

Lastly, since model D has fewer solutions, all the targeted reactions for knockouts concerning
model D data are summarized below in Table 3.9.

Table 3.9: Model CMM D top most targeted reactions for knockouts in the overall solutions set (#KO).

Reaction # KO

R 6PGDH // R G6P1D // R MAL1 //

R MAL2 // R PGM // R PYK
6

R PGI 5

R PFK 3

R PEPCK // R R5PI // R TALA2 //

R TKT1 // R TRANSH2
2

R G1D // R GLUCK 1

For model D targeted reactions, the pattern repeats itself where most reactions belong to
glycolysis, ED or PPP. In this case, R TRANSH2 is not on top of list and the ’outliers’ from
this group are R MAL1 and R MAL2 that correspond to malic enzymes from the TCA cycle.

3.1.3 Detailed Network Analysis

In order to understand and find solutions that could be possible candidates for testing in
vivo, a more detailed network analysis based on the pFBA fluxes was performed. For this, the
first step was to identify two to three solutions that could be strong candidates based on what
was explored in previous exploratory data analysis. The core idea is to compare the mutant flux
pattern to the WT and try to understand where is the carbon source being allocated and what
differences there are that seem relevant in a biological context. To find these solutions, a set of
selection criteria was applied as follows: (1) biomass growth reaction with a positive non-zero
flux; (2) priority to solutions with number of knockouts as low as possible; (3) avoid solutions
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whose suggested knockouts are transport and exchange reactions; (4) priority to solutions that
are highly represented in the MCS pool; and (5) if possible, allow some variability regarding
suggested reactions pathways (for instance, a 2 KO solution with a reaction from fatty acid
synthesis and one from glycolysis). These sets of criteria were all applied, with no specific order
but rather in a way that it is possible to make a weighted and conscious decision.

That being said, the first MCS analyzed comprises the reactions R PGI and R ENO (MCS1).
This solution appears in enumeration problems CMM A1P, B1P, B2, C1P and C2. Moreover,
this MCS follows most selection criteria and, in addition, is a good solution to compare to the
previous work done by Pandey et al. (2018) as it suggests pgi knockout. These simulation
results are presented in Figure 3.5, which displays a representation of the E. coli central carbon
metabolism.

In this solution, by knocking-out these two reactions in the model, it was possible to produce
plasmid with a 4.36 BPCY, while keeping the growth rate at 34.1% of the parental strain. In
regard to the pgi knockout, since this reaction is a common node for different glucose catabolism
pathways, its inactivation is particularly relevant for studying metabolic behaviour as carbon
flux is redirected towards the PP pathway and/or the ED pathway. This flux rerouteing has
a profound impact in redox balance where transhydrogenases have a critical role (Canonaco
et al., 2001). Moreover, concerning the eno knockout, this reaction is the penultimate step of
glycolysis and catalyzes the reversible reaction between 2-phospho-D-glycerate and PEP. It is
also a relevant reaction to study as it has an important role in gluconeogenesis. Regarding
the latter knockout, there is a lack of experimental 13C-fluxomics data, which can difficult the
double knockout mutant flux distribution analysis (Long & Antoniewicz, 2014).

From the simulated flux distribution, it is possible to indicate that practically all glucose
flux is redirected to the ED pathway and that there is not reallocation towards the oxidative PP
pathway. In previous 13C-MFA studies of a pgi-knockout strain it was experimentally determined
that the PP pathway was the major route for glucose metabolism, providing a high NADPH
source. Nevertheless, the ED pathway was also actively catalyzing a minor fraction of glucose in
both wild-type and mutant strains (Hua et al.,2003; Fischer & Sauer, 2003). Although this single
pgi-knockout MFA experimental results do not match the predicted pFBA flux distributions, it
is important to take into consideration that our simulations concern a double knockout. Thus,
the eno-knockout may present an important role in flux redirection. It is possible that, in our
MCS simulation, a carbon flux allocation priority is shifted towards ED pathway as it is a more
direct way to obtain T3P readily available to subsequently produce, for instance, serine family
amino acids.

Moreover, in a study performed by Canonaco and Sauer it was shown that pgi inactivation
led to a drastically reduction in maximum growth rate from 0.74 to 0.16 h-1. In this mutant,
an accumulation of NADPH due to an insufficient re-oxidation was also observed. The deficit
observed in the growth rate was partly recovered by overexpressing the soluble transhydrogenase
UdhA. Since this enzyme is responsible for converting NADPH into NADH, there is a probability
that the growth recovery was due to the restored redox balance. In a cell, the redox balance is
mainly described by the ratios between NAD+/NADH and NADP+/NADPH.
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MCS1 - {R PGI; R ENO}

Figure 3.5: MCS1 metabolic flux distribution within central carbon metabolism of E. coli wild-type
(top values) and ∆pgi∆eno double knockout mutant (bottom values). Fluxes are given relative to the
specific glucose consumption rate of 100 mmol/g · h and are expressed as the net fluxes. Knocked-out
reactions are highlighted by a red cross and respective reaction name. Reactions from the mutant pFBA
distributions that did not present flux were highlighted with red. Arrows indicate the directions of the
proposed metabolic model (negative fluxes correspond to the inverse reaction). For abbreviations and
detailed reactions, vide Appendix A.
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These molecules participate in oxidation-reduction reactions and are specialized in carrying
high-energy electrons and hydrogens, while transferring them to different sets of molecules.
The main difference between these two molecules lies in NADH being mostly used in catabolic
pathways and NADPH in anabolic pathways. Concerning catabolic reactions, NAD+ serves as
an oxidizing agent and is reduced to NADH whereas, in anabolic reactions, NADPH serves as
a reducing agent and provides high-energy electron being reduced to NADP+. The difference
of a single phosphate group has no effect in both molecules redox properties; however, it helps
enzymes distinguish these substrates. This is important so that both catabolic and anabolic
pathways can be independently regulated, preventing futile metabolic cycles (Alberts et al.,
2002; Berg et al., 2002). Considering Canonaco and Sauer experimental results, the fact that in
our simulation the PP pathway is inactive can represent an advantage to the cell, since prevents
excessive NADPH accumulation and a potential redox unbalance. However, the cell still requires
a NADPH source to support anabolic metabolism.

When the PPP is inactive, NADPH production can potentially be achieved by three different
routes in E. coli : (1) the NADPH dependent malic enzyme; (2) the membrane-bound tran-
shydrogenase PntAB; and (3) the soluble transhydrogenase UdhA (Canonaco et al., 2001). The
first hypothesis is not feasible as our double-knockout pFBA flux distributions (in Figure 3.5)
show that the reactions regarding malic enzymes are inactive (reaction R MAL1 and R MAL2 ).
This is supported by experimental evidence that demonstrates that in pgi-knockout strains there
is no malic enzyme activity(Canonaco et al., 2001). Additionally, the behavior observed in this
single knockout is expectable to be seen in the double mutant. Concerning options 2 and 3, in
our metabolic network, these re-oxidation mechanisms are represented as two distinct reactions
(R TRANSH1 and R TRANSH2 ). From our results, it is possible to see that the flux towards
R TRANSH1, which generates NADPH from NADH, is one of the highest. In fact, this tran-
shydrogenase activation is our main NADPH source as it accounts for 78% of total NADPH
pool. The remaining 22% are solely allocated from 5,10-methenyltetrahydrofolate (MeTHF)
production reaction (R MTHFD), since there is no carbon flux directed towards the oxidative
branch of PP pathway.

Since in the flux distribution of the pgi and eno double knockout mutant, the NADPH
availability is dependent on NADH pool, it is important to understand its source. In our
simulation, NADH accumulation is mostly originated via TCA cycle (31.7 %) and via glycolytic
pathway (30.5 %). Comparing with the WT simulation, an increment in the TCA cycle flux
is observed which can explain NADH availability in the mutant. In particular, the flux in the
conversion of malate into oxaloacetate is increased by 15-fold, providing a good NADH source.
Contrarily to what was observed in the simulations with the WT strain, the glyoxylate shunt flux
was activated in this double mutant. This is corroborated by some findings in a study performed
by Usui et al. . The authors reported a sequential increment in the flux through the glyoxylate
shunt as the phosphoglucose isomerase was successively down-expressed until it was completely
knocked-out. It is known that in E. coli, the glyoxylate shunt is utilized mainly for the supply
of oxaloacetate to the TCA cycle via malate by using isocitrate and acetyl-CoA (Kondrashov
et al., 2006). Thus, the activation of the glyoxylate shunt in the mutant strain increases malate
availability, which in its turn is converted to oxaloacetate releasing NADH. That being said,
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probably in this simulation, the glyoxylate shunt activation is essential to provide: (1) extra
NADH to fulfill the NADPH requirements of the cell; and (2) oxaloacetate, that is an important
precursor to a large family of amino acids, some of which are required in the nucleotide synthesis
(such as L-aspartate).

