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Abstract—Over the last few years, neural machine translation
has become the major approach to the problem of automatic
translation. Nonetheless, even though current models are able
to output fluent translations, they often lack adequacy. In this
thesis we target adequacy issues with two different causes: poor
coverage of source words during translation, which lead to
unnecessary repetitions and erroneously untranslated words; rare
words and out-of-domain sentences.

In order to mitigate coverage issues we propose a fertility-
based approach to neural machine translation, which couples
the concept of fertility with sparse and constrained attention
transformations. Furthermore, we present two machine transla-
tion metrics that allow us to understand how much the problems
of over and under-translations are affecting the model.

To deal with rare words and out-of-domain sentences, we
implement an existing approach in the literature, that makes use
of the concept of translation pieces to guide the decoding step
of NMT models. We further extend this method by solving some
identified issues, and by applying it to the problem of domain
adaptation, something which had not been done in the past.

Finally, we provide an empirical evaluation in three language
pairs, presenting an extensive error analysis. This makes it
possible to understand the strengths and weaknesses of each of
the models, and how they may be improved in the future.

Index Terms—Deep learning, natural language processing,
neural machine translation, attention transformations, domain
adaptation.

I. INTRODUCTION

NEURAL Machine Translation (NMT) has become the de-
facto approach to the problem of machine translation

in recent years [1]–[3]. Despite the recent improvements in
the overall quality of NMT there are still some areas of
concern. Namely, current NMT systems are able to output
fluent sentences that often lack adequacy, i.e., are not able to
convey the idea of the source sentence [4]. Adequacy errors
may be split into three different major types of mistakes [5]:
• Over-translations, meaning that some source words are

translated more often than they should.
• Under-translations, when some source words are erro-

neously untranslated.
• Mistranslations, when a given source word is attended,

but the output word is not correct.
Furthermore, the problem of mistranslations may be related
with the inability of NMT systems to perform well when
translating rare words and out-of-domain sentences [6], [7].

In the current literature it is possible to find different
approaches to the problem of improving adequacy. [5], [8]
target the problem of adequacy by adapting the concept of
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coverage to NMT. Namely, both introduce a coverage vector,
with the goal of keeping track of which parts of the source
sentence have already been attended. In a different approach,
[9] proposed using a gating mechanism to decide how much
information flows from either the encoder or the decoder,
based on the premise that both affect fluency and adequacy
differently. Another possible way of ensuring adequacy, is
by training the model to be able to reconstruct the original
sentence from the obtained translations [10]. All the previous
approaches have one thing in common, namely, they introduce
some kind of artifact that is used during training. On the con-
trary, [11] introduces two terms which re-score the candidate
translations during beam search: a coverage penalty, which
penalizes hypotheses that have source words unattended; and
length normalization, that ensures the model does not produce
translations which are too short.

Other works in the literature, that try to include external
knowledge into NMT models, are more concerned with rare
words, or making sure that the translations are closer to the
desired. These approaches range from lexical constraints and
biases [6], [12], [13], to strategies that try to find examples
similar to the input sentence to re-train the model [14], [15]
or that leverage information about the hidden states and the
output distribution of the closest examples [16].

Despite the current approaches to the problem of adequacy
in NMT, some questions still remain as open problems.
Namely,

• How can we avoid the problem of unnecessary repetitions
in NMT?

• How can we make sure that every source word is attended
during translation?

• How can we make NMT models more robust to domain
changes and rare words?

The main contributions of this work, which aim at answer-
ing the previously raised questions, are the following:

• We propose two new metrics that aim to measure
how much of a problem over-translations and under-
translations are in the output sentences. Namely, these
metrics are able to capture information that the commonly
used automatic metrics miss.

• We introduce a new sparse constrained transformation,
Constrained Sparsemax, that is able to produce upper
bounded sparse probability distributions, while being end-
to-end differentiable.

• We introduce a new approach to NMT, fertility-based
NMT. In particular, it pairs sparse and constrained atten-
tion transformations with the fertility concept to promote
better coverage of the source words, both during training
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and inference. By enhancing the coverage of the model,
fertility-based NMT should decrease the adequacy issues
related with over and under-translations.

• We implement a model based on the proposed by [17],
with the changes introduced in Section V. We later use
this model in the same context of the original paper (in-
domain translation), and further evaluate its performance
in Domain Adaptation. This approach should help miti-
gate the identified problem of mistranslations.

• We perform an empirical analysis of both introduced
models, focusing also on error analysis.

This work is organized as follows: Section II introduces
the necessary background; Section III introduces the two
proposed MT metrics; Section IV presents the fertility-based
NMT approach; Section V describes Guided-NMT; Section VI
summarizes the most important experiments conducted; and
finally, Section VII reports the main takeaways.

II. BACKGROUND

Before delving into the proposed models and the obtained
results, it is necessary to introduce the necessary background.

A. Recurrent Neural Network

A Recurrent Neural Network (RNN) is a particular type of
neural network, able to capture recurrent dependencies in the
input data [18]. Its hidden states are defined as

ht = g(W xxt +W hht−1 + bh) (1)

where g(.) is some non-linear function, W x ∈ Rdx×dh ,
W h ∈ Rdh×dh , bh ∈ Rdh , xt ∈ Rdx , and ht,ht−1 ∈ Rdh .
The fact that at each time step, the previous hidden state
is fed into the calculation of the current hidden state and
consequently, of the output, allows information from previous
inputs to be incorporated and passed to next states. This leads
to the conclusion that RNNs are indeed able to capture long
term dependencies in the data. For natural language processing
problems it is common to have a discrete output space, thus, a
convenient choice for the non-linearity used to predict outputs
is the softmax (Equation 3). So, at each time step, it is possible
to predict an output as

yt = softmax(W yht + by). (2)

where, W y ∈ Rdh×dy , by ∈ Rdy , ht ∈ Rdh , yt ∈ Rdy , and
the softmax activation function is used to project the logits
into a probability space. Softmax is defined as

softmax(z)n =
exp(zn)∑N
j=1 exp(zj)

, (3)

where the input vector, z, corresponds to the logits, and N is
the dimension of the output.

RNNs are trained as usual for neural networks, in this case
making use of the backpropagation through-time [19]. One
commonly reported issue is that during backpropagation the
gradients become increasingly small throughout time steps,
making it hard for the model to actually capture long depen-
dencies [20]. To overcome this issue it is common to use Long

Short-Term Memory (LSTM) cells as the basic units of RNNs
[21].

B. Neural Machine Translation

The goal of NMT is to translate a sequence of words
from a source language, X = x1, x2, ..., xJ to a sequence
of words in a target language, Y = y1, y2, ..., yT , by
learning to model a conditional probability, P (Y |X) =∏T
t=1 P (yt|y1, ..., yt−1,X).
The standard approach to NMT is to use the encoder-

decoder architecture [1]–[3], presented in Figure 1. The main
idea of this approach may be seen in two steps: first, an
encoder is used to output a hidden state, i.e., a vector, that
is supposed to encode the source language sentence; then, the
decoder, which may be seen as a recurrent neural language
model, will use that intermediate representation as its initial
hidden state and, conditioned on the source sentence, generate
target language words. As it is, the intermediate hidden state
has to encompass the meaning of the whole source sentence,
and consequently, so do the decoder-side hidden states. As a
way of mitigating this issue, [22], [23] introduce the concept
of attention.

Fig. 1. Simplified representation of the NMT encoder-decoder architecture.

1) Encoder: A common architecture to use as encoder is
a bi-directional RNN [24], using LSTMs as units. In practice,
this means that we have two RNNs, one processing the source
sentence from left to right, and the other on the opposite
direction. By concatenating the hidden states of both, it is
possible to create a representation that has information about
all the context for a given source word. More formally, this is
defined as

−→
hej = RNN(

−−−→
hej−1,E[xj ]) (4)

←−
hej = RNN(

←−−
hej+1,E[xj ]), (5)

being E[xj ] the embedded vector of word xj , and hej the
hidden state of the encoder at position j, resulting then in
the bi-directional representation, hej =

[←−
hej ;
−→
hej

]
.

2) Decoder: The goal of the decoder is to produce target
language words, until a end of sentence token is output. The
common choice for the decoder is to use a recurrent neural
network. Each new hidden state hdt , depends on the previous
hidden state hdt−1, the embedding of the previous output word
E[yt−1], and also on a context vector ct. Each hidden state of
the decoder is therefore given by
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hdt = RNN(hdt−1, ct,E[yt−1]). (6)

At each decoding time step t, it is then possible to obtain a
probability distribution over the vocabulary by making use of
the softmax. This probability distribution allows us to choose
the output word at each time step during the translation.

3) Attention Mechanism: As previously stated, the attention
mechanism provides a way of enriching the source side
information the decoder has available at each time step. This
is achieved by the context vector ct, that is used as input to
the recurrent neural network. The context vector is obtained
as a weighted sum of the hidden states that resulted from the
encoding step, formally defined as

ct =

J∑
j=1

αtjh
e
j , (7)

being J the number of words of the source sentence, and α
the normalized vector of attention scores. This vector is in
fact a probability distribution over the source words, and thus,
each of its values may be interpreted as the importance of the
corresponding source word for the output at decoding step t.
The probability αtj , relative to each encoder hidden state hj ,
is given by,

αtj =
exp(ztj)∑J
k=1 exp(ztk)

, (8)

where ztj is an alignment model that is able to capture
how important the source words close to position j are for
the current decoding step, t. There are multiple ways of
defining this alignment model. The most widely known is the
approach by [22], sometimes called Bahdanau’s attention. In
particular, it proposes training a feedforward neural network
simultaneously with the rest of the NMT model. The alignment
model in this case is defined as ztj = a(hdt−1,h

e
j).

A posterior work presented a slightly different approach to
the attention mechanism, as well as novel alignment models
[23]. Before introducing those alignment models, it is neces-
sary to go through some of the subtleties of the attention used
by [23] (Luong’s attention). Namely, in Equation 6, the context
vector is no longer provided, i.e., it is calculated as hdt =
RNN(hdt−1,E[yt−1]). Instead, the context is used to obtain an
intermediate representation, h′ = tanh(W c[ct;h

d
t ]). Notice

that Equations 7 and 8 are not affected by this change and still
hold true. Finally, the probability distribution at a given decod-
ing step is given by p(yt|y1, ..., yt−1,X) = softmax(W sh

′).
W c and W s are both matrices of weights learned during
training.

In the case of Luong’s attention, three different alignment
models, ztj , are introduced [23]:

• Dot product: hdt
T
hej .

• General: hdt
T
W ah

e
j .

• Concat: vTa tanh

(
W 1

a

[
hdt ;h

e
j

])
.

4) Training: A NMT model is trained by maximizing the
conditional log-likelihood,

C(θ) =
1

D

D∑
d=1

Md∑
t=1

log pθ(y
d
t |yd1 , ..., ydt−1,X

d), (9)

via a set of parameters θ, being D the number of sentence
pairs in the data set and Md the length of a target sentence.
This will penalize sets of parameters that are not able to output
probability distributions at each decoding time step in which
the correct words are probable to happen.

5) Translation Generation: After modelling the conditional
probability p(Y |X), it is necessary to define how to choose
the output words at each decoding time step. As discussed pre-
viously, for each decoding step it is obtained an output vector
with a probability distribution over all possible words. Finding
the best translation corresponds to finding arg maxY p(Y |X).