This solution was generated in the model that only contemplates plasmid production, thus it
is important to understand the flux allocation into nucleotide synthesis. The metabolite ribose
5-phosphate (R5P) of the PP pathway is the common building block in the de novo purine and
pyrimidine synthesis pathways (Moffatt & Ashihara, 2003). In our simulation, this metabolite is
generated by a reverse path through the non-oxidative PP pathway branch starting from the T3P
generated in the ED pathway. From R5P, the flux is then directed towards PRPP, a common
precursor to nucleotide synthesis (Moffatt & Ashihara, 2003). In the pFBA simulation results
from the mutant, the flux increases in the previously described reactions with a consequent in-
crement in nucleotide synthesis. Comparing with the WT flux values, there is an average 27-fold
increase in the flux towards dNTPs synthesis reactions. In addition to nucleotide synthesis, en-
ergy expenditure concerning nucleotidic bonding needs to be taken into consideration (Equation
2.1). This means that, in our simulations, the flux of ATP must match this nucleotide synthesis
increment to lead to a higher plasmid production. From the double mutant knockout pFBA
results, it is possible to conclude that the TCA cycle operates predominantly for ATP generation
by producing NADH that goes through oxidative phosphorylation. This is corroborated by the
model reactions regarding oxidative phosphorylation (R ATPS1 and R ATPS2 that are NADH
and FADH2 dependent, respectively) accounting for approximately 88.1% of ATP generation
flux. In particular, it is interesting to note that in the WT, FADH2 production via TCA cycle
is non-existent, whereas in the mutant it becomes an important energy source. Additionally, in
the double knockout mutant, since the glycolytic pathway is mostly inactive, it provides only
11.4% of the energy source to the system.

Overall, this MCS is helpful in corroborating the findings by Pandey et al. even if the
flux distribution does not fully match the experimental results. Nevertheless, it is necessary
to take into consideration that our results are based on pgi and eno knockouts, instead of
single knockout mutants. In spite of that, our double mutant did improve in silico plasmid
production. However, it would be interesting to compare this simulation with experimental
data from 13C-MFA of single eno-knockout strains as well as double pgi and eno knockout
strains to confirm, for instance, if the flux is preferably allocated towards ED pathway and how
it impacts NADH/NADPH pool availability. In addition, contingent on the results from the
single and/or double knockouts, it could be interesting to study the soluble transhydrogenase
UdhA expression with the purpose to verify and corroborate its kinetic limitations in cell growth,
plasmid and/or recombinant protein production.

Moreover, a second MCS was analyzed in detail that comprises reactions R PGM, R G6P1D,
R PYK and R PYC. This solution appears in enumeration problems CMM B1P, B2, C1P and
C2. Moreover, this MCS matches most selection criteria and, from all the solutions in all models,
is the one that presents the highest BPCY (regarding plasmid production). Additionally, the
suggested knockouts show a reasonable variability regarding their role in the metabolism. These
simulation results are presented in Figure 3.6.
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MCS2 - {R PGM; R G6P1D; R PYK; R PYC}

Figure 3.6: MCS2 metabolic flux distribution within central carbon metabolism of E. coli wild-type
(top values) and ∆pgm/agp∆pykA/pykF∆zwf∆ppc quadruple knockout mutant (bottom values). Fluxes
are given relative to the specific glucose consumption rate of 100 mmol/g · h and are expressed as the
net fluxes. Knocked-out reactions are highlighted by a red cross and respective reaction name. Reactions
from the mutant pFBA distributions that did not show flux were highlighted with red. Arrows indicate
the directions of the proposed metabolic model (negative fluxes correspond to the inverse reaction). For
abbreviations and detailed reactions, vide Appendix A.
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In this solution, by knocking-out these four reactions in the model, it was possible to produce
plasmid with a 5.23 BPCY, while keeping the growth rate at 49.8% of the WT strain. However,
there was no flux going through the recombinant protein and resistance marker production
reactions. In these models (B and C), the plasmid, resistance marker and recombinant protein
synthesis share common precursors. Thus, by optimizing the flux through one of these products,
the increasing required pool of precursors will limit the synthesis of the remaining reactions. For
this reason, it is rather difficult to obtain solutions where production of 2 or 3 of these products
take place at the same time.

The inactivated reactions from this MCS comprise two reactions from glycolysis and gluco-
neogenesis, namely R PGM and R PYK that are encoded by genes pgm/agp and pykA/pykF,
respectively. In addition, R G6P1D is the first step in the oxidative PP pathway, catalyzed by
the enzyme glucose-6-phosphate 1-dehydrogenase that is encoded by gene zwf, and R PYC that
is an anaplerotic reaction whose catalytic enzyme is encoded by the ppc gene.

Accordingly to the flux distribution shown in Figure 3.6, the pgm/agp and zwf inactivation,
led to a rewire of the flux towards glycolysis in comparison to the previous simulation results.
Additionally, the oxidative PP Pathway and ED pathway had no flux. In 13C-MFA studies
of zwf -knockout strains, it was revealed that the disruption of glucose 6-phosphate dehydro-
genase was counteracted by local rerouting via the glycolysis. Additionally, the authors have
shown that the mutant strain synthesized the PPP-derived compounds independently from the
oxidative branch by directing the carbon flow from glycolysis into the reversed non-oxidative
PPP branch. Thus, it indicates that the glycolytic metabolites triose 3-phosphate and fructose-
6-phosphate compensated the lack of E4P and R5P (Hua et al., 2003; Nicolas et al., 2007).
Regarding pgm/agp-knockout, there is a lack of biological fluxomics data, which can difficult the
interpretation of their role and behavior in our quadruple-knockout mutant.

Considering the data retrieved from the literature, the redirection of all carbon flux towards
glycolysis, avoiding the oxidative PP pathway, can result in a NADPH shortage - an essen-
tial cofactor for anabolic metabolism (Nicolas et al., 2007). Thus, the zwf -knockout strains
must have a coping mechanism tightly related to transhydrogenases and NADP(+)-dependent
enzymes. Zhao et al., concluded that, as a response to this unbalance, the cell would use
NADP(+)-dependent isocitrate dehydrogenase. This enzyme catalyzes the conversion of isoci-
trate into 2-oxoglutarate while producing the majority of NADPH. However, the action of this
single enzyme is not sufficient to fulfil the NADPH cellular requirements, thus activating other
enzymes such as transhydrogenases and NADP(+)-dependent malic enzyme is required. In our
metabolic model, the reaction catalyzed by NADP(+)-dependent isocitrate dehydrogenase is
not represented, which may explain some discrepancies observed between experimental data
and simulation results. Similarly to what was observed in the MCS1 simulation, the source of
NADPH is a consequence of the flux going through R TRANSH1, that is responsible in convert-
ing NADH to NADPH. In fact, this transhydrogenase activation is responsible for approximately
82.5% of NADPH pool, while the remaining percentage is due to 5,10-methenyltetrahydrofolate
production reaction (R MTHFD). Additionally, it was observed that the reactions catalyzed by
the malic enzymes have no flux. These enzymes catalyze NADH and NADPH production by
converting malate into pyruvate. In our simulation results, there is a high pyruvate accumula-
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tion, derived from the PTS system (R PTS). This system is a distinct method used by bacteria
for sugar (namely glucose) uptake where the source of energy comes from PEP. For each molecule
of glucose that enters the cell, a molecule of pyruvate is produced. Thus, it is expected that it is
not necessary to overproduce pyruvate by using the malic enzymes. Instead, in our simulation,
malate is converted into oxaloacetate releasing NADH that is later converted into NADPH by
transhydrogenases (R TRANSH1 ). Nevertheless, despite our results not showing evidence of
malic enzyme activity, experimental evidence demonstrates that zwf -knockout strains allocated
3% of their total carbon flux towards malic enzyme pathway (Zhao et al., 2004).

Moreover, focusing on pykA and pykF mutants, a study by Fischer and Sauer shows that
the metabolic bypass of pyruvate kinase knockout is done via PEP carboxylase (ppc) and malic
enzyme as the mutants exhibit lower fractions of oxaloacetate originated through the TCA cycle
and higher fractions of pyruvate originated from malate. In addition to the R PYC anaplerotic
reaction, it was demonstrated a depletion of Pfk (R PFK ) by the accumulated PEP. Even
though these genes are knocked out, PEP can still be converted to pyruvate through PTS
and, in the pyk mutants, the ATP level from aerobic respiration is not significantly affected in
vivo (Zhu & Shimizu, 2005). Another important finding concerns excess NADPH produced by
the pyk-knockouts mutants, which is similar to pgi-knockouts strains that tend to overproduce
NADPH and convert the excess NADPH into NADH using transhydrogenases (Toya et al., 2010).
However, in both simulation and experimental data, the zwf mutant activates the reversed
non-oxidative PP pathway and no flux passes through the oxidative portion, thereby avoiding
NADPH accumulation.

Furthermore, it was previously mentioned that pykA and pykF mutants would increase PEP
carboxylase (R PYC ) activity as it was a metabolic bypass for PEP metabolism. However, in
our MCS solution, this enzyme is also inactivated so it is important to understand the effects
on the metabolism. Evidences from a study done by Fong et al. reveal that, in ppc mutants,
the normally repressed glyoxylate replaced the anaplerotic function of PEP carboxylase. Even
though, in different studies regarding single knockouts of zwf and pyk mutants, the glyoxylate
pathway is inactive and negligible, in the simulation results from MCS2 this reaction is activated.
This may be due to PEP carboxylase anaplerotic role substitution, as well as additional NADH
production that may be converted to NADPH via transhydrogenases. This mechanism is similar
with what is previously observed in MCS1 solution, where NADH pool is originated from the
TCA cycle, representing a flux increment between 3 and 13-fold in the reactions constituting
this cycle when compared with the WT results. In particular, the flux of the conversion from
malate to oxaloacetate suffered a 13-fold increment, due to glyoxylate shunt activation, which
increased the malate pool. Additionally, oxaloacetate is an amino acids precursor and is tightly
involved in nucleotide synthesis and consequent plasmid accumulation. Thus, this bypass is also
important as it is the only source to indirectly produce oxaloacetate in our metabolic model.

Regarding nucleotide synthesis, it was observed a similar behavior to the previous results
from MCS1. The flux starts from T3P and F6P and goes through the non-oxidative PP pathway
until R5P is formed, which is then converted to PRPP (a common precursor to the nucleotide
synthesis). Comparing to the WT pFBA results, it is possible to conclude that the flux towards
dNTPS synthesis reactions is increased 22 to 23-fold. Considering Equation 2.1, to concomitantly
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increase the production of plasmid, an increment in the ATP pool is also required. Similarly,
from these results it is possible to conclude that the TCA cycle operates predominantly for
ATP generation by producing NADH that goes through oxidative phosphorylation. This is cor-
roborated by the model reactions regarding oxidative phosphorylation R ATPS1 and R ATPS2
accounting for approximately 66.3 % of ATP generation. In particular, comparing the mutant
to the WT, FADH2 production plays a relevant role in energy source as its reaction net flux in-
creases from 0.0 to 34.4. Nevertheless, it is important to note that, in comparison to MCS1, this
simulation shows that one third of the ATP is also generated from glycolysis, as this pathway
is not blocked.

In summary, in this quadruple-knockout the main goal seems to be to redirect flux as much
as possible from G6P onwards and towards the glycolytic pathway. It is a solution that presents
similar pFBA results to the previous one, however it has its differences. Namely, the carbon
flux blockage towards the oxidative PP pathway (induced by the zwf deletion) that prevents
NADPH overproduction, which is proven to be a limiting step towards growth and production
in other mutants, such as single pgi-knockout strains. Additionally, these simulation results
may be useful to explain some biological phenomena such as the glyoxylate shunt activation by
analyzing the ppc and pyk mutants synergy. Overall, it would be interesting to possibly combine
some of the findings from this MCS with the previous results, in order to construct a biological
relevant and well supported MCS. In addition, having more biological data on more than single
knockouts would be also useful to understand the metabolism and how the carbon flux is shifted.

Furthermore, a third and final MCS was analyzed in detail and comprises reactions R PEPCK,
R TRANSH2, R PGI and R GLUCK. This solution appears in enumeration problems CMM B1R,
B3R, B4, C1R and C3. Moreover, this MCS matches most selection criteria. Contrarily to the
previous MCS1 and MCS2, this solution has flux going through recombinant protein production
reaction, instead of plasmid production. Additionally, the suggested knockouts show a reason-
able variability regarding their role in the metabolism. These simulations results are presented
in Figure 3.7 in an E. coli central carbon metabolism representation.

In this solution, by knocking-out these four reactions in the model, it was possible to pro-
duce IFNγ with a 1.30 BPCY, while keeping the growth rate at a 14.6% of the parental strain.
However, there was no flux going through the plasmid and phosphotransferase production reac-
tions. This is due to the fact that this solution was originated from a formulation problem that
considers recombinant protein production optimization. Hence, it is rather difficult to obtain
solutions where production of 2 or 3 of these products take place at the same time.

The inactivated reactions from this solution comprise a reaction from glycolysis R PGI that is
encoded by pgi gene; a reaction concerning an anaplerotic pathway (R PEPCK ) that is encoded
by pck gene; a step in gluconate metabolism catalyzed by the enzyme gluconokinase (R GLUCK )
that is encoded by genes idnK or gntK ; and a reaction regarding NADH regenerating through
NADPH (R TRANSH2 ), that is catalyzed by a transhydrogenase which is encoded by pntAB
or udhA genes.
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MCS3 - {R PEPCK; R TRANSH2; R PGI; R GLUCK}

Figure 3.7: MCS3 metabolic flux distribution within central carbon metabolism of E. coli wild-type (top
values) and ∆pck∆pgi∆pntAB/udhA∆idnK/gntK quadruple knockout mutant (bottom values). Fluxes
are given relative to the specific glucose consumption rate of 100 mmol/g · h and are expressed as the
net fluxes. Knocked-out reactions are highlighted by a red cross and respective reaction name. Reactions
from the mutant pFBA distributions that did not show flux were highlighted with red. Arrows indicate
the directions of the proposed metabolic model (negative fluxes correspond to the inverse reaction). For
abbreviations and detailed reactions, vide Appendix A.
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According to the flux distributions in Figure 3.7, the pgi and idnK/gntK inactivation led to a
rewire of the carbon flux towards the ED and PP pathways. Considering these pathways, there
was a 74.8% carbon allocation towards oxidative branch of PP pathway, while the remaining flux
was redirected towards ED pathway. These predicted pFBA flux distributions are in accordance
with previous 13C-MFA studies of a pgi-knockout strain, where it was experimentally validated
that the PP pathway was the major route for glucose metabolism after knocking-out pgi gene. In
addition, these experimental studies proved that the ED pathway was also actively catalyzing a
minor glucose fraction (Fischer & Sauer, 2003). Regarding idnK/gntK -knockout, there is a lack
of biological fluxomics data, which can difficult the interpretation of its role in our quadruple-
knockout mutant. Nevertheless, in our simulation results, it seems that this knockout mostly
reinforces the carbon flux redirection towards PP and ED pathways.