Solving this problem would require computing the log
probability of every possible translation. Since that is not
feasible, an approximate search has to be used as alternative.
The most widely used approach is beam search, which works
by keeping a beam of the n most probable sequences of words
at each time step. This means that at each time step there are
temporarily n×|V | hypothesis, being |V | the number of words
in the vocabulary, which are then reduced to the top n. When
the end sentence token < /s > is predicted by the decoder, a
given hypothesis is assumed to be terminated. Whenever this
happens, that hypothesis is stored, the width n of the beam is
reduced by one, and the procedure continues, until that value
is reduced to zero. The best yielded hypothesis is chosen as
the translation of the source sentence.

6) Vocabulary Size: One of the main aspects of a neural
machine translation model is its vocabulary, mainly due to
the implications of its size. In particular, it implies finding a
balance between a large vocabulary size, that leads to the least
amount possible out-of-vocabulary words (usually replaced by
a unknown symbol), and a small vocabulary, which reduces the
complexity of the model.

A common way of overcoming this problem is to use the
byte pair encoding (BPE) algorithm to create subwords [25].
This approach is based on the idea that different words share
common smaller units, the so called subwords, whose transla-
tion may be concatenated and lead to the correct translation of
full words. The benefits from using this approach as opposed
to a fixed-vocabulary are twofold: first, the models improve
their ability of translating rare and out-of-vocabulary words;
second, it shows improvements in BLEU while reducing the
vocabulary size, and thus, the complexity of the whole process
of NMT [25] .

III. MACHINE TRANSLATION ADEQUACY METRICS

We present two metrics: REPScore, and DROPScore, which
measure the problem of over and under-translation, respec-
tively.1 Both of these metrics were part of our previous work
[26], but were further improved in the current work, namely

1Available at: https://github.com/PedroMLF/MT-Adequacy-Metrics
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by introducing appropriate length penalties, and the possibility
of using multiple references.

A. REPScore

The intuition for REPScore is that, if the candidate trans-
lation’s n-grams counts are much larger than the respective
counts in the reference translation, then it is very likely that
the model is over-translating. Another aspect that is widely
seen in machine translation outputs are the cases in which
words are generated repeatedly and consecutively. REPScore

tries to penalize both of these cases according to the following
formula,

σ(c, r) = λ1

∑
s∈cn,c(s)≥2

max{0, c(s)− r(s)}+

λ2

∑
w∈c

max{0, c(ww)− r(ww)},
(10)

where c and r are the candidate and corresponding reference
sentences, respectively, s ∈ cn represents a n-gram in the
candidate translation, c(s) and r(s) are its counts in the given
sentences, w ∈ c is a word in the candidate sentence, and
c(ww) and r(ww) are counts of consecutive words appear-
ances in the given pair of sentences.

A posterior work [27], suggested that such metrics could
exploit shorter candidate sentences in order to have lower over-
translation scores, since the counts of words directly affect the
final scores. Hence, we introduce a brevity penalty BP, in the
final calculation of REPScore,

REPScore = 100×BP ×
∑
c∈C

σ(c, r)× 1

|R|
, (11)

where C is the set of all candidate translations for a corpus,
c is a candidate translation with r being its corresponding
reference, and |R| the number of words of the reference
sentences. The normalization by the number of words in
the reference corpus makes the metric less sensitive to the
reference length. The λ weights are defined as λ1 = 1
and λ2 = 2, so that consecutive repeated words are more
penalized, since they are a better indicative of a problem with
over-translations and a common NMT output hallucination.
The default n-grams used are bi-grams. REPScore values are
non-negative and unbounded, and the lower the better.

B. DROPScore

Broadly speaking, DROPScore finds the amount of source
words that aligned with words from the reference translation,
but that did not align with any word from the candidate
translation. The reasoning behind this is that, if a given source
word aligned with some word of the reference, but did not
align with any word from the candidate translation, then it is
likely that that word was dropped during the process.

In order to do this, fast align [28] is used to obtain both a
set of alignments between the source and the reference corpus,
and a set of alignments between the source and the candidate
translation. From these set of alignments, the indexes of the

aligned source words are stored, for both cases. Obtaining the
difference between these two sets and dividing that number
by the size of the set of source words that aligned with
reference translation words yields the exact percentage of
source words that aligned with some word of the reference but
with none from the candidate translation. Although this value
is interpretable, longer sentences will have more words for the
source side to align to, and therefore, may be benefited during
the calculation of this metric. Thus, it is included a penalty for
these cases (taking note from [27]). DROPScore’s final value
is given by

DROPScore = 100× LP ×
∑
c∈C

|Sr \ Sc|
|Sr|

, (12)

where c is the candidate translation, C is the set of all
candidate translation for a given corpus, Sr is the set of
source words indexes that aligned with some word of the
reference translation, Sc is the set of source words indexes
that aligned with some word of the candidate translation, and
LP is a length penalty that penalizes sentences longer than
the reference. The final values for the metric are non-negative
and unbounded (due to the length penalty), and the lower the
value, the better.

C. Correlation with Human Judgment

In order to further validate the proposed metrics, we make
use of the Pearson correlation to find whether the proposed
metrics correlate with human annotated scores for over and
under-translations. The human judgment data was obtained by
the authors of [27], and refers to the evaluation of a total
of 888 candidate sentences, produced by four different NMT
systems, with regard to the presence of repeated or dropped
words. The source sentences, and corresponding references,
were obtained from the 2002 NIST dataset. Following [27],
the corpus level score for each of the models is obtained
by averaging the human scores for each system. We refer
to these as over-translation human judgment (OTHJ), and
under-translation human judgment (UTHJ). These scores are
then compared with the corpus-level values produced by the
proposed REPScore and DROPScore. This is a common ap-
proach, as similar experiments to validate metrics with regard
to human data have been in reported in the literature [27],
[29], [30].

The Pearson correlation coefficient yields a value between
-1 and 1, being an absolute value close to 1 sign of an high
correlation between the values being compared. A value of 0
would mean no correlation between the series of values. We
obtain a Pearson correlation of -0.929 between the REPScore

and OTHJ, and a correlation of -0.882 between DROPScore

and UTHJ. Even though the number of samples being used
does not allow to assess the statistical significance of the
results, the reported high correlations show encouraging signs
that the proposed metrics are able to perform as expected.

IV. FERTILITY BASED NMT
Previously, we identified some of the shortcomings of

NMT that have a negative impact in the output translations.
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In particular, two of those shortcoming revolve around the
problem of over and under-translating source words [5]. We
propose fertility-based NMT, part of our work [26], which
addresses the aforementioned cases by using different attention
transformations.2 To introduce these changes, Equation 8 is re-
written as αt = ρ(zt,ut), where ρ corresponds to the chosen
attention transformations, zt ∈ RJ are the scores provided by
the attention’s chosen alignment model, at a given decoding
step t, and ut ∈ RJ is the upper bounds vector. The later is
only necessary when ρ is defined as one of the constrained
attention transformations and defines an upper bound in the
attention each source word can receive. The three alternatives
to the traditional softmax are described next.

A. Sparsemax

Sparsemax [31] is as activation function that distinguishes
itself from the commonly used softmax due to its capacity
of producing sparse probability distributions. This means that,
contrary to softmax, where the yielded probabilities are strictly
positive, sparsemax is able to produce probability distribution
where some of the individual values are zero. The sparse
probability distribution p, is obtained by projecting the vector
of logits z ∈ RJ , onto the probability simplex, ∆J−1 := {p ∈
RJ |

∑
j pj = 1, pj ≥ 0 ∀j}, as

sparsemax(z) := arg min
p∈∆J−1

‖p− z‖2. (13)

B. Constrained Softmax

Constrained softmax [32] is an activation function that
differs from softmax by allowing to define an hard upper
bound on the probability that is assigned to each element.
The constrained softmax of a vector is obtained by solving
the following optimization problem

csoftmax(z;u) := arg min
p∈∆J−1

KL(p; softmax(z))

subject to p ≤ u,
(14)

in which p ∈ RJ is the probability distribution, u ∈ RJ is a
vector of upper bounds to the individual probabilities and KL
refers to the Kullback-Leibler divergence [33]. In words, the
optimization problem that leads to the constrained softmax,
yields the closest probability distribution to the one produced
by softmax, with the constraint of having the probability values
capped by a vector of upper bounds.

C. Constrained Sparsemax

Constrained sparsemax, introduced in our work [26], is an
activation function based on sparsemax and that differs from it
by introducing upper bounds in the attention scores it returns.
It is calculated by solving the problem

csparsemax(z;u) := arg min
α∈∆J−1

||α− z||2,

subject to α ≤ u
(15)

2Available at: https://github.com/Unbabel/sparse constrained attention

where z ∈ RJ is a vector of scores, u ∈ RJ is the
upper bounds vector, and α are the resulting attention scores.
Therefore, obtaining the attention scores at a given decoding
step t, may be simply put as αt = csparsemax(zt;ut).

Since it is based on the sparsemax attention transformation,
constrained sparsemax also yields sparse probability distribu-
tions over the source words, at each decoding step.

To use both of the previously introduced constrained atten-
tion transformations it is necessary to better define the vector
of upper bounds ut. One way of defining the upper bounds
is through the concept of fertility [34]. Namely, it is possible
to create a very intuitive abstraction by defining the vector of
upper bounds ut, at a given decoding step t as

ut = f − βt−1, (16)

where f ∈ RJ is a vector where each element corresponds
to the fertility of a source word, and βt−1 ∈ RJ corresponds
to the cumulative attention over source words, more formally,∑t−1
τ=1ατ . The element-wise difference between both vectors

may be interpreted as the amount of attention a given source
word still has available to receive, given that it started with a
”credit” of fj . Consequently, when a source word exhausts
its attention ”credit” it will stop receiving any probability
mass. Thus, constrained attention transformations are able to
introduce sparsity over time steps. The goal of improving
adequacy is therefore targeted as follows:
• Over-translations are tackled by defining a ”credit” of

attention each source word has available to receive.
Once that ”credit” is exhausted, the source word will no
longer be attended. This should help minimize instance
of repetitions, where the same source word is attended
several times.

• Under-translations should be mitigated by forcing the
model to spread the attention over the words which have
not had their ”credit” of attention exhausted or reduced.

Figure 2 further highlights the behaviour of each of the
mentioned attention transformations.

D. Fertility Bounds

One critical aspect in the proposed fertility-based NMT
model, is how to define the vector of fertility bounds, f . We
define three possible approaches:
• Constant, by defining the fertility used as upper bound

for each source word as a pre-defined constant.
• MaxAlign, where the fertility of each source word is

defined as the maximum number of target words that
aligned with it, using a word aligner like fast align [28].

• Predicted, which uses a bi-LSTM tagger to predict the
fertility value for each source word. The fertility val-
ues used to train the model are the number of target
words that align with a given source word, according to
fast align.

E. Sink Token

At each decoding step it is calculated a probability distri-
bution over the source words of a given input sentence. These
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Fig. 2. Behavior of the different attention transformations in a toy problem, with three source words. Each row corresponds to a decoding step, being the
first row the first decoding step. The logit values, per row are: z = (1.2, 0.8,−0.2); z = (0.7, 0.9, 0.1); and z = (−0.2, 0.2, 0.9). The red dots show the
corresponding attention values on the probability simplex. For the constrained transformations, f = 1. Also for those, the green dashed lines represent the
upper bounds, u. The last row shows the cumulative attention for each of the source words. Retrieved from [26].

are the so called attention scores and, since they correspond to
a probability distribution, they sum up to one. Thus, exactly
a single ”credit” of the upper bounds is exhausted at each
decoding step. This leads to one important consideration:
the output translation cannot be longer than

∑
j fj . Such a

limitation could become a liability during training, since target
sentences that exceed the sum of each source word’s fertility
render any of the constrained transformations infeasible. To
overcome this situation, a < SINK > token is appended to
every source sentence. This token has unbounded fertility, and
therefore solves the previously detected limitation.