Considering our quadruple-knockout mutant pFBA flux distributions, there is a high NADPH
production due to a flux allocation towards the PP pathway. Nearly 97.8% of NADPH is
produced in this pathway, while the remaining 2.2% are from 5,10-methenyltetrahydrofolate
(MeTHF) production reaction (R MTHFD). NADPH is an important cofactor for anabolic re-
actions. To increase recombinant protein production, a concomitant increment in amino acids
pool is also required. Consequently, to produce these amino acids, a higher NADPH pool is
necessary. In our simulations, the conversion of NADPH into NADH, catalyzed by reaction
R TRANSH2, is knocked out. This way, all NADPH generated through the PP pathway can be
allocated towards biosynthetic pathways (such as amino acids precursors synthesis). However,
experimental data retrieved from literature shows that carbon flux redirection to PP pathway
leads to an accumulation of NADPH due to an insufficient re-oxidation (Canonaco et al., 2001).
This accumulation led to a reduction in growth rate that was later partly recovered by overex-
pressing the soluble transhydrogenase UdhA. This enzyme is responsible for converting NADPH
into NADH, hence there is a probability that growth recovery was due to the restored redox
balance, as previously described in MCS1. In our metabolic model, this mechanism is inacti-
vated (R TRANSH2 ) and thus, our model is unable to re-oxidize NADPH through this reaction
that is catalyzed by transhydrogenase. Therefore, our simulation results may not correspond
to a feasible biological state. Since pgi-knockouts were experimentally proven to accumulate
NADPH, it is probable that a double pntAB/udhA and pgi-knockout is not able to strive in
growth. Nevertheless, according to the amino acid synthesis requirements (Appendix B), and
since we want to improve plasmid and recombinant protein production, it is understandable
that the suggested knockouts try to increase cofactors pool such as NADPH. Hence, this so-
lution could be a suggestion to test in vivo, as accumulated NADPH could be induced and
redirected towards biosynthetic pathways.

Furthermore, in our simulation results, the flux is then directed towards the bottom half part
of glycolysis and towards the TCA cycle. It is important to note in Figure 3.7 that the reaction
interconverting F6P and T3P shows a higher amount of net flux in comparison to the remaining
reactions. This is due to a futile cycle in this interconversion. It can be considered that the real
flux is given by the subtraction of fluxes and, thus this reaction is preferably going in the forward
direction. Entering an interrupted TCA cycle, in comparison to the WT, there is an increment
on flux towards alpha-ketoglutarate formation (aKG) that is completely rewired towards glu-
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tamic acid amino acids family production with no further conversion into SucCoa. Additionally,
this increment towards aKG is accompanied by glyoxylate shunt activation. This activation
leads to a flux re-allocation towards malate and succinate leading to a higher accumulation
of oxaloacetate that is a precursor to aspartic acid amino acids family. Hence, both of these
mechanisms are essential to accumulate important biosynthetic precursors towards recombinant
protein production. This is also corroborated by the PEP carboxykinase knockout (R PEPCK )
as it prevents oxaloacetate decarboxylation into PEP, increasing even more its availability to
the synthesis of these precursors. The results from an experimental study performed by Yang
et al., (2003), proved that pck-inactivation led to glyoxylate shunt activation to participate in
anaplerosis and replenish the TCA cycle. Hence, the experimental results from the literature
support the flux distributions obtained in our simulations.

Regarding IFNγ synthesis, most of the fluxes directed towards amino acids synthesis are in-
creased when comparing with the WT simulation results. Comparing with the WT flux values,
there is an average 1.5 to 2-fold increase through many amino acid synthesis reactions. These
reactions are related to amino acids whose demand differs a lot from biomass to recombinant
protein production. Some examples of these amino acids are lysine, serine, phenylalanine, histi-
dine and leucine. In addition to amino acids synthesis, energy expenditure concerning peptidic
bonding needs to be considered. This means that, in our simulation, the flux of ATP must
follow this amino acid synthesis increment to effectively lead to a higher recombinant protein
production. From the quadruple mutant knockout simulation results, it is possible to conclude
that ATP generation is predominantly provided by oxidative phosphorylation as it accounts for
74.2% of the energy source (reactions R ATPS1 and R ATPS2 that are NADH and FADH2

dependent, respectively). The NADH required for aerobic respiration is mostly provided by
glycolysis (64.5%), while some is produced from the TCA cycle (27.0%). Moreover, FADH2

production is exclusively a result of succinate dehydrogenase activity in the TCA cycle.

Overall, in this quadruple-knockout the flux is redirected towards PP pathway with conse-
quent NADPH accumulation due to transhydrogenase inactivation. Additionally, in comparison
to the WT simulation results, the higher flux through TCA cycle increases the amino acids
synthesis precursors such as oxaloacetate and alpha-ketoglutarate. From experimental data in
the literature, the in vivo application of these results probably will affect the maximum growth
but enhance plasmid and recombinant protein production.

3.2 Genome-scale Model

The GSM used to generate results was iJO136, whose reconstruction was done by Orth et
al., 2011. The updated version of this model comprises 1367 associated genes, 2585 metabolic
reactions and 1805 metabolites. In comparison to the CMM model, these metabolites and
reactions can be compartmentalized, which is translated in another level of complexity and new
type of reactions, such as transport reactions.
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3.2.1 Data Processing

All data were attempted to be generated for each formulation problem as previously described
in Chapter 2. However, formulations 2 and 4 will not be included in the GSM results as there
were not enough computational resources to generate them. A maximum knockout size of 6 was
allowed for each problem and all the solutions were stored as sets of strings encoding reactions.
Equal to the CMM data generation, for each solution a pFBA flux distribution was computed
and stored in a matrix.

Before analysing the data, a pre-processing step was performed to help reduce the number of
solutions. In this case, a less broaden solution removal criterion was applied as the computational
relevance was taken more into consideration than the biological one. Primarily, all solutions
that were found and that were incompatible with the previously defined cellular constraints
were automatically removed. In conjunction with this, solutions whose production occurred in
a mandatory way coupled to 99 % of biomass were kept. Essentially, it was verified if all cellular
constraints were followed and if the minimum product flux, with biomass growth fixed at 99%
of its maximum value, was greater than zero.

For each model and formulation these filtration steps were applied. After processing, each
formulation data corresponding to a model was concatenated and analysed simultaneously. In-
terestingly, it is important to note that model A (regarding plasmid production only) and model
D (a more complex model correlating all entities) did not have any solutions that remained
after this processing step and, thus will not be mentioned in the following and further data
analysis. As this genome-scale network comprises more reactions and alternative pathways that
may result in different ways to metabolize glucose, possible explanations lie on flux allocation.
For instance, a possible hypothesis is that the GSM has a high number of pathway alternatives
to nucleotide metabolism and is not able to make it essential in order to produce the plasmid,
unless a considerable amount of knockouts are introduced. Another possibility relies on energy
and the possible fact that the cell is not able to produce enough ATP to be used in the nucleotide
synthesis pathway.

3.2.2 Exploratory Data Analysis

3.2.2.1 Model B

For model B possible enumeration problems, all formulations presented results. However,
the solutions regarding plasmid production formulation (1P) did not survive the filtration step.
On one hand, regarding 1R formulation, from an initial 1503 solutions, 195 remained for further
analysis which corresponds approximately to 13% of the initial pool. On the other hand, for 3R
formulation, from an initial higher solution number of 34 739, only 17 remained, corresponding
to 0.049% of the initial pool, which makes it an extremely diluted solution pool comparing to
the previous formulation. Overall, accounting for all formulations, from a total of 37501 initial
solutions, only 0.57% (212) made it through the filtration process, which may be beneficial for
further analysis. Table 3.10 summarizes the total number of solutions in each formulation for
all enumeration problems performed on model B data.
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Table 3.10: Model GSM B Summary of the total number of solutions gathered (#Solutions), corre-
sponding to each formulation before (pre-) and after (post-) processing steps.

Formulation #Solutions

Pre-Processing
1P

1 259

Post-Processing 0

Pre-Processing
1R

1 503

Post-Processing 195

Pre-Processing
3R

34 739

Post-Processing 17

From the post-processed set of 212 solutions there were a total of 15, 18 and 179 MCSs with
a size of 4,5 and 6 suggested knockouts, respectively. Moreover, PCA and HCA were performed
and the computed results for this set of solutions are shown below in Figure 3.8.
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Figure 3.8: Model GSM B Exploratory data analysis results: A) Scree plot percentage of explained
variances (%) in each principal component (up to a total of ten PCs); B) Correlation circle correlation
between the top 10 variables contributing to the PCs and the first and second principal components; C)
Dendrogram hierarchical cluster analysis performed using single linkage method and euclidean distance
metric. The sub-tree was obtained by a cut done at a dendrogram height equal to 50; D) Individuals
graph data projection coordinates in the first two principal components: GSM B3R GSM B1R .
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From the scree plot is it possible to conclude that ten principal components are required
to explain 92.6 % variance in these data, which is a lower percentage and higher dimensions
required comparing to all previous CMM models. Nevertheless, if two principal components are
chosen to represent the data, these account for 75.6 % of cumulative explained variance which
is a reasonable amount of variation in two dimensions and is comparable to previous models.
Therefore, concerning model B data, this was the amount of principal components chosen for
further PCA analysis.

Moving to the correlation circle, it is possible to visualize that all top ten contributing
variables share the same amount of contribution as their arrows share equal length. All ten
variables are in the positive side of the first principal component and negative side of principal
component 2, and demonstrate a strong positive correlation between each other. Moreover,
seven out of ten variables correspond to reactions that belong to folate biosynthesis pathway
(R DHFS, R DHPS2, R DNTPPA, R DHNPA2, R HPPK2, R GTPCI and R DNMPPA) at
different stages. Most of these reactions intervene in the synthesis of tetrahydrofolate, which is
a cofactor in many reactions regarding, especially, de novo synthesis of purine and pyrimidine
nucleotides and some amino acids interconversion, such as serine to glycine. The remainder
reactions concern a NAD+ kinase (R NADK ), which accounts for NAD+ phosphorylation into
NADP+, which is an essential coenzyme that is reduced to NADPH primarily by the PP pathway
to provide reducing power in biosynthetic processes such as fatty acid biosynthesis and nucleotide
synthesis; a reaction regarding the conversion of PRPP into 5-phosphoribosyl-1-amine (PRA)
using the ammonia group from the glutamine chain (R GLUPRT ) that is the committing step in
de novo purine nucleotide synthesis; and S-adenosylmethionine synthesis reaction (R METAT )
that is an important methyl and propylamino donor in polyamine biosynthesis. Overall, the
top contributing variables are concerning nucleotidic synthesis as previously described for the
correlation plots from CMM models, with the difference that in this case, most of the reactions
intervene in reducing power balance and folate synthesis intermediates.

Analyzing the individuals graph it is possible to see a separation between solutions from
formulations 1R and 3R, meaning that there may be a different phenotype between these two
formulations. It is also possible to note that GSM B3R solutions are more clustered, whereas
the remaining are more dispersed and show less of a pattern. This is also possible to corroborate
from the full HCA dendrogram (in Appendix C), where it is possible to conclude that there is
a high dissimilarity between solutions as there is a very high possible number of single clusters.
Overall, in comparison to CMM, GSM has a higher number of reactions, thus there is additional
levels of variability and more metabolism options which result in a high number of different
solutions and phenotypes. This makes it harder to find a pattern and group solutions together,
which was expected for the genome-scale model. Nevertheless, it is also important to note that
comparing both models CMM B and GSM B, the suggested reactions for deletion in the MCSs
(Table 3.11) are completely different from each other, which may be a suggestion that there are
important alternative pathways that are not represented in CMM.

For model B it is possible to note that half of the most targeted reactions concern exchange
or transport reactions (identified by the tex or tpp in the end) and that R Htex is present in
all 212 solutions. The remaining concern pyruvate reactions R PFL and R PDH, that regulate

63



the aerobic and anaerobic glucose metabolism, respectively, by converting pyruvate to acetyl-
CoA. Additionally, there are malate related reactions R MDH, R MOX that correspond to
the malate transformation into oxaloacetate by different means and with different cofactors to
accept electrons and protons; and R SPODM that is and important oxidative stress mechanism
reaction.

Table 3.11: Model GSM B top ten most targeted reactions for knockouts in the overall solutions set
(#KO).

Reaction # KO

R Htex 212

R CO2tpp 158

R PFL 126

R MOX 63

R SPODM 63

R FE2tex 62

R FE3tex 62

R FEROpp 61

R MDH 57

R PDH 27

3.2.2.2 Model C

For model C possible enumeration problems, some formulations did not present any results
and only formulation 1R prevailed with solutions after the processing step. For the latter, from
an initial set of 11 917 solutions, only 56 remained for further analysis after the filtration step
which corresponds approximately to a 99.5% reduction. As a whole, comprising all formulations,
from a total of 83 453 solutions, only a small percentage of 0.067% made it through the filtration
process, making it a very diluted solution pool, which may be beneficial for further analysis.
Table 3.12 summarizes the total number of solutions in each formulation for all enumeration
problems performed on model C that had results.

From the post-processed set of solutions it is also important to note that, all were MCSs
with a size equal to 6. Unfortunately, there were not any lower sized solutions. Moreover, a
PCA and HCA were performed and the computed results for this set of solutions are show in
Figure 3.9.
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Table 3.12: Model GSM C Summary of the total number of solutions gathered (#Solutions), corre-
sponding to each formulation before (pre-) and after (post-) processing steps.

Formulation #Solutions

Pre-Processing
1P

35 768

Post-Processing 0

Pre-Processing
1R

11 917

Post-Processing 56

Pre-Processing
3R

35 768

Post-Processing 0
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Figure 3.9: Model GSM C Exploratory data analysis results: A) Scree plot percentage of explained
variances (%) in each principal component (up to a total of ten PCs); B) Correlation circle correlation
between the top 10 variables contributing to the PCs and the first and second principal components; C)
Dendrogram hierarchical cluster analysis performed using single linkage method and euclidean distance
metric. The sub-tree was obtained by a cut done at a dendrogram height equal to 50; D) Individuals
graph data projection coordinates in the first two principal components: GSM C1R.
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From the scree plot is it possible to conclude that five principal components are required to
explain 96.6 % variance in these data, which is comparable to previous results. Interestingly,
a single component accounts for 84.6 % of the explained variance which means that there is a
very high degree of correlation between variables, or between at least two variables while the
others show a much smaller dispersion. Geometrically, this translates in samples laying on a
line in the space defined by the reactions. Concerning this model data analysis, two principals
components were chosen to present the data as they account for 89.6 % of cumulative explained
variance which is a reasonable amount.

As far as the correlation circle is concerned, all top tens variables equally contribute to the
components as they show equivalent arrow length. Most of these reactions are in the negative
side of principal component 1 and positive side of component 2, where only two variables show the
opposite behaviour. These two groups of variables present a 180 degree angle, meaning that they
are strongly negatively correlated. In comparison to the previous model, it is interesting to note
that, with the addition of the resistance marker production, folate synthesis related reactions
are no longer part of the top contributing variables. Instead, most reactions concern fatty acid
metabolism, more specifically beta-oxidation, which is a process by which fatty acid molecules
are broken down to generate acetyl-CoA that will enter the TCA cycle and produce energy down
the line. These reactions concern mainly acyl-CoA dehydrogenation and hydration reactions that
yield shortened fatty acids each cycle until acetyl-CoA is formed. Additionally, there is a reaction
regarding FAD reductase (R FADRx) that catalyses the conversion between FADH2 and FAD,
which is extremely important in restoring FAD pool, that is a necessary cofactor for acyl-CoA
dehydrogenation. Interestingly, even though these reactions are all positively correlated to fatty
acid synthesis, there is the R ACOAD1f and R ACOAD2f group that is shown to be negatively
correlated and could be an interesting target for further analysis. Overall, the top contributing
variables concern fatty acid metabolism reactions which can be a new perspective as these
variables did not show up in previous results.

Furthermore, from the score plot it is possible to identify four different groups inside the
same formulation. These solutions that are grouped together can be described by a unique linear
combination of the reaction variables and demonstrate some symmetry between each other. This
symmetry means that the data may be symmetric around its center. These overlapping points
suggest a possible equal phenotype among them as they share in common many reactions, thus
its similarity. For instance, reaction R Htex is common to all solutions. Moreover, most of the
reactions that were suggested for removal are exchange and transportation reactions (R O2tex,
R H2Stex, R Htex, R ETOHtex, among others). Overall, there are four different patterns that
could be analysed are shaped by combinations of reactions regarding mainly metabolite exchange
and transport as well as some central carbon metabolism reactions, such as R MDH (malate
dehydrogenase), R MOX (malate oxidase) and R PFL (pyruvate formate lyase).