F. Exhaustion Strategies

As previously mentioned, exhausting the attention a given
source word has yet to receive forces the attention scores to
be spread over the remaining words. This helps the model
addressing the issue of under-translations, by covering more
source words during decoding. Nonetheless, this will only be
verified after some words have their ”credit” of attention ex-
hausted. In order to have more attention spread over all source
words during the whole process, it is introduced the following
change: the scores zt, used in the attention transformation,
are now defined as z′t = zt + cut, where c is a constant.
The higher the value of c, the more important are the source
words which still have a large ”credit” of attention. This will
force the model to attend the words that are possibly being
under-translated.

V. GUIDED NMT

Besides the problem of over and under-translations, two fur-
ther issues were identified with the current NMT approaches:
translating rare-words [6], and being robust to out-of-domain
sentences [7]. To overcome this shortcoming of NMT, we

make us of [17]’s approach, which we will name Guided-
NMT.3 The central part of this approach is the concept of
translation pieces. These may be defined as subwords of a
given target sentence which are deemed as possible partial
translations of a given input sentence. The main advantage of
this approach is the fact that it only affects the decoding part of
NMT. The overall process may be split into two independent
steps: a retrieving step, where translation pieces are created
using a corpus of extra data; and a guiding step, where the
translation pieces are used to bias the NMT output layer.

A. Obtaining Translation Pieces

The overall process of retrieving translation pieces is sum-
marized in Algorithm 1, where N is the number of sentences
in the extra corpus, the subscript bpe indicates that byte pair
encoding (BPE) has been applied to the sentence [25], and
IDF is the inverse document frequency.

B. Guiding NMT with Translation Pieces

The intuition behind translation pieces is that they represent
n-grams which are likely to be present in good translation
hypotheses of a certain input sentence. In practice, this means
that a at each decoding step t, the output layer’s log prob-
abilities of subwords corresponding to translation pieces are
rewarded. Thus, it is increased the probability of choosing
those subwords during beam search. In particular, in transla-
tion pieces that correspond to n-grams with n ≥ 2, only the
last subword is rewarded, with the previous ones acting as
context. This process may be visualized in Figure 3.

3Available at: https://github.com/PedroMLF/guided-nmt
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Algorithm 1 Obtaining Translation Pieces
1: Input (Source Sentence): X; Xbpe;
2: Input (Extra Data): X1:N ; X1:N

bpe ; Y 1:N
bpe ; A1:N

bpe ;
3: E(X) = 1

|X|
∑

w∈X IDF(w)E(w)
4: for Xn, 1 ≤ n ≤ N do
5: E(Xn) = 1

|Xn|
∑

w∈Xn IDF(w)E(w)
6: end for
7: X1:M = Faiss(E(X), E(X1:N ))
8: for Xm, 1 ≤ m ≤M do
9: Gm

X = ∅
10: simi(X,Xm) = 1− d(X,Xm)

max(|X|,|Xm|)
11: Obtain Wm

bpe using Xbpe and Xm
bpe

12: Obtain aligned target subwords from Y m
bpe, using Wm

bpe and
Am

bpe

13: Obtain translation pieces, i.e., n-grams from aligned target
subwords, with 1 ≤ n ≤ 4

14: for each translation piece, tpXi do
15: if tpXi already in Gm

X then
16: Choose max

1≤m≤M∧tpXi∈Gm
X

simi(X,Xm)

17: else
18: Add tpXi to Gm

X with value simi(X,Xm)
19: end if
20: end for
21: end for
22: Output: GX =

M⋃
1

Gm
X

Fig. 3. Visualization of the process of rewarding translation pieces during
decoding. Notice that when the translation piece correspond to a n-gram with
n ≥ 2, the last subword is the one to be rewarded, and the previous ones act
as context. This context has to be present in the current translation hypothesis
for the reward to be given.

C. Proposed Changes

In order to improve the performance of the baseline ap-
proach defined in [17], three further changes have been intro-
duced. Looking at the approach described in Subsection V-B,
it is noticeable that translation pieces keep being rewarded,
even when they are already present in the current translation
hypothesis. This may lead to the repetition of certain sub-
words, since guided-NMT keeps naively rewarding the same
subwords repeatedly. In order to overcome this possible issue,
we suggest only rewarding translation pieces subwords until
they are present in the translation hypothesis.

Another possible source of performance degradation is the
fact that the translation pieces are based on every retrieved
sentence, even the ones that yield low similarity scores with
the input sentence. Furthermore, the bigger the amount of
translation pieces available, the slower the decoding process
will be. Therefore, it is introduced a similarity threshold γ.

Translation pieces from retrieved sentences that yielded a
similarity below this threshold will be discarded.

Finally, the original work [17] proposes weighting all the
translation pieces with the same weight. This might not be
ideal, since translation pieces corresponding to uni-grams are
always rewarded regardless of the context. Therefore, it is
introduced a new weighting formula, which weights differently
the uni-grams and the other translation pieces, given by

logpNMT
(yt|y1, ..., yt−1,X)+ = λ1tpvalue(yt)+

λ2

4∑
n=2

tpvalue(yt−n+1, ..., yt),
(17)

where tpvalue(.) corresponds to a mapping between a given
n-gram of subwords and its value.