From the full HCA dendrogram (in Appendix C) it is possible to corroborate, from the score
plot visualization, that there is separation in data points. A four cluster separation is not as
evident but, at least a minimum of two or three main clusters may be delimited. It is interesting
to note that the bottom half of the dendrogram shows larger, lesser and defined clusters, whereas
the top half demonstrates higher entropy and more dissimilarity between solutions resulting in
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less defined and higher amount of clusters.

Lastly, the top ten contributing knockouts concerning model C solutions are summarized
below in Table 3.13.

Table 3.13: Model GSM C top ten most targeted reactions for knockouts in the overall solutions set
(#KO).

Reaction # KO

R Htex 56

R O2tex 38

R MDH 24

R MOX 24

R H2St1pp 19

R H2Stex 19

R PFL 18

R ACALD 14

R ACALDtex 12

R ACALDtpp 12

For model C most targeted reactions it is possible to note that, as previously seen, half of
them concern exchange or transport reactions and that R Htex is present in all 56 solutions.
The remaining concern malate and pyruvate metabolism reactions as described in model B.
The only difference lies on this model having R ACALD as a top ten target, which corresponds
to acetaldehyde dehydrogenase (an important enzyme in alcohol metabolism). Overall, the
GSM models rely and suggest much more knocking out exchange and transport reactions of
metabolites that are important to the cell growth and metabolism. With that in mind, for
a further detailed analysis, it would definitely need to be considered which solutions could be
biologically relevant and not just part of the model and how mathematically formulated the
model is. For instance, it would be interesting to remove solutions that account transport
reactions in the data processing step as these are often essential and difficult to genetically
manipulate in in vivo experiments.
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Chapter 4

Conclusions

The work developed in this thesis was set out with the aim of applying a minimal cut set
enumeration algorithm to find solutions for optimal and efficient plasmid and/or recombinant
protein production (IFNγ in our case study). To accomplish this, a central carbon metabolism
and genome-scale E. coli K-12 metabolic networks were used to perform simulations. To these
models, a set of different ways to produce these compounds were added. In addition, differ-
ent problem configurations were performed and, in the end, all results were concatenated and
analyzed.

Concerning the central metabolism model results, from the exploratory data analysis, it
was possible to observe a pattern regarding different formulations in most data for each model.
Additionally, it was also possible to cluster some of the solutions that presented different knock-
outs but similar phenotypes, thus reducing the solutions pool size. From this analysis and a
previously defined criteria, three solutions that were well represented were chosen for a further
detailed analysis.

From the three examples solutions highlighted in the detailed network analysis section, a
clear distinction between carbon flux allocations could be made. The choice of the first solution,
MCS1, had as main goal to corroborate the findings from Pandey et al. (2018) that E. coli pgi
mutant increased plasmid and recombinant protein production efficiency. This solution was a
good candidate as it had a pgi knockout and suggested only one additional reaction for deletion
(eno knockout). Even though the pFBA flux distribution did not fully match the findings by
Pandey et al., possibly due to the eno knockout effect in our double mutant, it was helpful
to corroborate that plasmid production efficiency increased. Moreover, regarding MCS2 and
MCS3, the main objective in the analysis was to identify a possible new knockout or set of
knockout strategies that could lead to optimal production and seem biologically relevant and
feasible. Accounting for all information collected in the pFBA flux distributions and experimen-
tal single-knockout studies some considerations can be made. E. coli pgi knockouts are proven
to rewire carbon flux towards PP pathway which leads to a higher NADPH production (an
important cofactor in anabolism). By knocking out the transhydrogenase activity, the inter-
conversion between NADPH and NADH becomes blocked, resulting in NADPH accumulation.
This metabolite pool can then be used to produce the necessary precursors for plasmid and
recombinant protein production in higher quantities. Thus, a possible knockout to test in vivo
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is transhydrogenases udhA or ptnAB genes. Even though, transhydrogenase inactivation was
proven to affect cell growth, the NADPH accumulation may be beneficial to produce higher
plasmid and recombinant protein yields. Moreover, another knockout that, from the detailed
analysis, could be beneficial towards plasmid and protein production is PEP carboxykinase gene
pck knockout. This may lead to a glyoxylate shunt activation and oxaloacetate accumulation (an
important amino acid precursor) without compromising too much on maximum biomass growth.
Overall, the genes pgi, pck and udhA/ptnAB seem promising to increase in vivo plasmid and/or
recombinant protein production.

Regarding methodology, it can be concluded that from all model configurations, model A has
more results with the lowest number of KOs. Nevertheless, models B and C also showed a good
number of feasible KO suggestions. However, model D was the worst performing configuration
when concerning to numbers of solutions and KOs. This may be due to the inability to prop-
erly balance the ratio between plasmid, recombinant protein and resistance marker production.
Hence, from all configurations, having a single reaction accounting for plasmid and/or plasmid
production seem to perform the best, depending on the production objective.

Concerning the genome-scale model, from the exploratory data analysis, it was possible to
see that the suggested knockouts are completely different from the central carbon model ones.
Additionally, most of the solutions were concerning exchange and transportation reactions. In
a genome-scale model, there are more alternative pathways to where glucose focus may be
redirected. When trying to force plasmid or recombinant production, there are more possible
pathways that should be inactivated. As such, exchange and transportation reactions are a way
to easily shut down these pathways to disrupt the balance in the system. However, these solutions
are hardly applicable in vivo and thus, a further analysis would be helpful in understanding as
to why these reactions were suggested to be knocked out.

4.1 Future Work

This work lacks a more detailed analysis regarding the genome-scale model, which could bring
new insights not only to corroborate findings in the small model solutions, but also new sets
of possible feasible knockouts. The production of other biotechonologically relevant products
could also be a target of study, not only to draw conclusions regarding their flux allocation
mechanisms but to explore new possible solutions. Finally, this work can be helpful in choosing
a knockout or set of knockouts and, thus experimental validation and testing of this solutions
would complement this work.
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Appendix A

Central Metabolism Model Reaction

and Metabolite Lists
Table A.1: List of reactions and respective abbreviations used in the central metabolism model network.
Adapted from supplementary data in Pandey et al. (2018).

Abbreviation
Reaction
Group

Reaction

PTS

Glycolysis
and Glucogenesis

Glc+PEP −→ G6P+Pyr
PGM G6P −→ Glc+Pi
PGI G6P ←→ F6P
PFK F6P+ATP −→ 2 T3P+ADP
FBA 2 T3P −→ F6P + Pi

G3PD T3P+ADP+Pi ←→ PG3+ATP+NADH
ENO PG3←→PEP
PYK PEP+ADP−→Pyr+ATP
PYC PEP+CO2−→OA

PEPCK OA+ATP−→PEP+CO2 +ADP+Pi
PDH Pyr−→AcCoA+CO2 +NADH

G6P1D

Pentose
Phosphate
Pathway

G6P−→Gluc6P+NADPH
G1D Glc−→Gluc+NADH

GLUCK Gluc+ATP−→Gluc6P+ADP
6PGDH Gluc6P−→R5P+CO2+NADPH
RP3E R5P←→Xyl5P
R5PI R5P←→Rib5P
TKT1 Xyl5P+Rib5P←→S7P+T3P
TALA1 Xyl5P+E4P←→F6P+T3P
TALA2 T3P+S7P←→F6P+E4P

ADH Overflow
Metabolism

AcCoA+NADH←→Eth
ACK AcCoA+ADP+Pi←→ Ac+ATP
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Table A.1 continued from previous page