D. Guided-NMT for Domain Adaptation

One possible application for the previous architecture that
[17]’s authors mention but do not explore is domain adapta-
tion. A possible issue with this approach lies in Equation 17,
which is only able to reward subwords which are part of the
vocabulary of the NMT model. The proposed strategy is to
incorporate in the vocabulary the translation pieces’ subwords
that appear during decoding, and that are not part of it. In
terms of NMT models this also requires changing the decoder
embedding layer and the output layer. The corresponding
weights and bias are defined with the values the NMT model
has learned for the unknown symbol. Using the same values
as the ones obtained for the unknown symbol means that
these subwords will be given a low log probability value. It is
therefore introduced a new weight value τ , for the translation
pieces that were added to the vocabulary. This value should
be higher than λ due to the aforementioned log probability
deficit for the unknown symbol. To sum up, using translation
pieces to perform domain adaptation requires: using the same
BPE encodings for the generic and in-domain data; extend the
generic vocabulary with the unseen subwords; use a different
weight τ , for the added subwords.

VI. EXPERIMENTS

In order to evaluate the proposed models, we devise three
sets of experiments. The first set of experiments concerns
the fertility-based NMT model, whereas the last two set of
experiments concern the guided-NMT approach. In particular,
the latter is first tested in an in-domain setup, and afterwards it
is evaluated in the scope of domain adaptation (using a model
trained with generic data). For fertility-based NMT, as the
main focus is on the problems of over and under-translations,
we choose small datasets. Two language pairs are evaluated:
German to English, using IWSLT 2014 data; Romanian to
English, using WMT 2016 data. The number of parallel
sentences in the training corpus are 153,326 and 560,767,
respectively. For guided-NMT, the in-domain data is obtained
from the UFAL medical corpus, using the ”medical corpus”
tag to choose the relevant examples. Namely, we extract the
top 1M sentences for the German to English data, and all the
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available (437,922) for the Spanish to English language pair.
As for the large generic corpus, used to perform the domain
adaptation experiments, it used Europarlv7 data, for a total of
around 2M sentence pairs for both German to English, and
Spanish to English.

All data is tokenized and lowercased with Moses scripts,
and BPE is applied with 32k merge operations [25], [35]. For
the fertility-based NMT experiments it is also appended the
< SINK > token to the end of every source sentence.

Furthermore, every model is trained using the OpenNMT-
py framework [36], following the same overall architecture.
We train an Encoder-Decoder model, using a 2-layer Bi-
LSTM for the encoder and a 2-layer LSTM for the decoder.
Furthermore, we use dropout of 0.3 [37], and the default
attention mechanism, Luong’s General Attention [23]. All the
other parameters are kept as default, unless otherwise stated.
While training, each model is evaluated on the development
set after each epoch. We choose the model that yields the
lowest perplexity on these evaluations. As for the decoder, we
used beam search, with a beam size of 5.

The models are measured using BLEU [29], METEOR
[38], and the aforementioned REPScore and DROPScore.

A. Fertility-Based NMT

Using the development set to perform hyperparameter tun-
ing, it was possible to find that for constrained softmax the
optimal fertility strategy is the constant, with a value of 1.5
and c = 0.6, whereas for constrained sparsemax, it should be
used the predicted fertility, with c = 0.4.

Besides using the different attention transformations already
mentioned throughout this work, two other approaches to
mitigate coverage problems during translation are going to be
tested. These approaches are:
• CovPenalty, using the coverage penalty and length nor-

malization presented in [11]. The corresponding α and β
values are tuned in the development set, using grid search
on {0.2k}5k=0.

• CovVector, adapted from [5]. To use this in the pro-
posed fertility based NMT, the calculation of pre-attention
scores using Luong’s general alignment model is changed
to zt,j = hdt−1

T (
Whej + υβt−1,j

)
, where υ is a matrix

of parameters that multiplies the coverage vector, βt−1,j .
Looking at the results in Table I, it is possible to draw sev-

eral conclusions. The sparse attention transformations (sparse-
max and constrained sparsemax) have a positive impact in
both machine translation coverage-related adequacy metrics, as
does constrained softmax, which is able to introduce sparsity
in the probability distributions over decoding time steps. Also,
the proposed fertility-based NMT models are able to, on
average, outperform two of the similar approaches existing
in the literature, here presented as CovPenalty and CovVector.

In particular, for the German to English language pair, Con-
strained Sparsemax with predicted fertility and c = 0.4 is able
to outperform every other approach across all metrics. When
compared with the baseline softmax, it shows an improvement
of around 1.5 BLEU points, 0.8 METEOR points and it is
able to reduce REPScore by 31.1% and DROPScore by 19.6%.

For the Romanian to English language pair, even though
the difference in performance is not as sound as for the
previous language pair, the fertility-based NMT is still able to
produce strong BLEU and METEOR scores while effectively
reducing the metrics related with over and under-translation
issues. When compared with the baseline softmax, using
Constrained Softmax with a fixed fertility of 1.5 and c = 0.6 is
able to reduce REPScore by 18.5% and DROPScore by 3.5%.

B. Guided-NMT

For guided-NMT we use the in-domain development set
to tune the number of retrieved sentences per input sen-
tence M , the similarity threshold γ, and the λ values. The
values reported for the test set use M = 5, γ = 0.4,
(λ1, λ2) = (1.0, 1.0) for the German to English language pair,
and (λ1, λ2) = (1.1, 1.0) for the Spanish to English language
pair. The obtained results are reported in Table II. We use the
full training corpus as extra data.

1) Test Set Performance: It is possible to see that in terms
of BLEU and METEOR, the guided NMT approach always
outperforms the baseline, adding around 2 BLEU points in
both cases. The reported DROPScore is virtually the same in
both cases and it is noticeable the increase in REPScore. This
increment is larger for the Spanish to English translations and
a similar increase was detected while tuning the λ values in the
development set. It is possible to speculate that the REPScore

reported for the baseline model is so low that, rewarding
certain subwords during decoding, even when employing
strategies to mitigate repetitions due to the translation pieces,
slightly affects the translation in this regard. Nonetheless, the
resulting value is still fairly low when compared, for instance,
with the value reported for the German to English language
pair. Also, the benefit across the other metrics outweighs the
increase in REPScore.

2) Translating Rare Words: One of the goals mentioned for
the proposed approach is to be able to translate n-grams that
appear in a test corpus, but that seldom occur in the data used
to train the NMT model. In order to evaluate if the obtained
translation is improving the rate of translation of infrequent
n-grams, we follow an approach similar to the proposed in
[17].

The first step to calculate the amount of correctly translated
n-grams, with 1 ≤ n ≤ 4, is to obtain the intersection between
the set of n-grams present in a candidate translation and the
reference, at a corpus level. This yields the n-grams that are
both present in the output translation and in the reference, i.e.,
the correctly translated n-grams. Then, it is possible to find
how many times each of those n-grams appeared in the training
corpus. This value is referred as ψ. With this information, it is
possible to count the number of instances of a given n-gram,
both in the reference and candidate translations, knowing that
it appeared ψ times in the training data. Finally, comparing
the counts between the baseline NMT model and the guided-
NMT, we can find if adding translation pieces indeed helps
translating n-grams that seldom appear in the training corpus.

Table III show the n-grams counts for the baseline NMT
model, the guided-NMT model and the ratio between both,
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TABLE I
FERTILITY-BASED NMT - EVALUATION FOR THE DIFFERENT CONSTRAINED ATTENTION TRANSFORMATIONS. † INDICATES TRANSLATIONS WHOSE

DIFFERENCE IN BLEU, WITH REGARD TO THE MODEL WITH THE HIGHEST SCORE, IS NOT STATISTICALLY SIGNIFICANT (p < 0.01), FOR EACH
CONSTRAINED ATTENTION TRANSFORMATION.

De-En Ro-En
Model BLEU ↑ METEOR ↑ REP ↓ DROP ↓ BLEU ↑ METEOR ↑ REP ↓ DROP ↓

Softmax 29.18 31.21 4.47 6.07 30.43† 32.60 2.32 6.01
Softmax + CovPenalty 29.29 31.29 4.53 5.93 30.44† 32.63 2.34 5.96
Softmax + CovVector 29.66 31.54 4.03 5.47 30.68† 32.79 2.09 5.86

Sparsemax 29.56 31.33 4.41 5.77 30.12 32.39 2.11 6.08
Sparsemax + CovPenalty 29.59 31.38 4.43 5.66 30.09 32.46 2.12 5.92
Sparsemax + CovVector 29.98 31.68 3.70 5.65 30.44† 32.54 1.91 5.93
CSoftmax-Fixed-1.5-0.6 30.26† 31.86 3.49 5.35 30.87 32.74 1.89 5.80

CSparsemax-Predicted-0.4 30.52 32.07 3.08 4.88 30.35† 32.69 2.08 5.80

TABLE II
IN-DOMAIN GUIDED-NMT - RESULTS FOR THE IN-DOMAIN TEST SET.

Model BLEU ↑ METEOR ↑ REP ↓ DROP ↓
De-En Base 52.12 40.89 5.65 11.45

Guided 54.01 41.50 5.96 11.41
Es-En Base 52.44 40.64 2.38 6.54

Guided 54.70 41.31 3.77 6.52

for n-grams that appear ψ times in the training corpus. Even
though the ratios are not much higher than one, the guided
approach is always able to surpass the baseline. It is also
observable that the ratios are larger for n-grams that are less
frequent in the training corpus. This was to be expected due to
the way NMT models are trained, which make it more difficult
to output words/patterns that are not seen very often during
training, as opposed to more common ones.

TABLE III
IN-DOMAIN GUIDED-NMT - COUNTS OF CORRECTLY TRANSLATED

n-GRAMS THAT APPEAR ψ TIMES IN THE TRAINING CORPUS.

ψ 1 2 5 10 20 50 100
Base 7061 4249 2169 1092 586 282 143

De-En Guided 7895 4823 2353 1184 632 301 151
Guided/Base 1.12 1.14 1.08 1.08 1.08 1.07 1.06

Base 3933 2510 1450 843 470 214 103
Es-En Guided 4542 2835 1650 932 502 228 104

Guided/Base 1.15 1.13 1.14 1.11 1.07 1.07 1.01

C. Guided-NMT for Domain Adaptation

When using a generic model to translate an in-domain test
set, the extra data is even more critical for the improvement
of the translations. The set of optimal hyperparameters reflects
the larger role of translation pieces. In particular, it is found
that optimal set of hyperparameters are: M = 20, γ = 0.3,
(λ1, λ2, τ) = (3.5, 4.0, 5.0) for German to English; and
(λ1, λ2, τ) = (2.5, 4.5, 5.0), for Spanish to English.

1) Test Set Performance: The first step for evaluating the
model is to present the results obtained for the in-domain test
set (Table IV). Namely, the results for German to English
improve around 6 BLEU points, and for Spanish to English,
the improvement is slightly more than 10 BLEU points. Also
worth mentioning is that all other metrics show improvements,
barring the REPScore in the Es-En experiments, where a very
slight increase is reported. These results highlight the capacity

of the translation pieces for domain adaptation, improving the
quality of the translation of an in-domain test set across several
metrics.

Also noticeable, are the larger improvements reported for
the Spanish to English language pair. By obtaining some statis-
tics regarding the collected translation pieces, it is possible
to find that the average similarity for the German to English
language pair is 0.457, with a median of 0.378, whereas for
Spanish to English the average similarity is 0.642 and the
median is 0.587. This is a noticeable difference, leading to the
conclusion that, even with correctly tuned λs, the similarity
of the collected sentences is critical for the success of this
approach.

TABLE IV
GUIDED NMT FOR DOMAIN ADAPTATION - RESULTS FOR THE

IN-DOMAIN TEST SET.