Abbreviation Reaction group Reaction

PGDH
Entner Doudoroff

Pathway
Gluc6P−→Pyr+T3P

ICL Glyoxylate Cycle AcCoA+ ICit−→Mal+Suc

MAL1 Malic
Enzymes

Mal−→Pyr+CO2 +NADH
MAL2 Mal−→Pyr+CO2 +NADPH

CS

TCA
Cycle

AcCoA+OA−→Cit
ACONT Cit−→ICit
ICDH ICit−→αKG+CO2+NADH
AKGD αKG−→SucCoA+CO2+NADH

SUCOAS SucCoA+Pi+ADP←→Suc+ATP
SDH Suc−→Fum+FADH2
FUM Fum−→Mal
MDH Mal−→OA+NADH

PSP Serine
Family

Amino Acids

PG3+Glu−→Ser+αKG+NADH+Pi
GHMT Ser+THF−→Gly+MetTHF
STAC Ser+AcCoA+H2S−→Cys+Ac

ALATA
Alanine
Family

Amino Acids

Pyr+Glu−→Ala+αKG
KAR 2Pyr+NADPH−→Kval

VALTA Kval+Glu−→Val+αKG
LEUDH Kval+AcCoA+Glu−→Leu+αKG+NADH+CO2

RPPK Histidine
Family

Amino Acids

R5P+ATP−→PRPP+AMP

HISDH
PRPP+ATP+Gln−→His+PRAIC+αKG+2Ppi+2NADH+Pi

ASPOX

Aspartic Acid
Family

Amino Acids

OA+Glu−→Asp+αKG
ASPAS Asp+Gln+ATP−→Asn+Glu+AMP+Ppi
ASPK Asp+ATP+NADPH−→AspSa+ADP+Pi

DHDPS AspSa+Pyr−→DC
DHDPR DC+NADPH−→Tet
THPS Tet+AcCoA+Glu−→Ac+αKG+mDAP

DAPDC mDAP−→Lys+CO2
HOMD AspSa+NADPH−→HSer

HOMSK Hser+ATP−→Thr+ADP+Pi
THRDH α Thr+Pyr+NADPH+Glu−→Ile+αKG+NH3 +CO2

HOMST
AcCoA+Cys+HSer+H2S+MTHF−→Met+Pyr+2Ac+NH3+THF
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Table A.1 continued from previous page

Abbreviation Reaction group Reaction

CHORS

Aromatic Family

2PEP+E4P+ATP+NADPH−→Chor+ADP+4Pi

CHORM Chor+Glu−→Phe+αKG+CO2
PRPDH Chor+Glu−→Tyr+αKG+CO2 +NADH

GLUTS

Glutamic Acid
Family

Amino Acids

αKG+NH3+NADPH−→Glu
GLUTST Glu+ATP+NH3 +−→Gln+ADP+Pi
PYRRDH Glu+ATP+2NADPH−→Pro+ADP+Pi

ORNTA
2Glu+AcCoA+ATP+NADPH−→Orn+αKG+Ac+ADP+Pi

ORNCT Orn+CaP−→Citr+Pi
ARGSS Citr+Asp+ATP−→Arg+Fum+AMP+PPi

APPRT

Nucleotide
Synthesis

PRPP+2Gln+Asp+CO2+Gly+4ATP+F10THF−→
2Glu+PPi+4ADP+4Pi+THF+PRAIC+Fum

PRISC PRAIC+F10THF−→IMP+THF
I5MPDH IMP+Gln+ATP−→NADH+GMP+Glu+AMP+PPi
GUAK GMP+ATP−→GDP+ADP
GDPK ATP+GDP←→ADP+GTP

DATPK ATP+NADPH−→dATP
DGTPK GDP+ATP+NADPH−→ADP+dGTP
ADSUCS IMP+GTP+Asp−→GDP+Pi+Fum+AMP

ADK AMP+ATP−→2ADP
ASPCMT PRPP+Asp+CaP−→UMP+NADH+PPi+Pi+CO2

UMPK UMP+ATP−→ADP+UDP
UDPK UDP+ATP−→ADP+UTP
CTPS UTP+NH3+ATP−→CTP+ADP+Pi

DCTPK ATP+NADPH+CDP−→dCTP+ADP
CDPK CDP+ATP←→CTP+ADP

THYMK
UDP+MetTHF+2ATP+NADPH−→dTTP+DHF+2ADP+PPi

DHFR

One Carbon
Units

DHF+NADPH−→THF
MTHFT MetTHF+CO2+NH3+NADH−→Gly+THF
MTHFR MetTHF+NADPH−→MTHF
MTHFD MetTHF−→MeTHF+NADPH
MTHFC MeTHF−→F10THF

TRANSH1
Transhydrogenase

Reactions

0.25ATP+NADH−→NADPH+0.25ADP+0.25Pi

TRANSH2 NADPH−→NADH
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Table A.1 continued from previous page

Abbreviation Reaction group Reaction

ATPS1 Electron
Transport

NADH+0.5O2++2ADP+2Pi−→2ATP
ATPS2 FADH2+ADP+Pi+0.5O2−→ATP

GL3PD

Fatty Acid
Synthesis

T3P+NADPH−→GL3P

FAS1
7 AcCoA + 6 ATP + 12 NADPH −→ C14:0 + 6
ADP + 6 Pi

FAS2
7 AcCoA + 6 ATP + 11 NADPH −→ C14:0 + 6
ADP + 6 Pi

FAS3
8.2 AcCoA + 7.2 ATP + 14 NADPH −→ FA+ 7.2
ADP + 7.2 Pi

FAS4 2 ATP + CO2 + Gln −→ CaP + Glu + 2 ADP + Pi

GLUTT

Other Biomass
Components

F6P + Gln + AcCoA + UTP −→ UDPNAG + Glu
+ PPi

GLCNACS PEP + NADPH + UDPNAG −→ UDPNAM + Pi
CMPKDOS RL5P + PEP + CTP −→ CMPKDO + PPi + 2 Pi

PPDSDC
Ser + CTP + ATP −→ CDPEtN + ADP + PPi+
CO2

PGM2 G6P −→ G1P
UTPG1PUT UTP + G1P −→ UDPGlc + PPi

BiomassProduc-
tion

Biomass

0.594 Ala + 0.198 Arg + 0.143 Asn + 0.284 Asp +
0.060 Cys + 0.272 Gln + 0.367 Glu + 0.495 Gly +
0.086 His + 0.288 Ile + 0.368 Leu + 0.342 Lys +
0.118 Met + 0.059 Orn + 0.175 Pro + 0.304 Ser +
0.239 Thr + 0.335 Val +0.17 Phe + 0.13 Tyr + 0.05
Trp + 0.136 UTP + 0.126 CTP + 0.203 GTP +
0.0246 dATP + 0.0254 dGTP + 0.0254 dCTP +
0.0246 dTTP + 0.083 GL3P + 0.0238 C14:0 +
0.0238 C14:1 + 0.15 FA + 0.095 UDPNAG + 0.095
UDPNAM + 0.111 UDPGlc + 0.154 + G1P+ 0.0235
CMPKDO + 0.0235 CDPEtN + 22.738 ATP −→ 1g
Biomass + 22.738 ADP + 22.738 Pi

ATPM Maintenance ATP−→ADP+Pi

CO2 e

Transport
Reactions

CO2←→exp
NH3 e Imp←→NH3
H2S e 2ATP+4NADPH−→AMP+ADP+H2S+PPi+Pi
PPI PPi−→2Pi
Pi e Imp←→Pi
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Table A.1 continued from previous page

Abbreviation Reaction group Reaction

AA e
Ser+PRPP+Gln+Chor−→Trp+Glu+CO2+Pyr+T3P+Ppi

GLC e Imp−→Glc
O2 e Imp−→O2

ETH e Eth−→exp
AC e Ac−→exp

Biomass e
Biomass
Synthesis

Biomass−→exp

Table A.2: List of metabolites and respective abbreviations used in the central metabolism model
network. Adapted from supplementary data in Pandey et al. (2018).

Abbreviation Metabolite

Ac Acetate
AcCoA Acetyl coenzyme A
Actn Acetoin
ADP Adenosine 5’ -diphosphate
Ala L-Alanine

AMP Adenosine 5’-monophosphate
Arg L-Arginine
Asn L-Asparagine
Asp L-Aspartate

AspSa Aspartate semialdehyde
ATP Adenosine 5’-triphosphate
C14:0 Myristic acid
C14:1 Hydroxymyristic acid
CaP Carbamoyl-phosphate
CDP Cytidine 5’-diphosphate

CDPEtN CDP-ethanolamine
Cit Citrate
Citr Citruline
Chor Chorismate
CMP Cytidine 5’-monophosphate

CMPKDO CMP-3-deoxy-D-manno-octulosonic acid
CO2 Carbon dioxide
CTP Cytidine 5’-triphosphate
Cys L-Cysteine

dATP 2’ -Deoxy-ATP
dCTP 2’ -Deoxy-CTP
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Table A.2 continued from previous page

Abbreviation Metabolite

dGTP 2’ -Deoxy-GTP
dTTP 2’ -Deoxy-TTP

DC L,2,3 dihydrodipicolinate
DHF 7,8-Dihydrofolate
E4P Erythrose 4-phosphate
Eth Ethanol

F10THF N10 -Formyl-THF
F6P Fructose 6-phosphate

FADH Flavine adenine dinucleotide (reduced)
Fum Fumarate
G1P Glucose 1-phosphate
G6P Glucose 6-phosphate
GDP Guanosine 5’-diphosphate
GL3P Glycerol 5’-phosphate
Glc Glucose
Gln L-Glutamine
Glu L-Glutamate
Gluc Gluconate

Gluc6P Gluconate 6-phosphate
Glx Glyoxylate
Gly L-Glycine

GMP Guanosine 5’-monophosphate
GTP Guanosine 5’-triphosphate
H2S Hydrogen sulfide
His L-Histidine

HSer Homoserine
ICit Isocitrate
Ile L-Isoleucine

IMP Inosine monophosphate
aKG a-ketoglutarate
Kval Ketovaline
Leu L-Leucine
Lys L-Lysine
Mal Malate

mDAP meso-Diaminopimelate
Met L-Methionine

MeTHF N5-N10-methenyl-THF
MetTHF N5-N10-methylene-THF
MTHF N5-methyl-THF
NADH Nicotinamide adenine dinucleotide (reduced)
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Table A.2 continued from previous page

Abbreviation Metabolite

NADPH Nicotinamide adenine dinucleotide phosphate (reduced)
NH3 Ammonia
OA Oxalacetate
Orn Ornithine
PA Fatty acids

PEP Phosphoenolpyruvate
PG3 Glycerate 3-phosphate
Phe L-Phenylalanine
Pi Inorganic orthophosphate

PPi Inorganic pyrophosphate
PRAIC 5’-Phosphoribosyl-4-carboxamide-5-aminoimidazole

Pro L-Proline
PRPP 5-Phospho-D-ribosylpyrophosphate

Pyr Pyruvate
R5P Ribulose 5-phosphate

Rib5P Ribose 5-phosphate
S7P Sedoheptulose-7-phosphate
Ser L-Serine
Suc Succinate

SucCoA Succinate coenzyme A
Xy15P Xylulose 5-phosphate

Tet L,2,3,4,5 Tetrahydrodipicolinate
T3P Triose 3-phosphate
THF Tetrahydrofolate
Thr L-Threonine
Trp L-Tryptophan
Tyr L-Tyrosine

UDP Uridine 5’-diphosphate
UDPGlc UDP-glucose

UDPNAG UDP-N-acetyl-glucosamine
UDPNAM UDP-N-acetyl-muramic acid

UMP Uridine 5’-monophosphate
UTP Uridine 5’-triphosphate
Val L-Valine
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Appendix B

Biomolecules Composition

Table B.1: Nucleotide composition of pET28a(+) sequence (that already accounts for the resistance marker sequence) added to IFNγ nucleotidic sequence
(NCBI database reference sequence number AB451324.1).

Nucleotide Code MW (g/mol) # in pET28a # pET28a dS % Nucleotidic MW in pET28a (g/mol) mmole/g pET28a

dATP A 331.2 1 446 2 892 24.63 957 830.4 0.7591

dTTP T 322.2 1 395 2 790 23.76 898 938 0.7324

dGTP G 347.2 1 551 3 102 26.42 1 077 014.4 0.8143

dCTP C 307.2 1 478 2 956 25.18 9 08 083.2 0.7759

Total 5 870 11 740 100 3809630
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Table B.2: Amino acid composition of human interferon gamma fused to an hexa-histidine affinity tag (NCBI database reference sequence number NP 000610.2
- Interferon gamma precursor [homo sapiens]).

Amino acid (AA) Code MW (g/mol) MW - MW(H2O) # in IFNγ % AA MW in IFNγ (g/mol) mmole/g IFNγ

Alanine A 89.09 71.08 10 5.29 710.80 0.4587

Arginine R 174.19 156.18 9 4.76 1405.62 0.4128

Asparagine N 132.11 114.10 10 5.29 1141.00 0.4587

Aspartic Acid D 133.10 115.09 10 5.29 1150.90 0.4587

Cysteine C 121.15 103.14 3 1.59 309.42 0.1376

Glutamic acid E 147.13 129.12 9 4.76 1162.08 0.4128

Glutamine Q 146.14 128.13 10 5.29 1281.30 0.4587

Glycine G 75.06 57.05 10 5.29 570.50 0.4587

Histidine H 155.15 137.14 9 4.76 1234.26 0.4128

Isoleucine I 131.17 113.16 9 4.76 1018.44 0.4128

Leucine L 131.17 113.16 15 7.94 1697.40 0.6880

Lysine K 146.18 128.17 21 11.11 2691.57 0.9633

Methionine M 149.20 131.19 7 3.70 918.33 0.3211

Phenylalanine F 165.19 147.18 11 5.82 1618.98 0.5046

Proline P 115.13 97.12 3 1.59 291.36 0.1376

Serine S 105.09 87.08 19 10.05 1654.52 0.8715

Threonine T 119.12 101.11 6 3.17 606.66 0.2752

Typtophan W 204.22 186.21 1 0.53 186.21 0.0459

Tyrosine Y 181.19 163.18 7 3.70 1142.26 0.3211

Valine V 117.14 99.13 10 5.29 991.3 0.4587

Total 189 100 21800.92
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Table B.3: Amino acid composition of plasmid resistance marker phosphotransferase (NCBI database reference sequence number WP 000018329 - aminoglycoside
O-phosphotransferase APH(3’)-Ia [Bacteria] (kanR)).

Amino acid (AA) Code MW (g/mol) MW - MW(H2O) # in kanR % AA MW in kanR (g/mol) mmole/g kanR

Alanine A 89.09 71.08 15 5.54 1066.20 0.4842

Arginine R 174.19 156.18 16 5.90 2498.88 0.5165

Asparagine N 132.11 114.10 15 5.54 1711.50 0.4842

Aspartic Acid D 133.10 115.09 25 9.23 2877.25 0.8070

Cysteine C 121.15 103.14 5 1.85 515.70 0.1614

Glutamic acid E 147.13 129.12 13 4.80 1678.56 0.4196

Glutamine Q 146.14 128.13 10 3.69 1281.30 0.3228

Glycine G 75.06 57.05 17 6.27 969.85 0.5488

Histidine H 155.15 137.14 7 2.58 959.98 0.2260

Isoleucine I 131.17 113.16 13 4.80 1471.08 0.4196

Leucine L 131.17 113.16 29 10.70 3281.64 0.9361

Lysine K 146.18 128.17 12 4.43 1538.04 0.3874

Methionine M 149.20 131.19 8 2.95 1049.52 0.2582

Phenylalanine F 165.19 147.18 16 5.90 2354.88 0.5165

Proline P 115.13 97.12 15 5.54 1456.80 0.4842

Serine S 105.09 87.08 16 5.90 1393.28 0.5165

Threonine T 119.12 101.11 10 3.69 1011.10 0.3228

Typtophan W 204.22 186.21 6 2.21 1117.26 0.1937

Tyrosine Y 181.19 163.18 7 2.58 1142.26 0.2260

Valine V 117.14 99.13 16 5.90 1586.08 0.5165

Total 271 100 30979.17
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Appendix C

Hierarchical Clustering Analysis
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Figure C.1: Model CMM A HCA full dendrogram obtained using single linage with Euclidean distance.
The colour in solution labelling refers to the colours used for the respective enumeration problems.
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Figure C.2: Model CMM B HCA full dendrogram obtained using single linage with Euclidean distance.
The colour in solution labelling refers to the colours used for the respective enumeration problems.
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Figure C.3: Model CMM C HCA full dendrogram obtained using single linage with Euclidean distance.
The colour in solution labelling refers to the colours used for the respective enumeration problems.
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Figure C.4: Model GSM B HCA full dendrogram obtained using single linage with Euclidean distance.
The colour in solution labelling refers to the colours used for the respective enumeration problems.
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Figure C.5: Model GSM C HCA full dendrogram obtained using single linage with Euclidean distance.
The colour in solution labelling refers to the colours used for the respective enumeration problems.
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