Model BLEU ↑ METEOR ↑ REP ↓ DROP ↓
De-En Base 16.09 20.62 11.41 25.10

Guided 22.21 23.63 9.68 24.46
Es-En Base 22.03 25.86 4.81 12.63

Guided 32.20 29.95 4.95 12.34

2) Translating Rare Words: We also evaluate how capable
the model is of translating n-grams that are rare in the training
corpus. Looking at Table V it is possible to observe that for
lower values of ψ, the guided-NMT approach is more capable
of producing the correct n-gram than the baseline. In fact,
using translation pieces is shown to be able to induce the
production of n-grams that very rarely appear in the training
corpus, close to more than twice as often as the generic
NMT model. Therefore, we may conclude that the impact
of translation pieces in the production of rare n-grams is
particularly noticed when using a generic model to translate
an in-domain test set.

TABLE V
GUIDED NMT FOR DOMAIN ADAPTATION - COUNTS OF CORRECTLY

TRANSLATED n-GRAMS THAT APPEAR ψ TIMES IN THE TRAINING CORPUS.

ψ 1 2 5 10 20 50 100
Base 1011 599 412 257 145 88 59

De-En Guided 1986 1254 682 379 199 123 78
Guided/Base 1.96 2.09 1.66 1.47 1.37 1.40 1.32

Base 1262 778 459 264 141 84 73
Es-En Guided 2249 1378 871 466 241 134 85

Guided/Base 1.78 1.77 1.90 1.77 1.71 1.60 1.16



10

3) Impact of the Number of Extra Sentences: Even though
the previous set of experiments is helpful and shows how
translation pieces may serve as a possible approach to the
problem of domain adaptation, they rely on large sets of extra
sentences. When such a big amount of in-domain data is
available, it is much more effective to train a model from
scratch using that data. This is easily verified when comparing
this section’s results with the ones from Section VI-B.

A more realistic setting is one in which a NMT model is
trained using a large generic corpus and then, as in-domain
data is collected, it is used to performed some way of domain
adaptation, such as fine-tuning [39]. Since fine-tuning requires
re-training the model, which may be a cumbersome task,
having the chance of leveraging collected in-domain data
using translation pieces, poses as a computationally appealing
alternative. Namely, coupling guided-NMT with periodic re-
training of the model, is an approach that may conjugate
the best of both approaches. In order to test this setup, the
following three scenarios are going to be tested:

• Translation Pieces, where the baseline generic model uses
translation pieces created from an extra corpus of in-
domain sentences.

• Fine-tuning, where the generic model is fine-tuned using
a given amount of in-domain sentences.

• Latest Fine-tuned + Translation Pieces, where a model
fine-tuned in the previous number of available in-domain
sentences has access to translation pieces from the cur-
rently available in-domain sentences. This simulates a
more real context, where someone fine-tunes a model,
later has access to more in-domain data, and wants to
avoid re-training the model straightaway.

The obtained results are presented in Figure 4. A first
observation to be made is that any of the approaches improves
the obtained BLEU score, even when using a small amount
of extra 5000 in-domain sentences. Previously, it has been
observed that translating an in-domain test set with a model
trained with in-domain data yields better results than using
the generic model. Therefore it is expected that re-training the
model, even if using a small amount of extra in-domain data,
further improves BLEU scores. This is clearly observable, as
the Fine-tuning results are always higher than the Translation
Pieces ones.

The results of using fine-tuned models together with trans-
lation pieces are also particularly interesting. Namely, as
long as we have fine-tuned models (corresponding to the last
three measurements of the green line), this approach always
outperforms simply using the fine-tuned model. This means
that, not only the translations pieces are beneficial when using
fine-tuned models, but also that the extra 5000 in-domain
sentences have a larger impact when used as translation pieces
(paired with a fine-tuned model) than when used to further
fine-tune the generic model. This may be due to the fact that
such a small amount of extra sentences might not be enough
to push the model parameters that closer to the optimal for
the in-domain scenario, when compared with the previously
fine-tuned model, while being enough for the translation
pieces algorithm to find much similar sentences and therefore,
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Fig. 4. Domain Adaptation Experiments.

much more reliable n-grams to reward during decoding. The
observed effect should be diluted over time as the fine-tuned
model learns to give the correct probability to the necessary
subwords.

VII. CONCLUSION

In Section I we raised three open questions regarding
the problem of adequacy in neural machine translation. Our
contributions in this work aim to answer those same questions.
Namely, three major sources of poor adequacy were identified:
over-translations, under-translations, and mistranslations.

We started by introducing REPScore and DROPScore as a
way of measuring how problematic over and under-translations
are in the produced translations. Furthermore, these metrics
were shown to correlate well with the human judgment re-
garding those same identified problems.

Then, we proposed a fertility-based approach to NMT,
which leverages both fertility, and sparse and constrained
attention transformations. Using fertility-based NMT it was
possible to improve the obtained translation with regard to,
not only the commonly used MT metrics, such as BLEU and
METEOR, but also also with regard to the two proposed
metrics.

In order to improve the performance of NMT with regard to
mistranslations, we followed [17], and further enhanced it by
addressing some of the identified shortcomings of the original
work. To evaluate its performance, first we used an in-domain
setup, where it was able to yield improvements in terms of
the overall MT metrics, as well as capable of translating more
often n-grams that are rare in the training corpus. Then, we
used it as a way of performing domain adaptation, something
that had not been done in the past. In this case it was possible
to obtain an even larger increase in terms of performance,
with regard to the baseline. Furthermore, we have shown that
a common domain adaptation technique, fine-tuning, is able
to leverage translation pieces, implying an interesting synergy
between both approaches. The mentioned conclusions are part
of a comprehensive evaluation and error analysis we carried for
all the proposed metrics on three language pairs, with overall
encouraging results.
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